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Enumerating the Nash equilibria of a game is a known problem of game theory. We take into account two-

player extensive-form games with perfect information and perfect recall. Based on the notion of compatibility

of strategies, a new graph representation permits to devise a new lightweight algorithm to enumerate all of

its Nash equilibria. It is the first of its kind not to use brute force. The method provides also intermediate

results, like upper (lower) bounds to the value of the utility of Nash equilibria or the enumeration of Nash

equilibria that fulfill any given constraints (possibly, unconstrained) on their values. We compare our method

to the only existing formulation providing an upper bound to the value of the utility of any Nash equilibrium.

The experiments show that our method is faster by some orders of magnitude. We also test the method

to enumerate the Nash equilibria on a new library, that we introduce as benchmark for representing all

structures and properties of extensive-form games.

Key words : extensive-form games, nash equilibria, graph algorithm

1. Introduction

In this paper, we consider games in extensive form and provide explicit solution methods for the

enumeration of the pure Nash equilibria in the 2-player game case. In a generic game each player

has available a set of strategies. In a 2-player game, every couple of strategies, one for each player,

defines an outcome of the game, which is evaluated by means of a utility function. Every outcome

is assigned a pair of numerical values, which represent the values given to the outcome by each
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player. A Nash equilibrium is a couple of strategies in which none of the players has an incentive

to change unilaterally her own strategy, i.e., the chosen strategy unilaterally maximises the value

of the outcome at the equilibrium, assuming that the strategy of the other player does not change.

Identifying a Nash equilibrium for a generic game belongs to the class of PPAD-complete problems

(cf. Daskalakis et al. (2009)), introduced by Papadimitriou (1992). The most known algorithm to

identify a Nash equilibrium is the Lemke-Howson algorithm (cf. Lemke and Howson (1964)), that

consists in identifying a completely labeled pair of vertices of two polytopes representing the game.

Enumerating the Nash equilibria of a game corresponds to enumerating all the completely labeled

pair of vertices of the two polytopes. Methods to solve such problem are inefficient and require a

large amount of memory (cf. Avis and Fukuda (1992)). Recent algorithms have proven to be space

efficient (cf. Avis et al. (2010)), while others resort to parallel computing to overcome such issue

(cf. Widger and Grosu (2009)).

Extensive-form games. Extensive-form games with perfect information and perfect recall are a

category of games that represent players acting in sequence one after another (cf. Kuhn and Tucker

(1953)). We consider extensive-form games with two players. One of the two players acts first: she

has available a set of actions, among which she picks one. The second player observes the action

chosen by the first player and has thus available a different set of actions, among which she also

picks one. In a recursive way every player in turn observes the sequence of actions taken, has

available a new set of actions and picks one. The game ends when the set of actions available to both

players is empty. A sequence of actions that ends a game is an outcome of the game. The number

of outcomes is called the size of the game. In an extensive-form game a pure strategy of a player

is a function that gives an action to her to play for every sequence of actions she could observe in

the past. In a generic extensive-form game the number of pure strategies available to a player is

typically exponential in the size of the game (cf. Von Stengel (1996)). Using a classic method to

enumerate Nash equilibria is therefore highly inefficient, because it relies on the enumeration of the

strategies of the players. The structure of extensive-form games can be exploited to introduce more
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efficient algorithms. A Mixed Integer Linear model introduced by Koller et al. (1996) provides one

Nash equilibrium and is linear in the size of the game. However, no information is provided on

possible other Nash equilibria. This method proves to be highly efficient in zero-sum games (cf.

Von Stengel (1996)), but it might have exponential time complexity in a generic game. A variant of

this method (cf. Audet et al. (2009)) allows to find the extreme Nash equilibria, which are identified

by all the vertices of the polytope corresponding to a Mixed Integer Linear model.

Further methods. Much of the literature deals with solution concepts which are a refinement

of Nash equilibria. The most known of such solutions is the subgame-perfect equilibrium, which

guarantees an equilibrium in every subgame, i.e., in every game created starting from a node. The

subgame-perfect equilibria are identified by an algorithm known as backward induction (cf. Selten

(1965)), which explores every possible sequence of the game and deduces recursively the optimal

choice. Backward induction is difficult to parallelize (cf. Szymanik (2013)), which makes it not

efficient for large games. Moreover, backward induction cannot exploit regularities in the structure

of the game nor provides intermediate results if interrupted. Different methods have been developed

to provide bounds to the subgame-perfect equilibrium in large games; for instance, regret methods

(cf. Johanson et al. (2012)), gradient based algorithms (cf. Hoda et al. (2010)) or Monte-Carlo

sampling (cf. Dud́ık and Gordon (2012)).

Contributions. We provide a method that enumerates the Nash equilibria of a 2-player extensive-

form game. Our method can be used to identify if an outcome is the realisation of a Nash equilibria.

Since the utility of every outcome is known, it is possible to determine upper (resp., lower) bounds

to the utility of Nash equilibria for any player by checking them in order from the best to the

worst (resp., from worst to best), rather the enumerating them all. Moreover, it is possible to

enumerate the Nash equilibria whose realisations fit any given constraints on the utility by simply

checking during our enumerating procedure those outcomes that meet such constraints. The method

decreases its complexity when the games have specific structures. Indeed, it performs very well in

games where outcomes can be compared without explicitly constructing the sequences of actions
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that lead to them, which is the case of games with a regular structure; some examples of such

games are provided later in the manuscript.

Summary. The paper is structured as follows. Section 2.1 presents extensive-form games with a

generic number of players. We introduce a simplified notation to analyse extensive-form games with

perfect recall and perfect information. In Section 2.2 we describe a known method to bound the

utility of the Nash equilibria of a two-player game. Section 3 introduces a new graph formulation

of extensive-form games that allows a new characterisation of Nash equilibria in two-player games.

An equivalent formulation is discussed in Section 3.3 and used in Section 4 to develop methods

to identify a Nash equilibrium, to enumerate all Nash equilibria, to find an upper bound to their

utility which is compared to the methods in literature (cf. Von Stengel (1996)) and to identify

the best and the worst Nash equilibrium for a player. Section 5 presents extensive computational

experiments of such methods on a given dataset of games. Section 6 ends the paper with some

insights and possible research directions.

2. Extensive-form games

Notation. In this text we will use the following notation for vectors. A vector a= (a1, . . . , an) is

an ordered sequence of elements ak with k ∈ {1, . . . , n}. Given two vectors a= (a1, . . . , an) and b=

(b1, . . . bn), a concatenation of vectors a+ b= (a1, . . . , an, b1, . . . , bn) is represented by the operator

+. Given a concatenation of vectors a+ b, we say that a is a prefix of a+ b, and that a≤ a+ b.

A vector with no elements is called the empty vector ∅ and ∅ ≤ a for all a. Two vectors a and a′

might have a same common prefix. We denote by c= a∩a′ the longest common prefix of a and a′,

i.e., the longest sequence such that c≤ a and c≤ a′.

2.1. Definitions

We take into account situations in which a set of agents I = {1, . . . ,N}, hereafter called players, act

one after another, after observing the other players’ actions at each moment. Such situations are

represented in the literature by extensive-form games with perfect recall and perfect information



Zappalà et al.: Graph-based approach for enumerating the Nash equilibria
Uploaded to HAL; manuscript no. 1 5

(cf. Kuhn and Tucker (1953), Fudenberg and Tirole (1991)). These games can be represented

with fewer pieces of information in comparison with a generic extensive-form game. However, no

specific definition has been given to this class of games in the literature. In this section, we provide

definitions that are written specifically for this class of games and that fall along the lines of the

literature (cf. Kreps and Wilson (1982), Fudenberg and Levine (1983), Koller and Megiddo (1992)).

In the following we report the definitions for a generic number N players, even if in the analysis

and in the examples we let N = 2, as the present work treats the 2-player case. At time 0, the

first player to act observes no actions h0 = ∅ and thus can act within a set of M actions A(h0) =

{a0
1, . . . , a

0
M}. Let us say that for instance she picks a0 = a0

m ∈ A(h0); the second player observes

h1 = (a0) and can thus pick an action a1 ∈ A(h1). For every moment k the player acting at k

observes a history of actions hk and picks an action ak ∈ A(hk). This procedure defines a set of

histories H ′ = {∅, h0, h1, . . . , hk, . . .}. There is a function A : h′ ∈H ′ 7→A that maps every history h′

to the set of actions A available to the player observing the history h′. As stated before, the game

ends when there is no actions left. Formally, there is a subset H ⊂H ′ such that A(h) = ∅ for all

h∈H. Such histories are called outcomes. Every outcome h∈H is evaluated by a function ui that

maps it to the value ui(h)∈R assigned by player i to h.

Definition 1 (extensive-form game). An extensive-form game is a tuple Γ =

⟨I,A,H ′,H,P,u⟩, where:

• I = {1, . . . ,N} is the set of players;

• H ′ is the set of histories with ∅ ∈H ′;

• A : h′ ∈ H ′ → A is a function that provides for every history a set of actions, i.e., for all

a∈A=A(h′), we have h′ +(a)∈H ′;

• H = {h∈H ′|A(h) = ∅} ⊂H ′ is the set of outcomes;

• P :H ′ \H → I is a function that indicates which player P (h′) ∈ I acts after observing the

history h′ ∈H ′ \H;

• u= (ui)i∈I , with ui :H→R, is the utility function.
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Remark. In the following sections games will also be represented by the tuple Γ = ⟨I,H ′, u⟩ or

Γ = ⟨I,H,u⟩, whenever all the missing parameters can be retrieved by the ones in the reduced

notation.

Remark. In the literature the representation of the game is the game-tree of possible histories.

We thus alternatively call node a history observed by a player.

Example. For sake of clarity, let us consider an example of extensive-form game, whose rep-

resentation is the tree of Figure 1. The game Γ = ⟨I,H,u⟩ with two players I = {1,2} is rep-

resented by a tree, which allows to show all the possible actions. The first player observes no

actions ∅ and she picks an action in the set A(∅) = {a1, a2}. If she picks action a2, the game

arrives to the outcome h1 = (a2)∈H. On the other hand, if she picks action a1, the second player

observes it and picks an action from the set A(a1) = {b1, b2}. If the second player picks action

b1, she gets to the outcome h2 = (a1, b1) ∈H. Analogously it is possible to get all the other out-

comes of the game: h3 = (a1, b2, a3, b3), h4 = (a1, b2, a3, b4), h5 = (a1, b2, a4, b5), h6 = (a1, b2, a4, b6).

The set of outcomes is therefore H = {h1, h2, h3, h4, h5, h6}. The set of histories is instead H ′ =

{∅, h1, (a1), h2, (a1, b2), (a1, b2, a3), (a1, b2, a4), h3, h4, h5, h6}. The function P maps respectively H ′ \

H = {∅, (a1), (a1, b2), (a1, b2, a3), (a1, b2, a4)} to the players acting at such nodes {1,2,1,2,2}. The

utility function u :H→R2 evaluates the outcomes. For instance, we can have u(h1) = (2,0), where

u1(h1) = 2 is the evaluation given to h1 by the first player and u2(h1) = 0 is the one given by the sec-

ond player. For the game in Figure 1 we assume that u(h2) = (3,4), u(h3) = (8,11), u(h4) = (1,9),

u(h5) = (5,1), u(h6) = (9,3). The value of the utility allows to understand which outcomes are

preferred by the players. For instance, the second player prefers h3 to h6 because u2(h3) = 11> 3 =

u2(h6). We write alternatively h≻i h
′ to show that ui(h)>ui(h

′). In the caption of Figure 1 all the

preferences among the outcomes are given, based on the values assigned by the utility function.

We would like to understand which action a rational player picks after observing a history of

previous actions. We therefore introduce the concept of pure strategy, which embeds the single

choice made by a player for any observed history.
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Definition 2 (pure strategy). Given a game Γ= ⟨I,A,H ′,H,P,u⟩ and a player i∈ I, we pick

all the histories at which the player acts: Hi = {h′ ∈ H ′ \H|P (h′) = i}. A pure strategy si is a

function si : h
′ ∈Hi 7→ a ∈ A(h′) that maps every observed history h′ ∈Hi to one of the actions

a∈A(h) available to the player. Let Si denote the set of all strategies of player i.

Example. In the game of Figure 1 the first player acts at two different moments in which she

observes respectively ∅ and (a1, b2): we have thus H1 = {∅, (a1, b2)}. According to Definition 2, a

pure strategy for player 1 is a function that maps every history observed in H1 to an action that

can be chosen by her. In Figure 1 the choices of the players are marked by thicker arrows. In the

example, the first player picks strategy s1, where s1(∅) = a1 and s1(a1, b2) = a4. With some abuse of

notation, we write s1(a1, b2) instead of s1((a1, b2)) to simplify the notation. The histories observed

by the second player are H2 = {(a1), (a1, b2, a3), (a1, b2, a4)}. In Figure 1 the second player picks

strategy s2, where: s2(a1) = b1; s2(a1, b2, a3) = b3; s2(a1, b2, a4) = b6.

If every player picks a strategy, we have a tuple of strategies s = ⟨s1, s2, . . . , sN⟩, that we call

strategy profile. If we consider a strategy profile, for every history there will be an action to be

played. Eventually, this sequence of actions makes an outcome. Such outcome is defined as the

realisation of the strategy profile and described in Algorithm 1. In Figure 1 the realisation of the

aforementioned strategy profile (s1, s2) is the outcome h2 ∈H.

Algorithm 1 Realisation of a strategy profile

INPUT: A game Γ= ⟨I,A,H ′, P,u⟩ and a strategy profile s= ⟨s1, s2, . . . , sN⟩.

h′←∅

while A(h′) ̸= ∅ do

h′← h′ +(sP (h′)(h
′))

OUTPUT: h← h′, the realisation of strategy profile s (also noted s 7→ h).

In the following sections we write s 7→ h to identify the unique realisation h of the strategy profile

s. Moreover, with some abuse of notation, we write u(s), i.e., the utility of a strategy profile s, to

indicate u(s) = u(h : s 7→ h).
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We now introduce the concept of mixed strategy as vector of probabilities over the set of the

pure strategies.

Definition 3 (mixed strategy). Given a game Γ= ⟨I,H,u⟩, a player i∈ I and her associated

set of pure strategies Si, we define a mixed strategy σi as a probability distribution over the set of

pure strategies, i.e., σi : Si→ [0,1] such that
∑

si∈Si
σi(si) = 1. We denote with Σi the set of mixed

strategies of player i and with Σ=×i∈IΣi the set of mixed strategy profiles.

By extension, the utility u : Σ→RN of a mixed strategy profile σ= ⟨σ1, σ2, . . . , σN⟩ is defined as

the expected utility of its realisations:

u(σ) =
∑
s1∈S1

· · ·
∑

sN∈SN

σ1(s1) · . . . ·σN(sN) ·u(s1, . . . , sN).

We would like the players to pick strategies that they do not want to change. This corresponds

in literature to the concept of equilibrium. The Nash Equilibrium is a combination of strategies

for which the players find it convenient not to deviate unilaterally. More specifically, if the other

players do not change their strategies σ−i = (σj)j∈I\{i}, the player i has no interest in changing her

own strategy σi because she would not improve her utility. This concept of Nash equilibrium is

hereafter defined.

Definition 4 (Nash equilibrium). Given a game Γ = ⟨I,H,u⟩, we say that a mixed strategy

profile ⟨σi⟩i∈I is a Nash equilibrium if for every i∈ I and for all σi ∈Σi:

ui(σi, σ−i)≥ ui(σi, σ−i).

Mixed strategies are necessary to prove the existence of the Nash equilibrium (cf. Nash Jr (1950)),

however we will not use such notation because it is cumbersome and it is not necessary for the

developments in this work. Indeed, we will only consider Nash equilibrium in pure strategies, i.e.,

those in which mixed strategies have probability equal to 1 for a single pure strategy. It is proven

that in an extensive-form game with perfect recall and perfect information all Nash equilibria are

affine combination of all the Nash equilibria in pure strategies (cf. Theorem 1 of Audet et al.
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(2009)). Therefore we will focus on introducing methods to identify all the Nash equilibria in pure

strategies.

In the following sections, in order to identify a strategy profile s ∈ S = ×i∈ISi, we will alter-

natively use the notation of its corresponding pure strategy σ ∈ Σ : σi(si) = 1,∀i ∈ I when the

argument is made for general mixed strategies. For instance, let us consider the previous example

of Figure 1 in which strategy s2 ∈ S2 is so that s2(a1) = b1; from now on we will alternatively write

σ2 ∈Σ2 is so that σ2(a1) = b1.

2.2. Bounds for Nash equilibria in two-player games

Enumerating the Nash equilibria requires to list the strategies of all the players, which are often

exponentially in the number of outcomes (cf. Von Stengel (1996)). The most efficient methods to

provide a bound to the utility of Nash equilibria have been introduced for two-player extensive-

form games. We suppose that the games are not zero-sum, since such subcategory of games has

already been fully studied (cf. Von Stengel (1996)).

Given a two-player extensive-form game Γ = ⟨I = {1,2},A,H ′, P,u⟩, we consider the following

optimization problem [ST]:

[ST ] : σ1 ∈argmax
σ1∈Σ1

u1(σ1, σ2)

s.t. σ2 ∈ argmax
σ2∈Σ2

u2(σ1, σ2).

This bilevel optimization problem has linear complexity in the number of the strategies of the

game, which might still be exponential in its size. Indeed, let us for instance consider a complete

binary tree, i.e., a game in which every node has two actions. Given |H ′ \H| the number of non-leaf

nodes of the game tree, it is easy to show that there are 2|H
′\H| strategy profiles and |H ′ \H|+1

outcomes. However, a different formulation of [ST] introduced in Von Stengel (1996) can be written

in the form of a bi-level linear program with a number of variables and a number of constraint

inequalities that are linear in the tree size. Such formulation, which considers mixed strategies, is

discussed in details in Section 4.2 and it is adapted to pure strategies.
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An optimal solution of [ST] provides an upper bound to the utility of the first player of all the

Nash equilibria of the game (cf. Zappalà et al. (2022)).

Theorem 1. Let us consider Σ the set of feasible solutions σ= (σ1, σ2)∈Σ1×Σ2 of [ST] and the

optimum value U 1 = supσ∈Σ u1(σ). Given a Nash equilibrium σ∗ ∈Σ1×Σ2 of the game Γ, it holds:

U 1 ≥ u1(σ
∗).

Proof. It is enough to prove that any Nash equilibrium is a feasible solution of [ST]. Indeed, since

σ∗ is a Nash Equilibrium, we have that for all σ2 ∈Σ2:

u2(σ
∗
1 , σ

∗
2)≥ u2(σ

∗
1 , σ2).

Therefore it holds that σ∗
2 = argmaxσ2∈Σ2

u2(σ
∗
1 , σ2).

Example. We can verify for the game of Figure 1 that the set of the outcomes of Nash equilibria

is {h2, h3}. If we compute the solution of [ST ] for such game, we get (σ1, σ2) ∈ Σ1 × Σ2, where

σ1(∅) = a1, σ1(a1, b2) = a3, σ2(a1) = b2 and σ2(a1, b2, a3) = b3. The realisation of the strategy profile

(σ1, σ2) is h3. Coherently with Theorem 1, the solution u1(h3) is, indeed, an upper bound for the

utility of every outcome in the set of Nash equilibria {h2, h3}.

3. Graph form

3.1. A representation of extensive-form games as graphs of outcomes

In this section, we introduce a new representation of a game in extensive form with perfect infor-

mation and perfect recall as an undirected graph.

As anticipated in Section 2, we take into account only pure strategies, to which we refer to as

strategies from now on. If a player chooses a strategy, she limits the number of outcomes that are

reachable by the other player. We formalise this observation by associating a strategy to a subset

of outcomes that represent it. We recall that every strategy profile (s1, s2)∈ S1×S2 can be mapped

to its realisation h : (s1, s2) 7→ h. Given a strategy s1 ∈ S1, we consider the set of possible outcomes

H(s1) which are a realisation of a strategy profile (s1, s2) which includes s1 ∈ S1 as a strategy of

the first player and any s2 ∈ S2 as a strategy of the second player.
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Definition 5 (outcomes of a strategy). Given a two-player game Γ= ⟨I = {1,2},H,u⟩ and

a strategy s1 ∈ S1, the set of outcomes H(s1)⊂H of strategy s1 is:

H(s1) = {h∈H|∃s2 ∈ S2 : (s1, s2) 7→ h}.

In order to understand which elements belong to the set of outcomes of a strategy, we introduce

a new property, called compatibility. This property allows to to identify two outcomes that can be

obtained by the same strategy chosen by a given player. Since we discuss only two-player games,

i.e., I = {1,2}, we arbitrarily choose one player to be the first player (e.g., i1 = 1) and one to be

the second player (e.g. i2 = 2). Later in this section it is shown that such choice can be arbitrary.

Definition 6 (compatibility). Given a two-player game Γ= ⟨I = {1,2},H,u⟩, we say that two

outcomes h,h′ ∈H are compatible for player i∈ I if there is a strategy si ∈ Si such that h∈H(si)

and h′ ∈H(si).

Remark. If not specified, we refer to two outcomes as compatible if they are compatible for

player 1. If two outcomes h,h′ ∈H are compatible, there are a strategy s1 ∈ S1 and two strategies

s2, s
′
2 ∈ S2 such that (s1, s2) 7→ h and (s1, s

′
2) 7→ h′.

If two outcomes can be produced by the same strategy, the first player always takes the same

decisions at every node. Lemma 1 proves that this condition is not only necessary but sufficient.

Formally, given two outcomes h,h′ ∈H it is necessary to observe at which node the history starts

to be different; such node is identified by their longest common prefix h∩h′.

Lemma 1. We consider a two-player game Γ = ⟨I = {1,2},H,P,u⟩. Two outcomes h,h′ ∈H are

compatible if and only if P (h∩h′) = 2.

Proof. (i) First we prove that P (h∩h′) = 2 implies that h and h′ are compatible, then (ii) we prove

that P (h∩h′) = 1 implies that h and h′ are not compatible.

(i) Let us suppose that P (h∩h′) = 2. We need to define s1 ∈ S1 and s2, s
′
2 ∈ S2 such that (s1, s2) 7→

h and (s1, s
′
2) 7→ h′. We recall that a strategy of the first player is a function associating an action

to each partial history hk ∈H ′ in the tree observed by the first player, i.e., such that P (hk) = 1.
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For each hk ≤ h (hk ≤ h′) if P (hk) = 1 we define a strategy s1 ∈ S1 such that hk + (s1(hk)) ≤ h

(hk + (s1(hk)) ≤ h′). Analogously, we define a strategy s2 ∈ S2, such that for each hk ≤ h with

P (hk) = 2 we have hk + (s2(hk)) ≤ h, and a strategy s′2 ∈ S2, such that for each hk ≤ h′ with

P (hk) = 2 we have hk+(s′2(hk))≤ h′. For any other hk ≰ h and hk ≰ h′ we take an arbitrary decision

for defining s1, s2, s
′
2. By construction, we have (s1, s2) 7→ h and (s1, s

′
2) 7→ h′.

(ii) Let us now suppose that P (h ∩ h′) = 1. Let (s1, s2) and (s′1, s
′
2) be two profile strategies

such that (s1, s2) 7→ h and (s′1, s
′
2) 7→ h′. It is impossible to have s1 = s′1 since P (h∩h′) = 1 implies

s1(h∩h′) ̸= s′1(h∩h′), from which we can conclude that h and h′ are not compatible.

Based on the definition of compatibility it is possible to build a graph of compatibilities among

all the outcomes of a game Γ, or the graph form for short.

Definition 7 (graph form). The graph of compatibility of a two-player game Γ = ⟨I =

{1,2},H,u⟩ is a tuple Γ= ⟨H,E,u⟩, where H is the set of outcomes as nodes of the graph, E ⊂H2

is the set of edges connecting any two compatible outcomes and u :H→R2 is the utility function

that assigns a pair of weights to every node.

Remark. In the following of the article sometimes we omit the transformation of an extensive-form

game Γ into its graph form ⟨H,E,u⟩ and therefore we introduce the game by directly representing

it in its graph form Γ= ⟨H,E,u⟩.

Example. We take into account the game of Figure 1 with its corresponding graph form in

Figure 2a). Let us show, for instance, that outcomes h2 and h4 are compatible. Let us define: s1 ∈ S1

such that s1(∅) = a1 and s1(a1, b2) = a3; s2 ∈ S2 such that s2(a1) = b1; s
′
2 ∈ S2 such that s′2(a1) = b2

and s′2(a1, b2, a3) = b4. We have that (s1, s2) 7→ h2 and (s1, s
′
2) 7→ h4: they are therefore compatible.

On the other hand there is no strategy of the first player that can lead to both h2 and h1, because

different actions would occur at the beginning of the game, i.e., at node ∅. With similar arguments,

it is possible to build all the graph form of the game.
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3.2. Characterisation of Nash equilibria in the graph form of the game

Given a game Γ, let us characterise the outcomes H(s1) of a strategy s1 ∈ S1 on its graph form. By

definition, such outcomes should all be compatible among themselves. Let us consider the nodes

on the graph corresponding to the outcomes H(s1); they induce a clique and, as we show next,

such clique is maximal.

Lemma 2. Consider a two-player game Γ = ⟨I = {1,2},H,u⟩ with its graph form Γ = ⟨H,E,u⟩.

For every strategy s1 ∈ S1, the set H(s1)⊂H forms a maximal clique of the graph ⟨H,E,u⟩.

Proof. According to Definition 6, we have that H(s1) induces a clique on the graph. Consider

any outcome h ∈H \H(s1). Since h /∈H(s1) there is a partial history hk ∈H ′, with hk ≤ h and

P (hk) = 1, such that the subsequent action ak+1 ∈A(hk) is not chosen by strategy s1, i.e., ak+1 ̸=

s1(hk). Consider now an outcome h′ ∈H(s1) such that hk+(s1(hk))≤ h′. Since P (h∩h′) = 1, from

Lemma 1 h and h′ are not compatible. Since this is true for every h ∈H \H(s1), we have that

H(s1) forms a maximal clique.

Example. We consider the game of Figure 1 and a strategy s1 ∈ S1 such that s1(∅) = a1 and

s1(a1, b2) = a4. By definition we have that H(s1) = {h2, h5, h6}, which induces indeed a maximal

clique in the graph of Figure 2a). Four different strategies are available in S1 to the first player,

since we have two different actions that can be played for every node ∅ and (a1, b2). There are

3 maximal cliques in graph ⟨H,E⟩, i.e., those induced by the sets of outcomes {h1}, {h2, h3, h4}

and {h2, h5, h6}, respectively. This small example shows that the graph form is a less redundant

representation of the strategies of the players. In fact, two different strategies induce the set of

outcomes {h1}.

However, we observe that to every maximal clique of the graph there is at least one strategy

whose set of outcomes corresponds to it. We prove that it is always true in Lemma 3.

Lemma 3. Let us consider a two-player game Γ = ⟨I = {1,2},H,u⟩ with its graph form Γ =

⟨H,E,u⟩. For every set of vertices C that induces a maximal clique on the graph ⟨H,E⟩, there is a

strategy s1 ∈ S1 such that C =H(s1).
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Proof. We first show that C ⊂H(s1) for a given s1 ∈ S1. For this, we consider a strategy s1 ∈ S1

such that for all h ∈ C and all hk ≤ h such that P (hk) = 1 we have that hk + s1(hk) ≤ h. Such

strategy exists and it is defined by applying a procedure similar to the one used in the proof of

Lemma 1; we recall that P (h∩ h′) = 2 for each pair of compatible h,h′ ∈ C. Therefore C ⊆H(s1).

But, from Lemma 2, H(s1) induces a maximal clique and thus C =H(s1).

Lemmas 2 and 3 establish that there exists a bijection between a partition of the set of strategies

of the game and the set of maximal cliques in the graph form. An illustration is given in Figure 2b).

A similar result is obtained for the set of strategies of the second player on the complementary

graph.

Lemma 4. For every two-player game Γ = ⟨I = {1,2},H,P,u⟩ with its graph form Γ = ⟨H,E,u⟩,

there is a bijection between a partition of the set of strategies of the second player S2 and the set of

maximal cliques of the complementary graph ⟨H,EC⟩, where EC = {(h,h′)∈H2|h ̸= h′, (h,h′) /∈E}.

Proof. Given two outcomes h,h′ ∈H, we have that P (h ∩ h′) ∈ {1,2}. Therefore P (h ∩ h′) = 2 if

and only if P (h∩h′) ̸= 1. Lemma 1 thus determines that the graph form with respect to the second

player is complementary to the first player’s. The result follows from Lemmas 2 and 3.

Choosing a strategy for the first player is equivalent to picking a maximal clique in the graph

⟨H,E⟩. Furthermore, one can observe that with an analogous method it is possible to build a graph

for the strategies of the second player. However, thanks to Lemma 4 it is not necessary to perform

further computations, because such graph is complementary to ⟨H,E⟩.

As anticipated in Section 2, we are interested in identifying Nash equilibria in pure strategies.

We recall that a Nash equilibrium is a strategy profile in which none of the players is interested in

changing her own strategy unilaterally.

Best responses and outcomes. The standard way to define a best response for an extensive-form

game entails to refer to its equivalent strategic form. In this case, if a player picks a strategy, the

other player will choose a best response, i.e., a strategy such that her utility is maximized. A Nash

equilibrium can be identified as a mutual best response accordingly. We now provide a connection
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between this fundamental definition of equilibrium based on the strategic form and properties of

the outcomes in the graph form of the game. In fact, every tagged outcome h corresponds to one

or more strategies s1 for the first player identified by a maximal clique C1 on the graph form which

includes h. In turn, for every element h′ ∈ C1, the second player can choose a strategy s2 whose

corresponding set of outcomes C2 on the complementary graph includes h′ ∈ C2. The second player

has an incentive to pick the element within C1 that maximises her utility, a condition that thus

h must fulfill in order to avoid deviations from the second player. A similar argument can be put

forward by inverting the players. Note that a single outcome may correspond to multiple strategy

pairs. Thus, in the graph form, determining if an outcome corresponds to a Nash equilibrium means

to answer to the question if there exists at least a pair of maximal cliques respectively on the

graph and on the complementary graph such that their intersection is a mutual best response in

the corresponding strategic form.

The best response of the second player leads to the outcome which is preferred the most by the

second player within the maximal clique C1 chosen by the first player. If a vertex h∈H corresponds

to the outcome of a best response of the second player, there must be a maximal clique C1 which

includes it, i.e., h∈ C1, and excludes all the nodes Xh which are preferred to h by the second player.

Whether such clique exists is the problem [MC] formalised hereafter.

Problem 1. [MC] Existence of a maximal clique including h and excluding Xh.

INSTANCE: ⟨H,E,h,Xh⟩ defining a graph ⟨H,E⟩, a vertex h∈H and a subset of vertices Xh ⊂H

with h /∈Xh.

QUESTION: Is there a vertex set C ⊂H \Xh with h∈ C that induces a maximal clique on ⟨H,E⟩?

We would like to know if a tagged outcome h is the realisation of a Nash equilibrium. Hence, a

maximal clique including the corresponding vertex h and excluding Xh = {h′ ∈H|u2(h
′)> u2(h)}

ensures that the first player has a strategy to induce the second player onto the desired outcome

h.
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Example. In the game of Figure 1 the second player prefers Xh = {h2, h3, h4} to h= h6. In the

graph of Figure 2a) we observe that there is no maximal clique including h6 and excluding all the

elements of Xh. Therefore h6 cannot correspond to a best response of the second player.

Furthermore, by applying the same arguments on the complementary graph we conclude that it

is possible to determine whether an outcome is a best response also of the first player. Specifically,

it is necessary to identify a maximal clique on the complementary graph such that the vertices

corresponding to the outcomes preferred by the first player are excluded.

Example. In the graph of Figure 2a) the first player prefers Xh = {h2, h3, h5, h6} to h= h1. There

is no maximal clique on the complementary graph of Figure 2a), i.e., there is no independent set,

that includes h1 and none of the elements in Xh. Therefore h1 cannot be a best response of the

first player.

Theorem 2 combines these findings and provides a characterisation of a Nash equilibrium in the

graph form.

Theorem 2. Let us consider a two-player game in its graph form Γ = ⟨H,E,u⟩ and an outcome

h ∈H. We consider Xh
1 = {h′ ∈H|u1(h

′)> u1(h)} and Xh
2 = {h′ ∈H|u2(h

′)> u2(h)}, the sets of

outcomes preferred to h, respectively, by the first and the second player. The outcome h ∈H is a

realisation of a Nash equilibrium if and only if the problem [MC] has true as answer both providing

as input ⟨H,E,h,Xh
2 ⟩ and ⟨H,EC , h,Xh

1 ⟩.

The proof is provided in Appendix A. Such result allows us to develop methods that compute

Nash equilibria without listing all the strategies of the players, which are often in exponential

number with respect to the size of the game (cf. Section 2). Such methods will be discussed in the

following sections.

3.3. Analysis of the main problem and its complexity

The complexity of identifying a Nash equilibrium on a game in graph form depends on the com-

plexity of solving two instances of problem [MC]: one with input ⟨H,EC , h,Xh
1 ⟩ and another with
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input ⟨H,E,h,Xh
2 ⟩, as defined in the previous section. In this section, we evaluate the complexity of

problem [MC] with input ⟨H,E,h,Xh⟩ for a generic graph ⟨H,E⟩. More specifically, we first define

a reduced version [EC] of problem [MC] and then we show that the two problems are equivalent,

i.e., that a solution of problem [EC] provides a solution of problem [MC] and vice versa.

Let us consider a generic problem [MC] with input ⟨H,E,h,Xh⟩. First, we argue that when

solving [MC] the problem can be restricted to the neighbourhood of h∈H, V h = {h′, (h,h′)∈E}.

Indeed, let us suppose that there is a maximal clique induced by a vertex set C ⊂H with h ∈ C

excluding Xh ⊂H. Since the clique is maximal, it must hold that every vertex h′ ∈Xh there is at

least one vertex h ∈ C which is not connected to h′, i.e., such that (h,h′) /∈ E. Those vertices in

Xh who are not in the neighborhood V h always fulfill this property, as h∈ C. Therefore, instead of

considering all the vertices in Xh, we can restrict the problem to X =Xh∩V h. With this argument,

we conclude that the vertex set C belongs to the neighborhood V h.

Example. Consider the graph of Figure 3a), in which the set C = {h,h2, h3, h4} induces a maximal

clique. The vertices Xh \V h = {h5, h10} are not connected to h and the vertex H \Xh \V h = {h9}

can never belong to the vertex set C that induces the maximal clique. Therefore we can restrict

the problem from H to {h1, h2, h3, h4, h6, h7, h8}.

Let us thus consider a slightly different problem [EC].

Problem 2. [EC] Existence of an excluding clique.

INSTANCE: ⟨V,X,E⟩ defining a graph ⟨V ∪X,E⟩ with V ∩X = ∅.

QUESTION: Is there a vertex set C ⊂ V that induces a clique on ⟨V,E⟩ that is maximal in ⟨C ∪

X,E⟩?

Theorem 3 shows that the problem [MC] with input ⟨H,E,h,Xh⟩ can be solved by means of

problem [EC] with a different input derived by the input of problem [MC].

Example. Indeed let us consider the problem [MC] depicted in Figure 3a) and its restriction

to the neighborhood of h of Figure 3b). The problem [MC] requires to identify a maximal clique

that has no elements in Xh and includes h, such as {h,h2, h3, h4} or {h,h1, h2}. The problem [EC]
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requires to identify a vertex set C′ on V = {h1, h2, h3, h4} that induces a clique such that for all

elements in X = {h6, h7, h9} there is at least one element in C′ not connected to it. Such cliques are

{h1}, {h1, h2}, {h2, h3}, {h3, h4} and {h2, h3, h4}. For instance, let us consider {h2, h3}: the vertex

h6 is not connected to h3, while the vertices h7 and h8 are not connected to h2.

Theorem 3. Let us consider a graph ⟨H,E⟩, a subset of vertices Xh ⊂H and a vertex h∈H \Xh.

Let us define V h = {h′|(h,h′) ∈ E}, X = Xh ∩ V h, V = V h \X and E|V ∪X = {(h′, h′′) ∈ E|h′ ∈

V,h′′ ∈ V ∩X}. The problem [MC] with input ⟨H,E,h,Xh⟩ has true as answer if and only if the

problem [EC] with input ⟨V,X,E|V ∩X⟩ has.

The proof is provided in Appendix B.

We observe that problem [EC] requires to prove the existence of a clique rather than identifying

a maximal clique, as in problem [MC]. Moreover, the input of [EC] is a smaller graph induced

by the neighborhood of one vertex, h, in graph of [MC]. Therefore, from now on, let us focus on

the analysis of [EC]. In the following theorem, we prove that [EC] is NP-complete. Indeed, we

reduce it to the problem of the existence of the dominating clique [DC], which is known to be

NP-complete (cf. Kratsch and Liedloff (2007)).

Problem 3. [DC] Existence of a dominating clique

INSTANCE: A graph ⟨H,E⟩.

QUESTION: Is there a vertex set C ⊂H that induces a clique on the graph such that for every

vertex h′′ ∈H \ C there is a vertex h′ ∈ C such that (h′, h′′)∈E?

Theorem 4. In a generic graph the problem [EC] is NP-complete.

Proof. We present next a polynomial reduction from [DC] to [EC]. The argument of the proof

is illustrated in Figure 4. We consider the problem [DC] with input ⟨H,E⟩ and define two vertex

sets V = H̃ and X = ˜̃H, where H̃ and ˜̃H are copies of set H. Let us also define a set of edges

E′ = {(i, j)|i, j ∈ V, (i, j) ∈E} ∪ {(i, j)|i ∈ V, j ∈X, (i, j) /∈E}. We consider the problem [EC] with

input ⟨V,X,E′⟩. By construction, the input has size O(|H|2), i.e., it is polynomial in the size of
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the input of problem [DC]. We prove now that [DC] admits answer true if and only if the same

happens for [EC] with input ⟨V,X,E′⟩. If [DC] has answer true, there exists a vertex set C ⊂H

that: (a) induces a clique on ⟨H,E⟩; (b) and such that, for each j ∈H \C, there is a i∈ C such that

(i, j)∈E. From (a) and the definition of sets V and E′, there is a copy of C ⊂ V defining a clique

in graph ⟨V ∪X,E′⟩. Also, from the definition of E′ and from (b), for each j ∈X there is a i ∈ C

such that (i, j) /∈E′. Therefore C provides also an answer true for [EC].

We now prove that an answer true for [EC] provides an answer true also to [DC]. A vertex set

C ⊂ V that induces a clique on ⟨V ∪X,E′⟩, clearly defines a clique on ⟨H,E⟩. It holds that for all

j ∈X there is i∈ C such that (i, j) /∈E′. Since X = H̃ and V = ˜̃H, with H̃ and ˜̃H copies of H, we

have that for all j ∈H \C there is a vertex i ∈ C such that (i, j) ∈E. Therefore C provides also a

solution true for [DC].

On the graph of an extensive-form game. We have just proved that problem [EC] is NP-complete

for a generic graph. However, the graph generated by an extensive-form game is not a generic one.

Indeed, it is possible to identify a graph that corresponds to no extensive-form games. The graph

⟨H,E⟩ of Figure 5 does not represent any extensive-form game (cf. Appendix C).

4. New methods for the identification of Nash equilibria

In this section, the theoretical results introduced in Section 3 are applied to derive new methods for

the computation of Nash equilibria in two-player extensive-form games with perfect information

and perfect recall. Theorem 2 provides a necessary and sufficient condition for an outcome to be

a realisation of a Nash equilibrium. This result is the pillar for the development of methods to the

following questions: (i) whether it is possible to enumerate the Nash equilibria and (ii) whether

the realisation of Nash equilibria can achieve a value of utility with a given range of values.

In what follows, we exploit the results of Section 3.3 and introduce a linear system that allows to

determine if an outcome is the realisation of a Nash equilibrium. Starting from this linear system, we

introduce a method to enumerate all Nash equilibria in Section 4.1, a method to provide an upper

bound to their utility in Section 4.2 and a method to provide the best or worst Nash equilibrium

for a player in Section 4.3. The latter is compared to the one provided by the optimization problem

by Von Stengel (1996).
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4.1. Nash equilibrium

Theorem 2 provides a necessary and sufficient condition to verify if an outcome is the realisation

of a Nash equilibrium. According to Theorem 2, such condition requires to solve two instances of

problem [EC] with input ⟨V ∪X,E⟩ such that V ∩X = ∅. We recall that the solution obtained by

the problem allows to identify some possible outcomes C ⊂ V of a strategy within the set V such

that we have the guarantee that the elements X preferred by the opponent are not included. We

provide a formulation [CL] of problem [EC]:

[CL] : xi +xi′ ≤ 1, ∀i, i′ ∈ V, (i, i′) /∈E, (CL-1)∑
i∈V |(i,j)/∈E

xi ≥ 1, ∀j ∈X, (CL-2)

xi ∈ {0,1}, ∀i∈ V. (CL-3)

Formulation [CL] models any feasible solution of problem [EC]: xi = 1 if and only if i ∈ C.

Constraints (CL− 1) impose that C induces a clique, while constraints (CL− 2) guarantee that

every vertex j ∈ J is not connected to at least one vertex i ∈ C. Any solution to the linear system

[CL] provides a solution to problem [EC] with input ⟨V ∪X,E⟩.

Theorem 2 imposes us to solve two instances of the problem [MC] to determine if an outcome

is the realisation of a Nash equilibrium. We thus exploit the fact that the problem [MC] can be

modeled by formulation [EC] and define a unique linear system [NE] that allows to determine if

an outcome is the realisation of a Nash equilibrium. Let us consider a two-player game in its graph

form Γ= ⟨H,E,u⟩ and an outcome h∈H. Let us define the following sets:

• X1 = {h′ ∈H|(h′, h) /∈E,u1(h
′)> u1(h)}, the set of outcomes compatible to h in the comple-

mentary graph preferred by the first player to h;

• X2 = {h′′ ∈H|(h′′, h) ∈ E,u2(h
′′)> u2(h)}, the set of outcomes compatible to h preferred by

the second player to h;

• V1 = {h′ ∈H \X2|(h′, h)∈E}, the set of outcomes compatible to h where h is preferred;
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• V2 = {h′′ ∈ H \X1|(h′′, h) /∈ E}, the set of outcomes compatible to h in the complementary

graph where h is preferred.

The outcome h∈H is a realisation of a Nash equilibrium if and only if the system [NE] provides

a solution:

[NE] : xi +xi′ ≤ 1, ∀i, i′ ∈ V1, (i, i
′) /∈E,

xi +xi′ ≤ 1, ∀i, i′ ∈ V2, (i, i
′)∈E,∑

i∈V1,(i,j)/∈E

xi ≥ 1, ∀j ∈X2,

∑
i∈V2,(i,j)∈E

xi ≥ 1, ∀j ∈X1,

xi ∈ {0,1}, ∀i∈ V1 ∪V2.

Given a game Γ= ⟨H,E,u⟩ and an outcome h∈H, by applying [NE] to every h∈H it is possible

to enumerate all the realisation of the Nash equilibria of the game. In the following, we propose

an enumeration algorithm [EA] that iterates over all the outcomes and then solves [NE] for every

outcome.

Algorithm 2 [EA] Enumeration Algorithm

INPUT: Game in graph form Γ= ⟨H,E,u⟩

NE←∅

for h∈H do ▷ for every outcome of the game

X1 = {h′ ∈H|(h′, h) /∈E,u1(h
′)>u1(h)} ▷ vertex sets and excluding sets

X2 = {h′′ ∈H|(h′′, h)∈E,u2(h
′′)>u2(h)} ▷ for player 1 and player 2

V1 = {h′ ∈H \X2|(h′, h)∈E}

V2 = {h′′ ∈H \X1|(h′′, h) /∈E}

solve [NE] giving ⟨V1, V2,X1,X2,E⟩ as input ▷ test if h is outcome of a Nash equilibrium

if system [NE] has a feasible solution then

NE←NE ∪{h} ▷ Update the set of Nash equilibria

OUTPUT: NE
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4.2. Upper bounds for Nash equilibria

In this section, we compare two methods to compute upper bounds for the utility of the first player

when a Nash equilibrium is played. The most known formulation for extensive-form games is the

one introduced by Von Stengel (1996), which provides a Nash equilibrium for zero-sum games.

Recently, this formulation has been proven to provide an upper bound to the utility of the first

player of any Nash equilibrium (cf. Zappalà et al. (2022)). This method is based on the concept of

sequence, which is a vector of actions played by a same player. Given a game Γ = ⟨I,A,H ′, P,u⟩

and a history h′ ∈H ′, we denote by seqi = (hik) a sequence of actions played by player i according

to h′. We write h′ = (seq1, seq2) to show that to every history h′ correspond two sequences seq1 and

seq2. We consider Λ1 and Λ2, respectively, the set of all sequences of the first and second player.

Let x ∈ {0,1}|Λ1| and y ∈ {0,1}|Λ2| be the vectors defining the probability for a sequence to be

played. We define the matrix U i : Λ1 ×Λ2→ R that maps each couple of sequences to the utility

of player i: U i
seq1,seq2

= ui(h) for all h= (seq1, seq2) ∈H; U i
seq1,seq2

= 0 if h′ = (seq1, seq2) /∈H. The

utilities of the players can thus be written in the form xTU 1y and xTU 2y. The formulation defining

the set of possible sequences is constrained by the fact that if an action is taken at a node of the

game, such decision must be considered also in the following ones. For instance, let us consider

the game of Figure 1. The sequences of the first player are Λ1 = {∅, (a1), (a2), (a1, a3), (a1, a4)},

while the sequences of the second player are Λ2 = {∅, (b1), (b2), (b2, b3), (b2, b4), (b2, b5), (b2, b6)}. If

the first player chooses action a1, she must choose either action a3 or a4. Therefore the constraint

x(a1) = x(a1,a3) + x(a1,a4) is added to the formulation. Similarly, if the second player chooses action

b2, she must choose at least one action among {b3, b4, b5, b6}. Therefore we add the constraint

y(b2) = y(b2,b3) + y(b2,b4) + y(b2,b5) + y(b2,b6). All such causal constraints, written Ex= e and Fy = f ,

respectively, for the first and the second player, will be built according to the same principle.

Finally, the upper bound of any Nash equilibrium is given by the solution of the following bilevel

problem denoted by [V S].

[V S] : uV S
1 =max

x
xTU 1y
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s.t. Ex= e,

x∈ [0,1]|Λ1|,

y= argmax
y

xTU 2y

s.t. Fy= f,

y ∈ [0,1]|Λ2|.

The optimization problem [V S] has size O(|H|) (cf. Von Stengel (1996)). We now formulate [V S]

as a linear optimization problem. Note that, as anticipated in Section 2, we are only interested in

solutions corresponding to pure strategies. Therefore we can add the integral constraints:

xj ∈ {0,1} ∀j ∈Λ1, (1)

yk ∈ {0,1} ∀k ∈Λ2. (2)

We will also introduce the variable wjk ∈ [0,1], which allows to linearise the formulation by rewriting

xj · yk =wjk as:

xj ≥wjk ∀j ∈Λ1, k ∈Λ2, (3)

yk ≥wjk ∀j ∈Λ1, k ∈Λ2, (4)

xj + yk ≤ 1+wjk ∀j ∈Λ1, k ∈Λ2, (5)

wjk ∈ [0,1] ∀j ∈Λ1, k ∈Λ2. (6)

In the second level of problem [V S] the optimal u := u2(y)∈R is achieved for some k ∈Λ2, i.e., we

can write

u=max
k∈Λ2

(∑
j∈Λ1

U 2
jk ·xj

)
,

u∈R. (7)

Since only one sequence k ∈Λ2 must be chosen, the constraint Fy= f is replaced by

∑
k∈Λ2

yk = 1. (8)
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The constraint Ex= e when written explicitly corresponds to:

∑
j∈Λ1

Elj ·xj = 0 ∀l. (9)

We now reformulate the second level of [V S], using a set of linear constraints. Let us denote by

u ∈ R the maximum utility for the second player. Also, we set a large value M > 0 to use the

following classical big-M constraints:

∑
j∈Λ1

U 2
jk ·xj ≤ u, ∀k ∈Λ2, (10)∑

j∈Λ1

U 2
jk ·xj ≥ u−M(1− yk), ∀k ∈Λ2. (11)

The bilevel problem [V S] is then denoted by [V S−L], and written as follows:

[V S−L] : uV S
1 =max

x,y,w

∑
j∈Λ1

∑
k∈Λ2

U 1
jk ·wjk

s.t. (1− 11)

Note that adding a constant value to the utility function does not change the solution, therefore

we can assume U 2
jk > 1 for all j ∈Λ1 and k ∈Λ2. Under this assumption, we can add the following

inequality:

yk ≤
∑
j∈Λ1

U 2
jk ·xj ∀k ∈Λ2, (12)

which is valid for [V S], since yk = 0 ⇐⇒
∑

j∈Λ1
U 2

jk · xj = 0 and yk = 1 ⇐⇒ ∃j ∈ Λ1 such that

xj = 1.

Let us denote by [V S−L2] the resulting formulation:

[V S−L2] : uV S
1 =max

x,y,w

∑
j∈Λ1

∑
k∈Λ2

U 1
jk ·wjk

s.t. (1− 12).

In what follows, we introduce a new algorithm, called [UBA] and described in Algorithm 3, that

allows to compute an upper bound of the utility of the first player when a Nash equilibrium is
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played. We show that such upper bound is the same as the one provided by [V S]. The algorithm

starts by ordering the outcomes in decreasing order of utility of the first player. Every outcome

is then evaluated by solving problem [EC] with input ⟨V1,X2,E⟩. If the existence of a clique is

proven for [CL] the algorithm stops and an upper bound is found. As remarked previously, since the

procedure tests a necessary and yet not sufficient condition, the outcome found is not necessarily

a realisation of a Nash equilibrium. Both [V S] and [UBA] provide the best outcome for the first

player that can be a best response of a strategy of the second player, a necessary condition for the

outcome to be a realisation of a Nash equilibrium. Theorem 5 thus proves that the two methods

provide the same upper bound.

Theorem 5. Consider a game Γ= ⟨I,A,H,P,u⟩ and its graph form ⟨H,E,u⟩. Let uV S
1 and uUBA

1

be the optimal values obtained when [V S] and [UBA] are applied to game Γ, then we have uV S
1 =

uUBA
1 .

Proof. We define the set of all the outcomes that can be a best response of the second player to a

strategy of the first player, BR2 = {h∈H|∃s1 ∈ S1, h= argmaxh′∈H(s1)
u2(h

′)}. We show that uV S
1 =

uUBA
1 = maxh∈BR2

u1(h). First, we observe that BR2 corresponds to the set of feasible solutions

of [V S] and thus uV S
1 =maxh∈BR2

u1(h). Let us prove that uUBA
1 =maxh∈BR2

u1(h). Given h ∈H,

X = {h′ ∈H|(h′, h)∈E,u1(h
′)>u1(h)} and V = {h′ ∈H \X|(h′, h)∈E}, let us consider HCL the

set of h∈H such that problem [CL] with input ⟨V,H,E⟩ has answer true. Then we have uUBA
1 =

maxh∈HCL u1(h). Moreover, for all h∈HCL let us consider a strategy sh1 ∈ S1 such that V ⊂H(sh1)

and H(sh1)∩X = ∅. By definition of HCL for each h∈HCL we have h= argmaxh′∈H(sh1 )
u1(h), which

implies h ∈ BR2. Analogously, if h /∈HCL there is no s1 ∈ S1 such that h= argmaxh′∈H(s1)
u1(h)

and thus h /∈BR2. Since HCL =BR2, we have uUBA
1 =maxh∈BR2

u1(h).
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Algorithm 3 [UBA] Upper Bound Algorithm

INPUT: Game in graph form Γ= ⟨H,E,u⟩

H = order(H,⪰1) ▷ Elements are ordered w.r.t. player 1: h⪰1 h
′ iff u1(h)≥ u1(h

′)

index= 0 ▷ Start with the smallest utility for player 1

do

h=H(index) ▷ Select the outcome corresponding to index

uUBA
1 = u1(h)

V1 = {h′ ∈H \X2|(h′, h)∈E} ▷ vertex set for player 1

X2 = {h′′ ∈H|(h′′, h)∈E,u2(h
′′)>u2(h)} ▷ excluding set for player 1

solve [CL] giving ⟨V1,X2,E⟩ as input

index= index+1

while [CL] has no solution

OUTPUT: uUBA
1

4.3. Best and Worst Nash equilibrium

Note that the algorithms [V S] and [UBA] introduced in Section 2.2 do not provide the tightest

upper bound to the utility of the Nash equilibria (cf. Appendix F). In this section, we introduce an

algorithm that provides the Nash equilibrium whose utility is the highest for the first player. The

algorithm [BNE] consists in ordering the outcomes from best to worst following the utility function

of the first player and then picking the first of them that is a realisation of Nash equilibrium, i.e.,

that solves [NE]. Analogously, it is possible to identify the Nash equilibrium with the lowest utility

for the first player, by ordering in reverse order the outcomes. The algorithm [WNE] is presented

together with [BNE] in Appendix G.

5. Numerical results

In this section, we assess the performance of the methods introduced in Section 4 through several

series of experiments. To our knowledge, there is no standard library of extensive-form games in
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the literature. For this reason, we developed a new library presented in Section 5.1. The methods

that provide bounds to the utility of Nash equilibria and those who enumerate them are analysed

separately, respectively in Section 5.2 and in Section 5.3. The experimental study was conducted

on a Intel Xeon CPU 2.20 GHz with 13 GB RAM. The algorithm were implemented in Python 3.8.

The solver used to solve all Mixed-Integer Linear Programming problems is GLPK (cf. Makhorin

(2008)).

5.1. Library of extensive-form games

Extensive-form games with perfect recall and perfect information have never been categorised. We

thus introduce a new classification of games based on three key features: the structure of the game-

tree, the size of the game and the utility function. This allows to challenge our algorithms on a

wide range of game instances and analyse their efficiency. The proposed classification will be used

to create a new library of extensive-form games. More precisely, the structure of a game captures

the properties of the shape of the game-tree. The size of the game (i.e., the number of outcomes)

allows us to better assess the scalability of methods. Finally, once structure and size are fixed, the

only parameter that varies in a game is the utility function, for which we provide different families

of functions.

Each instance of the dataset thus formed is referred to with a specific name encoding the three

key features of the game. Such encoding is shown in Table 4. The games’ structure is encoded as

follows: Rn indicates that the number of actions at every child of a node h′ ∈H is chosen uniformly

at random U({0, . . . , n · |A(h′)|}), given the constraint that they have on average n actions; Cn

indicates that every node has the same number of actions, with n actions per node; and finally Un

indicates that at every node all actions but one lead to an outcome, with n actions per node. The

players’ utility is encoded as follows: R if the utility of an outcome is chosen uniformly at random

U([0,1]) in the interval [0,1]; D if the utility is chosen randomly from a discrete set U({1, . . . ,10}),

namely a natural number between 1 and 10; Z if the game is zero-sum, i.e., at every node h ∈H

the winner is chosen at random i ∈ {1,2} and gets ui(h) = 1, while the loser 0; A if the game is
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zero-sum and the winner has a utility chosen randomly from a discrete set U({1, . . . ,10}); F if the

utility is chosen randomly from U([0,1]) at every outcome and it is the same for every player; E if

every utility of every outcome is a constant. The latest value of a label is the size of the game. An

instance of game labeled C4E100 has 100 outcomes, every node has 4 actions (C) and utility is a

constant function (E).

The library is publicly accessible (cf. Zappalà (2023)) and composed of three distinct datasets.

Dataset 1 contains 21 extensive-form games which vary in their structure, within the range {R, C,

U}, and in their size {100, 216, 324, 400, 512, 625, 729}, but not in their utility, which is always

Random R. Dataset 1 has games of smaller size, i.e., small enough to manage methods already

known in the literature, that provide bounds to the utility of Nash equilibria; Dataset 1 is used in

Section 5.2. Dataset 2 has 72 extensive-form games which vary in their structure {R, C, U}, size

{256, 729, 1296, 2401} and utility {R, D, Z, A, F , E}. Dataset 3 has 75 extensive-form games of

size 729 which vary in structures {R, C, U} and utility {R, D, Z, A, F}. Dataset 2 and 3 have

games of larger size, that are used to assess the method to enumerate the Nash equilibria. They are

used in Section 5.3. Dataset 2 includes games with different characteristics; it allows us to assess

the method on a large variety of games. Dataset 3 includes 75 games with size 729, gathered in 15

groups, each one with 5 games having the same encoding. The 15 groups are built alternating 3

different structures {R3∗729, C3∗729, U5∗729} and 5 different utilities ′∗′ ∈ {R,D,Z,A,F}. The

utility E has been discarded, as we show next that it does not need further analyses. The analysis

performed on Dataset 3 allows to understand the variability of the results obtained for Dataset 2.

5.2. Bounds to the utility of Nash equilibria

We first test the methods introduced in Section 4.2 and in Section 4.3 on Dataset 1. The reference

methods known in literature, i.e., the branch and bound algorithms used to solve formulations

[V S−L] and [V S−L2], are compared to algorithm [UBA]: they all provide the same upper bound

to the utility of the first player in a Nash equilibrium. We recall that the proposed algorithms

[BNE] and [WNE] provide the tightest (respectively, upper and lower) bounds to the utility of
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every Nash equilibrium. Table 1 reports the computation time for every instance of each algorithm

as well as the number of iterations of the three iterative algorithms [UBA], [BNE] and [WNE].

Comparison [UBA] vs [V S−L] vs [V S−L2]. First and main result is that the algorithm [UBA]

overcomes the methods relying on [V S − L] and [V S − L2] by some orders of magnitude. The

method [UBA] computes the upper bound to the utility of Nash equilibria at least > 40 times

faster than [V S−L] and [V S−L2]. Second, we highlight the quality of the valid inequality added

in [V S−L2]. Indeed, we observe that it improves the computation time with respect to [V S−L] in

10 out of 21 instances and reduces of around 30% the computation time in instances like R6R512

and C2R512, which require more than 25 minutes for [V S − L]. Both [V S − L] and [V S − L2]

perform 17% to more than 99% faster on structures C and U than those of type R; we ascribe

this to the fact that the games present fewer nodes and thus require fewer constraints in the linear

formulation.

Comparison [UBA] vs [BNE] vs [WNE]. Algorithm [BNE] allows us to tighten the upper

bound in 4 instances out of 21, thus showing that [UBA], [V S −L] and [V S −L2] do not always

achieve the tighest bound. In Table 1, the few instances in which [BNE] tightens the bound are

underlined, whereas in the other 17 out of 21 instances the number of iterations does not change.

As predicted, [BNE] is slower than [UBA], but still performs more than 6 times faster than both

[V S−L] and [V S−L2]. Algorithm [WNE] requires a larger computation time than [BNE] in 19

out of 21 instances. In fact, it always has a larger number of iterations than [BNE]. Indeed, [WNE]

first checks the outcomes with lowest utility for the first player, those are unlikely to correspond

to the best response of the first player. It takes thus far more time to identify an outcome which

is a best response for both players.

5.3. Enumeration of realisations of Nash equilibria

In the next experiment, we tested the methods introduced in Section 4.1 on Dataset 2 and on

Dataset 3. We have measured the performance of Algorithm [EA] while enumerating the Nash

equilibria of every instance.



Zappalà et al.: Graph-based approach for enumerating the Nash equilibria
30 Uploaded to HAL; manuscript no. 1

Analysis on Dataset 2. For the space’s sake, in Table 2 we display only the results for all the

games’ instances with size 729. More precisely, for each game, we show how many outcomes are

the realisations of Nash equilibria NE, the average size Xavg of all sets X1 and X2, the total time

required to run the algorithm ttot, the average time tavg and the maximal time tmax for an outcome

of the game. In addition, Figure 9 displays the average time and the maximal time required to

execute the algorithm on a game outcome, and the percentage of Nash equilibria identified among

all the game’s outcomes.

Impact of the size on performance. As expected, the computation time increases with the size of

the game (cf. Figure 9). Algorithm [EA] iterates over the outcomes and requires to solve system

[NE] at each instance. When the size of the game increases, on average the size of system [NE]

increases accordingly. However, if the size is fixed, the structure and the utility function have a

fundamental impact onto the computation time.

Impact of the utility function on performance. In the degenerate case E, when outcomes all have

same utility value, solving system [NE] gets trivial for each outcome and thus the computation

time of each iteration is negligible (cf. Table 2). Indeed, the sets of outcomes to be excluded X1

and X2 are empty at every iteration. For such case building the graph is not even necessary. We

observe that the computation time is lower for the case Z, as the size of X1 and X2 is smaller.

We cannot infer significant correlations on the other cases (R, D, A, F ) and we thus defer such

analysis to Dataset 3.

Impact of structure on performance. The structure of the game influences the efficiency of the

average time necessary to verify if an outcome is the realisation of a Nash equilibrium. Indeed, we

observe in Figure 9 that in games with the same size those whose nodes have the same number

of children (structure coding C) require more time on average to compute an equilibrium. This

is due to the fact that the neighborhoods of an outcome V1 ∪X2 and V2 ∪X1 in the graph and

its complementary have always the same size in both parts of system [NE]. On the other hand,

in games with more asymmetrical structure (structure coding R and U) one of the two graphs is

often smaller and thus much easier to be solved.
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Analysis of Dataset 3. Table 3 shows the average of performances on 5 sample games for each

one of the 15 patterns. Every curve of Figure 10 shows the computation time distribution of [NE]

for an outcome of a game. The 15 curves provide such result for the 15 games having the same

utility coding. Namely, every line appearing in the plots shows for every game type Γ = ⟨I,H,u⟩

the function f(t) = P(t(h)≤ t|h∈H), i.e., the probability that the algorithm solving system [NE]

takes less than t seconds to determine if h is the realisation of a Nash Equilibrium.

Impact of the structure on performance. These numerical results show empirically that the struc-

ture is the main factor influencing the performance of the algorithm solving system [NE]. Indeed,

on a game with totally unbalanced (U) structure it takes a negligible time for the vast majority

(around 99%) of the outcomes of a game instance (cf. Figure 10). On the other hand, on a game

with complete (C) structure the algorithm such percentage decreases to 20− 50%. The algorithm

performs in between the two extremes for a game with random (R) structure.

Impact of the utility on performance. We observe on Table 3 that the best performances are

obtained for zero-sum games (coding utility Z) for the same structure. This is due to the fact that

when the utility is equal to 1 the set of outcomes to be excluded X is empty (cf. Table 2). One

of the two sides of the problem is always trivial. If the game switches from utility Z to A, i.e., if

the player that wins gains a value between 1 and 10 instead of just 1, the property that makes

one of the problems trivial is lost. Indeed, games with coding A have performances comparable to

those with other utility codings (R, D, F ). One might thus assume that increasing the granularity

of the utility might make the algorithm less efficient. However, we do not observe any significant

difference in the computation time while comparing (D) (ui ∼U({1, . . . ,10})) to (R) (ui ∼U(0,1)).

5.4. Obtaining insights on Nash equilibria of extensive-form games

To the best of our knowledge, Algorithm [EA] is the first one proposed to enumerate the Nash

equilibria of an extensive-form game that does not resort to brute force. Besides the analysis of its

complexity, we can also provide further insights of the numerosity of Nash equilibria in a game.
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The number of possible realisations of a Nash equilibria can vary from 1 to the number of

outcomes of a game. The latter case implies that the utility function is constant (case E). However,

in the generic case the number of Nash equilibria highly depends on the structure of the game-tree.

We observe from Section 5.3 that games with a totally unbalanced structure (U) tend to host fewer

Nash equilibria. This is due to the fact that if there is an outcome with great value to a player,

she might choose to stick to it, and the opponent has few options to build a strategy that redirects

her to an outcome that lies deeper in the tree. If an outcome with great value happens to lie at a

very high level of the tree, the lower levels hardly host other realisations of Nash equilibria. The

converse tends to occur as well, i.e., in a generic game with a complete structure (C) we typically

observe many more Nash equilibria than in the unbalanced case. This follows the intuition that

in a complete game structure a player can find more combination of strategies to convince the

opponent to switch her best response to a different outcome.

6. Conclusions

In this paper, we introduce a new representation for a two-player extensive-form game as a graph of

its outcomes. We prove that identifying a Nash equilibrium of an extensive-form game corresponds

to identifying two cliques on such graph and its complementary. Thanks to this result, we introduce

the first method of the literature to determine if an outcome of an extensive-form game is a

realisation of a Nash equilibrium. Such method allows to define the first algorithm to enumerate

the realisations of all Nash equilibria of an extensive-form game. The algorithm performs very well

on a sample dataset of games of different shapes and sizes. Moreover, it is possible to reframe the

algorithm so that it provides any given bound to the utility of all Nash equilibria. Such algorithm

performs significantly better than the most known method in literature, which provides a (not

always the tightest) upper bound to the utility of Nash equilibria.

We foresee several possible extensions of this work. First, we do not fully exploit the properties of

the graph form to improve the efficiency of the proposed algorithms. Second, it would be interesting

to devise methods to parallelize the computation of the Nash equilibria in large instances. Finally,
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the categorisation of extensive-form games suggests that more efficient methods can be designed

for some specific classes of games. For instance, customized algorithms can be written to compute

the compatibility of two outcomes, possibly extending the numerical results to larger games with

more than two players.
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Appendix

A. Proof of Theorem 2.

(i) We prove first that for any Nash equilibrium the two maximal cliques in the statement do exist.

If h is a realisation of a Nash equilibrium (s1, s2)∈ S1×S2 we have that for all s1 ∈ S1 and s2 ∈ S2:

u1(h) = u1(s1, s2)≥ u1(s1, s2),

u2(h) = u2(s1, s2)≥ u2(s1, s2).

We consider H(s1) ⊂H. By Lemma 2, H(s1) forms a maximal clique in graph ⟨H,E⟩. We thus

define C1 =H(s1). Since (s1, s2) 7→ h, we have that h∈ C1. For each h′ ∈ C1 there is a strategy s2 ∈ S2

such that (s1, s2) 7→ h′. Since h is a realisation of a Nash equilibrium, for each h′ ∈ C1 we have that

u2(h)≥ u2(h
′). Therefore each h′ ∈ C1 \Xh

2 and, as a consequence, the vertex set C1 solves [MC]

with input ⟨H,E,h,Xh
2 ⟩. An analogous argument can be used to show that C2 =H(s2) solves [MC]

with input ⟨H,EC , h,Xh
1 ⟩.

(ii) We now prove that, if there are two vertex sets C1 ⊂H and C2 ⊂H that solve problem [MC]

for, respectively, ⟨H,E,h,Xh
2 ⟩ and ⟨H,EC , h,Xh

1 ⟩, then h is a realisation of a Nash equilibrium. By

Lemma 3, we have that there are s1 ∈ S1 and s2 ∈ S2 such thatH(s1) = C1 andH(s2) = C2. We recall

that, since C1 =H(s1), for each s2 ∈ S2 the strategy profile (s1, s2) 7→ h′ ∈ C1. Since C1 ∩Xh
2 = ∅,

we have that h′ /∈Xh
2 and therefore u2(h

′)≤ u2(h). Since {h}=H(s1)∩H(s2), the strategy profile

(s1, s2) has realisation h satisfying:

u2(s1, s2) = u2(h
′)≤ u2(h) = u2(s1, s2).

Analogously, we prove that for all s1 ∈ S1:

u1(s1, s2)≤ u1(s1, s2).

Therefore (s1, s2) is a Nash equilibrium and h is its realisation.

B. Proof of Theorem 3.

(i) First, let us suppose that the problem [MC] has true as answer, i.e. there is a vertex set

C ⊂H \Xh with h∈ C that induces a maximal clique on ⟨H,E⟩. By construction, C ⊂ V induces a

clique on ⟨V ∪X,E|V ∪X⟩. Moreover, the clique is maximal, i.e. there is no h′′ ∈H \C such that for

all h′ ∈ C we have (h′, h′′) ∈E. Therefore for all h′′ ∈X there is h′ ∈ C such that (h′, h′′) /∈E and

thus (h′, h′′) /∈E|V ∪X .

(ii) Let us suppose now that the problem [EC] has true as answer, i.e. there is a vertex set

C′ ⊂ V that induces a clique on ⟨V ∪ X,E|V ∪X⟩ such that for all h′′ ∈ X there is h′ ∈ C′ such
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that (h′, h′′) /∈E|V ∪X . Let us consider C′′ = C′ ∪ {h}, which induces a clique on graph ⟨H,E⟩. For

all h′′ ∈Xh either (a) h′′ ∈X and thus there is an element h′ ∈ C′ such that (h′, h′′) /∈ E or (b)

h′′ ∈Xh \X and thus (h,h′′) /∈ E. Therefore for all h′′ ∈Xh there is h′ ∈ C′′ = C′ ∪ {h} such that

(h′, h′′) /∈E. If C′′ induces not only a clique, but a maximal one on ⟨H,E⟩ we have the proof. If C′′

induces a non-maximal clique, there is a vertex set C′′′ such that C′′ ⊂ C′′′ that induces a maximal

clique on ⟨H,E⟩. By construction C′′′ ∩X = ∅, which completes the proof.

C. Graph that represents no game

Let us consider the graph ⟨H,E⟩ of Figure 5 and show that it is not the graph form of an extensive-

form game. If it were the graph form of an extensive-form game, any preferences could be assigned

by the players to the outcomes, i.e. any utility function u can be chosen. We consider a utility

function such that the preferences over the outcomes are respectively u1 : hA ≻1 hC ≻1 hD ≻1 hB

and u2 : hB ≻2 hC ≻2 hA ≻2 hD. We show that if this graph were generated by a game, it would have

no Nash equilibria. This is a contradiction, because every extensive-form game has at least one

Nash equilibrium. The table of Figure 5 shows the analysis for every outcome h∈ {hA, hB, hC , hD}.

Every line of the table shows that the composition of the vertex sets V and X for any pair of

problems [EC] given ⟨H,E⟩ and its complementary ⟨H,EC⟩ as input. For no outcome h, i.e. for

no pair of problems at any given line, both problems has answer true. Indeed, neither hB nor hD

can be the outcome of a Nash equilibrium, because they are the least favoured respectively by

the first and by the second player, and there is no maximal clique on ⟨H,E⟩ and on ⟨H,EC⟩ that

consists of the singleton including them, i.e. {hB} and {hD} are not maximal cliques. In problem

[EC] for hD in graph ⟨H,E⟩ we have that V = ∅, as well as for hB in graph ⟨H,EC⟩. Outcome

hA also is not a Nash equilibrium, because the only maximal clique on the graph which includes

it is {hA, hB}, but hB ≻2 hA. We observe that in problem [EC] defined for hA in graph ⟨H,E⟩ we

have V = ∅. Finally, outcome hC is not a Nash equilibrium, because the only maximal clique on

the graph defined from ⟨H,EC⟩ is {hA, hC}, but hA ≻1 hC . Analogously, in problem [EC] defined

for hC in graph ⟨H,EC⟩ we have V = ∅. Therefore there is no outcome corresponding to a Nash

equilibrium, which is a contradiction. This graph represents no extensive-form game.

D. Didactic example of application of Theorem 2

We consider the game in extensive form of Figure 6a) game which can be solved by direct inspection

of the graph. Indeed, let us enumerate the realisations of Nash equilibria of the game by applying

Theorem 2 to every outcome. In this example, the preferences of the players over the outcomes are

respectively u1 : h3 ≻1 h4 ≻1 h5 ≻1 h6 ≻1 h8 ≻1 h7 ≻1 h2 ≻1 h1 and u2 : h1 ≻2 h2 ≻2 h4 ≻2 h8 ≻2 h5 ≻2

h6 ≻2 h7 ≻2 h3. In order to apply Theorem 2 we consider the graph ⟨H,E⟩ of the game depicted in

Figure 6b). By directly inspecting this graph, we achieve the following results.
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• h1 is not an outcome of a Nash equilibrium: h1 is the outcome least preferred by the first player.

There is no strategy of the second player, i.e., there is no maximal clique on the complementary

graph ⟨H,EC⟩ which includes h1 alone;

• h2 is not an outcome of a Nash equilibrium: the only maximal cliques on the complementary

graphs including it are {h2, h5}, {h2, h6} and {h2, h7, h8}, but in none of these cases h2 is the

favourite outcome by the first player. This means that there is no strategy of the second player

such that h2 is the outcome of the best response of the first player;

• h3 is not an outcome of a Nash equilibrium: it is the least preferred outcome by the second

player. Any maximal clique on the complementary graph which includes h3 also includes another

outcome which is preferred by the second player to h3;

• h4 is not an outcome of a Nash equilibrium: every maximal clique on the complementary graph

which includes h4 also includes h3, which is preferred by the first player to h4;

• h5 is a possible outcome of a Nash equilibrium: we identify the maximal cliques {h5, h6, h7}

and {h1, h2, h5} respectively on the graph and its complementary. In both cases h5 is the preferred

outcome, respectively by the second and the first player;

• h6 is not an outcome of a Nash equilibrium: every maximal clique in ⟨H,E⟩ which includes h6

also includes h5, which is preferred by the second player to h6;

• h7 is not an outcome of a Nash equilibrium: every maximal clique on ⟨H,EC⟩ which includes

h7 also includes h8, which is preferred by the first player to h7;

• h8 is a possible outcome of a Nash equilibrium: we identify the maximal cliques {h5, h6, h8}

and {h1, h2, h7, h8} respectively on the graph ⟨H,E⟩ and its complementary ⟨H,EC⟩. In both cases

h5 is the preferred outcome, respectively by the second and the first player.

The only two outcomes which are possible realisations of Nash equilibrium are thus h5 and h8.

It is interesting to notice that they are not Pareto-optimal, since h4 is preferred by both players.

The Subgame Perfect Equilibrium of a game is also a Nash equilibrium, therefore it must be either

of the two outcomes. Indeed, by backward induction it is proven to be h8.

E. Example of formulation of [CL]

Let us consider the graph ⟨H,E⟩ of Figure 7 and evaluate h as possible realisation of a Nash

equilibrium. We would like to answer if h is the best response for a player i (it is not necessary

to specify which player in this mock example), i.e. h to be the best outcome of a strategy. We

assume given that h1 ≻i h and h5 ≻i h. In order to answer this question, we would like to solve

the problem [MC] with input ⟨H,E,h,Xh⟩, where Xh = {h1, h5} and h is just a parameter of the

problem. This corresponds to solve the problem [EC] with input ⟨V,X,E⟩, where V = {h2, h3, h4}

and X = {h1, h5}. We thus look for some elements in V that could guarantee the existence of a



Zappalà et al.: Graph-based approach for enumerating the Nash equilibria
Uploaded to HAL; manuscript no. 1 37

strategy that includes h and none of the elements in X. We apply the system [CL]. For every

vertex i∈ V let us introduce the variable xi ∈ {0,1} which is xi = 1 if vertex i∈ V is included in the

clique. The vertex h2 is not connected neither to h3 nor to h4, therefore the constraints x2+x3 ≤ 1

and x2 + x4 ≤ 1 are added. The only vertex not connected to h1 is vertex h4, therefore it must be

included in the clique: x4 ≥ 1. Both vertices h2 and h3 are connected to h5, therefore at least one

of them must be included in the clique: x2 + x3 ≥ 1. The system [CL] for the graph of Figure 7 is

thus:

x2 +x3 ≤ 1, ▷ (h2, h3) /∈E

x2 +x4 ≤ 1, ▷ (h2, h4) /∈E

x4 ≥ 1, ▷ (h4, h1) /∈E

x2 +x3 ≥ 1, ▷ (h2, h5) /∈E, (h3, h5) /∈E

x2, x3, x4 ∈ {0,1}.

F. [VS] does not provide the tightest bound

Let us apply [V S] to the game of Figure 8a). The sequences are respectively Λ1 =

{∅, a1, a2, a1a3, a1a4} and Λ2 = {∅, b1, b2}. The optimal values are xa1 = 1, xa1a3 = 1, yb2 = 1 and

uV S
1 = u1(h4). Therefore the utility of the first player for outcome h4 provides an upper bound

to the utility of the first player for any Nash equilibrium. However, h4 is not the realisation of a

Nash equilibrium: since h3 ≻1 h4, the first player would never choose action a4 over a3 in a Nash

equilibrium. The reader can verify, by using Algorithm [EA] on the graph of Figure 8b), that h2

is the only realisation of a Nash equilibrium.



Zappalà et al.: Graph-based approach for enumerating the Nash equilibria
38 Uploaded to HAL; manuscript no. 1

G. Best and worst Nash equilibrium

Algorithm 4 [BNE] (WNE) Best (Worst) Nash Equilibrium

INPUT: Game in graph form Γ= ⟨H,E,u⟩

H = order(H,⪰1) ▷ Elements h∈H are ordered from best to worst [from worst to best] w.r.t.

player 1: h⪰1 h
′ iff u1(h)≥ u1(h

′) [iff u1(h)≤ u1(h
′)]

index= 0

do

h=H(index) ▷ Consider outcome h

X1 = {h′ ∈H|(h′, h) /∈E,u1(h
′)>u1(h)} ▷ Init vertex sets and excluding sets

X2 = {h′′ ∈H|(h′′, h)∈E,u2(h
′′)>u2(h)}

V1 = {h′ ∈H \X2|(h′, h)∈E}

V2 = {h′′ ∈H \X1|(h′′, h) /∈E}

solve [NE] giving ⟨V1, V2,X1,X2,E⟩ as input

index= index+1

while [NE] has no solution

OUTPUT: h
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mung des dynamischen preisgleichgewichts. Zeitschrift für die gesamte Staatswissenschaft/Journal of

Institutional and Theoretical Economics H. 2:301–324.

Szymanik J (2013) Backward induction is ptime-complete. International Workshop on Logic, Rationality and

Interaction, 352–356 (Springer).

Von Stengel B (1996) Efficient computation of behavior strategies. Games and Economic Behavior 14(2):220–

246.

Widger J, Grosu D (2009) Parallel computation of nash equilibria in n-player games. 2009 International

Conference on Computational Science and Engineering, volume 1, 209–215 (IEEE).
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Game Computation time (s) Iterations

Label Size Structure [VS-L] [VS-L2] [UBA] [BNE] [WNE] [UBA] [BNE] [WNE]

R4R100 100 R 4.85 3.69 0.09 0.14 0.98 12 12 69

C10R100 100 C 0.32 0.46 <0.01 <0.01 0.10 1 1 30

U4R100 100 U 2.22 2.75 0.02 0.18 0.57 29 29 35

R4R216 216 R 51.34 44.23 <0.01 <0.01 1.53 2 2 124

C6R216 216 C 10.45 22.87 0.04 0.38 9.97 6 7 164

U6R216 216 U 19.43 12.03 0.06 0.61 2.24 39 39 178

R5R324 324 R 324.76 282.29 0.04 2.93 9.35 5 5 287

C18R324 324 C 2.11 2.97 0.01 0.28 0.22 5 5 57

U18R324 324 U 26.42 25.37 0.03 1.48 5.22 13 13 312

R5R400 400 R 512.75 461.24 2.20 2.71 9.49 32 32 334

C20R400 400 C 2.83 2.83 0.03 0.46 0.27 12 12 69

U4R400 400 U 234.33 248.02 0.27 2.21 5.68 60 60 341

R6R512 512 R 1918.39 1469.56 0.53 4.12 26.97 47 78 428

C2R512 512 C 1594.47 1114.76 0.25 0.38 161.49 1 1 317

U8R512 512 U 192.89 176.96 0.27 3.50 16.66 63 89 424

R6R625 625 R > 1h > 1h 0.11 7.18 24.97 15 15 558

C5R625 625 C 95.0 95.92 0.30 2.08 7.77 22 22 182

U4R625 625 U 818.2 854.45 0.04 7.94 29.96 4 4 622

R7R729 729 R > 1h > 1h 11.13 9.31 24.71 56 56 419

C3R729 729 C 104.33 126.89 0.02 3.02 32.75 3 3 244

U14R729 729 U 255.96 247.0 0.17 15.19 29.92 30 45 685

Table 1 Comparison of the CPU time for computation of Algorithms providing bounds to the

utility of NE. Every line is an instance. Running time is measured in seconds. Time limit is set to 1 hour (> 1h

indicates that such limit is achieved). The instances in which [BNE] tightens the bound of [UBA] are underlined.
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Label Structure Utility NE Xavg ttot tavg tmax

R3R729 R R 4 182.0 115.99 0.16 34.46

R3D729 D 18 163.8 31.92 0.04 7.91

R3Z729 Z 4 91.0 10.06 0.01 2.24

R3A729 A 8 133.4 100.32 0.14 6.63

R3F729 F 12 182.0 83.15 0.11 8.23

R3E729 E 729 0.0 0.48 <0.01 <0.01

C3R729 C R 76 182.0 881.46 1.21 4.76

C3D729 D 98 163.7 999.99 1.37 18.79

C3Z729 Z 271 91.1 466.35 0.64 3.64

C3A729 A 90 139.1 1297.1 1.78 9.10

C3F729 F 133 182.0 1039.19 1.43 6.75

C3E729 E 729 0.0 0.46 <0.01 <0.01

U5R729 U R 3 182.0 43.63 0.06 8.55

U5D729 D 7 163.9 20.99 0.03 7.24

U5Z729 Z 1 91.0 3.78 0.01 0.02

U5A729 A 1 137.1 44.55 0.06 8.75

U5F729 F 8 182.0 39.94 0.05 7.67

U5E729 E 729 0.0 0.48 <0.01 <0.01

Table 2 Application of Algorithm [EA] on games of Dataset 2 with size 729. Every line is an instance.

Computation time is in seconds.
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Label Structure Utility NE ttot tavg tmax

R3R729 R R 17.2 206.61 0.28 7.11

C3R729 C 75.2 883.40 1.21 28.89

U5R729 U 2.0 47.42 0.06 9.72

R3D729 R D 38.6 149.10 0.20 5.39

C3D729 C 101.8 1240.58 1.70 69.77

U5D729 U 8.0 12.96 0.02 4.37

R3Z729 R Z 31.4 70.24 0.10 4.01

C3Z729 C 276.6 654.16 0.90 26.68

U5Z729 U 1.8 4.34 0.01 0.02

R3A729 R A 10.0 250.22 0.34 4.96

C3A729 C 95.4 1523.49 2.10 167.65

U5A729 U 1.8 40.07 0.06 7.74

R3F729 R F 91.4 364.85 0.50 6.86

C3F729 C 132.8 1354.45 1.86 121.96

U5F729 U 8.8 58.53 0.08 7.72

Table 3 Application of Algorithms of [EA] to Dataset 3. Every line shows the average value of 5 instances

having the same label. All games have size 729. Computation time is in seconds.
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Label Structure Definition

R Random Every node has a random number of actions.

C Complete Every node has the same number of actions.

U Totally Unbalanced At every node all children but one are outcomes.

Label Utility Definition

R Random ui(h)∼U(0,1), ∀i∈ {1,2}, ∀h∈H

D Discrete ui(h)∼U({1,2,3, . . . ,10}), ∀i∈ {1,2}, ∀h∈H

Z Zero-sum ui(h) = 1, uj(h) = 0, i∼U({1,2}), i ̸= j, ∀h∈H

A Asymmetric ui(h)∼U({1,2,3, . . . ,10}), uj(h) = 0, i∼U({1,2}), i ̸= j, ∀h∈H

F Indifferent u1(h) = u2(h)∼U(0,1), ∀h∈H

E Equal ui(h) = 1, ∀i∈ {1,2}, ∀h∈H

Table 4 Label encoding of the games. Upper table: coding of the structure of the tree. Lower table: coding

of the utility function.
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1

2

h2

b1

1

2

h3

b3

h4

b4

a3

2

h5

b5

h6

b6

a4

b2

a1

h1

a2

(2,0)

(3,4)

(8,11) (1,9) (5,1) (9,3)

Figure 1 An extensive-form game in its representation as a tree. Preferences. The order of preference for

the first player is: h6 ≻1 h3 ≻1 h5 ≻1 h2 ≻1 h1 ≻1 h4. The order of preference for the second player is:

h3 ≻2 h4 ≻2 h2 ≻2 h6 ≻2 h5 ≻2 h1. Strategies. The two players choose respectively s1 and s2 as strategies.

At nodes ∅ and (a1, b2) the first player chooses respectively s1(∅) = a1 and s1(a1, b2) = a4. At nodes

(a1), (a1, b2, a3) and (a1, b2, a4) the second player chooses respectively s2(a1) = b1, s2(a1, b2, a3) = b3 and

s2(a1, b2, a4) = b6.

h1h2

h3 h4 h5 h6

S1 s11 : ∅ 7→ a1; (a1, b2) 7→ a3

s21 : ∅ 7→ a1; (a1,b2) 7→ a4

s31 : ∅ 7→ a2; (a1, b2) 7→ a3

s41 : ∅ 7→ a2; (a1, b2) 7→ a4

{h2, h3, h4}

{h2,h5,h6}

{h1}

H(·)

a) b)

Figure 2 Strategies as maximal cliques. a) Graph representation of the game of Figure 1. b) Every strategy

for the first player correspond to a maximal clique of the graph.
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h

h1

h2

h3

h4

h9

h5

h6

h7

h8

h10

h1

h2

h3

h4

h6

h7

h8

a) b)

Figure 3 Equivalence of problems [MC] and [EC]. a) Let us consider problem [MC] with H =

{h1, h2, h3, h4, h5, h6, h7, h8, h9, h10} and Xh = {h5, h6, h7, h8, h10}. A maximal clique that solves [MC]

is C = {h,h2, h3, h4}; b) Let us consider problem [EC] with V = {h1, h2, h3, h4} and X = {h6, h7, h8}. A

clique that solves [EC] is C′ = {h2, h3}.

hA

hB

hC

hD

hE

h̃A

h̃B

h̃C

h̃D

h̃E
˜̃
hA

˜̃
hB

˜̃
hC

˜̃
hD

˜̃
hE

a) b)

Figure 4 Reduction. a) Problem [DC] with H = {hA, hB , hC , hD, hE} and solution C = {hB , hD}; b) Problem

[CL] with V = H̃ and X = ˜̃H; the solution is given by C = {h̃B , h̃D} ⊂ V .
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hA

hB hC

hD

⟨H,E⟩ ⟨H,EC⟩

h V X V X

hA ∅ {hB} {hC , hD} ∅

hB {hA, hC} ∅ ∅ {hD}

hC {hD} {hB} ∅ {hA}

hD ∅ {hC} {hB} {hA}

Figure 5 Counterexample. Preferences of the players over the outcomes are respectively u1 : hA ≻1 hC ≻1

hD ≻1 hB and u2 : hB ≻2 hC ≻2 hA ≻2 hD.

1

2

1

h1 h2

1

h3 h4

2

h5 h6
1

h7 h8

h1 h2

h3h4

h5 h6

h7 h8

a) b)

Figure 6 Example. a) Game in extensive form. b) Graph form of the game. Preferences of the players over the

outcomes are respectively: u1 : h3 ≻1 h4 ≻1 h5 ≻1 h6 ≻1 h8 ≻1 h7 ≻1 h2 ≻1 h1 and u2 : h1 ≻2 h2 ≻2 h4 ≻2

h8 ≻2 h5 ≻2 h6 ≻2 h7 ≻2 h3.

hh1

h2 h3 h4

h5

Figure 7 Example. System [CL-1] is applied to the graph in figure, with V = {h2, h3, h4} and X = {h1, h5}.



Zappalà et al.: Graph-based approach for enumerating the Nash equilibria
48 Uploaded to HAL; manuscript no. 1

1

2

h2

b1

1

h3

a3

h4

a4

b2

a1

h1

a2

h1h2

h3 h4

a) b)

Figure 8 Upper bound is not a Nash equilibrium. a) Game in extensive form. b) Graph form of the game.

Preferences of the players over the outcomes are respectively: u1 : h3 ≻1 h4 ≻1 h2 ≻1 h1 and u2 : h1 ≻2

h4 ≻2 h2 ≻2 h3.
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Figure 9 Application of Algorithm [EA] to Dataset 2. Times are in seconds. Structure of the game is identi-

fied by colour and shape: blue circle (Random), red plus (Complete), green cross (totally Unbalanced).
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(D)(R)

(Z)

(F)(A)

Figure 10 Computation time distribution for [NE] on outcomes of games belonging to Dataset 3.

Every curve corresponds to the distribution for the outcomes of a single game. Each figure reports on

the performance on the 15 games having the same encoding for the utility function, being respectively

Random (R), Discrete (D), Zero-sum (Z), Asymmetric (A) and Indifferent (F). The distribution curves

represent each a structure: Random (R) in blue, Complete (C) in red and Totally Unbalanced (U) in

green.


