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ALTERNATING CONSTRAINED MINIMIZATION BASED APPROXIMATE MESSAGE PASSING

Generalized Approximate Message Passing (GAMP) allows for Bayesian inference in linear models with non-identically independently distributed (n.i.i.d.) priors and n.i.i.d. measurements of the linear mixture outputs. It represents an efficient technique for approximate inference, which becomes accurate when both rows and columns of the measurement matrix can be treated as sets of independent vectors and both dimensions become large. It has been shown that the fixed points of GAMP correspond to the extrema of a large system limit of the Bethe Free Energy (LSL-BFE), which represents a meaningful approximation optimization criterion regardless of whether the measurement matrix exhibits the independence properties. However, the convergence of (G)AMP can be notoriously problematic for certain measurement matrices, and the only sure fixes so far are damping (by a difficult-to-determine amount) or perform a double ADMM. In this paper, we revisit the GAMP algorithm (as e.g. for sparse Bayesian learning (SBL)) by more rigorously applying an alternating constrained minimization strategy to an appropriately reparameterized LSL BFE. This guarantees convergence, at least to a local optimum. We furthermore introduce a natural extension of the BFE to integrate the estimation of (the SBL) hyperparameters via Variational Bayes, leading to Variational AMBGAMP or VAM-BGAMP.

INTRODUCTION

In the Gaussian noise case, a sparse signal vector x can be recovered using the signal model: y = A x + v, where y is the observed data, A is the known measurement or sensing matrix of dimension M × N , typically with M < N . In the sparse model, x contains only K nonzero entries, with K < M < N . Sparse Bayesian Learning (SBL) is a Bayesian inference algorithm proposed by [START_REF] Tipping | Sparse Bayesian Learning and the Relevance Vector Machine[END_REF] and [START_REF] Wipf | Sparse Bayesian Learning for Basis Selection[END_REF]. SBL is based on a hierarchical prior on the sparse coefficients x, inducing sparsity by choosing priors for the hyperparameters that make most coefficients tend towards zero. In [START_REF] Giri | Type I and type II bayesian methods for sparse signal recovery using scale mixtures[END_REF], the authors provide an overview of various sparse signal recovery algorithms, including Basis Pursuit, LASSO, and SBL. They demonstrate the superior recovery performance of SBL compared to conventional methods. However, the Linear Minimum Mean Squared Error (LMMSE) estimation step in SBL at each iteration involves matrix inversion, which makes it computationally complex, even for moderately large datasets. This complexity motivates the use of approximate inference methods. Belief Propagation (BP)-based Sparse Bayesian Learning (SBL) algorithms, as discussed in [START_REF] Tan | Computationally Efficient Sparse Bayesian Learning via Belief Propagation[END_REF], offer improved computational efficiency. For a more detailed overview of various approximate inference methods for SBL, refer to [START_REF] Thomas | Low Complexity Static and Dynamic Sparse Bayesian Learning Combining BP, VB and EP Message Passing[END_REF]. While BP has demonstrated empirical success [START_REF] Murphy | Loopy belief propagation for approximate inference: an empirical study[END_REF], more rigorous work is needed to characterize its convergence behavior in loopy networks. Several studies have investigated the convergence analysis of Gaussian BP (GaBP) and can be found in [START_REF] Du | Convergence Analysis of Distributed Inference with Vector-Valued Gaussian Belief Propagation[END_REF][START_REF] Du | Convergence Analysis of the Information Matrix in Gaussian Belief Propagation[END_REF][START_REF] Su | Convergence Analysis of the Variance in Gaussian Belief Propagation[END_REF][START_REF] Cseke | Properties of Bethe Free Energies and Message Passing in Gaussian Models[END_REF]. [START_REF] Malioutov | Walk-Sums and Belief Propagation in Gaussian Graphical Models[END_REF] provides a convergence condition for GaBP, which requires the underlying distribution to be walk-summable. Their convergence analysis is based on the Gaussian Markov random field (GMRF) de-composition, which expresses the underlying distribution in terms of pairwise connections between variables. The Approximate Message Passing (AMP) algorithm has been introduced to reduce the complexity of GaBP further, from 2M N to M + N messages. Generalized AMP (GAMP) allows non-Gaussian priors and more general measurement processes. But convergence of (G)AMP can be problematic for some matrices A. Many variations have been introduced to help (G)AMP converge, such as 1) adding the Alternating Direction Method of Multipliers (ADMM), 2) exploiting part of the singular value decomposition of the measurement matrix in Vector AMP (VAMP) (but which does not allow to handle n.i.i.d. priors conveniently), 3) sequential updating in Swept AMP (SwAMP), which can work in most cases, 4) by introducing damping, but with typically difficult to determine damping requirements. The AMP algorithm and its variations have many potential applications in (machine learning-aided) wireless communications systems:

• multi-user detection [START_REF] Liu | Sparse Signal Processing for Grant-Free Massive Connectivity[END_REF],

• channel estimation [START_REF] Thomas | Variational Bayesian Learning for Channel Estimation and Transceiver Determination[END_REF],

• joint detection and channel estimation [START_REF] Ngo | Multi-user detection based on expectation propagation for the non-coherent simo multiple access channel[END_REF],

• compressive sensing [START_REF] Thomas | Low Complexity Static and Dynamic Sparse Bayesian Learning Combining BP, VB and EP Message Passing[END_REF],

• reduced complexity Linear Minimum Mean Squared Error (LMMSE) receiver or transmitter computation [START_REF] Thomas | Variational Bayesian Learning for Channel Estimation and Transceiver Determination[END_REF].

Contributions of this paper

• We propose the AMBGAMP version of GAMP that guarantees convergence by utilizing an alternating constrained minimization strategy applied to an augmented Lagrangian of the constrained Large System Limit (LSL) of the Bethe Free Energy (BFE), inspired by but different from [START_REF] Rangan | Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices[END_REF], [START_REF] Rangan | Inference for Generalized Linear Models via Alternating Directions and Bethe Free Energy Minimization[END_REF]. The algorithm differs from [START_REF] Slock | Convergent Approximate Message Passing by Alternating Constrained Minimization of Bethe Free Energy[END_REF], [START_REF] Slock | Convergent Approximate Message Passing[END_REF] and involves a gradient update with line search, fixed-point iterations, and an ADMM-style Lagrange multiplier update. • The Kullback-Leibler divergences (KLDs) appearing in the LSL-BFE actually are exactly of the form required for applying Variational Bayesian (VB) posterior updates, not only for the main primal variables x and z but also for hyperparameters involved in their priors. We consider here the precisions (inverse variances) in Gaussian priors as hyperparameters, for the case of SBL. The resulting algorithm that involves optimization of the posteriors for x and the auxiliary variables (including the hyperparameters) is called variational AMBGAMP-SBL (VAMBGAMP-SBL). 

) is γ = [γ1, • • • , γM ] T .
In SBL, we introduce a Gaussian prior with unknown precisions, denoted as αi, collected in the vector

α = [α1, • • • αN ] T . Hence, we write px i ,α i (xi, αi) = p x i |α i (xi|αi)pα i (αi) = N (xi; 0, α -1 i )G(αi; a, b) (2 
) where the Gamma distribution for αi, G(αi; a, b) =

α a-1 i e -bα i b α i Γ(α i )
, with known a, b. Note that the case of an uninformative prior corresponds to a = 1, b = 0. Each γi is also assumed to have a Gamma prior distribution, pγ k (γ k ) = G(γ k ; c, d), where also c, d are known. In Bayesian estimation, we are interested in the posterior, which is given by

p x,z|y (x, z, α, γ|y) = e - N i=1 f (x i ,α i )- M k=1 f (z k ,γ k ) Z(y) 1 {z=Ax} , (3) 
where we define the negative log-likelihoods as

fx i ,α i (xi, αi) = -ln px i ,α i (xi, αi) , fz k ,γ k (z k , γ k ) = -ln p y k ,γ k |z k (y k , γ k |z k ),
where we omit the dependence of fz k ,γ k (z k , γ k ) on y. The problem in Bayesian estimation is the computation of the normalization constant Z(y) and of the posterior means and variances. Belief propagation is a message passing technique that allows to compute the posterior marginals. However, due to loops in the factor graph, loopy belief propagation may have convergence issues and is furthermore still relatively complex. GAMP is an approximate belief propagation technique which is motivated by asymptotic considerations in which the rows and columns of the measurement matrix A are considered as random and independent. In which case GAMP can actually produce the correct posterior marginals. In any case, GAMP computes a separable approximate posterior of the form

qx,α,z,γ (x, α, z, γ) = qx(x) qα(α) qz(z)qγ (γ) = N i=1 qx i (xi)qα i (αi) M k=1 qz k (z k )qγ k (γ k ), (4) 
in which the dependence on y has been omitted. The GAMP algorithm [START_REF] Rangan | Generalized Approximate Message Passing for Estimation with Random Linear Mixing[END_REF], [START_REF] Rangan | Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices[END_REF] appears in the table as Algorithm 1. We only consider here Sum-Product GAMP (for MMSE estimation, as opposed to Max-Sum GAMP for MAP estimation). We emphasize that, apart from the hyperparameter updates, the algorithms specified in the tables in this paper, hold for arbitrary Generalized Linear Models. Only the indicated hyperparameter updates are specific for SBL. Algorithm 1 reflects the standard Expectation Maximization (EM) approach for hyperparameter estimation.

PROPOSED VAMBGAMP-SBL

The abbreviation AMB stands for ACM-LSL-BFE, which denotes Alternating Constrained Minimization of the LSL of the BFE. AM-BGAMP employs most of the same updates as GAMP, but GAMP does not rigorously perform alternating minimization (block coordinate descent), particularly in the presence of constraints. Previous work [START_REF] Krzakala | Variational Free Energies for Compressed Sensing[END_REF] has demonstrated that any fixed point of the GAMP algorithm is a critical point of the following constrained minimization of a LSL of the BFE (see also [START_REF] Rangan | Fixed Points of Generalized Approximate Message Passing with Arbitrary Matrices[END_REF] and references therein), here extended to include the hyperparameters: min qx,qz ,τp,qα,qγ JLSL-BF E (qx, qz, τp, qα, qγ )

s.t. E(z|qz) = A E(x|qx) τp = S var(x|qx), (5) 
Algorithm 1 EM-GAMP-SBL Require: y, A, S = A.A, fx,α(x, α), fz,γ (z, γ)

1: Initialize: t = 0, x t , τ t

x , s t-1 = 0, α t-1 , γ t-1 2: repeat 3:

[Output node update] 4:

τ t p = S τ t x 5: p t = A x t -s t-1 .τ t p 6: z t = E(z|p t , τ t p , γ t-1 )
7:

τ t z = var(z|p t , τ t p , γ t-1 )
8: 11:

s t = ( z t -p t )./
τ t r = 1./(S T τ t s )
12:

r t = x t + τ t r .A T s t
13:

x t+1 = E(x|r t , τ t r , α t-1 )
14:

τ t+1 x = var(x|r t , τ t r , α t-1 )
15:

[Hyperparameters update] 16:

α t i = 2a+1 E(x 2 i )+2b
, ∀i.

17: 

γ t k = 2c+1 E(|y k -z k | 2 )+2d ,
L = D(qxqα||e -fx,α )+D(qzqγ ||e -fz,γ )+HG(qz, τp) +s T (E(z|qz) -A E(x|qx)) -1 2 τ T s (τp -S var(x|qx)) + 1 2 E(x|qx) -u 2 τr + 1 2 E(z|qz) -A u 2 τp , (7) 
where s, τs are Lagrange multipliers, and τr = 1./(S T τs) is just a short-hand notation for a quantity that depends on τs. We also use the notations: u 2 τ = i u 2 i /τi, element-wise multiplication as in s.τ , element-wise division as in 1./τ and 1 is a vector of ones. In [START_REF] Slock | Convergent Approximate Message Passing by Alternating Constrained Minimization of Bethe Free Energy[END_REF], [START_REF] Slock | Convergent Approximate Message Passing[END_REF], a careful updating schedule was considered with partial optimization steps on subsets of primal and dual variables. However, that approach is not guaranteed to converge in general. Here we continue to consider an alternating optimization approach in which the schedule is less critical and some of the optimizations are reduced to gradient updates. The resulting algorithm can be considered an extended and generalized version of the ADMM algorithm (extended: there are more than two primal variable groups, generalized: the quadratic augmentation term does not exactly correspond to the linear (mean) constraint). We propose the following updating order

{u} → {qz} → {s} → {τp, τs} → {qx} → {qα, qγ } . ( 8 
)
In other words, at iteration t we have the following sequence

{u t } = arg min u L(q t-1 x , q t z , τ t-1 p , u, s t-1 , τ t-1 s , τ t s , q t-1 α , q t-1 γ ) ( 9 
)
{q t z } = arg min qz L(q t-1 x , qz, τ t-1 p , u t , s t-1 , τ t-1 s , τ t s , q t-1 α , q t-1 γ )( 10 
)
{s t } = arg max s L(q t-1 x , q t z , τ t-1 p , u t , s, τ t-1 s , τ t s , q t-1 α , q t-1 γ ) ( 11 
)
{τ t p , τ t s }= arg min τp max τs L(q t-1 x , q t z , τp, u t , s t , τs, τ t s , q t-1 α , q t-1 γ ) (12)

{q t x } = arg min qx L(qx, q t z , τ t p , u t , s t , τ t s , τ t s , q t-1 α , q t-1 γ ) (13) 
{q t α , q t γ } = arg min qα,qγ L(q t x , q t z , τ t p , u t , s t , τ t s , qα, qγ ).

The result appears in the Algorithm 2 table.

Update of u

To update u, we use a gradient descent method with line search to optimize the step-size. From ( 7), ( 9), we get the relvant cost function

L(q t-1 x , q t-1 z , τ t-1 p , u, s t-1 , τ t-1 s , q t-1 α , q t-1 γ ) = 1 2 x t-1 -u 2 τ t-1 r + 1 2 z t-1 -A u 2 τ t-1 p + const. (15) 
where const. denotes constants w.r.t. u. The minimizing update can be obtained as u t = u t-1 -η t g t (16) with gradient g t = g t (u t-1 ) where g t (u) = ∇uL(q t-1

x , q t-1 z , τ t-1 p , u,

s t-1 , τ t-1 s , q t-1 α , q t-1 γ ) = -A T (( z t-1 -Au)./τ t-1 p ) -( x t-1 -u)./τ t-1 r = g t (0) + H t u, H t = D(1./τ t-1 r ) + A T D(1./τ t-1 p )A (17) 
where D(1./τ ) denotes a diagonal matrix with diagonal elements 1./τ . The step-size η t gets optimized for maximum descent :

∂L(q t-1 x , q t-1 z , τ t-1 p , u t , s t-1 , τ t-1 s , q t-1 α , q t-1 γ ) ∂η t = 0 ⇒ η t = g t 2 /g t T H t g t . (18) 

Update of {qz}

The relevant terms in the augmented Lagrangian are

L(q t-1 x , qz, τ t-1 p , u t , s t-1 , τ t-1 s , q t-1 α , q t-1 γ ) = D(qzqγ ||e -fz,γ ) + 1 2 var(z|qz)./τ t-1 p +s t-1 T E(z|qz) + 1 2 E(z|qz) -A u t 2 τ t-1 p + const. = D(qzqγ ||e -fz,γ ) + 1 2 E(z T z|qz)./τ t-1 p -(E(z|qz)) T ((A u t )./τ t-1 p -s t-1 ) + const. = D(qzqγ ||e -fz,γ ) + 1 2 E( z -p t 2 τ t-1 p |qz) + const. (19 
) where const. denotes constants w.r.t. z and p t = A u t -s t-1 .τ t-1 p . The Lagrangian in [START_REF] Slock | Convergent Approximate Message Passing[END_REF] is separable. We get per component

min qz k D(qz k qγ k ||g t z k /Z t z k ) ⇒ q t z k = gt z k /Z t z k with gt z k = e E q t-1 γ k ln g t z k , Z t z k = gt z k dz k , -ln gt z k = E q t-1 γ k fz k ,γ k (z k , γ k ) + 1 2τ t-1 p k [(z k -p t k ) 2 -(p t k ) 2 ] (20) 
where the KLD optimization is as in standard Variational Bayes (VB), and p t k = p t k (s t-1 k ). Note that the partition function Z t z k acts as cumulant generating function:

- ∂ ln Z t z k ∂s k = E(z k |q t z k ) = E(z k |p t k , τ t-1 p k , γ t-1 k ) = z t k ∂ 2 ln Z t z k ∂s 2 k = var(z k |p t k , τ t-1 p k , γ t-1 k ) = τ t z k - ∂ 3 ln Z t z k ∂s 3 k = E((z k -E z k ) 3 |q t z k ). (21) 
In the Gaussian prior case, we get a Gaussian posterior q t z k with

1./τ t z = 1./τ t-1 p +γ t-1 , z t = τ t z .(y.γ t-1 +p t ./τ t-1 p ) . ( 22 
)

Update of {s} (ADMM style)

Although the quadratic augmentation terms in the Lagrangian do not correspond exactly to a weighted quadratic version of the linear mean constraint, due to the introduction of the auxiliary variable u which streamlines the derivation of the updates of qx and qz, nevertheless an ADMM style update of the mean constraint Lagrange multiplier s is possible. Indeed, the terms in [START_REF] Slock | Convergent Approximate Message Passing[END_REF] that contains s or z are

z T (( 1 2 z -p t )./τ t-1 p ) = z T (s t-1 + ( 1 2 z -Au t )./τ t-1 p ) (23) 
Taking the gradient w.r.t. z (as part of the optimization over qz) leads to the RHS of

s t = s t-1 + ( z t -Au t )./τ t-1 p . (24) 
Hence, if we use this update for s, then [START_REF] Javanmard | State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling[END_REF] reduces to z T s t , as if the quadratic augmentation terms have disappeared! This if the main characteristic of the Lagrange multiplier update in ADMM, which corresponds to a gradient ascent with a particular choice of (diagonal) step-size.

Update of {τp, τs}

In [START_REF] Slock | Convergent Approximate Message Passing by Alternating Constrained Minimization of Bethe Free Energy[END_REF], [START_REF] Slock | Convergent Approximate Message Passing[END_REF], the carefully chosen updating schedule made the quadratic augmentation terms inactive when {τp, τs}. Here these terms only become inactive at convergence. Nevertheless, these terms only play an active role for the means and not for the variances. Hence we shall ignore them here. Hence, the terms of interest in ( 7) for ( 12) are 

L(q t-1 x , q t z , τp, u t , s t , τs, q t-1 α , q t-1 γ ) = HG(q t z , τp) -1 2 τ T s (τp -S τ t-1 x ) + const. = const.+ 1 2 M k=1 τ t z k τp k + ln(2π τp k ) - 1 2 M k=1 τs k (τp k -S k,: τ t-1 x ) (25 
= 0 ⇒ τ t s k = 1 τ t-1 p k (1 - τ t z k τ t-1 p k ). (26) 
∂L ∂τs k = 0 ⇒ τ t p k = S k,: τ t-1 x (27) 
which we run as a fixed-point sub-algorithm. To guarantee nonnegativity, the update of τs should come first.

Update of qx

For the update of qx, consider the relevant terms in the augmented Lagrangian (and remember that τ t r = 1./(S T τ t s ) or 1./τ t r = S T τ t s ) L(qx, q t z , τ t p , u t , s t , τ t s , q t-1 α , q t-1 γ ) = D(qxqα||e -fx,α ) -s t T A E(x|qx)

+ 1 2 τ t T s S var(x|qx) + 1 2 E(x|qx) -u t 2 τ t r + const. = D(qxqα||e -fx,α ) + 1 2 (1./τ t r ) T E(x.x|qx) -s t T A E(x|qx) -(u t ./τ t r )) T E(x|qx) + const. = D(qxqα||e -fx,α ) + 1 2 (1./τ t r ) T E(x.x|qx) -(u t + τ t r .A T s t ) T (E(x|qx)./τ t r ) + const. = D(qxqα||e -fx,α ) + 1 2 E( x -r t 2 τ t r |qx) + const. (28 
) where const. denotes constants w.r.t. x, and r t = u t + τ t r .A T s t . This cost function is again separable. We get per component a VB update

min qx i D(qx i q t-1 α i ||g t x i /Z t x i ) ⇒ q t x i = gt x i /Z t x i with gt x i = e E q t-1 α i ln g t x i , Z t x i = gt x i dxi , -ln gt x i = E q t-1 α i (fx i ,α i (xi, αi)) + 1 2τ t r i [(xi -r t i ) 2 -(r t i ) 2 ] . (29) 
The partition function Z t x i acts as cumulant generating function:

τ t r i ∂ ln Z t x i ∂ri = E(xi|q t x i ) = E(xi|r t i , τ t r i , α t-1 i ) = x t i (τ t r i ) 2 ∂ 2 ln Z t x i ∂r 2 i = var(xi|r t i , τ t r i , α t-1 i ) = τ t x i . (30) 
Simplifications occur again in the Gaussian scenario.

Algorithm 2 VAMBGAMP(-SBL)

Require: y, A, S = A.A, fx,α(x, α), fz,γ (z, γ)

1: Initialize: t = 0, x 0 , τ 0

x , u 0 , τ 0 p , s 0 = 0, γ 0 , α 0 2: repeat (t=1,2,. . . ) 3:

[Output node update] 4:

u t = u t-1 -η t g t , with g t , η t from ( 17), [START_REF] Slock | Convergent Approximate Message Passing by Alternating Constrained Minimization of Bethe Free Energy[END_REF] 5: 10:

p t = A u t -s t-1 .τ t-
τ t s = (1 -τ t z ./τ t-1 p
)./τ t-1 p 11:

τ t p = S τ t-1
x 12:

τ t r = 1./(S T τ t s )
13:

[Input node update] 14:

r t = u t + τ t r .A T s t
15:

x t = E(x|r t , τ t r , α t-1 ), Gaussian case:

x t = r t ./(1 + α t-1 .τ t r )
16:

τ t x =var(x|r t , τ t r , α t-1 ), Gaussian case: 1./τ t x = 1./τ t r + α t-1

17:

[Hyperparameters update] 18:

α t i = 2a+1 Eq x i (x 2 i )+2b
, ∀i

19:

γ t k = 2c+1 Eq z k (|y k -z k | 2 )+2d , ∀k 20: until Convergence

Update of Hyperparameter α

The relevant part of the augmented Lagrangian simply leads to a KLD term q t α = arg min qα D(q t x qα||e -fx,α ) + const.

which gets minimized alternatingly as in VB [START_REF] Thomas | SAVE -space alternating variational estimation for sparse Bayesian learning[END_REF] ln q t α i = (

1 2 + a -1) ln αi -( 1 2 E q t x i (x 2 i ) + b) αi + const. ( 32 
)
This means that the posterior of αi is a Gamma distribution: q t α i = G(αi; a, b t ), with a = a + 1/2 and b t = E q t x i (x 2 i )/2 + b, with mean a b t or hence:

α t i = 2a + 1 E q t x i (x 2 i ) + 2b . (33) 

Update of Hyperparameter γ

The relevant part of the augmented Lagrangian is again a KLD term:

q t γ = arg min qγ (γ) D(q t z qγ ||e -fz,γ ) + const. ( 34 
)
which gets minimized alternatingly as in VB [START_REF] Thomas | SAVE -space alternating variational estimation for sparse Bayesian learning[END_REF] ln q t γ k = ( 1 2 +c-1) ln γi-(

E q t z k (|y k -z k | 2 ) 2 +d)γi+const. ( 35 
)
which means again that the posterior of γ k is a Gamma distribution

q t γ k = G(γ k ; c, d t ), with c = c+1/2 and d t = E q t γ k (|y k -z k | 2 )/2+
d, and with mean c d t or:

γ t k = 2c + 1 E q t z k (|y k -z k | 2 ) + 2d . (36) 
For the case in which all noise variances are assumed to be equal, the update of γ0 = γ k , ∀k can be shown to be [START_REF] Thomas | SAVE -space alternating variational estimation for sparse Bayesian learning[END_REF]:

γ t 0 = 2c + M E q t z ( y -z 2 ) + 2d . ( 37 
)

VAMBGAMP-SBL LARGE SYSTEM ANALYSIS

In GAMP, as opposed to AMP, we may not have (simple) analytical updates for means and variances. As a result, the take on large system analysis (LSA) for GAMP is from a different angle. If both the rows or the columns of A are now modeled as independent, then given that also the priors on x and z are independent (factorized), the true posteriors for x and z will become factorized and will equal the approximate posteriors qx(x), qz(z). So multiplication with A or A T acts like scrambling in CDMA communications, that renders the individual outputs independent. Furthermore, the marginal posteriors are the product of the respective prior and extrinsic distributions that correspond to information coming through A or A T , the random nature Fig. 2. NMSE curves for low rank A, with M = 150, N = 250. of which will lead to Gaussian extrinsic distributions by the central limit theorem. In other words, in the LSA, in which the dimensions of x and z (the two dimensions of A) tend to infinity at a constant ratio, the approximate posteriors handled in GAMP become asymptotically exact. As a result, the variance information propagated by GAMP corresponds asymptotically to the exact MSE of the (MMSE) estimates propagated by GAMP. The existing GAMP steady-state analysis results are valid, assuming that the algorithm has converged to such a steady state. Such steady-state analysis appears in [START_REF] Rangan | Generalized Approximate Message Passing for Estimation with Random Linear Mixing[END_REF] (particularly in the extended arxiv version), or in [START_REF] Javanmard | State Evolution for General Approximate Message Passing Algorithms, with Applications to Spatial Coupling[END_REF]. In the Gaussian case of SBL, MMSE estimation becomes LMMSE, for which we have investigated LSA in [START_REF] Thomas | Posterior Variance Predictions in Sparse Bayesian Learning under Approximate Inference Techniques[END_REF] using large random matrix theory. It can be checked that the LSA of the general GAMP case above reduces to these same results in the Gaussian case.

SIMULATION RESULTS

The figures show Normalized MSE τx (2 top curves) and normalized MSE difference between x estimated by AMBAMP and LMMSE (2 bottom curves) with variance profile σ 2

x i = 0.93 i-1 , i = 1, . . . , N , for M = 150, N = 250. Fig. 1 is for i.i.d. Gaussian A whereas Fig. 2 is for low rank A in which the smallest half of the singular values in an i.i.d. A are set to zero. These simulations show that the VAMBGAMP-SBL algorithm continues to work in an unrealistically severe scenario, in which AMP diverges.

CONCLUDING REMARKS

We propose a convergent version of GAMP, VAMBGAMP, which applies alternating minimization to an augmented Lagrangian of a large system limit of the Bethe free Energy (BFE). One quadratic subproblem is minimized by a gradient descent with line search to maintain AMP style complexity. Some variance parameter updates are replaced by fixed-point updates. And an ADMM style update is used for the Lagrange multiplier associated to the mean constraint. Additionally, we have observed that the KLDs appearing in the BFE naturally lead to variational Bayesian inference for the hyperparameters.

Fig. 1 .

 1 Fig. 1. NMSE curves for i.i.d. A, with M = 150, N = 250. GAMP has similar performance as VAMBGAMP-SBL, hence omitted.
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		2. SYSTEM MODEL
	The data model considered in (EM-GAMP-)SBL is essentially a linear
	mixing model represented by
	z = A x , px,α(x, α) , p y,γ|z (y, γ|z)	(1)
	with (possibly non) identically independently distributed (n.i.i.d.)
	prior px,α(x, α) =	N i=1 p
			• We also indicate that asymptotically, under an i.i.d. element
			model for A, the variance computations in AMBGAMP are
			exact. This allows to analyze the steady-state MSE as a func-
			tion of system dimensions and prior pdfs p(x), p(y|z) for x
			and z. In particular in the Gaussian case, this allows to analyze
			the performance for SBL.
			• Gaussian simulation results validate the convergence to the
			LMMSE solution for different measurement matrices, includ-
			ing i.i.d. and low-rank cases.

  ∀k. is the KLD and HG(qz, τp) is a sum of a KLD and an entropy of Gaussians with identical means but different variances. The LSL BFE optimization problem (6) can be reformulated with the following augmented Lagrangian min

	18: until Convergence			
	where the LSL BFE is given by			
	JLBF 2	M k=1	var(z k |qz k ) τp k	+ln(2πτp k )
	and where D(q||p)=Eq(ln( q p ))			(6)

E (qx, qz, τp, qα, qγ ) = D(qxqα||e -fx,α )+D(qzqγ ||e -fz,γ ) +HG(qz, τp), with HG(qz, τp) = 1 qx,qz ,qα,qγ ,τp,u max s,τs L(qx, qz, τp, u, s, τs, qα, qγ ) with

  ) where const. denotes constants w.r.t. {τp, τs}. Deriving w.r.t. {τp, τs} yields the feasibility conditions ∂L ∂τp k

  Gaussian case: z t = τ t z .(y. γ t-1 +p t ./τ t-1

			1	
			p	
	6:	z t = E(z|p t , τ t-1 p , γ t-1 ), p	)
	7:	τ t z = var(z|p t , τ t-1 p	, γ t-1 ), Gaussian case: 1./τ t z = 1./τ t-1 p	+ γ t-1
	8:	s t = s t-1 + (z t -Au t )./τ t-1 p	
	9:	[Variance matching]		
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