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ABSTRACT

Generalized Approximate Message Passing (GAMP) allows for
Bayesian inference in linear models with non-identically indepen-
dently distributed (n.i.i.d.) priors and n.i.i.d. measurements of the
linear mixture outputs. It represents an efficient technique for ap-
proximate inference, which becomes accurate when both rows and
columns of the measurement matrix can be treated as sets of in-
dependent vectors and both dimensions become large. It has been
shown that the fixed points of GAMP correspond to the extrema of
a large system limit of the Bethe Free Energy (LSL-BFE), which
represents a meaningful approximation optimization criterion regard-
less of whether the measurement matrix exhibits the independence
properties. However, the convergence of (G)AMP can be notoriously
problematic for certain measurement matrices, and the only sure fixes
so far are damping (by a difficult-to-determine amount) or perform
a double ADMM. In this paper, we revisit the GAMP algorithm (as
e.g. for sparse Bayesian learning (SBL)) by more rigorously applying
an alternating constrained minimization strategy to an appropriately
reparameterized LSL BFE. This guarantees convergence, at least to
a local optimum. We furthermore introduce a natural extension of
the BFE to integrate the estimation of (the SBL) hyperparameters
via Variational Bayes, leading to Variational AMBGAMP or VAM-
BGAMP.

1. INTRODUCTION

In the Gaussian noise case, a sparse signal vector « can be recovered
using the signal model: y = A = + v, where y is the observed data,
A is the known measurement or sensing matrix of dimension M x N,
typically with M < N. In the sparse model, x contains only K non-
zero entries, with K < M < N. Sparse Bayesian Learning (SBL)
is a Bayesian inference algorithm proposed by [1] and [2]. SBL is
based on a hierarchical prior on the sparse coefficients x, inducing
sparsity by choosing priors for the hyperparameters that make most
coefficients tend towards zero. In [3], the authors provide an overview
of various sparse signal recovery algorithms, including Basis Pursuit,
LASSO, and SBL. They demonstrate the superior recovery perfor-
mance of SBL compared to conventional methods. However, the Lin-
ear Minimum Mean Squared Error (LMMSE) estimation step in SBL
at each iteration involves matrix inversion, which makes it computa-
tionally complex, even for moderately large datasets. This complexity
motivates the use of approximate inference methods.

Belief Propagation (BP)-based Sparse Bayesian Learning (SBL) algo-
rithms, as discussed in [4], offer improved computational efficiency.
For a more detailed overview of various approximate inference meth-
ods for SBL, refer to [5]. While BP has demonstrated empirical suc-
cess [6], more rigorous work is needed to characterize its convergence
behavior in loopy networks. Several studies have investigated the con-
vergence analysis of Gaussian BP (GaBP) and can be found in [7—
10]. [11] provides a convergence condition for GaBP, which requires
the underlying distribution to be walk-summable. Their convergence
analysis is based on the Gaussian Markov random field (GMRF) de-

composition, which expresses the underlying distribution in terms of
pairwise connections between variables.
The Approximate Message Passing (AMP) algorithm has been in-
troduced to reduce the complexity of GaBP further, from 2M N to
M + N messages. Generalized AMP (GAMP) allows non-Gaussian
priors and more general measurement processes. But convergence of
(G)AMP can be problematic for some matrices A. Many variations
have been introduced to help (G)AMP converge, such as 1) adding the
Alternating Direction Method of Multipliers (ADMM), 2) exploiting
part of the singular value decomposition of the measurement matrix in
Vector AMP (VAMP) (but which does not allow to handle n.i.i.d. pri-
ors conveniently), 3) sequential updating in Swept AMP (SWAMP),
which can work in most cases, 4) by introducing damping, but with
typically difficult to determine damping requirements.
The AMP algorithm and its variations have many potential applica-
tions in (machine learning-aided) wireless communications systems:

e multi-user detection [12],

e channel estimation [13],

e joint detection and channel estimation [14],

e compressive sensing [15],

e reduced complexity Linear Minimum Mean Squared Error
(LMMSE) receiver or transmitter computation [13].

1.1. Contributions of this paper

o We propose the AMBGAMP version of GAMP that guarantees
convergence by utilizing an alternating constrained minimiza-
tion strategy applied to an augmented Lagrangian of the con-
strained Large System Limit (LSL) of the Bethe Free Energy
(BFE), inspired by but different from [16], [17]. The algorithm
differs from [18], [19] and involves a gradient update with line
search, fixed-point iterations, and an ADMM-style Lagrange
multiplier update.

e The Kullback-Leibler divergences (KLDs) appearing in the
LSL-BFE actually are exactly of the form required for ap-
plying Variational Bayesian (VB) posterior updates, not only
for the main primal variables = and z but also for hyper-
parameters involved in their priors. We consider here the
precisions (inverse variances) in Gaussian priors as hyperpa-
rameters, for the case of SBL. The resulting algorithm that
involves optimization of the posteriors for « and the auxiliary
variables (including the hyperparameters) is called variational
AMBGAMP-SBL (VAMBGAMP-SBL).

e We also indicate that asymptotically, under an i.i.d. element
model for A, the variance computations in AMBGAMP are
exact. This allows to analyze the steady-state MSE as a func-
tion of system dimensions and prior pdfs p(x), p(y|z) for =
and z. In particular in the Gaussian case, this allows to analyze
the performance for SBL.

e Gaussian simulation results validate the convergence to the
LMMSE solution for different measurement matrices, includ-
ing i.i.d. and low-rank cases.



2. SYSTEM MODEL

The data model considered in (EM-GAMP-)SBL is essentially a linear
mixing model represented by

z = A:I), pm,a(m’a)9 py,'ylz(y’7|z) (1
with (possibly non) identically independently distributed (n.i.i.d.)
prior pu,a(z, @) = 1 Pasja, (Ti|i) Pa; (o) and niid. mea-
surements py |- (y,¥]2) = Hllcwzl Pyl Ukl 2k, Yr) Py, (7). The
measurement noise precision vector (inverse variance hyperparam-
eter) is v = [y1,---,7m]*. In SBL, we introduce a Gaussian
prior with unknown precisions, denoted as «;, collected in the vector
a=|a, - aN]T. Hence, we write
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with known a, b. Note that the case of an uninformative prior corre-
sponds to a = 1, b = 0. Each ~; is also assumed to have a Gamma
prior distribution, p, (vx) = G(Vx; ¢, d), where also ¢, d are known.
In Bayesian estimation, we are interested in the posterior, which is
given by
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where we define the negative log-likelihoods as fz, o, (%, ;) =
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where we omit the dependence of f., -, (#x,vx) on y. The prob-
lem in Bayesian estimation is the computation of the normalization
constant Z(y) and of the posterior means and variances. Belief prop-
agation is a message passing technique that allows to compute the
posterior marginals. However, due to loops in the factor graph, loopy
belief propagation may have convergence issues and is furthermore
still relatively complex. GAMP is an approximate belief propagation
technique which is motivated by asymptotic considerations in which
the rows and columns of the measurement matrix A are considered
as random and independent. In which case GAMP can actually pro-
duce the correct posterior marginals. In any case, GAMP computes a
separable approximate posterior of the form

Gy, (T A5 2,7) = @z () ga (@) g2(2) g~ () @
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in which the dependence on y has been omitted. The GAMP algo-
rithm [20], [16] appears in the table as Algorithm 1. We only con-
sider here Sum-Product GAMP (for MMSE estimation, as opposed
to Max-Sum GAMP for MAP estimation). We emphasize that, apart
from the hyperparameter updates, the algorithms specified in the ta-
bles in this paper, hold for arbitrary Generalized Linear Models. Only
the indicated hyperparameter updates are specific for SBL. Algorithm
1 reflects the standard Expectation Maximization (EM) approach for
hyperparameter estimation.

3. PROPOSED VAMBGAMP-SBL

The abbreviation AMB stands for ACM-LSL-BFE, which denotes
Alternating Constrained Minimization of the LSL of the BFE. AM-
BGAMP employs most of the same updates as GAMP, but GAMP
does not rigorously perform alternating minimization (block coordi-
nate descent), particularly in the presence of constraints. Previous
work [21] has demonstrated that any fixed point of the GAMP algo-
rithm is a critical point of the following constrained minimization of a
LSL of the BFE (see also [16] and references therein), here extended
to include the hyperparameters:

min JrsL-BFE(Qe, @z Tp, Qor Q)
qx,9z3Tp 99~y
s.t. E(z|gz) = A E(z|qs) )

7p = Svar(xz|gz),

Algorithm 1 EM-GAMP-SBL

Require: y, A, S—AA fo,a(z, ), fz,\,(z Y)
t—1 21 5t

1: Initialize: t = 0, 2%, 7}, s =0,a" 475
2 repeat
[Output node update]

4: T; =St
5 t= Azt —stTL. ‘rzt)
6: 2 =E(zlpt, T, AT
7 1l =var(z|pt, p,'yt )
8: = (2t — ph). /7'

. — t t t
9: 7! =1-7../1)./T,
10: [Input node update]
11: Tt =1./(ST*})
12: rt =7t + T:.ATst
13: @ttt = E(z|rt, 7, &t t)
14: ‘ri"'l = var(z|r? ,Tt at—1)
15: [Hyperparameters update]

. _ _2a+1
16: at = D)2 Vi.
17: A/t = _zesr Vk.

E(lyg —2k12)+2d’
18: until Convergence

where the LSL BFE is given by
JLBrE(ds, 4z, Tps das ) = D(gudalle ™)+ D(gagyle™727)
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and where D(q||p)=E(In(%)) is the KLD and H¢(g=, Tp) is a sum

of a KLD and an entropy of Gaussians with identical means but dif-
ferent variances. The LSL BFE optimization problem (6) can be re-
formulated with the following augmented Lagrangian

min max L(qzqu,Tp,u,s,Ts,qaqu) Wlth
qz:9z:90 9~ Tp, W S, Ts
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where s, T, are Lagrange multipliers, and 7. = 1./(ST7) is jus(t7zi
short-hand notation for a quantity that depends on 7s. We also use
the notations: |lul|2 = >, u?/7, element-wise multiplication as
in s.7, element-wise division as in 1./7 and 1 is a vector of ones.
In [18], [19], a careful updating schedule was considered with par-
tial optimization steps on subsets of primal and dual variables. How-
ever, that approach is not guaranteed to converge in general. Here we
continue to consider an alternating optimization approach in which
the schedule is less critical and some of the optimizations are re-
duced to gradient updates. The resulting algorithm can be considered
an extended and generalized version of the ADMM algorithm (ex-
tended: there are more than two primal variable groups, generalized:
the quadratic augmentation term does not exactly correspond to the
linear (mean) constraint). We propose the following updating order

{u} > g} = {8} = {7} = (@2} > {ertn} . ®
In other words, at iteration t we have the following sequence
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The result appears in the Algorithm 2 table.



3.1. Update of u
To update u, we use a gradient descent method with line search to

optimize the step-size. From (7), (9), we get the relvant cost function

t—1 t—1 t—1 — t—1 t—1
L(Qz y4z 5 Tp , Uy S 77-5 7qoc s Yy )

L@t -l + 4

15)

— AuH_,_;_l + const.

where const. denotes constants w.r.t. w. The minimizing update can

be obtained as wt=utl gt (16)

with gradient g' = g’(u’™') where

g'(u) = Vul(g: 5 qs L, s LT ga iy )
= —AT(F - Au)./Tgfl) — @ )./t 17

=g'(0)+H'u, H' =D(1./7/ ") + ATD(1./7, HA

where D(1./7) denotes a diagonal matrix with diagonal elements
1./7. The step-size " gets optimized for maximum descent :

OL(g; " g mp w8 ga i ay )
ont (18)
= ' = |g'lI*/g" TH'g".

3.2. Update of {q.}
The relevant terms in the augmented Lagrangian are

t—1 t—1
7QO¢7—7)

= D(q=qy||le" =) + Svar(z|q.). /75!
+s'7' TE(z|gz) + 1| E(z]g=) — Au'||?,_, + const.

Tp
= D(gzq4|le” =) + L B(z"2|q). /i~
—(E(z|g=))T (A u?)./Ti~ " —s*™1) + const.
= D(qzq.YHe_sz) + %E(HZ — pt||_2rt_1|qz) + const.

P
(19)

where const. denotes constants w.r.t. zand p’ = Au’ —s'~t.rf7t.

The Lagrangian in (19) is separable. We get per component

t—1 t—1 t t—1
L(Qz 7qz7Tp 7u 7S 77—5

min D(qz, Gy, 9%, /Z%) = @z, = G-, /2%, with
Zk

4 ]qu 1 lng
9z, =€ Tk

= [§t, dee, —Ingt, (20)

=B Faem (Zk/}’k) + 2171[(2% —pk)* = (0k)]
Tk

where the KLD optimization is as in standard Variational Bayes (VB),

and p, = pi(s),'). Note that the partition function Z, acts as
cumulant generating function:
mgizﬁk = E(zxlqz,) = E(zulpi, 7, WAk ) = 2k
o ;Zt = var(ze|ph, o LAY = 7, @1
3t
figéﬂ—E«afE%>mg

In the Gaussian prior case, we get a Gaussian posterior qik with

1./7';s = 1./T;71+’7t71, ?:T:.(y.'ytflert./T;*l). (22)

3.3. Update of {s} (ADMM style)

Although the quadratic augmentation terms in the Lagrangian do not
correspond exactly to a weighted quadratic version of the linear mean
constraint, due to the introduction of the auxiliary variable w which
streamlines the derivation of the updates of g, and q., nevertheless an
ADMM style update of the mean constraint Lagrange multiplier s is
possible. Indeed, the terms in (19) that contains s or z are

1l - Tt 1. -
(2P ) =2+ (GE - AT @9
Taking the gradient w.r.t. Z (as part of the optimization over g.) leads
to the RHS of

s'=s""+ (2 - Auh). /T (24)

Hence, if we use this update for s, then (23) reduces to 7Tst, as if
the quadratic augmentation terms have disappeared! This if the main
characteristic of the Lagrange multiplier update in ADMM, which
corresponds to a gradient ascent with a particular choice of (diago-
nal) step-size.

3.4. Update of {7, 7.}

In [18], [19], the carefully chosen updating schedule made the
quadratic augmentation terms inactive when {7,,7s}. Here these
terms only become inactive at convergence. Nevertheless, these terms
only play an active role for the means and not for the variances. Hence
we shall ignore them here. Hence, the terms of interest in (7) for (12)
are

L(qa: 7QZ7TP7U S 7'97(1:; 17q31 1)

= HG(qzan) - %TST(TP - STx

) M thk 1M -

2 Z + 1n(27T TPk) ) ZTSk (Tpk =Sk, T )
k=1

k=1 LTk
{7p, Ts}. Deriving w.r.t.

Y 4 const. = const.+

where const. denotes constants w.r.t.
{7p, T} yields the feasibility conditions

oL 1 p
—0= 7l = (1 ), (26)
agpk Tpr Tpg
L o1
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which we run as a fixed-point sub-algorithm.
negativity, the update of 75 should come first.

3.5. Update of ¢,
For the update of g, consider the relevant terms in the augmented
Lagrangian (and remember that 7} = 1./(ST7!) or 1. /7! = ST7})

L(qe, b, ut st 7l gh g )

= D(qzqa|le” Fo, ) — s'TA E(z|qz)

+i7iTSvar(z|qz) + %H E(x|qs) — ut||2 + const.

= D(goaalle™=) + 1 (1./78)7 E(w.2|qz)
—s'TA E(z|gqz) — (ub./7)))T E(z|qs) + const.

= D(qzqalle™ =) + 5 (1./75)T E(z.%|qx)

—(u* 4+ 7L ATSH)T(E(x|qe)./Tt) + const.

= D(gzgalle™ =) + 3 E(llz — r*||2:|q=) + const.

where const. denotes constants w.r.t. z, and r’ = u’ + ‘rf.Aq%g).
This cost function is again separable. We get per component a VB
update

To guarantee non-

rg}inD(qz~qu\|gi-/Z§:i) = q,, = §u,/Zs, with
' E lng
Goo = U 2 = [ gt dey, —Ingt, @)
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Simplifications occur again in the Gaussian scenario.



Algorithm 2 VAMBGAMP(-SBL)

Require: 3. A.S = A.A. [ o(o.0). [ (27)
1: Initialize: t = 0, 2°, ‘ra?, u?, ‘r0 s =0,7% a°

2: repeat (t=1,2,...)

3: [Output node update]
4: u! t=ut~! — pt gt withgt, n? from (17), (18)
5: pt = Aut —st™ 1.7-;_
6:  2'=RE(z|p*, 7.7, 7" "), Gaussiancase: 2* =71.(y. ' " HptL /T
7: T =var(z|p®, T, t 1,3*~1), Gaussian case: 1./7} = 1./7';71 + At
8: st =s'71 4 (2f — Aut )./‘r;*1
9: [Variance matching]
10: N *(177';’./7';71)./7';’71
11: ‘r; = S‘r;‘_l
12: Tt =1./(8T+})
13: [Input node updale]
14: rt =ut + 7L ATSs!
15: Z* = E(zx|r?, 7f, @t~ 1), Gaussian case: Z° = r'. /(1 + &'~ t.rt)
16: Ti=var(z|rt, 7%, &'~ 1), Gaussian case: 1./7.=1./7} + &' !
17: [Hyperparameters update]
. _ a+1
18: at = £ (z?>+2b, Vi
190 Ff = ——2L vk

quk (lyg — 21 12)+2d°
20: until Convergence
3.6. Update of Hyperparameter o
The relevant part of the augmented Lagrangian simply leads to a KLD
term

gk, = argmin D(qlqa|le ™) + const. 3D
do
which gets minimized alternatingly as in VB [22]

1 1
Ing,, = (E +a—-1)lna; — (5 Eqe (x7) +b) cvi + const. (32)

This means that the posterior of «; is a Gamma distribution: qgi =

g(ai;a,?), witha =a+1/2 and b’ = Eqe (x2)/2 + b, with mean

2 or hence: ~t 2a+1

bt e S N 33
“ Eqe (27) +2b 49

3.7. Update of Hyperparameter -~y
The relevant part of the augmented Lagrangian is again a KLLD term:
¢, = arg m(in) D(qtqy|le™ ") + const. 34)
a~ Y
which gets minimized alternatingly as in VB [22]
, 1 Eq (lyk — 2e/*)
Ing,, = (5 +e—1)Iny— (kf +d)vyi+const. (35)
which means again that the posterior of 7, is a Gamma distribution
= Gt d7) withe = c+1/2and d’ = Ege (|yn —2[*)/2+
. 2c+1
By (lyx — =) +2d
For the case in which all noise Varlances are assumed to be equal, the
update of v = i, Vk can be shown to be [22]:

Sk S— @37
Eq(lly —2[7) + 24

4. VAMBGAMP-SBL LARGE SYSTEM ANALYSIS

In GAMP, as opposed to AMP, we may not have (simple) analytical
updates for means and variances. As a result, the take on large system
analysis (LSA) for GAMP is from a different angle. If both the rows
or the columns of A are now modeled as independent, then given
that also the priors on x and z are independent (factorized), the true
posteriors for  and z will become factorized and will equal the ap-
proximate posteriors ¢, (x), ¢-(z). So multiplication with A or A”
acts like scrambling in CDMA communications, that renders the indi-
vidual outputs independent. Furthermore, the marginal posteriors are
the product of the respective prior and extrinsic distributions that cor-
respond to information coming through A or AT, the random nature

d and with mean — or:_;
Vi

(36)

iid A

-e-MMSE
—VAMBGAMP-SBL
——Error of VAMBGAMP-SBL to MMSE

NMSE in dB

-30

-10 -5 6 é 1‘0 1‘5 2‘0 2‘5 3‘0
SNR
Fig. 1. NMSE curves for i.i.d. A, with M = 150, N = 250. GAMP

has similar performance as VAMBGAMP-SBL, hence omitted.
Low Rank A

100 -
50 GAMP diverges after
this SNR
[

-100 - -MMSE

—VAMBGAMP-SBL

—&—Error of VAMBGAMP-SBL to MMSE
2001 —=—GAMP

=T A_’Ar"/

NMSE in dB

SNR
Fig. 2. NMSE curves for low rank A, with M = 150, N = 250.

of which will lead to Gaussian extrinsic distributions by the central
limit theorem. In other words, in the LSA, in which the dimensions of
x and z (the two dimensions of A) tend to infinity at a constant ratio,
the approximate posteriors handled in GAMP become asymptotically
exact. As aresult, the variance information propagated by GAMP cor-
responds asymptotically to the exact MSE of the (MMSE) estimates
propagated by GAMP. The existing GAMP steady-state analysis re-
sults are valid, assuming that the algorithm has converged to such a
steady state. Such steady-state analysis appears in [20] (particularly
in the extended arxiv version), or in [23].

In the Gaussian case of SBL, MMSE estimation becomes LMMSE,
for which we have investigated LSA in [24] using large random matrix
theory. It can be checked that the LSA of the general GAMP case
above reduces to these same results in the Gaussian case.

5. SIMULATION RESULTS

The figures show Normalized MSE 7, (2 top curves) and normalized
MSE difference between z estimated by AMBAMP and LMMSE (2
bottom curves) with variance profile o2, = 0.93°"', i =1,..., N,
for M = 150, N = 250. Fig. 1 is for i.i.d. Gaussian A whereas
Fig. 2 is for low rank A in which the smallest half of the singular
values in an i.i.d. A are set to zero. These simulations show that the
VAMBGAMP-SBL algorithm continues to work in an unrealistically
severe scenario, in which AMP diverges.

6. CONCLUDING REMARKS

We propose a convergent version of GAMP, VAMBGAMP, which ap-
plies alternating minimization to an augmented Lagrangian of a large
system limit of the Bethe free Energy (BFE). One quadratic subprob-
lem is minimized by a gradient descent with line search to maintain
AMP style complexity. Some variance parameter updates are replaced
by fixed-point updates. And an ADMM style update is used for the
Lagrange multiplier associated to the mean constraint. Additionally,
we have observed that the KLDs appearing in the BFE naturally lead
to variational Bayesian inference for the hyperparameters.
Acknowledgements EURECOM’s research is partially supported by
its industrial members: ORANGE, BMW, SAP, iABG, Norton Life-
Lock, and by the French ANR project CellFree6G.
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