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THE REVERSE MATHEMATICS OF CAC FOR TREES

JULIEN CERVELLE, WILLIAM GAUDELIER, AND LUDOVIC PATEY

Abstract. CAC for trees is the statement asserting that any infinite subtree of N<N

has an infinite path or an infinite antichain. In this paper, we study the computa-

tional strength of this theorem from a reverse mathematical viewpoint. We prove

that CAC for trees is robust, that is, there exist several characterizations, some of

which already appear in the literature, namely, the statement SHER introduced by

Dorais et al. [8], and the statement TAC + BΣ0
2 where TAC is the tree antichain

theorem introduced by Conidis [6]. We show that CAC for trees is computationally

very weak, in that it admits probabilistic solutions.

§1. Introduction. In this paper we study the computability-theoretic
strength of the statement CAC for trees, which is a variation on the well-
studied chain-antichain theorem (CAC). It turns out CAC for trees has dif-
ferent characterizations, making it a robust notion, suitable for future stud-
ies in reverse mathematics.
We are going to use two frameworks: reverse mathematics and com-

putable reduction. For a good and more complete introduction to reverse
mathematics, see Simpson [18], or Hirschfeldt [12] which also covers the
computable reduction and classical results on Ramsey’s theorem.
Reverse mathematics is a foundational program which seeks to deter-

mine the optimal axioms to prove “ordinary” theorems. It itself uses the

This project started as the study of Ramsey-like theorems for 3-variable forbidden

patterns. The attempt to prove Corollary 6.13 naturally led to the study of the SHER
principle, already defined by Dorais and al. [8]. Thanks to multiple personal commu-
nications with François Dorais, we realized that the SHER principle is closely related

to trees, and more precisely, equivalent to the Chain-Antichain principle for trees, a

principle studied by Binns et al. in [3]. We later realized that SHER is also equivalent
to TAC+ BΣ0

2, where TAC is an antichain principle for completely branching c.e. trees,
defined by Conidis [6]. Some of the results are therefore independent rediscoveries of
some theorems from [3, 6], but in a more unified setting. The authors are thankful to
Chris Conidis, François Dorais and Alberto Marcone for interesting comments and dis-

cussions. The authors are also thankful to the anonymous referee for his careful reading
and his numerous improvement suggestions. The authors were partially supported by
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framework of subsystems of second-order arithmetic, with a base theory
called RCA0, which informally captures “computable mathematics”.
Computable reduction makes precise the idea of being able to computably

solve a problem P using another problem Q. A problem is defined as a Π1
2

formula in the language of second-order arithmetic, thought to be of the
form ∀X(ψ(X)=⇒∃Y φ(X,Y )), where ψ and φ are arithmetical formulas.
An instance of a problem is a set X verifying ψ(X), and a solution of an
instance X is a set Y such that φ(X,Y ). With this formalism, we say
that “P is computably reducible to Q”, and we write P ⩽c Q if for any

instance I of P , there is an I-computable instance Î of Q, such that, for

any solution Ŝ of Q, there is an Ŝ ⊕ I-computable solution S of P .
The early study of reverse mathematics has seen the emergence of four

subsystems of second-order arithmetic, linearly ordered by the provabil-
ity relation, such that most of the ordinary theorems are either provable
in RCA0, or equivalent in RCA0 to one of them. These subsystems, to-
gether with RCA0, form the “Big Five”. Among the theorems studied in
reverse mathematics, Ramsey’s theorem for pairs RT2

2 plays an important
role, since it is historically the first example of a natural statement which
does not satisfy this empirical observation. The theorems we study in this
paper are all consequences of RT2

2.

1.1. A chain-antichain theorem for trees. Among the consequences
of Ramsey’s theorem for pairs, the chain-antichain theorem received a par-
ticular focus in reverse mathematics.

Definition 1.1 (CAC, chain-antichain theorem). Every infinite partial
order has either an infinite chain or an infinite antichain.

CAC was first studied in [13] by Hirschfeldt and Shore, following a ques-
tion raised by Cholak, Jockusch and Slaman in [4, Question 13.8] asking
whether or not CAC=⇒RT2

2 over RCA0, for which they proved the answer
is negative (Corollary 3.12). The reciprocal RCA0 ⊢ RT2

2 =⇒CAC is easier
to obtain, by defining a coloring such that {x, y} has color 1 if its elements
are comparable, and 0 otherwise. Any homogeneous set for this coloring is
either a chain or an antichain, depending on its color.
In this article, we focus on the special case where the order is the prede-

cessor relation ≺ on a tree.

Definition 1.2 (CAC for trees). Every infinite subtree of N<N has an
infinite path or an infinite antichain.

This statement was first introduced by Binns et al. in [3], where the
authors showed that every infinite computable tree must have either an
infinite computable chain or an infinite Π0

1 antichain. Furthermore, they



THE REVERSE MATHEMATICS OF CAC FOR TREES 3

showed that these bounds are optimal, by constructing an infinite com-
putable tree which has no infinite Σ0

1 chain or antichain. They also showed
that RCA0 +WKL ̸⊢ CAC for binary trees (see Definition 2.1).

1.2. Ramsey-like theorems. In [17], Patey identified a formal class of
theorems, encompassing several statements surrounding Ramsey’s theorem.
Indeed, many of them are of the form “for every coloring f : [N]n → k
avoiding some set of forbidden patterns, there exists an infinite set H ⊆ N
avoiding some other set of forbidden patterns (relative to f)”

For example the Erdős-Moser theorem (EM) asserts that, “for any color-
ing f : [N]2 → 2, there exists an infinite setH ⊆ N which is transitive for f”,
i.e. ∀i < 2,∀x<y<z ∈ H, f(x, y) = i ∧ f(y, z) = i=⇒ f(x, z) = i. In other
terms, we want H to avoid the patterns that would make it not transitive
for f , i.e. f(x, y) = i ∧ f(y, z) = i ∧ f(x, z) = 1− i for any i < 2. Another
example comes from ADS which is equivalent over RCA0 (see [13, Theo-
rem 5.3]) to the statement “for any transitive coloring f : [N]2 → 2 (i.e.
avoiding certain patterns), there exists an infinite set H ⊆ N which is f -
homogeneous”. With these definitions, one sees that RT2

2 is equivalent
to EM+ADS over RCA0, since EM takes any coloring and “turns it into” a
transitive one, and ADS takes any transitive coloring and finds an infinite
set which is homogeneous for it.
Forbidden patterns on 3 variables and 2 colors are generated by the

following three basic patterns:

(1) f(x, y) = i ∧ f(y, z) = i ∧ f(x, z) = 1− i
(2) f(x, y) = i ∧ f(y, z) = 1− i ∧ f(x, z) = i
(3) f(x, y) = 1− i ∧ f(y, z) = i ∧ f(x, z) = i

Avoiding them respectively leads to transitivity, semi-ancestry, and
semi-heredity (for the color i). Each of them generates two ramsey-like
statements, one restricting the input coloring, and one restricting the out-
put infinite set, namely “for any 2-coloring of pairs avoiding the forbidden
pattern, there exists an infinite homogeneous set” and “for any 2-coloring
of pairs, there exists an infinite set H ⊆ N which avoids the forbidden
pattern”. We now survey the known results about these three patterns.
Transitivity. The statement “for any 2-coloring of pairs, there exists an

infinite set which is transitive for some color” is a weaker version of EM.
The Erdös-Moser theorem was proven to be strictly weaker than Ramsey’s
theorem for pairs over RCA0 by Lerman, Solomon and Towsner [16, Corol-
lary 1.16]. On the other hand, the statement “for any 2-coloring of pairs
which is transitive for some color, there exists an infinite homogeneous set”
is equivalent to CAC (see [13, Theorem 5.2]), which is also known to be
strictly weaker than RT2

2 over RCA0 (see Hirschfeldt and Shore [13, Corol-
lary 3.12]).
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Semi-ancestry. The statement “for any 2-coloring of pairs which has
semi-ancestry for some color, there exists an infinite homogeneous set” is a
consequence of the statement STRIV, defined by Dorais et al. [8, Statement
5.12]), because a 2-coloring is semi-trivial if and only if it has semi-ancestry.
And STRIV itself is equivalent to ∀k,RT1

k (see the remark below its defini-
tion). The statement “for any 2-coloring of pairs, there exists an infinite set
which has semi-ancestry for some color” is equivalent to RT2

2 (see Proposi-
tion 6.11).
Semi-heredity. The statement “for any 2-coloring of pairs which is semi-

hereditary for some color, there exists an infinite homogeneous set” is the
statement SHER, which was first introduced by Dorais et al. [8, Statement
5.11]. In Section 6, we will show that it is equivalent to CAC for trees. Fi-
nally, the statement “for any 2-coloring of pairs, there exists an infinite set
which is semi-hereditary for some color” is equivalent to RT2

2 (see Corol-
lary 6.13).

1.3. Notation. Let the symbols ∃∞x and ∀∞x be abbreviations for
∀y,∃x > y and ∃y,∀x > y respectively. In particular they are the dual of
each other.
Given x, y ∈ N ∪ {±∞}, we define Jx, yK := {z ∈ N | z ⩾ x ∧ z ⩽

y}, an inequality being strict when its respective bracket is flipped, e.g.
Jx, yJ := {z ∈ N | z ⩾ x ∧ z < y}. As in set theory, an integer n can also
represent the set of all integers strictly smaller to it, i.e. J0, nJ. Moreover
⟨−, . . . ,−⟩ represents a bijection from Nn to N (for some n), which verifies
∀x, y ∈ N, ⟨x1, . . . , xk⟩ ⩾ max{x1, . . . , xk} and which is increasing on each
variable. Given a set A ⊆ N, we denote by χA its indicator function.

A string is a finite sequence of integers, and the set of all strings is
denoted N<N. In particular, a binary string is a finite sequence of 0 and
1, and the set of all binary strings is denoted 2<N. The length of a given
string σ : n → N is the integer |σ| := n. The empty string ∅ → N is
denoted ε. Given two strings σ and τ of respective length ℓ and m, we
define their concatenation as the finite sequence σ · τ : ℓ+m→ N which,
given j < ℓ +m, associates σ(j) if j < ℓ, and τ(j − ℓ) otherwise. So we
usually write a string σ : n→ N as σ0 · . . . ·σn−1, where ∀j < n, σj := σ(j).
We define the partial order on strings “is prefix of”, denoted ≺, by σ ≺
τ ⇐⇒ |σ| < |τ | ∧ ∀j < |σ|, σ(j) = τ(j), and denote by ≼ its reflexive
closure. When two strings σ and τ are incomparable for ≺, we write
σ⊥τ .
A tree T is a subset of N<N which is downward closed for ≺, i.e. ∀σ ∈

T, τ ≺ σ=⇒ τ ∈ T . A binary tree is a subset of 2<N which is downward
closed for ≺. A subset S ⊆ T of a tree is a chain when it is linearly ordered
for ≺, and it is an antichain when its elements are pairwise incomparable
for ≺.
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1.4. Organization of the paper. In Section 2, we prove the robust-
ness of CAC for trees in reverse mathematics and over the computable re-
duction, by proving its equivalence with several variants of the statement.
In Section 3, we provide a probabilistic proof of CAC for trees, and give
a precise analysis of this proof in terms of DNC functions. In Section 4
we show that both ADS and EM imply CAC for trees. In Section 5 we
prove there is a computable instance of TAC whose solutions are all of hy-
perimmune degree, with almost explicit witness. In particular we show a
computable instance of TAC can avoid a uniform sequence of ∆0

2 sets. In
Section 6, we show the equivalence between CAC for trees and SHER. In
Section 7, we explore the relations between stable versions of previously
mentioned statements, namely CAC for trees, ADS and SHER, leading to
the result that CAC for stable c.e. trees admits low solutions. Finally, in
Section 8, we conclude the paper with remaining open questions and sum-
mary diagrams.

§2. Equivalent definitions. In this section, we study some variations
of CAC for trees, and prove they are all equivalent. We also study TAC and
show that TAC+ BΣ0

2 is equivalent to CAC for trees. We start by defining
these statements.

Definition 2.1 (CAC for c.e. (binary) trees). Every infinite c.e. (binary)
subtree of N<N has an infinite path or an infinite antichain.

Remark 2.2. In the context of reverse mathematics “being c.e.” is a no-
tion that is relative to the model considered, i.e. an object is c.e. when it
can be approximated in a c.e. manner by objects from the model.

Definition 2.3 (Completely branching tree). A node σ of a tree T ⊆
N<N is a split node when there is n0, n1 ∈ N such that ∀i < 2, σ · ni ∈ T .
In particular, if T is a binary tree, then σ is a split node when both σ ·0 ∈ T
and σ · 1 ∈ T . A tree T ⊆ 2<N is completely branching when, for any
of its node σ, if σ is not a leaf then it is a split node.

The following statement was introduced by Conidis [6] (personal commu-
nication), motivated by the reverse mathematics of commutative noetherian
rings.

Definition 2.4 (TAC [6], tree antichain theorem). Any infinite c.e. sub-
tree of 2<N which is completely branching, contains an infinite antichain.

Conidis proved that TAC follows from CAC over RCA0, and constructed
an instance of TAC, all of whose solutions are of hyperimmune degree. In
particular, RCA0+WKL ⊬ TAC. Now we can proceed with the proof of the
equivalence.
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Theorem 2.5. The following statements are equivalent over RCA0 and
computable reduction:

(1) CAC for trees
(2) CAC for c.e. trees
(3) CAC for c.e. binary trees
(4) TAC+ BΣ0

2

Proof. (2)=⇒ (1) and (2)=⇒ (3) are immediate. (3)=⇒ (4) is Propo-
sition 2.6 and Proposition 2.7. (4)=⇒ (2) is Proposition 2.8. (1)=⇒ (2) is
Proposition 2.9. ⊣

We shall see in Section 3 that the use of BΣ0
2 is necessary in the equiva-

lence above, as TAC does not imply BΣ0
2 over RCA0.

Proposition 2.6. RCA0 ⊢ CAC for c.e. binary trees=⇒TAC and TAC ⩽c

CAC for c.e. binary trees.

Proof. Let T ⊆ 2<N be an infinite completely branching c.e. tree. By
the statement CAC for c.e. binary trees, either there is an infinite antichain,
or an infinite path P . In the former case, we are done. In the latter case,
using the fact that T is completely branching, the set {σ · (1− i) | σ · i ≺ P}
is an infinite antichain of T . ⊣

Proposition 2.7. RCA0 ⊢ CAC for c.e. binary trees=⇒∀k,RT1
k

and ∀k,RT1
k ⩽c CAC for c.e. binary trees.

Proof. Let f : N → k be a coloring, there are two possibilities. Either
∃i < k,∃∞x, f(x) = i, in which case there is an infinite computable f -
homogeneous set. Otherwise ∀i < k,∀∞x, f(x) ̸= i, in which case we
define an infinite binary c.e. tree T , via a strictly increasing sequence of
computable trees (Tj)j∈N defined by T0 := {0i | i < k} and Ts+1 :=

Ts ∪{0f(s) · 1m+1}, where m is the number of x < s such that f(x) = f(s).
Every antichain in T is of size at most k, thus, by CAC for c.e. binary trees,

T must contain an infinite path, and so ∃i < k, ∃∞x, f(x) = i, which is a
contradiction. ⊣

Proposition 2.8. RCA0 ⊢ TAC+ BΣ0
2 =⇒CAC for c.e. trees and

CAC for c.e. trees ⩽c TAC

Proof. Let T ⊆ N<N be an infinite c.e. tree. We can deal with two cases
directly: when T has a node with infinitely many immediate children, as
they contain a computable infinite antichain; and when T has finitely many
split nodes, in which case it has finitely many paths P0, . . . , Pk−1, which are
all computable. Moreover one of them is infinite, as otherwise they would
all be finite, i.e. ∀i < k, ∃s,∀n > s, n /∈ Pi, and thus their union would be
finite since BΠ0

1 (which is equivalent to BΣ0
2) yields ∃b,∀i < k, ∃s < b, ∀n >

s, n /∈ Pi. But since T =
⋃

i<k Pi, this would lead to a contradiction.
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A split triple of T is a triple (µ, n0, n1) ∈ T × N × N such that µ, µ ·
n0, µ · n1 ∈ T . In particular, µ is a split node in T .
Idea. The general idea is to build greedily a completely branching c.e.

tree S by looking for split triples in T , and mapping them to split nodes
in S. This correspondence is witnessed by an injective function f : S → T
that will be constructed alongside S. The main difficulty is that, since T
is c.e., a split node ρ can be discovered after µ even though ρ ≺ µ, which
means that we will not be able to ensure that S can be embedded in T . In
particular, f will not be a tree morphism. However, the only property that
needs to be ensured is that for every infinite antichain A of S, the set f(A)
will be an infinite antichain of T . To guarantee this, the function f needs
to verify

∀σ, ν ∈ S, σ⊥ν=⇒ f(σ)⊥f(ν)(∗)

During the construction, we are going to associate to each node σ ∈ S a
set Nσ ⊆ T , which might decrease in size over time (N0

σ ⊇ N1
σ ⊇ . . . ),

with the property that at every step s, the elements of {Ns
σ : σ ∈ S} are

pairwise disjoint, and their union contains cofinitely many elements of T .
The role of Nσ is to indicate that “if a split triple is found in Nσ, then the
nodes in S, associated via f , must be above σ”.
Construction. Initially, N0

ε := T , S := {ε} and f(ε) := ε.
At step s, suppose we have defined a finite, completely branching binary

tree S ⊆ 2<N, and for every σ ∈ S, a set Ns
σ ⊆ T such that {Ns

σ : σ ∈ S}
forms a partition of T minus finitely many elements. Moreover, assume we
have defined a mapping f : S → T .
Search for a split triple (µ, n0, n1) in

⋃
σ∈S N

s
σ. Let σ ∈ S be such that

µ ∈ Ns
σ. Let τ be any leaf of S such that τ ⪰ σ (for example pick the

left-most successor of σ). Add τ · 0 and τ · 1 to S, and set f(τ · i) = µ · ni
for each i < 2. Note that S is still completely branching.

Then, split Ns
σ into three disjoint subsets Ns+1

σ , Ns+1
τ ·0 , Ns+1

τ ·1 as follows:
(for i < 2) Ns+1

τ ·i := {ρ ∈ Ns
σ | ρ ≽ µ · ni} and Ns+1

σ := {ρ ∈ Ns
τ | ∀i <

2, ρ⊥µ·ni}. Note that these sets do not form a partition of Ns
σ as we missed

the nodes in {ρ ∈ Ns
σ | ρ ≼ µ}, fortunately there are only finitely many of

them. Lastly, set Ns+1
ν := Ns

ν for every ν ∈ S − {σ, τ · 0, τ · 1}.
Verification. First, let us prove that at any step s,

⋃
σ∈S N

s
σ contains

infinitely many split triples, which ensures that the search always termi-
nates. Note that T −

⋃
σ∈S N

s
σ is a c.e. subset of

⋃
σ∈S{ρ | ρ ⪯ σ}, hence

exists by bounded Σ1 comprehension, which follows from RCA0. Moreover,
by assumption, T is a finitely branching c.e. tree, which means that ev-
ery ρ ∈ T −

⋃
σ∈S N

s
σ belongs to a bounded number of split triples of T .

By BΣ0
1 (which follows from RCA0), the number of split triples in T which

involve a node from T −
⋃

σ∈S N
s
σ is bounded. Since by assumption, T
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contains infinitely many split triples, T −
⋃

σ∈S N
s
σ must contain infinitely

many of them.
Second, we prove by induction on s that ∀s ∈ N,∀σ ̸= ν ∈ S,Ns

σ⊥Ns
ν ,

i.e. ∀µ ∈ Ns
σ,∀ρ ∈ Ns

ν , µ⊥ρ. At step 0, the assertion is trivially verified. At
step s, suppose we found the split triple (µ, n0, n1) in the set Ns

σ, and that
∀i < 2, f(τ · i) = µ · ni where τ ≽ σ. Since µ was found in Ns

σ, the latter
is split into Ns+1

τ ·0 , Ns+1
τ ·1 and Ns+1

σ , the other sets remain identical. By
construction, and because they are all subsets of Ns

σ, the assertion holds.
We now prove (∗), consider σ, ν ∈ S such that σ⊥ν. WLOG suppose ν

was added to S sooner than σ, more precisely f(ν) appeared (as child in a
split triple) at step s in some setNs

−, soN
s+1
ν contains f(ν) by construction.

Since σ was added to S after ν, there exists ρ ∈ S such that f(σ) ∈ Ns+1
ρ .

By contradiction ρ ̸= σ holds, as otherwise f(σ) ∈ Ns+1
τ , and so σ would

extend τ by construction of S. Thus by using the previous assertion, we
deduce f(σ)⊥f(ν). ⊣

Proposition 2.9. RCA0 ⊢ CAC for trees=⇒CAC for c.e. trees and
CAC for c.e. trees ⩽c CAC for trees.

Proof. Let T ⊆ N<N be a c.e. tree. We define the computable tree S ⊆
N<N by ⟨n0, s0⟩ · . . . · ⟨nk−1, sk−1⟩ ∈ S if and only if for all j < k, sj
is the smallest integer such that n0 · . . . · nj ∈ T [sj ], where T [sj ] is the
approximation of T at stage sj .

By CAC for trees, there is an infinite chain (resp. antichain) in S, and by
forgetting the second component of each string, we obtain an infinite chain
(resp. antichain) in T . ⊣
Before finishing this section, we introduce a set version of the princi-

ple TAC, which is more convenient to manipulate than TAC. Indeed, when
working with TAC, the downward-closure of the tree is not relevant, and
we naturally end up taking an infinite computable subset of the tree rather
than working with the c.e. tree. This motivates the following definitions.

Definition 2.10. A set X ⊆ 2<N is completely branching if for ev-
ery σ ∈ 2<N, σ · 0 ∈ X iff σ · 1 ∈ X.

Note that the above definition is compatible with the notion of completely
branching tree.

Definition 2.11 (SAC, set antichain theorem). Every infinite completely
branching set X ⊆ 2<N has an infinite antichain.

The set antichain theorem is equivalent to the tree antichain theorem, as
shows the following lemma.

Lemma 2.12. RCA0 ⊢ SAC ⇐⇒ TAC.
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Proof. SAC=⇒TAC. Let T ⊆ 2<N be an infinite, completely branching
c.e. tree. Let S ⊆ T be an infinite computable, completely branching set.
By SAC, there is an infinite antichain A ⊆ X. In particular, A is an
antichain for T .
SAC ⇐= TAC. Let S ⊆ 2<N be an infinite computable, completely

branching set. One can define an infinite computable tree T ⊆ N<N by
letting σ ∈ T iff for every n < |σ|, σ(n) codes for a binary string τn ∈ S,
such that for every n < |σ| − 1, τn ≺ τn+1, and there is no string in S
strictly between τn and τn+1. The tree T is such that every chain in T
codes for a chain in S, and every antichain in T codes for an antichain
in S. We can see T as an instance of CAC for trees. Moreover, since S is
completely branching, then T has infinitely many split triples, so the proof
of Proposition 2.8 applied to this instance T of CAC for trees does not use
BΣ0

2. Thus there is either an infinite chain for T , or an infinite antichain
for S. With the appropriate decoding, we obtain an infinite antichain
for S. ⊣

§3. Probabilistic proofs of SAC. The restriction of CAC to trees
yields a strictly weaker statement from the viewpoint the arithmetical
bounds in the arithmetic hierarchy. Indeed, by Herrmann [11, Theorem
3.1], there is a computable partial order with no ∆0

2 infinite chain or an-
tichain, while by Binns et al. in [3, Theorem 6.2], every infinite computable
tree must have either an infinite computable chain or an infinite Π0

1 an-
tichain. In this section, we go one step further in the study of the weakness
of CAC for trees by proving that SAC admits probabilistic solutions. Before
this, we prove two technical lemmas.

Lemma 3.1 (RCA0). Let S ⊆ 2<N be an infinite completely branching
set. Then for every n, there exists an antichain of size n.

Proof. By finite Ramsey’s theorem for pairs and 2 colors (which holds
in RCA0), there exists some p ∈ N such that for every 2-coloring of [p]2,
there exists a homogeneous set of size n. Since S is infinite, there exists
a subset P ⊆ S of size p. By choice of p, there exists a subset Q ⊆ P of
size n such that either Q is a chain, or an antichain. In the latter case,
we are done. In the former case, since S is completely branching, the
set {σ̂ | σ ∈ Q} ⊆ S is an antichain, where σ̂ is the string obtained from σ
by flipping its last bit. ⊣

Lemma 3.2 (RCA0). Let S ⊆ 2<N be an infinite completely branching
set. Then for every antichain A ⊆ S, for all but at most one σ ∈ A, the
set Sσ := {τ ∈ S | σ⊥τ and |τ | > |σ|} is infinite and completely branching.
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Proof. First, since S ⊆ 2<N completely branching, then for every σ ∈
2<N, the set Sσ is completely branching. Suppose for the sake of contra-
diction that there exists two strings σ, ρ ∈ A such that Sσ and Sρ are both
finite. Then pick any τ ∈ S − (Sσ ∪ Sρ) with |τ | > max(|σ|, |ρ|). It follows
that σ ≺ τ and ρ ≺ τ , and thus that σ and ρ are comparable, contradicting
the fact that A is an antichain. ⊣

Proposition 3.3. The measure of the oracles computing a solution for
a computable instance of SAC is 1.

Remark 3.4. The proof of the above proposition is carried out purely as
a computability statement, hence we have access to as much induction as
needed.

Proof. Let S ⊆ 2<N be an infinite computably branching set. We are
going to build a decreasing sequence of infinite completely branching sets
of strings S0 ⊇ S1 ⊇ . . . , with S0 := S, together with finite antichains
Ai ⊆ Si (for i ∈ N), in order to have an infinite antichain A := {σi | i ∈ N}
where σi ∈ Ai.

This construction will work with positive probability, and since the class
of oracles computing a solution to the instance S is invariant under Turing
equivalence, this implies that this class has measure 1. Indeed, by Kol-
mogorov’s 0-1 law, every measurable Turing-invariant class has either mea-
sure 0 or 1.
First, let S0 := S. At step k, assume the sets S0 ⊇ S1 ⊇ . . . ⊇

Sk and A0, . . . , Ak−1 have been defined, as well as the finite antichain
{σ0, . . . , σk−1}, such that ∀τ ∈ Sk,∀i < k, σi⊥τ .

Search computably for a finite antichain Ak ⊆ Sk of size 2k+2. If found,
pick an element σk ∈ Ak at random. Then define Sk+1 := {τ ∈ Sk |
σk⊥τ and |τ | > |σk|} for the next step.
If the procedure never stops, it yields an infinite antichain A := {σi |

i ∈ N} thanks to the definition of the sets (Si)i<k. Assuming that Sk is
an infinite completely branching set, Lemma 3.1 ensures that Ak will be
found.
However, if at any point, Sk is not an infinite completely branching set,

then at some point t we will not be able to find a large enough At in it. If
this happens, since Sk+1 is completely determined by Sk and σk, it means
that we have chosen some “bad” σk ∈ Ak. Luckily, by Lemma 3.2, there
is at most one element of this kind in Ak. Thus, if we pick σk at random
in Ak, we have at most 1

|Ak| = 1
2k+2 chances for this case to happen. So

the overall probability that this procedure fails is less than
∑

k⩾0
1

2k+2 = 1
2 .

Hence we found an antichain with positive probability. ⊣
Very few theorems studied in reverse mathematics admit a probabilis-

tic proof. Proposition 3.3 provides a powerful method for separating the
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statement CAC for trees from many theorems in reverse mathematics. In
what follows, AMT stands for the Atomic Model Theorem, studied by
Hirschfeldt, Shore and Slaman [14], COH is the cohesiveness principle, de-
fined by Cholak, Jockusch and Slaman [4, Statement 7.7], and RWKL is
the Ramsey-type Weak König’s lemma, defined by Flood [10, Statement 2]
under the name RKL.

Corollary 3.5. Over RCA0, CAC for trees implies none of AMT, COH
and RWKL.

Proof. These three statements have a computable instance such that
the measure of the oracles computing a solution is 0, see Astor et al. [1]. ⊣
The argument of Proposition 3.3 can be formalized over RCA0 to yield

the following result.

Definition 3.6 (2-RAN). For every sequence of uniformly Π0
2 binary

trees T0, T1, . . . such that, for every n, µ([Tn]) > 1− 2−n, there is some n
and some set X such that X ∈ [Tn].

Proposition 3.7. RCA0 ⊢ 2-RAN=⇒SAC.

Proof. For every n, consider the construction of Proposition 3.3, where
the antichain Ak is of size 2n+k+1 instead of 2k+2. For each k, let σk ∈ Ak

be the unique “bad” choice (if it exists), that is, which makes the set Sk+1

finite, and let τk be the string of length n+k+1 corresponding to the binary
representation of the rank of σk in Ak for some fixed order on binary strings.
Then one can compute σk from τk and the finite set Ak. Note that τk is
undefined when σk does not exist.

Consider the Σ0
2 class Un := {X ∈ 2N | ∃k, τk ≺ X} =

⋃
k[τk]. It verifies

µ(Un) ⩽
∑
k⩾0

σkexists

µ
(
[τk]

)
⩽

∑
k⩾0

1

2n+k+1
= 2−n

Let Tn be a Π0
2 tree such that [Tn] = 2N − Un. We can now consider the

sequence of trees (Tn)n∈N. By 2-RAN, there is some n and some X ∈ [Tn].
For any instance of SAC, find a solution by running the construction given
in Proposition 3.3 with the help of X to avoid the potential “bad” choice
in each Ak. ⊣

Corollary 3.8. Over RCA0, SAC (and therefore TAC) implies none
of BΣ0

2 and CAC for trees.

Proof. Slaman [unpublished] proved that 2-RAN does not imply BΣ0
2

over RCA0; The result can also be found in [2]. The corollary follows
from RCA0 ⊢ SAC=⇒TAC (Lemma 2.12) and RCA0 ⊢ TAC + BΣ0

2 ⇐⇒
CAC for trees (Theorem 2.5). ⊣
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We are now going to refine Proposition 3.3 by proving that some variant
of DNC is sufficient to compute a solution of SAC.

Definition 3.9 (Diagonally non-computable function). A function f :
N → N is diagonally non-computable relative to X (or DNC(X))
if for every e, f(e) ̸= ΦX

e (e). Whenever f is dominated by a function
h : N → N, then we say that f is DNCh(X). A Turing degree is DNCh(X)
if it contains a DNCh(X) function.

The following lemma gives a much more convenient way to work with
DNCh(X) functions.

Lemma 3.10 (Folklore). Let A,X be subsets of N. The following are
equivalent:

(1) A is of degree DNCh(X) for some computable (primitive recursive)
function h : N → N.

(2) A computes a function g : N2 → N such that

∀e, n, |WX
e | ⩽ n=⇒ g(e, n) /∈WX

e

and which is dominated by a computable function b : N2 → N, i.e.

∀e, n, g(e, n) < b(e, n)

Proof. (2)=⇒ (1). Let i : N → N be a computable (primitive recursive)
function such that for any e ∈ N and B ⊆ N we have ΦB

i(e)(x) ↓ ⇐⇒ x =

ΦB
e (e). Thus

WB
i(e) =

{
{ΦB

e (e)} if e ∈ B′

∅ otherwise

From there, define the A-computable function f : N → N by f : e 7→
g(i(e), 1). It is DNC(X) because g(i(e), 1) /∈WX

i(e) since |WX
i(e)| ⩽ 1. More-

over, f is dominated by the computable function e 7→ b(i(e), 1), because b
computably dominates g.
(1)=⇒ (2). Let f be a DNCh(X) function computed by A. Given the

pair e, n, we describe the process that defines g(e, n).
Construction. For each i < n, we compute the code u(e, i) of the X-

computable function which, on any input, looks for the ith element of WX
e .

If it finds such an element, then it interprets it as an n-tuple ⟨k0, . . . , kn−1⟩
and returns the value ki. If it never finds such an element, then the function
diverges. Finally we define g : e, n 7→ ⟨f(u(e, 0)), . . . , f(u(e, n− 1))⟩

Verification. First, since f is dominated by h, and since the func-
tion ⟨−, . . . ,−⟩ computing an n-tuple is increasing on each variable, we
can dominate g with the computable function

b : e, n 7→ ⟨h(u(e, 0)), . . . , h(u(e, n− 1))⟩
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Now, by contradiction, suppose g does not satisfy (2), i.e. suppose there
exists e, n such that |WX

e | ⩽ n but g(e, n) ∈ WX
e . Because WX

e has fewer
than n elements, we can suppose g(e, n) is the ith one for a some i < n. Thus
the function ΦX

u(e,i) is constantly equal to ki where g(e, n) = ⟨k0, . . . , kn−1⟩,
in particular ΦX

u(e,i)(u(e, i)) = ki. But we also have

g(e, n) = ⟨f(u(e, 0)), . . . , f(u(e, n− 1))⟩
implying f(u(e, i)) = ki = ΦX

u(e,i)(u(e, i)), which is impossible as f is sup-

posed to be DNCh(X). ⊣
We are now ready to prove the following proposition. Conidis [6] inde-

pendently proved the same statement for TAC with a similar construction.
Note that by the equivalence of TAC + BΣ0

2 with CAC for trees, Conidis
result implies Proposition 3.11.

Proposition 3.11. Let S ⊆ N<N be an instance of SAC. Every set X of
degree DNCh(∅′), with h a computable function, computes a solution of S.

Remark 3.12. Once again, as in the case of Proposition 3.3, the proof
here is carried purely as a computability statement, we have access to as
much induction as we need.

Proof. First, since X is of degree DNCh for a computable function h,
by Lemma 3.10, it computes a function g : N2 → N such that ∀e, n, |W ∅′

e | ⩽
n=⇒ g(e, n) /∈ W ∅′

e and which is dominated by a computable function b :
N2 → N.

The idea of this proof is the same as in Proposition 3.3, but this time we
are going to use g to avoid selecting the potential “bad” element in each
finite antichain, i.e. the element which is incompatible with only finitely
many strings. For any finite set A ⊆ S, let ψA : N → S be a bijection such
that ψA(J0, |A|J) = A.
The procedure is the following. Initially, S0 := S. At step k, assume

Sk ⊆ S has been defined. To find the desired antichain Ak we use the
fixed point theorem to find an index ek such that Φ∅′

ek
(n) is the procedure

that halts if it finds an antichain A ⊆ Sk whose size is greater than b(ek, 1)
and ψA(n) ∈ A, and finds (using ∅′) an integerm such that ∀ℓ > m,ψA(ℓ) ≻
ψA(n).

Define Ak := A. By choice of A and ek,

W ∅′

ek
=

{
{ψ−1

A (ρ)} if Ak has a bad element ρ

∅ otherwise

Finally we can define σk := ψA(g(ek, 1)). Indeed since |W ∅′

ek
| ⩽ 1 by con-

struction, g(ek, 1) /∈W ∅′

ek
. Moreover σk ∈ Ak, because g(ek, 1) < b(ek, 1) <

|Ak|. This implies that σk is not a bad element of Ak, in other words the
set Sk+1 := {τ ∈ Sk | τ⊥σk and |τ | > |σk|} is infinite. ⊣
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§4. ADS and EM. Ramsey’s theorem for pairs admits a famous decom-
position into the Ascending Descending Sequence theorem (ADS) and the
Erdős-Moser theorem (EM) over RCA0. As mentioned in the introduction,
both statements are strictly weaker than RT2

2. Actually, these statements
are generally thought of as decomposing Ramsey’s theorem for pairs into
its disjunctiveness part with ADS, and its compactness part with EM. In-
deed, the standard proof of ADS is disjunctive, and does not involve any
notion of compactness, while the proof of EM is non-disjunctive and implies
RWKL, which is the compactness part of RT2

2.
ADS and EM are relatively disjoint, in that they are only known to have

the hyperimmunity principle as common consequence, which is a particu-
larly weak principle. In this section however, we show that CAC for trees
follows from both ADS and EM over RCA0. We shall see in Section 5 that
CAC for trees implies the hyperimmunity principle.
The following proposition was proved by Dorais (personal communica-

tion) for SHER and independently by Conidis [6] for TAC. We adapted the
proof of Dorais to obtain the following proposition.

Proposition 4.1. RCA0 ⊢ ADS=⇒CAC for trees and CAC for trees ⩽c

ADS

Proof. Let T ⊆ N<N be an infinite tree. Define the total order <0

over T by σ <0 τ ⇐⇒ σ ≺ τ ∨ (σ⊥τ ∧ σ(d) <N τ(d)) where d := min{k ∈
N | σ(k) ̸= τ(k)}. By ADS, there is an infinite ascending or descending
sequence (σi) for (T,<0).

If it is descending, there are two possibilities. Either ∀∞i, σi ̸⊥ σi+1,
which means we eventually have an infinite≺-decreasing sequence of strings,
which is impossible. Or ∃∞i, σi⊥σi+1, in which case we designate by (hk)
the sequence (σℓk+1)k∈N of all such σi+1, and we show that it is an antichain
of T .
To do so, it suffices to prove by induction on m that ∀m > 0,∀k, hk ̸≻

hk+m. When m = 1, due to how (σi) is structured, we have ∀k, hk ≽
σℓk⊥hk+1. We now consider hk and hk+(m+1). By induction hypothe-
sis, hk ̸≻ hk+m and hk+m ̸≻ hk+(m+1). Moreover since hk >0 hk+m >0

hk+(m+1), we know there are minima d and e such that hk(d) > hk+m(d)
and hk+m(e) > hk+(m+1)(e). Now e ⩽ d implies hk+(m+1)(e) < hk+m(e) =
hk(e), and e > d implies hk+(m+1)(d) = hk+m(d) < hk(d); in any case hk ̸≻
hk+(m+1).

Now if the sequence (σi) is ascending, we again distinguish two possibil-
ities. Either ∀∞i, σi ̸⊥ σi+1, which means we eventually obtain an infinite
path of the tree. Or ∃∞i, σi⊥σi+1, in which case we work in the same fash-
ion as in the descending case (designate by (hk) the sequence (σℓk)k∈N of
all such σi, and show by induction on m that ∀m > 0,∀k, hk ̸≺ hk+m). ⊣
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Proposition 4.2. RCA0 ⊢ EM=⇒CAC for trees and CAC for trees ⩽c

EM

Proof. Let T ⊆ N<N be an infinite tree. We first define a computable
bijection ψ : N → T . To do so, let φ : N<N → N be the bijection x0 ·
. . . · xn−1 7→ px0

0 × . . .× p
xn−1

n−1 − 1 where pk is the kth prime number. The

elements of the sequence (φ−1(n))n∈N that are in T form a subsequence
denoted (sn)n∈N, and the function ψ : N → T is defined by n 7→ sn.

Note that, by construction, the range of ψ is infinite and computable.
Moreover, if σ ≺ τ ∈ T , then φ(σ) < φ(τ), hence ψ−1(σ) < ψ−1(τ). Also
note that the range of ψ is not necessarily a tree.
Let f : [N]2 → 2 be the coloring defined by f({x, y}) = 1 iff x <N y and

ψ(x) ≺ ψ(y) coincide. By EM, there is an infinite transitive set S ⊆ N,
i.e. ∀i < 2,∀x<y<z ∈ S, f(x, y) = f(y, z) = i=⇒ f(x, z) = i
Note that if there are x < y ∈ S such that f(x, y) = 0, then ∀z >

y ∈ S, f(x, z) = 0. Indeed given x < y < z ∈ S such that f(x, y) = 0,
either f(y, z) = 0, and so by transitivity we have f(x, z) = 0; or f(y, z) = 1,
but in that case f(x, z) ̸= 1 because it is impossible to simultaneously
have ψ(y) ≺ ψ(z), ψ(x) ≺ ψ(z) and ψ(x)⊥ψ(y).
Now two cases are possible. Either ∃∞j ∈ N, f(sj , sj+1) = 0, so con-

sider the infinite set A made of all such sj . Thanks to the previous prop-
erty, A is f -homogeneous for the color 0, and so ψ(A) is an infinite an-
tichain. Or ∀∞j ∈ N, f(sj , sj+1) = 1, so there is a large enough k ∈ N such
that ψ(sk) ≺ ψ(sk+1) ≺ . . ., i.e. we found an infinite path. ⊣

§5. TAC, lowness and hyperimmunity. Binns et al. in [3] and Coni-
dis [6] respectively studied the reverse mathematics of CAC for trees and
TAC. Since CAC for trees is computably equivalent to TAC+ BΣ0

2 and this
equivalence also holds in reverse mathematics, the analysis of CAC for trees
and TAC is very similar. For example, Binns et al. [3, Theorem 6.4] proved
that for any fixed low set L, there is a computable instance of CAC for trees
with no L-computable solution, while Conidis [6] proved the existence of a
computable instance of TAC whose solutions are all of hyperimmune degree.
In this section, we prove a general statement regarding TAC (Theorem 5.1)
and show that it encompasses both results.

Theorem 5.1. Let (An) be an uniform sequence of infinite ∆0
2 sets.

There is a computable instance of TAC such that no An is a solution.

Proof. First, for any n, let en be the index of An, i.e. Φ
∅′

en = An. We

also write An[s] := Φ
∅′[s]
en [s].

Idea. We are going to construct a tree T ⊆ 2<N, such that for each n ∈
N, there is σn ∈ An verifying σn /∈ T or σn ∈ T ∧ ∀∞τ ∈ T, σn ≺ τ . These
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requirements are respectively denoted Rn and Sn, and An cannot be an
infinite antichain of T if one of them is met.

The sequence (σn) is constructed via a movable marker procedure, with
steps s and sub-steps e < s. At each step s we are going to manipulate an
approximation σs

n of σn, and variables σ̂s
n that will help us keep track of

which requirement is satisfied by σs
n.

Construction. At the beginning of each step s, let Ts be the approxi-
mation of the tree T defined by Ts := Ts−1 ∪ {τs · 0, τs · 1} where τs is the
leftmost (for example) leaf of Ts−1 such that τs ≽ σ̂s

s−1. For s = 0, we
let T0 := {ε}.

At step s, sub-step e, let σs
e be the string whose code is the smallest in

the uniformly computable set {τ ∈ Ae[s]↾s | (τ ∈ Ts ∧ τ ≽ σ̂s
e−1) ∨ τ /∈ Ts}

with σ̂s
−1 := ε and σs

e is undefined when the set is empty.

Besides, define σ̂s
e :=

{
σs
e if σs

e ∈ Ts (and therefore σs
e ≽ σ̂s

e−1)

σ̂s
e−1 otherwise

Verification. By induction on e, we prove that σe := lims σ
s
e exists and

is an element of Ae, also we prove σ̂e := lims σ̂
s
e exists, and σe satisfies Re

or Se.
Suppose we reached a step r such that for all e′ < e the values of σr

e′

and σ̂r
e′ have stabilized. And thus, for any step s > r, as τs ≽ σ̂s

s−1 ≽
σ̂s
e−1 = σ̂e−1, the tree will always be extended with nodes above σ̂e−1,

implying only a finite part of the tree is not above σ̂e−1.
Now suppose k is the smallest code of a string τ such that (τ ∈ T ∧ τ ≽

σ̂e−1)∨τ /∈ T . Such a string exists because Ae is infinite, whereas the set of
strings in T that are below σ̂e−1 is not. If τ ∈ T , then ∃x, ∀y ⩾ x, τ ∈ Ty,
otherwise define x := 0. Since Ae is ∆0

2, there exists s ⩾ max{k + 1, r, x}
such that Ae[s]↾k+1 has stabilized i.e. ∀t > s,Ae[t]↾k+1 = Ae[s]↾k+1. Thus
σs
e = τ because τ ∈ Ae↾k+1 = Ae[s]↾k+1 ⊆ Ae[s]↾s. This ensures that for

any t > s, σt
e = τ , i.e. σe = τ .

Finally, we distinguish two cases. Either σe ∈ T and so ∃t, σt
e ∈ Tt,

thus ∀u > t, σ̂u
e = σu

e . So Se is satisfied, as cofinitely many nodes of T
will be above σ̂e = σe. Or σe /∈ T , in which case, either ∀t, σt

e /∈ Tt,
implying ∀t, σ̂t

e := σ̂t
e−1 and thus Re is satisfied. ⊣

We now show how Theorem 5.1 relates to the result of Binns et al.
in [3, Theorem 6.4], that is, the existence, for any fixed low set L, of a
computable instance of CAC for trees with no L-computable solution.

Lemma 5.2. For any low set P , the sequence of infinite P -computable
sets is uniformly ∆0

2.
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Proof. Since P ′ ⩽T ∅′ we can ∅′-compute the function

f(e, x) =

{
ΦP

e (x) when ∀y ⩽ x,ΦP
e (y) ↓ and ∃y > x,ΦP

e (y) ↓= 1

1 otherwise

Now let Ae := {f(e, x) | x ∈ N}. If ΦP
e is total and infinite then Ae is equal

to it, so it is P -computable. Otherwise Ae is cofinite, and in particular it
is infinite and P -computable. ⊣
We are now ready to state the result of Binns et al. in [3, Theorem 6.4],

but for TAC.

Corollary 5.3. For any low set P , there exists a computable instance
of TAC with no P -computable solution.

Proof. Given P , we can use Lemma 5.2 to obtain a uniform sequence,
on which we apply Theorem 5.1. ⊣
The previous corollary is very useful to show that RCA0 +WKL ⊬ TAC,

since there exists a model of RCA0 +WKL below a low set. The following
corollary will be useful to prove that the result of Binns et al. in [3, Theorem
6.4] implies the result of Conidis.

Corollary 5.4. There exist a PA degree P and an instance of TAC with
no P -computable solution.

Proof. It follows from the existence of a low PA degree by the low basis
theorem, see [15, Corollary 2.2.]. ⊣
The next proposition has two purposes. First, it will be used to show

the existence of a computable instance of TAC whose solutions are all of
hyperimmune degree (see Theorem 5.6). Second, it shows that, for any
such instance, one can choose two specific functionals to witness this hy-
perimmunity, without loss of generality (see Corollary 5.8).

Proposition 5.5. Let T be an instance of TAC. For any set P of PA
degree, if T has no P -computable solution, then for any solution (σn)n∈N,
the function tT,(σn)n∈N : n 7→ min{t | σn ∈ T [t]} or ℓ(σn)n∈N : n 7→ |σn| is
hyperimmune.

Proof. By contraposition, suppose there exists a solution (σn)n∈N such
that tT,(σn)n∈N and ℓ(σn)n∈N are computably dominated by t and ℓ respec-
tively. Then the set{

(τn)n∈N

∣∣∣∣ (τn)n∈N is an infinite antichain of T
tT,(τn)n∈N ⩽ t and ℓ(τn)n∈N ⩽ ℓ

}
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is a non-empty Π0
1 class. It is non-empty because (σn)n∈N belongs to it,

and to show it is a Π0
1 class, it can be written as(τn)n∈N

∣∣∣∣∣∣ ∀n,
∀m < n, τn⊥τm
τn ∈ T [t(n)]
|τn| ⩽ ℓ(n)


Thanks to ℓ, the number of elements at each level n of the tree associated

to this class is computably bounded by 2ℓ(n), thus it can be coded by a Π0
1

class of 2N. Finally since P is of PA degree, it computes an element of
any Π0

1 class of the Cantor space, hence the result. ⊣
Combining Corollary 5.4 and Proposition 5.5, we obtain the following

theorem from Conidis [6].

Theorem 5.6 (Conidis [6]). There is a computable instance of TAC such
that each solution is of hyperimmune degree.

Proof. Let P be of low PA degree. By using Corollary 5.3 we get
a computable instance T of TAC with no P -computable solution. Thus,
by using Proposition 5.5 we deduce that, for any solution (σn), its func-
tion tT,(σn)n∈N or ℓ(σn)n∈N is hyperimmune. And (σn)n∈N computes both,
since T is computable ; meaning it is of hyperimmune degree. ⊣

Corollary 5.7. RCA0 ⊢ TAC=⇒HYP

In his direct proof of Theorem 5.6, Conidis [6] constructed computable
instance of TAC and two functionals Φ,Ψ such that for every solution H,
either ΦH or ΨH is hyperimmune. Interestingly, Proposition 5.5 can be
used to show that Φ and Ψ can be chosen to be tT,− and ℓ−, without loss
of generality.

Corollary 5.8. For any instance T of TAC whose solutions are all of
hyperimmune degree, at least one of the function tT,− or ℓ− is a witness.

Proof. Let T be an instance of TAC whose solutions are all of hyper-
immune degree, and let (σn)n∈N be such a solution. By contradiction, if
we suppose tT,(σn)n∈N and ℓ(σn)n∈N are both computably dominated, then
by Proposition 5.5, T has a P -computable solution. If we choose P to be
computably dominated, then it cannot compute a solution of hyperimmune
degree, hence a contradiction. ⊣

Note that for every (computable or not) instance of TAC, there is a
solution (σn)n∈N such that ℓ(σn)n∈N is dominated by the identity function,
by picking any path, and building an antichain along it.

§6. SHER. We have seen in Section 4 that CAC for trees follows from
both ADS and EM over RCA0. The proof of CAC for trees from ADS used
only one specific property of the partial order (T,≺), that we shall refer to
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as semi-heredity. Dorais and al. [8] introduced the principle SHER, which is
the restriction of Ramsey’s theorem for pairs to semi-hereditary colorings.
In this section, we show that the seemingly artificial principle SHER turns
out to be equivalent to the rather natural principle CAC for trees. This
equivalence can be seen as more step towards the robustness of CAC for trees.

Definition 6.1 (Semi-heredity). A coloring f : [N]2 → 2 is semi-here
ditary for the color i < 2 if

∀x<y<z, f(x, z) = f(y, z) = i=⇒ f(x, y) = i

The name “semi-heredity” comes from the contraposition of the previous
definition ∀x<y<z, f(x, y) = 1− i=⇒ f(x, z) = 1− i ∨ f(y, z) = 1− i

Definition 6.2 (SHER, [8]). For any semi-hereditary coloring f , there
exists an infinite f -homogeneous set.

The first proposition consists essentially of noticing that, given a set of
strings T ⊆ N<N, the partial order (T,≺) behaves like a semi-hereditary
coloring. The whole technicality of the proposition comes from the defini-
tion of an injection ψ : N → T with some desired properties.

Proposition 6.3. RCA0 ⊢ SHER=⇒CAC for c.e. trees and
CAC for c.e. trees ⩽c SHER

Proof. Let T ⊆ N<N be an infinite c.e. tree. First, let φ : N<N → N the
bijection x0 · . . . · xn−1 7→ px0

0 × . . . × p
xn−1

n−1 − 1 where pk is the kth prime
number. Define ψ : N → T by letting ψ(n) be the least σ ∈ T (in order of
apparition) such that ϕ(σ) is bigger than ϕ(ψ(0)), ϕ(ψ(1)), . . . , ϕ(ψ(n−1)).
Note that, by construction, the range of ψ is infinite and computable.
Moreover, if σ ≺ τ , then φ(σ) < φ(τ), hence ψ−1(σ) < ψ−1(τ). Also note
that the range of ψ is not necessarily a tree.

Let f : [N]2 → 2 be the coloring defined by f({x, y}) = 1 iff x <N y
and ψ(x) ≺ ψ(y) coincide. Let us show that f is semi-hereditary for the
color 1. Suppose we have x < y < z and that f(x, z) = f(y, z) = 1, i.e.
letting σ := ψ(x), τ := ψ(y), ρ := ψ(z) then we have σ ≺ ρ and τ ≺ ρ, thus
either σ ≺ τ or τ ≺ σ. But since x < y, i.e. ψ−1(σ) < ψ−1(τ), only σ ≺ τ
can hold due to the above note, meaning f(x, y) = 1.

By SHER applied to f , there is an infinite f -homogeneous set H. If it is
homogeneous for the color 0, then the set ψ(H) corresponds to an infinite
antichain of T . Likewise, if it is homogeneous for the color 1, then the
set ψ(H) is an infinite path of T . ⊣
We now prove the converse of the previous proposition.

Definition 6.4 (Weak homogeneity). Given a coloring f : [N]2 → k, a
set A := {a0 < a1 < . . . } ⊆ N is weakly-homogeneous for the color i < k
if ∀j, f(aj , aj+1) = i
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Before proving Proposition 6.6, we need a technical lemma.

Lemma 6.5 (RCA0). Let f : [N]2 → 2 be a semi-hereditary coloring for
the color i < 2. For every infinite set A := {a0 < a1 < . . . } which
is weakly-homogeneous for the color i, there is an infinite f -homogeneous
subset B ⊆ A.

Proof (Dorais). We first show that any aj falls in one of these two
categories:
1. ∀k > j, f(aj , ak) = i
2. ∃ℓ > j,

(
∀k ∈ Kj, ℓJ, f(aj , ak) = i ∧ ∀k ⩾ ℓ, f(aj , ak) = 1− i

)
Indeed, for any ℓ > j such that f(aj , aℓ) = i, by semi-heredity, f(aj , aℓ−1) =
i. So with a finite induction we get ∀k ∈ Kj, ℓK, f(aj , ak) = i.

There are now two possibilities. Either there are finitely many aj of type
2, and so by removing these elements, the resulting set is f -homogeneous for
the color i. Otherwise there are infinitely many aj of type 2, in which case
one can define an infinite f -homogeneous subset for color 1−i using BΣ0

1(A)
as follows: due to the observation above, “aj is of type 2” is equivalent to
the Σ0

1(A) formula ∃ℓ > j, f(aj , aℓ) = 1− i. Thus, given a finite set of type
2 elements {aj0 , . . . , ajk−1

}, by BΣ0
1(A) there is b > max{j0, . . . , jk−1},

and so jk is defined as the smallest integer jk such that jk ⩾ b and
f(ajk−1

, ajk) = 1− i.
⊣

Proposition 6.6. RCA0 ⊢ CAC for trees=⇒SHER and
SHER ⩽c CAC for trees

Proof. Let f : [N]2 → 2 be a semi-hereditary coloring for the color i <
2. We begin by constructing a tree T ⊆ N<N defined as T := {σn | n ∈ N},
where σn is the unique string which is:

1. strictly increasing (as a function), with last element n
2. weak-homogeneous for the color i, i.e. ∀k < |σn| − 1, f(σn(k), σn(k +

1)) = i
3. maximal as a weak-homogeneous set, i.e. ∀y < σn(0), f(y, σn(0)) =

1− i and ∀j < |σn| − 1,∀y ∈ Kσn(j), σn(j + 1)J, f(σn(j), y) = 1− i ∨
f(y, σn(j + 1)) = 1− i

To ensure existence, unicity and that T is a tree, we prove σn is obtained via
the following effective procedure. Start with the string n. If the string s0 ·
. . . · sm has been constructed, then look for the biggest integer j < s0 such
that f(j, s0) = i. If there is none, the process ends. Else, the process is
repeated with the string j · s0 · . . . · sm.
The string obtained is maximal by construction. It is unique, because at

each step, if there are two (or more) integers j0 < j1 smaller than s0 and
such that f(j0, s0) = f(j1, s0) = i, then by semi-heredity we have f(j0, j1) =
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1. This means we will eventually add j0 after j1. In particular, the string
contains all the j < n such that f(j, n) = i. Moreover this shows that T is
a tree, since the procedure is the same at any point during construction.
Now we can apply CAC for trees to T , leading to two possibilities. Either

there is an infinite path, which is a weakly-homogeneous set for the color i
thanks to condition 2. And so apply Lemma 6.5 to obtain a f -homogeneous
set for the color i.

Or there is an infinite antichain, which is of the form (σnj )j∈N. Let us
show the setH := {nj | j ∈ N} is f -homogeneous for the color 1−i. Indeed,
if f(ns, nt) = i for some s < t, then ns ∈ σnt

, since σnt
contains all the

elements y < nt such that f(y, nt) = i. But then σns
≺ σnt

, contradicting
the fact that (σnj

)j∈N is an antichain. ⊣
We end this section by studying RT2

2 with respect to 3-variables for-
bidden patterns. As explained in the introduction, there are three basic
3-variables forbidden patterns, yielding the notions of semi-heredity, semi-
ancestry and semi-transitivity, respectively. These forbidden patterns in-
duce Ramsey-like statements of the form “for any 2-coloring of pairs, there
exists an infinite set which avoids some kind of forbidden patterns”. This
statement applied to semi-transitivity yields a consequence of the Erdős-
Moser theorem, known to be strictly weaker than Ramsey’s theorem for
pairs over RCA0. We now show that the two remaining forbidden pat-
terns yield statements equivalent to RT2

2. This completes the picture of
the reverse mathematics of Ramsey-like theorems for 3-variable forbidden
patterns.

Definition 6.7 (Semi-ancestry). A coloring f : [N]2 → 2 has semi-
ancestry for the color i < 2 if

∀x<y<z, f(x, y) = f(x, z) = i=⇒ f(y, z) = i

Before proving RT2
2 from the Ramsey-like statement about semi-ancestry

over RCA0, we need to prove that this statement implies BΣ0
2. This is done

by proving the following principle.

Definition 6.8 (D2
2). Every ∆0

2 set admits an infinite subset in it or its
complement.

Proposition 6.9. The statement “for any 2-coloring of pairs, there ex-
ists an infinite set which has semi-ancestry for some color” implies D2

2

over RCA0.

Proof. Let A be a ∆0
2 set whose approximations are (At)t∈N. We define

the coloring f(x, y) := χAy
(x), and use the statement of the proposition to

obtain an infinite set B that has semi-ancestry for some color.
If B has semi-ancestry for the color 1, then ∀x<y<z ∈ B, x ∈ Ay ∧ x ∈

Az =⇒ y ∈ Az. Now either B ⊆ A and we are done. Or ∃x ∈ A∩B, which
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means ∀∞y ∈ B, x ∈ Ay, implying that ∀∞y > x ∈ B, ∀z > y ∈ B, y ∈ Az

by semi-ancestry, i.e. ∀∞y > x ∈ B, y ∈ A. So we can compute a subset H
of B which is infinite and such that H ⊆ A.
This argument also works when B has semi-ancestry for the color 0, we

just need to switch A and A, as well as ∈ and /∈, when needed. ⊣

Corollary 6.10. The statement “for any 2-coloring of pairs, there ex-
ists an infinite set which has semi-ancestry for some color” implies BΣ0

2

over RCA0.

Proof. Immediate, since RCA0 ⊢ D2
2 =⇒BΣ0

2, see [5, Theorem 1.4]. ⊣

Proposition 6.11. The statement “for any 2-coloring of pairs, there
exists an infinite set which has semi-ancestry for some color” implies RT2

2

over RCA0 and over the computable reduction.

Proof. Let f : [N]2 → 2 be a coloring. We can apply the state-
ment to obtain an infinite set A which has semi-ancestry for the color i,
i.e. ∀x<y<z ∈ A, f(x, y) = i ∧ f(x, z) = i=⇒ f(y, z) = i. There are two
possibilities. Either there exists a ∈ A such that ∃∞b > a ∈ A, f(a, b) = i,
in which case all such elements b form an infinite f -homogeneous set due to
the property of A. Otherwise any a ∈ A verifies ∀∞b > a, f(a, b) = 1−i, i.e.
all the elements of A have a limit color equal to 1− i for the coloring f↾[A]2 .

Thus we can use BΣ0
2 (Corollary 6.10) to compute an infinite homogeneous

set (see [9, Proposition 6.2]). ⊣
The proof that the Ramsey-like statement about semi-heredity implies

Ramsey’s theorem for pairs is indirect, and uses the Ascending Descending
Sequence principle.

Proposition 6.12. The statement “for any 2-coloring of pairs, there
exists an infinite set which is semi-hereditary for some color” implies ADS
over RCA0 and over the computable reduction.

Proof. Let L = (N, <L) be a linear order. Let f : [N]2 → 2 be the
coloring defined by f({x, y}) = 1 iff <L and <N coincide on {x, y}. By
the statement of the proposition, there is an infinite set H on which the
coloring is semi-hereditary for some color i.

Before continuing, note that if there is a pair x < y ∈ H such that f(x, y) =
1 − i then ∀z > y ∈ H, f(x, z) = 1 − i. Indeed, either f(y, z) = 1 − i, in
which case by transivity of <L we have f(x, z) = 1 − i. Or f(y, z) = i,
in which case by semi-heredity f(x, z) = 1− i, because otherwise it would
imply that f(x, y) = i.
Now if ∃∞x ∈ H,∃y > x ∈ H, f(x, y) = 1− i, then we construct an infi-

nite decreasing sequence by induction. Suppose the sequence x0 >L . . . >L
xn−1 has already be constructed, and we havem ∈ H such that f(xn−1,m) =
1− i, then we look for a {x < y} such that x > m and f(x, y) = 1− i. By
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the previous remark we have that f(xn−1, x) = 1− i, i.e. xn+1 >L x, so we
extend the sequence with x and redefine m := y.
Else ∀∞x ∈ H,∀y > x ∈ H, f(x, y) = i, and so getting rid of finitely

many elements yields an infinite increasing sequence. ⊣

Corollary 6.13. The statement “for any 2-coloring of pairs, there ex-
ists an infinite set which is semi-hereditary for some color” implies RT2

2

over RCA0.

Proof. This comes from the fact that RT2
2 ⇐⇒ S + SHER by defini-

tion (with S denoting the statement in question). And we have RCA0 ⊢
S=⇒SHER by using Proposition 6.12, Proposition 4.1 and Proposition 6.6.

⊣

Remark 6.14. Let S denote the statement “for any 2-coloring of pairs,
there exists an infinite set which is semi-hereditary for some color”. The
proof that S implies RT2

2 over RCA0 involves two applications of S. The
first one to obtain an infinite set over which the coloring is semi-hereditary,
and a second one to solve SHER using the fact that S implies ADS, which
itself implies SHER. It is unknown whether RT2

2 is computably reducible
to S.

§7. Stable counterparts: SADS and CAC for stable c.e. trees. Cholak,
Jockusch and Slaman [4] made significant progress in the understanding of
Ramsey’s theorem for pairs by dividing the statement into a stable and a
cohesive part.

Definition 7.1. A coloring f : [N]2 → k is stable if for every x ∈ N,
limy f(x, y) exists. A linear order L = (N, <L) is stable if it is of order
type ω + ω∗.

We call SRT2
k and SADS the restriction of RT2

k and ADS to stable color-
ings and stable linear orders, respectively. Given a linear order L = (N, <L
), the coloring corresponding to the order is stable iff the linear order is of
order type ω + ω∗, or ω + k or k + ω∗. In particular, SRT2

2 implies SADS
over RCA0.
In this section, we study the stable counterparts of CAC for trees and

SHER, and prove that they are equivalent over RCA0. We show SADS
implies CAC for stable c.e. trees over RCA0. It follows in particular that
every computable instance of CAC for stable c.e. trees admits a low solution.

Definition 7.2 (Stable tree, Dorais [7]). A tree T ⊆ N<N is stable when
for every σ ∈ T either ∀∞τ ∈ T, σ⊥τ or ∀∞τ ∈ T, σ ̸⊥ τ

Note that any stable finitely branching tree admits a unique path.

Proposition 7.3. RCA0 ⊢ SADS=⇒CAC for stable c.e. trees
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Remark 7.4. In the proof below, we use the statement that RCA0 ⊢
SADS=⇒BΣ0

2. This is because RCA0 ⊢ SADS=⇒PART ([13, Proposition
4.6]) and RCA0 ⊢ PART ⇐⇒ BΣ0

2 ([5, Theorem 1.2]).

Proof. Let T ⊆ N<N be an infinite c.e. tree which is stable.
Consider the total order <0, defined by σ <0 τ ⇐⇒ σ ≺ τ ∨ (σ⊥τ ∧

σ(d) < τ(d)) where d := min{y | σ(y) ̸= τ(y)}. We show that it is of
type ω + ω∗, i.e.

∀σ ∈ T, (∀∞τ ∈ Tσ <0 τ) ∨ (∀∞τ ∈ T, τ <0 σ)

So let σ ∈ T , there are two possibilities. Either ∀∞τ ∈ T, σ ̸⊥ τ , meaning
we even have ∀∞τ ∈ T, σ ≺ τ , which directly implies ∀∞τ ∈ T, σ <0 τ .

Or ∀∞τ ∈ T, σ⊥τ . In this case, we consider all the nodes τ successors of a
prefix of σ but not prefix of σ, there are finitely many of them, because there
are finitely many prefixes of σ and no infinitely-branching node (WLOG,
as otherwise there would be a computable infinite antichain). So we can
apply the pigeon-hole principle, by using BΣ0

2, to deduce that there is a
certain τ which has infinitely many successors.
Moreover, by stability of T there cannot be another such node. Indeed,

by contradiction, if there were two such nodes τ and τ ′, then we would
have that ∃∞η ∈ T, η⊥τ , because the successors of τ ′ are incomparable
to τ . And since τ already verifies ∃∞η ∈ T, η ≻ τ , contradicting the
stability of T .
Therefore we have that ∀∞η ∈ T, η ≻ τ , and so depending on whether τ <0

σ or σ <0 τ , we obtain that ∀∞η ∈ T, η <0 σ or ∀η ∈ T, σ <0 η respec-
tively. From there we can apply SADS and the proof is exactly like in
Proposition 4.1. ⊣

Corollary 7.5. CAC for stable c.e. trees admits low solutions.

Proof. This comes from the fact that any instance of SADS has a low
solution, as proven in [13, Theorem 2.11]. ⊣

The proof that SHER follows from CAC for stable trees will use BΣ0
2. We

therefore first prove that CAC for stable trees implies BΣ0
2 over RCA0.

Lemma 7.6. RCA0 ⊢ CAC for stable trees=⇒∀k,RT1
k

Proof. Let f : N → k be a coloring. There are two possibilities: Ei-
ther ∃i < k, ∃∞x, f(x) = i, in which case there is an infinite computable f -
homogeneous set. Otherwise ∀i < k,∀∞x, f(x) ̸= i, in which case we
consider the infinite tree

T := {σ ∈ Inc | ∀y ⩽ maxσ, f(y) = f(maxσ)=⇒ y ∈ ranσ}
where Inc is the set of strictly increasing strings of N<N.

By hypothesis, for every node σ ∈ T , ∀∞τ ∈ T, σ⊥τ , otherwise T would
have an infinite T -computable path. Thus, T is stable. Moreover, every
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antichain is of size at most k, thus T is a stable tree with no infinite path
and no infinite antichain, contradicting CAC for stable trees. ⊣

Proposition 7.7. Under RCA0 the statement CAC for stable trees im-
plies SHER for stable colorings

Proof. Let f : [N]2 → 2 be a stable coloring, semi-hereditary for the
color i. We distinguish two cases. Either there are finitely many integers
with limit color i, meaning we can ignore them and use BΣ0

2 (Lemma 7.6) to
compute an infinite homogeneous set (see [9, Proposition 6.2]). Otherwise
there are infinitely many integers whose limit color is i, in which case we
use the same proof as in Proposition 6.6, but we must prove the tree T we
construct is stable. So let σn be a node of this tree.
Suppose first n has limit color i. Let p be sufficiently large so that

f(n, p) = i. As explained in Proposition 6.6, σp contains all the inte-
gers m < p such that f(m, p) = i. It follows that n ∈ σp. Moreover, if
n ∈ σp, then σn ⪯ σp. Thus, ∀∞p, σn ≺ σp.
Suppose now n has limit color 1− i, then since there are infinitely many

integers with limit color i, there is one such that p > n. In particular, σp
verifies ∀∞τ ∈ T, σp ≺ τ . Thus, if σn ≺ σp then ∀∞τ ∈ T, σn ≺ τ , and
if σn⊥σp then ∀∞τ ∈ T, σn⊥τ . ⊣

Proposition 7.8. Under RCA0 the statement SHER for stable colorings
implies CAC for stable c.e. trees

Proof. Let T ⊆ N<N be an infinite stable c.e. tree. The proof is the
same as in Proposition 6.3, but we must verify that the coloring f : [N]2 → 2
defined is stable. Given x ∈ N, we claim that ∃i < 2,∀∞yf(x, y) = i. Since
T is stable, either ∀∞y, ψ(x) ̸⊥ ψ(y) or ∀∞y, ψ(x)⊥ψ(y) holds. In the first
case ∀∞y, f(x, y) = 1, and in the second one ∀∞y, f(x, y) = 0. Thus the
coloring is stable, and the proof can be carried on. ⊣

Corollary 7.9. The following are equivalent over RCA0:

(1) CAC for stable trees
(2) CAC for stable c.e. trees
(3) SHER for stable colorings

§8. Conclusion. The following figure sums up the implications proved
in this paper. All implications hold both in RCA0 and over the computable
reduction.
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EM CAC for trees ADS

TAC+ BΣ0
2 CAC for c.e. trees SHER

HYP CAC for c.e. binary trees

CAC for stable c.e. trees SADS

CAC for stable trees SHER for stable colorings

We have established in Theorem 2.5 the equivalence between TAC+BΣ0
2

and other statements.

Question 8.1. What is the first-order part of TAC?

Recall that, by Corollary 5.3, for every fixed low set X, there is a com-
putable instance of TAC with no X-computable solution. By computable
equivalence, this property also holds for CAC for trees. It is however un-
known whether Corollary 5.3 can be improved to defeat all low sets simul-
taneously.

Question 8.2. Does every computable instance of CAC for trees admit a
low solution?

Note that by Corollary 7.5, any negative witness to the previous question
would yield a non-stable tree.
We have also seen by Proposition 3.11 that for every computable instance

T of CAC for trees, every computably bounded DNC function relative to ∅′
computes a solution to T . The natural question would be whether we can
improve this result to any DNC function relative to ∅′.

Question 8.3. Is there some X such that for every computable instance
T of CAC for trees, every DNC function relative to X computes a solution
to T?

Note that in the case of a computable set X, the answer is negative, as
there exist DNC functions of low degree.
Finally, recall from Remark 6.14 the following question:

Question 8.4. Is RT2
2 computably reducible to the statement “for any

2-coloring of pairs, there exists an infinite set which is semi-hereditary for
some color”?
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UNIVERSITÉ DE PARIS

PARIS, FRANCE

E-mail : ludovic.patey@computability.fr

URL: http:/ludovicpatey.com


	1. Introduction
	1.1. A chain-antichain theorem for trees
	1.2. Ramsey-like theorems
	1.3. Notation
	1.4. Organization of the paper

	2. Equivalent definitions
	3. Probabilistic proofs of SAC
	4. ADS and EM
	5. TAC, lowness and hyperimmunity
	6. SHER
	7. Stable counterparts: SADS and [stable c.e.]
	8. Conclusion

