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ABSTRACT

Measuring noise in cities and automatically identifying the cor-
responding sound sources are a crucial challenge for policymak-
ers. Indeed, such information helps addressing noise pollution and
improving the well-being of urban dwellers. In recent years, re-
searchers have provided annotated datasets recorded in two ma-
jor cities to foster the development of urban sound event detection
(SED) systems. This paper presents an in-depth study of the be-
haviour of state-of-the-art SED systems well suited to our problem,
combining three far-field real recordings datasets which can be used
jointly during training. In our evaluation, we highlight the perfor-
mance gaps existing between simple and hard recording examples
based on the salience of sound events and the polyphony of the
recordings. We provide new proximity annotations for this anal-
ysis. We evaluate the ability of urban SED systems to generalize
across cities with varying degrees of training supervision. We show
that such generalization is hindered mostly by the difficulties current
urban SED systems have to detect sound events with low salience
along with sound events in highly polyphonic soundscapes.

Index Terms— Sound Event Detection (SED), Far-field urban
audio recordings, urban sound monitoring,

1. INTRODUCTION

Noise pollution in big cities is one of the most challenging issues
to address by urban policymakers to improve the quality of life of
urban citizens. Data-driven approaches have recently been investi-
gated [1, 2, 3, 4] to provide automated reports and refine simulation-
based noise maps. The task of estimating the presence of sound
classes of interest in an audio recording is called sound event detec-
tion (SED). The Detection and Classification of Acoustic Scenes and
Events (DCASE) Challenge Task 4 on synthetic and real domestic
sound recordings [5] has provided in the recent years a framework
to develop systems that perform well both on clip-level SED and
frame-level SED. In the context of urban SED, The first studies fo-
cused on synthetic urban soundscapes or monophonic recordings [6].
However, there is no guarantee that systems trained on such data can
generalize well if deployed in a real world scenario. Therefore, great
efforts have been made to provide annotated real polyphonic record-
ings of urban sounds [1, 2], which is essential to train deep neural
networks, the current state-of-the-art approach [7].

The ultimate goal of urban SED is to be universal and reliably
applicable to any city. Due to the financial cost and human labor
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required, curating annotated real recordings of urban soundscapes
for every city in the world is impractical. Nonetheless, state-of-the-
art urban sound event detectors need annotated data to be trained.
Therefore, it is crucial to investigate how systems trained on record-
ings from one or a few cities can generalize to other cities. In the
context of audio-visual understanding of urban traffic scenes, the Ur-
bansas dataset [8] was recently proposed to benchmark audio-visual
vehicle tracking systems across different cities.

In the context of general-purpose urban sound monitoring, even
though an ontology has been proposed with the Audioset initiative
[9], which is exploited in many derived audio classification tasks,
cross-evaluation between different urban sound monitoring datasets
remains hard. Indeed, it is necessary that a common set of classes be
large enough and shared across datasets to perform a fair evaluation,
which is often not the case. Sounds of New York City (SONYC)
[1] is the first dataset to propose a hierarchical taxonomy targeting
those sound classes that are the main sources of urban noise pollu-
tion. More recently, SINGA:PURA [2], a dataset of real urban au-
dio recordings from Singapore with strongly-annotated (frame-level)
data, has been proposed. The authors chose to follow the same tax-
onomy as that of the SONYC dataset, with a proposed extension in-
corporating more urban sound classes, which creates an opportunity
to test urban SED systems’ generalization across different cities.

Though the DCASE challenge 2020 Task 51 has favoured the de-
velopment of advanced urban SED systems, it only considered the
SONYC data. The challenge ranked submitted systems on global
and per-class metrics obtained on the evaluation set of SONYC and
showed that further improvements could still be reached, especially
on class-wise performances. This has further motivated us to seek
a better explanation of when urban SED systems under-perform the
most. We thus believe that it is still particularly relevant to study in
this context the impact of polyphony and proximity of sound events
occurring in the urban soundscapes, as well as systems’ generaliza-
tion to cities unseen during training.

Contributions We offer an in-depth study of the behaviour
of urban SED systems and test their generalization abilities across
cities, combining data from SONYC and SINGA:PURA. Following
the DCASE challenge task 4 SED system’s design, we experiment
with systems performing SED on far-field and non-synthetic urban
sound recordings from two different cities. To the best of our knowl-
edge, this framework is, in particular, the first to exploit proximity
annotations to evaluate urban sound classifiers. We also investigate
how our systems behave under various levels of polyphony. We dis-
tribute our code as well as the proximity annotations of the SONYC
evaluation set which we created for this study.2

1https://dcase.community/challenge2020/
task-urban-sound-tagging-with-spatiotemporal-context

2https://github.com/florian-angulo/CoSMo/



2. THE COSMO FRAMEWORK

While previous works on sound event detection in real urban sound-
scapes only focused on a single dataset, we propose CoSMo: a cross-
dataset experimental framework. It is currently composed of three
existing datasets:

1) SONYC-UST-v2 [1]: 51.4 hours of weakly-annotated audio data
recorded in New York with 56 single-microphones.

2) SINGA:PURA labelled set [2]: 18.2 hours of strongly-annotated
audio data recorded in Singapore with 10 single-microphones and 4
seven-microphone arrays.

3) SINGA:PURA unlabelled set [2]: 201 hours of unlabelled audio
data recorded in the same conditions as SINGA:PURA labelled.

The label taxonomy used is a parameter of our framework. One
can choose to use the original SONYC-UST taxonomy (8 coarse
classes, 23 fine classes) or one can use the extension proposed by
SINGA:PURA (14 coarse classes, 40 fine classes).3

Dataset Splits. For SONYC-UST, we use the split into train-
ing, validation and evaluation sets as proposed by the authors [1].
For SINGA:PURA [2], the authors do not propose such a split. We
therefore replicate the strategy used for splitting SONYC-UST to
SINGA:PURA: a) sensors used in the validation set must not be
used in the training set b) recordings of the evaluation set must not
occur on the same day as any recordings from the training set or
validation set. c) The class distributions of the three subsets must
be similar. The best split we found checking all these requirements
is the following: the validation set is comprised of events recorded
after August 21th with sensors [b827eb0ebf2f, b827eb7680c5 and
b827eb3e52b8], the evaluation set is comprised of events recorded
before and including August 21th and the training set is comprised
of events recorded after August 21th without sensors [b827eb0ebf2f,
b827eb7680c5 and b827eb3e52b8]. With this dataset split, we repli-
cate the usual train, validation and evaluation ratio of 70%, %10,
20%, respectively.

“Proximity” annotations. For both SONYC and
SINGA:PURA, annotated sound event labels come with additional
information on the proximity of the events (near or far). For SINGA-
PURA, these “proximity” annotations are complete and verified by
a scientific team [2]. For SONYC, these annotations are provided
by volunteers and the major part of the event labels are not associ-
ated with a “proximity” label. Also for the provided ones, a signif-
icant disagreement exists between annotators. Thus, we leave the
exploitation of these noisy proximity annotations during training for
future work. Still, since for our analysis, we need consistent prox-
imity annotations, we re-annotated the “proximity” of labeled sound
events of the evaluation set of SONYC . We used the following anno-
tation rule: if the sound event is salient or easily distinguishable from
the ambient noise and simultaneous active sound sources, we label
it as “near”. Otherwise, we label it as “far”. Clearly, this had better
be referred to as “salience” annotation, but we choose for simplicity
not to change the way it is referred to, especially as, in practice, on
this dataset “salience” and “proximity” are well correlated. We dis-
card from our annotations any ambiguous scenarios where the same
sound class occurs ”near“ and ”far“ at different times in the clip. As
a consequence, the union of the ”near“ and ”far“ subsets is not equal
to the whole set.

3https://zenodo.org/record/5645825

3. CONSIDERED SYSTEMS

For our experiments we consider three classification systems, based
on our assessment of the current state of the art in the DCASE field
[6, 10]. While we could have focused only on systems used in the
DCASE Challenge on the SONYC dataset, our choices are also mo-
tivated by the existence of strongly annotated data and large amounts
of unlabeled data from SINGA:PURA, which calls for systems mak-
ing both frame-level and clip-level predictions and also calls for
semi-supervised learning paradigms to exploit unlabelled data. The
first system corresponds to the baseline of the DCASE Challenge
Task 4 [5], a convolutional recurrent neural network (CRNN) using
the Mean-Teacher semi-supervised learning paradigm [11]. We con-
sider the convolutional part as the feature extraction pipeline and the
recurrent part (a two-layer bidirectional Gated Recurrent Unit fol-
lowed by a Linear layer with attention pooling to aggregate frame-
level predictions into a clip-level prediction) as the classification
head. While more advanced systems were proposed on sound event
detection challenges such as transformer-based or conformer-based
architectures [12], we prefer to use this well-established and well-
studied architecture [6].

The second and third systems use pretrained embeddings for the
feature extraction stage but the same classification head. These em-
beddings are computed with the best performing systems submitted
in the HEAR challenge [10] on environmental sound event detec-
tion downstream tasks (ESC-50, DCASE 2016 Task 2, FSD50K)
[10]. The second system therefore uses PaSST (Patchout faSt Spec-
trogram Transformer) [13], a vision transformer trained on Audioset
in a supervised way, as its feature extractor. The third system uses
openL3 [14], a CNN trained on Audioset in an unsupervised way
with an audio-visual correspondence task.

For the rest of the study we name the first system “CRNN” , the
second system “embedding (PaSST) classifier” and the third sys-
tem“embedding (openL3) classifier”.

4. EXPERIMENTS

We design our experiments to answer the following questions: how
well can the chosen systems generalize across cities? What is
the impact of proximity on performances? What is the impact of
polyphony on performances? Does a state-of-the-art pretrained fea-
ture extractor perform as well as one trained-from-scratch?

4.1. Training of the CRNN

We take inspiration from the framework of the baseline system used
in DCASE task 4 2021 [5]. We compute the Mel-spectrogram from
the 32 kHz audio with a Hamming window of 60 ms, a hop size of
16 ms and 128 Mel filters.

Frontends. We test three different processings of the input Mel-
spectrogram. The first one is a simple pointwise log-transformation.
The second one is PCEN [15] with the hyperparameters advised
by an in-depth study of this function [16]: α = 0.8, r = 0.25,
ϵ = 10−6, δ = 10 and T = 800 ms. The authors propose a window
size of T = 60 ms for bird sound event detection. We select empir-
ically a longer window because chirp rates of urban sound events
are generally slower. Even though, there does not exist an ideal
window size which can enhance at best every sound classes of in-
terest, as shown in [17], we found empirically T = 800 ms to be a
good trade-off. To prevent losing information caused by PCEN de-
emphasizing background noise and stationary sounds, we propose a
third processing which combines the log-transform and PCEN into a



2-channel input. We then apply the same normalization scheme as in
[18]: we standardize each Mel band of each channel independently
using their mean and standard deviation computed without outliers.

Batch content. In a training batch, we can include weakly-
labelled examples from SONYC, strongly-labelled ones from
SINGA:PURA, weakly-labelled (derived from the strong-labels :
“a class is active at the clip-level if it is active during at least one
frame of the clip) ones from SINGA:PURA and unlabelled examples
of SINGA:PURA. In our experiments, unlabelled examples only
contribute to the regularization provided by the Mean-Teacher [11]
paradigm. As we can combine datasets of different sizes in the train-
ing batch, we ensure that no matter the training batch configuration,
the number of annotated examples used per epoch is the same. We
set the batch size of annotated examples to 32. If we use unlabelled
examples from SINGA:PURA in the training batch, we take 16 ex-
amples per batch.

Training loss components. If examples from both annotated
datasets are present in a training batch, we give them equal weight
in the supervised loss. If we supervise frame-level predictions on
SINGA:PURA, we give respectively a weight of 60% and 40% to
the losses computed respectively on frame-level predictions loss and
on clip-level predictions. If we use the Mean-Teacher [11] regular-
ization, the self-supervised loss computed between the student pre-
dictions and the teacher predictions is added to the total loss with a
scaling factor warming up exponentially from 0 to 2 in 30 epochs.

Training details. For all our experiments, we supervise the
systems with the fine-grained taxonomy of SONYC [1]. We use the
Adam optimizer [19] with a learning rate of 5 × 10−4. To mitigate
the issue of class imbalance, our loss is computed with the focal loss
[20]. Using this loss instead of the binary cross-entropy loss helps
improving class-averaged performances because it reduces the influ-
ence of overrepresented classes (e.g. “engine”) in the loss. We apply
data augmentations to the final spectrograms with Mixup [21] with
a probability of 50% and frequency masking [22] of up to 48 bins.
Training is done in a maximum of 100 epochs and is interrupted if
no improvement is observed for 20 epochs on the objective metric
(macro-averaged AUC-PR) computed on the validation set. The val-
idation set is comprised of the labelled datasets used during training.

Evaluation sets. Irrespective of the training batch configuration,
we evaluate the systems on the official evaluation set of SONYC and
on the previously defined evaluation set of SINGA:PURA. We eval-
uate them on the coarse-level hierarchy by converting fine-grained
class predictions into coarse-grained ones. Prior to evaluation, we
adjust the decision threshold of each class on the validation set, us-
ing the GHOST [23] algorithm.

4.2. Training of the embedding classifier

We take inspiration from the evaluation of downstream tasks with
precomputed embeddings in the HEAR challenge [10]. With its of-
ficial implementation, we compute PaSST [13] timestamp embed-
dings with its default parameters: a hop size of 50 ms and an em-
bedding size of 1295 (768 from the projection layer + 527 from the
Audioset classification head). Likewise, we use the official imple-
mentation of openL3 [14] and its default parameters: a hop size of
100 ms and and embedding size of 512).

For a fair comparison, we use the same training protocol de-
scribed in the previous subsection (without using unlabelled data,
the Mean Teacher paradigm or any data augmentation) and we use
the same classification head as the system trained from scratch. With
this classification head, we reached superior performances compared
to the Multi-Layer Perceptron used for the evaluation on downstream

tasks of the HEAR challenge.

4.3. Metrics and Parameters

Performance metrics. In this study, we focus our systems evalu-
ation on clip-level SED. We measure the performances of the cho-
sen systems using the micro-averaged and macro-averaged scores
of AUC-PR (Area Under the Curve - Precision Recall), and F1-
measure. AUC-PR scores are computed globally and are used to
compare the systems to the state-of-the-art. F1 scores are computed
by mini-batches of 10 samples, presented in boxplots and analyzed
in our discussion.

Proximity-related evaluations. Using the “proximity” anno-
tations, we create subsets containing only “near” or “far” ground-
truths. If events in a clip share the same proximity, evaluation is
straight-forward. However, when a clip contains both “near” and
“far” events, we need to post-process predictions and ground-truths
to disambiguate the evaluation. Because mixtures are not synthetic,
we cannot remove sound events when they do not correspond to the
proximity of the subset. Therefore, we need to adapt a posteriori
the predictions and the ground-truths. If the system correctly pre-
dicts a sound event whose proximity value is not under study, we do
not want to penalize it so we zero out the predicted value for this
class consistently with the fact that we had removed it as well from
the ground-truth. This processing can artificially increase precision
scores. Score metrics obtained on those subsets are still useful in our
analysis despite reflecting performances only partly.

Polyphony-related evaluations. We create subsets based
on a value of “event polyphony”. For each clip, we define a
“weak polyphony” value equal to the number of different sound
sources present in the groundtruth. We use three subsets named
“monophony” (p = 1), “low polyphony” (p = 2) and “high
polyphony” (p ≥ 3). Polyphony is derived from the annotations
as the number of different classes labelled in the clip.

5. DISCUSSION

Performances w.r.t state-of-the-art solutions.We ensure that the
systems that we exploit perform well enough on the SONYC test set
with a matching train/test paradigm so that we can conduct a reli-
able analysis of cross-city generalization (in an unmatched train/test
paradigm) solely based on our systems performances. We refer to
the last edition of the SONYC-UST challenge [1] where the sub-
mitted systems were trained with the same amount of training data
and evaluated on the same set as the CRNN and the embedding clas-
sifiers. The only difference is that we did not exploit the spatio-
temporal context, which was successfully used in the challenge
to boost performances. The winning solution achieves a micro-
averaged and macro-averaged AUC-PR of respectively 83.5% and
64.5% while the baseline system provided by the SONYC-UST team
achieves scores of 74.9% and 51.0 %. Our best run comes from us-
ing CRNN with the PCEN frontend with scores of 80.8% and 60.1%.
Our best run using the embedding classifiers gives scores of 78.0%
and 57.3% with PaSST [13] as a feature extractor. Hence our sys-
tems, though perfectible, are competitive with the state of the art.

Influence of front-end. We indicate in Figure 1, the F1-measure
obtained on the SONYC evaluation set with different frontends (log,
pcen, log+pcen). The improvements brought using PCEN are not
as significant as the ones observed in other audio classification tasks
[15, 24]. Using both transforms as 2-channel input did not help im-
proving performances either. We reached the same conclusions in
the unmatched train/test paradigm.
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Fig. 1: CRNN performances when using different front-ends in a matched
train/test paradigm. The systems are trained and evaluated on SONYC.
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Fig. 2: CRNN and embedding classifiers performances in an unmatched
train/test paradigm. The systems are trained on SONYC and evaluated on
SINGA:PURA.
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Fig. 3: CRNN performances on SINGA:PURA evaluation set under various
train/test paradigms. The legend indicates which datasets were used to train
the system. F1-scores are shown relative to the matched train/test paradigm.

Generalization across cities. It is important to acknowledge
that cross-city generalization depends on more factors than the cities
themselves (e.g. sensors, annotator processes and populations). Re-
ferring to Figure 2, we show our systems performances, trained on
SONYC only, in an unmatched train/test settings. While perfor-
mances are similar in a matched settings, the embedding (PaSST)
classifier, underperforms compared to the other systems when con-
fronted with a domain shift whereas the embedding (openL3) clas-
sifier is more robust and on-par with the CRNN. The embedding
classifier therefore generalized better to unseen conditions with a
feature extractor trained in an unsupervised way. In addition, we
indicate in Figure 3, the F1 scores obtained on the SINGA:PURA
evaluation set with the CRNN, when varying the training batch con-
tent. As expected, the lowest performances on the SINGA:PURA
evaluation set are obtained when the CRNN is trained on SONYC
only. No improvements were obtained in our experiments when
using unlabelled data from SINGA:PURA with the Mean-Teacher
paradigm [11]. The biggest F1 score differences between the un-
matched train/test paradigm and the matched one are observed on
the “far” and “polyphonic” subsets. This suggests the need for al-
ternative domain adaptation methods to bridge the gap between both
type of proximity and various polyphony levels.

Influence of proximity. No matter which system is used, we
see a statistically significant degradation of performances on the
SONYC “far” subset compared to the SONYC “near” subset. How-
ever, Referring to Figure 1 and Figure 2, the performance gap be-
tween the SINGA:PURA “far” subset and “near” subset is smaller.
The proximity annotation strategy based on salience we used on the
evaluation set of SONYC was probably a more reliable approach for
our study than the one used by the SINGA:PURA annotators.

Influence of polyphony. Referring to Figure 1 and Figure 2,
we observe that the CRNN system’s predictions are impacted neg-
atively as the polyphony value increases in the matched train/test
paradigm. Interestingly, in the unmatched train/test paradigm, the
performance gap between the CRNN trained from scratch and the
embedding classifier is explained by the polyphony subsets. The
embedding-based classifier fares better on polyphonic clips. This
could be explained by the pretraining of openL3 on Audioset [9],
which contains large amounts of polyphonic clips.

6. CONCLUSION AND FUTURE WORK

We have introduced CoSMo, a corpus allowing for an in-depth study
of urban sound event detection combining three existing datasets of
real far-field urban audio recordings. By evaluating baseline sys-
tems trained from scratch in a semi-supervised way or fine-tuned
using pretrained general-purpose audio embeddings, we highlight
performance gaps between subsets of audio recordings which are
harder because of sound event proximity or high levels of polyphony.
We also show that generalization across cities is hindered mostly by
those hard examples. For future work, normalization and domain
adaptation strategies should be explored [25]. To improve perfor-
mances on “far” sound events or on highly polyphonic clips, using
unsupervised sound source separation before the multilabel classifi-
cation could help as it was successfully applied for bird sound clas-
sification [18]. More recent semi-supervised methods could also be
used to better exploit unlabelled data [26]. We hope our insights can
foster new research on urban sound event detection that will help
bridging the performance gaps identified in this study.
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