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Abstract

Extreme quantiles are commonly used to assess the risk of extreme
events such as large floods, extreme temperature, financial crisis among
many others. When the underlying distribution belongs to a maximum
domain of attraction, extreme quantile estimation has been widely
studied in the literature but, surprisingly, little work has been dedi-
cated to the construction of an asymptotic confidence interval. This
is precisely the question addressed in this paper where a confidence
interval for extreme quantile is proposed. This confidence interval can
be used whatever the maximum domain of attraction of the distribu-
tion. The convergence of its coverage probability to the nominal one is
established and its finite sample performance is investigated through
a simulation study. An application on lifespan of French supercente-
narians is done.
Keywords: Extreme quantile; confidence interval; maximum domain
of attraction.
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1 Introduction

Let X be a random variable defined on an atomless probability space
(Ω,A,P). We denote by FX(·) := P(X ≤ ·) its cumulative distribution
function and by FX = 1 − FX its survival function. Throughout this pa-
per, we assume that FX is a continuous and strictly increasing function and
that the support S of the distribution is included in [0,∞). The associated
quantile of level β ∈ (0, 1) is given by

QX(β) = F
←
X (β) = inf{x ∈ S|FX(x) ≤ β}.

In various fields of application, large quantiles are commonly used to assess
the risk of extreme events such as large floods, extreme temperature, financial
crisis among many others. More details can be found in the monographs
of Pisarenko and Rodkin [14] and Embrechts et al. [8]. If one observes n
independent realizations of X, a quantile QX(βn) is said to be large if βn → 0

as n → ∞. When βn does not converge too fast to 0, i.e., nβn → ∞, the
quantile can be simply estimated by an order statistic. A more challenging
question arises when nβn → c > 0 i.e., when QX(βn) is an extreme quantile.
In this situation a rough knowledge of the shape of the tail distribution is
required. In this paper, we assume that FX belongs to a maximum domain
of attraction (MDA) that is to say there exist sequences (an) > 0 and (bn)

and a real ξ such that

P
(

max(X1, · · · , Xn)− bn
an

≤ x

)
= exp

(
−(1 + ξx)−1/ξ

)
,

for all x satisfying 1 + ξx > 0. This convergence in distribution can be
reformulated in terms of the quantile function QX . More specifically, FX
belongs to a MDA if and only if there exist a parameter ξ ∈ R and an
auxiliary function a : [1,∞)→ (0,∞) such that for all t > 0,

lim
α→0

QX(tα)−QX(α)

a(α−1)
= Kξ(t

−1) :=

∫ t−1

1

sξ−1ds. (1)

The parameter ξ, called the extreme value index, plays an important role
in modeling extreme events since it controls the tail heaviness of the dis-
tribution. More precisely, if ξ < 0, the right endpoint QX(0) is finite and
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FX decreases at a polynomial rate. When ξ = 0, the survival function de-
creases at an exponential rate and when ξ > 0, the distribution is said to be
heavy-tailed that is to say, for all t > 0,

lim
α→0

QX(tα)

QX(α)
= t−ξ.

In other words, the quantile function QX is heavy-tailed if and only if the
function QX(1/·) is a regularly varying function with index ξ or equivalently,
QX(1/x) = x−ξL(x) where L is a slowly varying function that is to say, for
all t > 0, the ratio L(tx)/L(x) converges to 1 as x→∞.

While the estimation of extreme quantiles has been widely studied in the
literature (see for instance the references [16, 7, 5]), little work has been
dedicated to the construction of an asymptotic confidence interval. This
is precisely the question addressed in this paper. More specifically, for a
preselected level γ ∈ (0, 1), we are searching for positive random variables
Ln,γ and Rn,γ such that

lim
n→∞

P (Ln,γ ≤ QX(βn)) = lim
n→∞

P (Rn,γ ≥ QX(βn)) =
1 + γ

2
.

The random interval [Ln,γ, Rn,γ] is then an asymptotic two-sided confidence
interval of level γ for QX(βn).

In the recent literature, one can mention the existence of three papers ded-
icated to the construction of an asymptotic interval for extreme quantiles.
In the first one (Gardes [9]), the construction is addressed only for quantiles
of order βn with nβn → ∞. The construction of an asymptotic confidence
interval for extreme quantiles (nβn → c > 0) has been tackled in Gardes and
Maistre [10] and Buitendag [4]. In both works, the underlying distribution
is assumed to be heavy-tailed and the proposed confidence intervals are not
suitable when ξ ≤ 0. The novelty brought by this work is the proposition
of an asymptotic confidence interval for extreme quantiles that can be used
whatever the sign of the extreme value index.
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The paper is organized as follows. The proposed confidence interval is intro-
duced in Section 2. Roughly speaking, it is obtained by extrapolating two
order statistics over the range of the data. The estimation of these extrap-
olation factors is considered in Section 3. A general estimation procedure
in presented in Section 3.1 where sufficient conditions for the convergence of
the coverage probability to the nominal one are given. An application to a
classical extreme quantile estimator is given in Section 3.2. The finite sample
behavior of our procedure is investigated on simulated data in Section 4 and
on a real dataset in Section 5. All the proofs are gathered in Section 6.

2 Construction of the confidence interval

Let us consider a random variable X such that (1) holds for the quantile
function QX . Let X1, · · · , Xn be a sample of n independent replications
of X and let X1,n ≤ · · · ≤ Xn,n be the sample arranged in ascending order.
Let us briefly explain the procedure used to find the right bound of the confi-
dence interval, namely the random variable Rn,γ. The same procedure can be
applied to find the left bound Ln,γ. Since the probability space is atomless,
there exist independent standard uniform random variables U1, · · · , Un such
that the random vector (Xn−j,n, j = 0, · · · , n− 1) is distributed as the ran-
dom vector (QX(Uj+1,n), j = 0, · · · , n− 1). Hence, for any integers jR ∈ N,
it is readily seen that

P (Xn−jR,n ≥ QX(βn)) = P (UjR+1,n ≤ βn) = F
(jR+1,n−jR)
Beta (βn) ,

where F (r,s)
Beta is the cumulative distribution function of a Beta distribution

with parameters r > 0 and s > 0. If nβn → c > 0, we have that

lim
n→∞

P (Xn−jR,n ≥ QX(βn)) = lim
n→∞

F
(jR+1,n−jR)
Beta (βn) = F

(jR+1,1)
Gamma (c) ,

where F (r,s)
Gamma is the cumulative distribution function of a Gamma distri-

bution with parameters r > 0 and s > 0, see Lemma 1 for a proof. As a
consequence, for a given level βn and a given probability γ, there is no guaran-
tee of finding an integer jR ∈ N such that P (Xn−jR,n ≥ QX(βn))→ (1+γ)/2.
As an example, if βn = 1/(2n), we have for all j ∈ N that F (j+1,1)

Gamma(1/2) ≤

4



0.39 < (1 + γ)/2 for all γ ∈ (0, 1). It thus appears that for a level βn close
to 0, an extreme order statistic is not large enough to be considered as a
bound of an asymptotic confidence interval for QX(βn). We thus need to
find a positive extrapolation factor tn,R (depending on jR) in order to have
P (tn,RXn−jR,n ≥ QX(βn)) ≈ (1 + γ)/2. To find such a sequence, we use the
methodology introduced in [10]. More specifically, using the same arguments
as above, we get that

P (tn,RXn−jR,n ≥ QX(βn)) = F
(jR+1,n−jR)
Beta

(
FX(t−1n,RQX(βn))

)
.

A good candidate is the sequence tn,R = QX(βn)/QX(an,R(γ)) where, denot-
ing by q(r,s)Beta the inverse of F (r,s)

beta ,

an,R(γ) := q
(jR+1,n−jR)
Beta

(
1 + γ

2

)
. (2)

Of course, the factor tn,R is unknown and need to be estimated by any con-
sistent estimator t̂n,R. An example of an estimator is given later. Finally,
we propose to take for the right bound of the asymptotic confidence in-
terval for QX(βn), the random variable Rn,γ = t̂n,RXn−jR,n. Similarly, we
propose to take Ln,γ = t̂n,LXn−jL,n where t̂n,L is any consistent estimator of
tn,L := QX(βn)/QX(an,L(γ)) where

an,L(γ) := q
(jL+1,n−jL)
Beta

(
1− γ

2

)
. (3)

To sum up, we give below the definition of the two-sided asymptotic confi-
dence interval for QX(βn) that is considered in all what follows.

Definition 1 Let X be a positive random variable such that (1) holds for the
quantile function QX . Let X1, · · · , Xn be n independent replications of X.
For a preselected probability γ ∈ (0, 1), a sequence βn such that nβn → c > 0

and (jL, jR) ∈ N2, the two-sided confidence interval for the extreme quantile
QX(βn) is

CI(γ, βn) :=
[
t̂n,LXn−jL,n , t̂n,RXn−jR,n

]
,

where t̂n,L and t̂n,R are any consistent estimators of the ratios tn,L and tn,R
with

tn,• :=
QX(βn)

QX(an,•(γ))
,
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the symbol • being either L or R.

The confidence interval CI(γ, βn) is thus a rescaled version of the random
interval [Xn−jL,n, Xn−jR,n]. The choice of the two integers jL and jR is left to
the user. A proposition for the couple (jL, jR) is given in the simulation study.

In the next result, we provide sufficient conditions on the estimators t̂n,L and
t̂n,R ensuring that the asymptotic coverage probability of CI(γ, βn) is equal
to γ. Before that, let us remind that a sequence of real random variables Zn is
OP(1) if for all ε > 0, there exist Nε ∈ N and cε > 0 such that for all n ≥ Nε,
P(Zn ∈ [−cε, cε]) > 1− ε. In particular, if Zn converges in distribution, then
Zn = OP(1).

Theorem 1 Assume that (1) holds for QX and let (βn) ∈ (0, 1) be a se-
quence such that nβn → c > 0. If the extrapolation factors t̂n,L and t̂n,R in
Definition 1 are such that σ−1n (tn,•/t̂n,•− 1) = OP(1) where (σn) is a positive
sequence satisfying

lim
n→∞

σn
QX(1/n)

a(n)
= 0, (4)

then the probabilities

P
(
t̂n,LXn−jL,n ≤ QX(βn)

)
and P

(
t̂n,RXn−jR,n ≥ QX(βn)

)
,

both converge to (1 + γ)/2 as n→∞.

From de Haan and Ferreira [11, Lemma 1.2.9], we have

lim
n→∞

a(n)

QX(1/n)
= max(0, ξ).

Hence, condition (4) entails that the sequence σn converges to 0 and thus
that t̂n,• is a consistent estimator of tn,• in the sense that the ratio t̂n,•/tn,•
converges in probability to 1. More specifically, if ξ > 0, condition (4)
reduces to σn → 0. When ξ < 0, we have that QX(1/n) → QX(0) =:

x∗ < ∞ and, according to [11, Lemma 1.2.9 and Corollary 1.2.10], a(n) ∼
−ξ{x∗−QX(1/n)} = nξL(n), where L is a slowly varying function. So, when
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ξ < 0, condition (4) takes the form σnn
−ξ/L(n) → 0. In particular, when

ξ < −1/2, the ratio t̂n,•/tn,• must converges to 1 faster than the classical
parametric rate of convergence n1/2. Constructing an asymptotic confidence
interval for QX(βn) in this situation seems to be a quite difficult task.

3 Estimation of the extrapolation factors

Starting from a sample X1, · · · , Xn of independent copies of X, this section
is dedicated to the estimation of the extrapolation factors tn,L and tn,R. Re-
call that, for some preselected probability γ, these extrapolation factors are
given by

tn,• :=
QX(βn)

QX(an,•(γ))
.

As before, we assume that the quantile function QX satisfies (1).

3.1 General estimation procedure

The natural way to estimate tn,• is to plug any consistent estimator Q̂X,n of
QX(·) in the expression of tn,• leading to the class of estimators

t̂(∗)n,• :=
Q̂X,n(βn)

Q̂X,n(an,•(γ))
. (5)

For this class of estimators, we have the following version of Theorem 1.

Corollary 1 Assume that (1) holds for QX and let (βn) ∈ (0, 1) be a se-
quence such that nβn → c > 0. If there exists a positive sequence (ϑn) with
ϑn/a(n)→ 0 and

ϑ−1n

(
Q̂X,n(un)−QX(un)

)
= OP(1),

for any sequence (un) satisfying nun → d > 0, then, the conclusion of Theo-
rem 1 holds.
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3.2 Application: Moment Estimator

A classical estimator of the extreme quantile QX(un) where the sequence
(un) ∈ (0, 1) satisfies nun → c > 0 as n → ∞ is provided by the Moment
Estimator Q̂(M)

X,n (see for instance de Haan and Ferreira [11, Section 4.3.2])
which is based on the moment statistics

M (j)
n :=

1

kn

kn∑
i=1

(lnXn−i+1,n − lnXn−kn,n)j , j ∈ {1, 2}.

More specifically, for a sequence (kn) ∈ {1, · · · , n}, its expression is given by

Q̂
(M)
X,n (un) := Xn−kn,n + â(M)

n

(
n

kn

)
K
ξ̂
(M)
n

(
kn
nun

)
,

where,

ξ̂(M)
n := M (1)

n + 1− 1

2

(
1− {M

(1)
n }2

M
(2)
n

)−1
,

is the moment estimator of the extreme value index ξ introduced
in Dekkers et al. [6] and

â(M)
n

(
n

kn

)
:= Xn−kn,nM

(1)
n

(
1− ξ̂(M)

n +M (1)
n

)
,

is the moment estimator of the auxiliary function a(n/kn).

To deal with the asymptotic behavior of the Moment Estimator, the rate of
convergence in (1) needs to be specified. The following second-order condition
is then introduced.

(SOC) There exist ρ < 0, ξ 6= ρ and functions a > 0 and A with A(x)→ 0 as
x→∞ such that for all t > 0,

lim
α→0

1

A(α−1)

(
QX(tα)−QX(α)

a(α−1)
−Kξ

(
t−1
))

= Hξ,ρ

(
t−1
)
,

where Hξ,ρ (s) := {Kξ+ρ(s)−Kξ(s)}/ρ.
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A detailed discussion on this condition can be found in the monographs of
Beirlant et al. [2, Section 3.3] and de Haan and Ferreira [11, Section 2.3].
The second-order parameter ρ < 0, controls the rate of convergence in (1):
the larger the value of ρ, the slower the convergence. Note that when there
exists an auxiliary function a such that

QX(tα)−QX(α)

a(α−1)
= Kξ(t

−1),

the second-order parameter ρ is by convention equal to −∞. From [11,
Lemma B.3.16], if QX satisfies the second-order condition (SOC) then, there
exist ρ′ ∈ [0, ρ] and a function B with B(x)→ 0 as x→∞ such that

lim
α→0

1

B(α−1)

(
lnQX(tα)− lnQX(α)

a(α−1)/QX(α)
−Kξ−

(
t−1
))

= Hξ−,ρ′
(
t−1
)
, (6)

where ξ− := min(0, ξ) as before. Note that the function B is regularly
varying with index ρ′ and, as a consequence, A(x) = O(B(x)).

The asymptotic behavior of Q̂(M)
X,n (un) has been established in de Haan and

Ferreira [11, Section 4.3.2]. Let us recall the obtained result.

Proposition 1 Assume that the second-order condition (SOC) holds. For
any intermediate sequence (kn) satisfying k1/2n B(n/kn) → λ ∈ R where B
satisfies (6), we have, for any sequence (un) with nun → c > 0,

{ϑ(M)
n }−1

(
Q̂

(M)
X,n (un)−QX(un)

)
= OP(1),

where

ϑ(M)
n = k−1/2n a

(
n

kn

)∫ kn

1

sξ−1 ln(s)ds.

The corresponding asymptotic confidence interval as defined in Definition 1
is given by

CI(M)(γ, βn) :=
[
t̂
(M)
n,LXn−jL,n , t̂

(M)
n,RXn−jR,n

]
, (7)

with

t̂(M)
n,• =

Q̂
(M)
X,n (βn)

Q̂
(M)
X,n (an,•(γ))

, • ∈ {L,R}.
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According to Corollary 1, the random interval CI(M)(γ, βn) is an asymptotic
two-sided confidence interval for QX(βn) if the condition

lim
n→∞

ϑ
(M)
n

a(n)
= lim

n→∞

a(n/kn)

a(n)

1

k
1/2
n

∫ kn

1

sξ−1 ln(s)ds = 0, (8)

holds. We have the following result.

Corollary 2 Assume that the second-order condition (SOC) holds for QX

and let (βn) be a sequence such that nβn → c > 0.

i) If ξ > −1/2, conditions of Proposition 1 hold by taking for (kn) any
sequence asymptotically proportional to nδ with δ = −2(η+ρ′)/(1−2ρ′)

where η ∈ (0,−ρ′) can be taken as close as we want to 0.

ii) If ξ < −1/2, there does not exist a sequence (kn) for which condition (8)
is satisfied.

A clear conclusion cannot be given in the situation where ξ = −1/2. It
depends on the asymptotic behavior of the auxiliary function a.
When ξ < −1/2, the moment estimator cannot be used to construct a valid
confidence interval. As mentioned before, in this case, we need to use an
estimator of tn,• that converges faster than the parametric rate n1/2. Up to
our knowledge, such an estimator is not available in the literature.
We conclude this section by a focus on the situation where QX is heavy-
tailed (i.e., ξ > 0). It is well known that for any intermediate sequence
(kn) (i.e., kn → ∞ and n/kn → ∞ as n → ∞) and any sequence (un) with
nun → c > 0, the Weissman estimator [16] given by

Q̂
(W )
X,n (un) := Xn−kn,n

(
nun
kn

)−ξ̂n
,

where ξ̂n is the classical Hill estimator [12], is a consistent estimator of
QX(βn) (see de Haan and Ferreira [11, Theorem 4.3.8]). Replacing in (5),
Q̂X,n by the Weissman estimator leads to the asymptotic confidence interval
for QX(βn) given by

CI(W )(γ, βn) :=

[(
βn

an,L(γ)

)−ξ̂n
Xn−jL,n ,

(
βn

an,R(γ)

)−ξ̂n
Xn−jR,n

]
. (9)
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This random interval is slightly different from the confidence interval intro-
duced in Gardes and Maistre [10]. The difference lies in the choice of jL and
jR. In (9), jL and jR are assumed to be fixed (independent of the sample
size n) while in [10], jL = jR = jn where (jn) is an intermediate sequence. Of
course, the confidence interval (9) is only adapted to heavy-tailed quantiles.

4 Simulation study

In this section, we are interested in the behavior of the confidence interval
CI(M)(γ, βn) for QX(βn) when a sample of size n ∈ {200; 500; 1,000; 2,000} is
observed. For this study, we take γ = .95 and βn = 1/n. Several distributions
are considered. The two distributions below correspond to the case ξ > 0

i.e., to heavy-tailed quantiles.

• Absolute student distribution − The quantile function is given for
all u ∈ (0, 1) by QX(u) = qt(1 − u/2;µ), where qt(·;µ) is the quantile
function of a Student distribution with µ > 0 degree of freedom. The
extreme-value index is ξ = 1/µ and the second-order parameter is
ρ = −1.

• Burr distribution − For κ > 0 and c > 0, the quantile function is
given for all u ∈ (0, 1) by QX(u) = {u−1/κ−1}1/c. For this distribution,
ξ = 1/(cκ) and ρ = −1/κ.

The extreme value index of the next three distributions is ξ = 0. In this
case, the distribution is said to be light-tailed.

• Exponential distribution − For all values of the rate parameter
λ > 0, the second-order parameter is ρ = −∞.

• Normal distribution − The second-order parameter is ρ = 0 what-
ever the mean and the standard deviation of the distribution.

• Log-Normal distribution − For µ ∈ R and σ2 > 0, the quantile
function is given for all u ∈ (0, 1) by QX(u) = exp{qN(u;µ, σ2)}, where
qN(·;µ, σ2) is the quantile function of a normal distribution with mean µ
and variance σ2. The second-order parameter is ρ = 0.
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Finally, the following distributions belong to a MDA with a negative extreme
value index.

• Beta distribution − For α > 0 and β > 0, the probability density
function is proportional to xα−1(1− x)β−1. The extreme value index is
ξ = −1/β and the second-order parameter ρ = −∞.

• Reverse Burr distribution − For κ > 0 and c > 0, the quantile
function is given for all u ∈ (0, 1) by QX(u) = 1−{u−1/κ−1}−1/c. The
extreme value index and the second-order parameter are ξ = −1/(cκ)

and ρ = −1/κ.

As noticed in the introduction, few works are dedicated to the construction
of a confidence interval for an extreme quantile. We can however mention
the papers of Buitendag et al. [4] and Gardes and Maistre [10] where this
question has been tackled in the case where the underlying distribution is
heavy-tailed. As mentioned at the end of Section 3.2, the interval proposed
in [10] is a slightly different version of the interval CI(W )(γ, βn) given in (9)
which is obtained by using the Weissman estimator instead of the Moment
Estimator Q̂(M)

X,n . Without going further into details, Gardes and Maistre [10]
proposed to use the same intermediate sequence (jn) instead of the integers
jL and jR in (9). In other words, the left and right bounds in [10] are ex-
trapolations of the intermediate order statistic Xn−jn,n while in CI(W )(γ, βn),
the left (resp. right) bound in an extrapolation of the extreme order statis-
tic Xn−jL,n (resp. Xn−jR,n). Moreover, Gardes and Maistre [10] introduced a
bias-reduced version of their interval (denoted hereafter CI(BR)(γ, βn)) whose
performance has been compared to the one of the interval introduced in
Buitendag et al. [4]. It appears that the bias-reduced confidence interval
in Gardes and Maistre [10] is most of the time associated to a better (or
at least equivalent) coverage probability. For the two heavy-tailed distribu-
tions in our simulation study, we thus compare the new confidence interval
CI(M)(.95, 1/n) to the bias-reduced interval CI(BR)(.95, 1/n) in [10]. The ac-
curacy of the confidence interval CI(M)(.95, 1/n) is evaluated by

E(M)(kn) :=
1

2

{
|γL(kn)− .975|+ |γR(kn)− .975|

}
,
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where
γL(kn) := P

(
t̂
(M)
n,LXn−jL,n ≤ QX(1/n)

)
,

and
γR(kn) := P

(
t̂
(M)
n,RXn−jR,n ≥ QX(1/n)

)
.

For of CI(M)(.95, 1/n), a good performance in terms of coverage probability
corresponds to a value of E(M)(kn) close to 0. Of course, the true value of
E(M)(kn) is unknown but it can be approximated with a desired precision by
means of a Monte Carlo (MC) procedure. In this study, the MC procedure is
done by generating N = 25,000 independent samples. When the distribution
is heavy-tailed, the same quantity is computed for the bias-reduced interval
CI(BR)(.95, 1/n) and it is denoted E(BR)(kn).

Selection of the hyper-parameters

First, for a heavy-tailed distribution, the interval CI(BR)(.95, 1/n)

depends on the choice of two intermediate sequences: a sequence (kn)

used to compute the Weissman estimator and a sequence (jn) used in
the intermediate order statistic Xn−jn,n. The authors suggest to take
jn = max{3, bln.85(kn)c}. The same choice is adopted in this simulation
study. The sequence (kn) is selected by using the procedure described
in [10]. The obtained sequence is denoted (k̂

(BR)
n ).

For the interval CI(M)(.95, 1/n), which can be used whatever the value
of the extreme value index, the choice of two integers jL and jR and of an
intermediate sequence (kn) are required. The integers jL and jR are selected
in order to minimize the extrapolation factors t̂(M)

n,L and t̂(M)
n,R in CI(M)(γ, βn).

In other words, we take jL and jR so that an,L(.95) = q
(jL+1,n−jL)
Beta (.025) and

an,R(.95)q
(jR+1,n−jR)
Beta (.975) are as near as possible to βn = 1/n that is to say

jL = arg min
j∈N

∣∣∣∣q(j+1,n−j)
Beta (.025)− 1

n

∣∣∣∣ and jR = arg min
j∈N

∣∣∣∣q(j+1,n−j)
Beta (.975)− 1

n

∣∣∣∣ .
For all n ∈ {200; 500; 1,000; 2,000}, we have jL = 3 and jR = 0.
To select the number of observations kn used for the Moment Estima-
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tor, we consider a method based on the excesses over a random thresh-
old that has been proposed by Hüsler et al. [13]. Let us briefly de-
scribe this selection procedure. For a given intermediate sequence (kn),
let {Zi = Xn−i+1,n − Xn−kn,n, i = 1, · · · , kn} be the kn excesses over the
random threshold Xn−kn,n. From [11, Lemma 3.4.1], given Xn−kn = t, the
random vector (Z1, · · · , Zkn) is distributed as the random vector of order
statistics (Z?

kn,kn
, · · · , Z?

1,kn
) obtained from independent and identically dis-

tributed random variables Z?
1 , · · · , Z?

kn
. Moreover, under (1), for t large

enough, the common distribution of the Z?
i can be approximated by a gener-

alized Pareto (GP) distribution with cumulative distribution function given
by

Hξ

(
x

f(t)

)
:= 1−

(
1 + ξ

x

f(t)

)−1/ξ
for all x > 0 such that 1 + ξx/f(t) > 0, where f(t) = a(1/(1 − FX(t))).
Hence, since the intermediate order statistic Xn−kn,n is a consistent estima-
tor of QX(kn/n) we can reasonably assume that, for n large enough and for a
well chosen sequence (kn), the random variables Z?

1 , · · · , Z?
kn

are independent
with common distribution function Hξ(·/a(n/kn)) and consequently that the
random vector (Hξ(Z1/a(n/kn)), · · · , Hξ(Zkn/a(n/kn))) is distributed as the
order statistics (Ukn,kn , · · · , U1,kn) of a standard uniform distribution. Replac-
ing ξ and a(n/kn) by their moment estimators ξ̂(M)

n and â(M)
n (n/kn) yields to

the discrepancy measure defined by

D(kn) :=
1

kn

kn∑
i=1

∣∣∣∣∣Hξ̂
(M)
n

(
Zi

â
(H)
n (n/kn)

)
− kn − i+ 1

kn + 1

∣∣∣∣∣ .
In view of the previous discussion, if (kn) is well chosen, the discrepancy
measure D(kn) should be close to 0. The selected value of kn is thus given
by

k̂(M)
n := arg min

k∈{k1,··· ,k2}
D(k),

where {k1, · · · , k2} ⊂ {1, · · · , n}. In this simulation study, we take k1 =

b.02nc and k2 = b.8nc.
The results are gathered in Tables 1 to 5. Let us first emphasize that for all
the considered distributions and for all sample sizes, the choice kn = k̂

(M)
n

14



for the confidence interval CI(M)(.95, 1/n) leads to better results in terms
of coverage probability, than the arbitrary choice kn = bn/5c. Note also
that, as expected, the accuracy measure E(M)(k̂

(M)
n ) decreases as the sample

size increases. Next, even if CI(M)(.95, 1/n) is not specifically dedicated for
heavy-tailed distributions (while CI(BR)(.95, 1/n) is), its accuracy is better
for the student distribution with µ = 2 and the Burr distribution as soon as
n ≥ 500.

5 Real data study

Jeanne Calment was a French supercentenarian (i.e., a person who has
reached the age of 110 years) who was born on 21 February 1875 and died
on 4 August 1997 at the age of 122 years and 164 days. This exceptional
longevity makes her the longest-living human at least among those whose
birth and death dates could be verified. To get an idea of this exceptional
lifespan, the second longest human lifespan observed in France (and in Eu-
rope) was 118 years and 341 days.
We would like to check whether Jeanne Calment’s lifespan is an outlier or
not. For this purpose, we compare her with French supercentenarians born
during a similar period. Our study is based on the International Database
on Longevity (IDL) which is the product of an international collaboration
of several statistical offices and a large number of experts. This database
contains birth and death dates of supercentenarians for 13 countries, and
semi-supercentenarians (persons with a lifespan of between 105 and 110 years
old) for 10 countries.
The population chosen for our comparison is the French supercentenarians
and semi-supercentenarians born between 1890 and 1899. The number of ob-
servations per year over this period is comparable ranging from 162 for the
year 1890 to 310 for the year 1898. We denote by x1, · · · , xn the lifespans
in years of the n = 2400 individuals in the study. We assume that these
observations are realizations of n independent replications X1, · · · , Xn of a
random variable X. In terms of the years studied and the period covered by
the IDL (1978-2018), none of the persons concerned is still alive. This allows
us to state that the variable X is not right-censored because of omissions of

15



supercentenarians not included in the sample due to their longevity. We can
consider that the lifespan of Jeanne Calment is not an outlier if it is close
to the 1/2400-quantile which is the lifespan that is expected to be observed
every 2400 people over the age of 105. We thus check if Jeanne Calment’s
lifespan belongs to the observed 95% confidence interval for QX(1/2400).
We proceed with the confidence interval based on the Moment Estimator
(see Section 3.2). The different parameters are taken following the procedure
described in section 4. The obtained parameters are jL = 3, jR = 0 and
k̂
(M)
n = 1388. The extreme value index is estimated by ξ̂X = −0.059 and

the observed confidence interval is [113.8; 116.1]. Clearly, the value 122.5
is much larger than the upper bound. It thus seems that Jeanne Calment’s
lifespan can be considered as an outlier.
To go further, for each year, the 95% confidence intervals for the 1/250-th
quantile are represented in Figure 1. As expected, the lifespan of Jeanne
Calment is clearly larger the all the upper bounds. We also note that the
estimates of the extreme value index are always close to 0. This is in line
with several studies such as the one of Alvarez et al. [1] where it is shown
that the risk of dying appears constant over the age of 105. This surprising
phenomenon is known as the "mortality plateau". In other words, it seems
that X follows an exponential law (constant hazard rate).

6 Proofs

6.1 Preliminary results

Lemma 1 For all integer j and for all δ ∈ (0, 1),

lim
n→∞

nq
(j+1,n−j)
Beta (δ) = q

(j+1,1)
Gam (δ),

where q(r,s)Gam is the quantile function of a Gamma distribution with parameters
r > 0 and s > 0.

Proof − Let us first give some notations. Let E1, · · · be independent stan-
dard exponential random variables and, for k ∈ N\{0}, let Tk := E1+· · ·+Ek.
The distribution of Tk is then a Gamma distribution with parameters k and 1.
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From Rényi’s representation of ordered standard uniform random variables,
the random vector (Uj+1,n, j = 0, · · · , n − 1) is distributed as the random
vector (Tj+1/Tn+1, j = 0, · · · , n − 1). Since Uj+1,n is distributed according
to a Beta distribution with parameters j + 1 and n− j, we have

P
(
nTj+1

Tn+1

≤ nq
(j+1,n−j)
Beta (δ)

)
= δ.

Moreover, from the law of large numbers, n/Tn+1 converges almost surely
to 1 and thus nTj+1/Tn+1 converges in distribution to a Gamma distribution
with parameters k and 1. As a consequence, since the cumulative distribution
function F (j+1,1)

Gam of a Gamma distribution is continuous, we have∣∣∣F (j+1,1)
Gam

(
nq

(j+1,n−j)
Beta (δ)

)
− δ
∣∣∣ ≤ sup

t∈R

∣∣∣∣F (j+1,1)
Gam (t)− P

(
nTj+1

Tn+1

≤ t

)∣∣∣∣→ 0,

as n→∞. We conclude the proof by using the continuity of q(j+1,n−j)
Beta . �

Lemma 2 Let f (r,s)
Beta be the density function of a Beta distribution with pa-

rameters r > 0 and s > 0. For any sequence (zn) ∈ (0, 1) such that
nzn → c > 0 as n→∞ and for any positive integer j, we have

lim
n→∞

1

n
f
(j+1,n−1)
Beta (zn) =

cje−c

j!
.

Proof − The density of a Beta distribution with parameters j+ 1 and n− j
is given by

f
(j+1,n−j)
Beta (zn) =

n!

j!(n− j − 1)!
zjn(1− zn)n−j−1.

Since nzn → c > 0, it is readily seen that zjn ∼ cjn−j and (1−zn)n−j−1 → e−c

as n→∞. Hence,

f
(j+1,n−j)
Beta (zn) ∼ cje−c

j!

n!

nj(n− j − 1)!
.

Stirling’s formula ensures that, as n → ∞, we have n! ∼
√

2πnn+1/2e−n.
Replacing in the above expression n! and (n − j − 1)! by their equivalents
leads to

n!

nj(n− j − 1)!
∼ n,
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and the proof is complete. �

From [11, Theorem B.2.21], condition (1) on the quantile function QX is
equivalent to

lim
n→∞

FX(xn + tg(xn))

FX(xn)
=

1

K←ξ (t)
, (10)

where (xn) is a sequence converging to the right endpoint QX(0) and g(x) :=

a(1/FX(x)). A generalization of (10) when t is replaced by a sequence tn → t0
was proved in [5, Lemma 2].

Lemma 3 Assume that (1) holds and let (xn) be a sequence converging to
the right endpoint QX(0). For all sequence (tn) such that tn → t0, if there
exists η > 0 for which 1 + ξt0 ≥ η then,

lim
n→∞

FX(xn + tng(xn))

FX(xn)
=

1

K←ξ (t0)
.

6.2 Proofs of main results

6.2.1 Proof of Theorem 1

We need to prove that

P
(
t̂n,LXn−jL,n ≤ QX(βn)

)
→ 1 + γ

2
, (11)

and
P
(
t̂n,RXn−jR,n ≥ QX(βn)

)
→ 1 + γ

2
. (12)

We only prove (11), the proof of (12) being similar. Let ε > 0. By assump-
tion, there exist cε > 0 and Nε ∈ N such that for all n ≥ Nε,

P

(
An,ε :=

{
σ−1n

(
tn,L

t̂n,L
− 1

)
∈ [−cε, cε]

})
≥ 1− ε,
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where we recall that tn,L := QX(βn)/QX(an,L(γ)). We have the decomposi-
tion

P
(
t̂n,LXn−jL,n ≤ QX(βn)

)
= P

({
t̂n,LXn−jL,n ≤ QX(βn)

}
∩ An,ε

)
+ P

({
t̂n,LXn−jL,n ≤ QX(βn)

}
∩ Ω \ An,ε

)
=: T1,n + T2,n.

Obviously,
0 ≤ T2,n ≤ ε, (13)

and thus T2,n → 0 as n→∞. Let us focus on the term T1,n. We have

T1,n = P

({
FX (Xn−jL,n) ≥ FX

(
QX(βn)

t̂n,L

)}
∩ An,ε

)
.

Let xn,L := QX(an,L(γ)). When the event An,ε occurs, we have for all n ≥ Nε,

FX (xn,L + sn,εg (xn,L)) ≤ FX

(
QX(βn)

t̂n,L

)
≤ FX (xn,L − sn,εg (xn,L)) ,

where g(y) = a(1/FX(y)) and sn,ε := cεσnxn,L/g(xn,L). Lemma 1 entails that
an,L(γ) is asymptotically proportional to 1/n. Using the fact that QX and a
are regularly varying functions, respectively with indices max(0, ξ) and ξ,
we get that sn,ε is asymptotically proportional to QX(1/n)/a(n). Hence, by
assumption, sn,ε → 0 as n → ∞. Furthermore, xn,L converges to the right
endpoint QX(0) since an,L(γ) converges to 0. We can thus apply Lemma 3
leading to

FX (xn,L ± sn,εg (xn,L)) ∼ FX (xn,L) = an,L(γ).

As a consequence, there exists N (∗)
ε ∈ N such that for all n ≥ max(Nε, N

(∗)
ε ),

an,L(γ)(1− ε) ≤ FX

(
QX(βn)

t̂n,L

)
≤ an,L(γ)(1 + ε).

Note that FX (Xn−jL,n) is distributed as a Beta distribution with parameters
jL + 1 and n− jL. We obtain for n ≥ max(Nε, N

(∗)
ε ),

T1,n ≤ P
({
FX (Xn−jL,n) ≥ an,L(γ)(1− ε)

}
∩ An,ε

)
≤ P

(
FX (Xn−jL,n) ≥ an,L(γ)(1− ε)

)
= F

(jL+1,n−jL)
Beta (an,L(γ)(1− ε)) .
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Moreover, still for n ≥ max(Nε, N
(∗)
ε ),

T1,n ≥ P
({
FX (Xn−jL,n) ≥ an,L(γ)(1 + ε)

}
∩ An,ε

)
= P

(
FX (Xn−jL,n) ≥ an,L(γ)(1 + ε)

)
− P

({
FX (Xn−jL,n) ≥ an,L(γ)(1 + ε)

}
∩ Ω \ An,ε

)
≥ F

(jL+1,n−jL)
Beta (an,L(γ)(1 + ε))− ε.

To sum up, we have proved that for all ε > 0 and for all n ≥ max(Nε, N
(∗)
ε ),

F
(jL+1,n−jL)
Beta (an,L(γ)(1 + ε))− ε ≤ T1,n ≤ F

(jL+1,n−jL)
Beta (an,L(γ)(1− ε)) .

To prove that T1,n → 0 and to conclude the proof, it remains to show that

lim
n→∞

F
(jL+1,n−jL)
Beta (an,L(γ)(1± ε)) =

1 + γ

2
. (14)

Recall that F (jL+1,n−jL)
Beta (an,L(γ)) = (1+γ)/2. The mean value theorem entails

that there exists κ ∈ (0, 1) such that

F
(jL+1,n−jL)
Beta (an,L(γ)(1± ε)) =

1 + γ

2
∓ εan,L(γ)f

(jL+1,n−jL)
Beta (an,L(γ)(1± κε)) .

From Lemma 1, there exists c1 = c1(γ, jL) > 0 such that an,L(γ) ∼ c1/n.
Hence, from Lemma 2

f
(jL+1,n−jL)
Beta (an,L(γ)(1± κε)) ∼ n

jL!
[c1(1± κε)]jL exp[−c1(1± κε)] =: nc2.

It is then readily seen that there exists positive constants c3 and c4 such that
for all ε > 0 and for n large enough,

1 + γ

2
− c3ε ≤ F

(jL+1,n−jL)
Beta (an,L(γ)(1± ε)) ≤ 1 + γ

2
+ c4ε,

proving (14). �

6.3 Proof of Corollary 1

By assumption, nβn → c > 0 and, from Lemma 1, there exists c∗ > 0 such
that nan,•(γ)→ c∗. Hence, using the assumption on the asymptotic behavior
of the extreme quantile estimator Q̂X,n, we get

t̂(∗)n,• = tn,•

(
1 + ϑn/QX(βn)Zn

1 + ϑn/QX(an,•(γ))Z∗n

)
,
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where Zn = OP(1) and Z∗n = OP(1). Let ξ+ := max(0, ξ). From [11, Lemma
1.2.9 and Corollary 1.2.10], we have as n→∞ that QX(βn) ∼ c−ξ+QX(1/n)

and QX(an,•(γ)) ∼ {c∗}−ξ+QX(1/n). Moreover, since a(n)/QX(1/n) → ξ+,
it is readily seen that assumption ϑn/a(n)→ 0 entails that ϑn/QX(1/n)→ 0.
We deduce from these results that

t̂
(∗)
n,•

tn,•
− 1 = OP

(
ϑn

QX(1/n)

)
.

An aplication of Theorem 1 with σn = ϑn/QX(1/n) concludes the proof. �

6.4 Proof of Corollary 2

Proof of part i): First, assume that ξ > 0. From [11, Remark 4.3.3] and since
kn →∞, we have as n→∞∫ kn

1

sξ−1 ln(s)ds ∼ 1

ξ
kξn ln(kn).

Moreover, the auxiliary function a is regularly varying with index ξ > 0

(see [11, Lemma 1.2.9 and Corollary 1.2.10]). Hence, there exists a slowly
varying function L such that

a(n/kn)

a(n)
= k−ξn

L(n/kn)

L(n)
.

We then get that as n→∞,

ϑ
(H)
n

a(n)
∼ 1

ξ
k−1/2n

L(n/kn)

L(n)
ln(kn).

Taking kn asymptotically equivalent to nδ with δ > 0 is sufficient to ensure
that ϑ(H)

n /a(n)→ 0 and it is readily seen that conditions kn →∞, n/kn →∞
and k

1/2
n B(n/kn) → λ ∈ R are checked if δ = −2(η + ρ′)/(1 − 2ρ′) where

η ∈ (0,−ρ′) can be taken as close as we want to 0.
Assume now that ξ = 0. We have from [11, Remark 4.3.3] that, as n→∞,∫ kn

1

s−1 ln(s)ds ∼ 1

2
ln2(kn).

21



Since a is in this case a slowly varying function, it is easy to check that
ϑ
(H)
n /a(n) → 0 for any sequence (kn) which is asymptotically equivalent to
nδ with δ > 0. We next conclude as in the case ξ > 0.
Finally, if ξ ∈ (−1/2, 0), we have from [11, Remark 4.3.3] that,

lim
n→∞

∫ kn

1

sξ−1 ln(s)ds =
1

ξ2
.

and thus, as n→∞,

ϑ
(M)
n

a(n)
∼ 1

ξ2
k−(ξ+1/2)
n

a(n/kn)

a(n)
. (15)

Since a is a slowly varying function, we conclude as in the case ξ = 0.

Proof of part ii): We start with (15). It appears that

ϑ
(M)
n

a(n)
∼ U(n/kn)

U(n)
,

where U is a regularly varying function with index ξ + 1/2 < 0. Using [3,
Theorem 1.5.2], since kn → ∞ and n/kn → ∞, we have for any a > 0 and
for n large enough,∣∣∣∣ U(n)

U(n/kn)
− kξ+1/2

n

∣∣∣∣ ≤ sup
λ≥a

∣∣∣∣U(λn/kn)

U(n/kn)
− λξ+1/2

∣∣∣∣→ 0.

Hence, since kξ+1/2
n → 0, we have U(n)/U(n/kn) → 0 proving that, for any

sequence (kn) satisfying kn →∞ and n/kn →∞, ϑ(M)
n /a(n)→∞. �
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n = 200 n = 500 n = 1000 n = 2000

E(M)(k̂
(M)
n ) 2.046 % 1.45 % 0.970 % 0.614 %

E(BR)(k̂
(BR)
n ) 0.447 % 1.747 % 2.338 % 2.835 %

E(M)(bn/5c) 3.274 % 2.194 % 1.398 % 0.830 %

E(BR)(bn/5c) 0.350 % 0.954 % 1.912 % 1.828 %

Table 1: Student distribution with µ = 2. Value of the accuracy measures
E(M)(kn) and E(BR)(kn) for different choice of the intermediate sequence (kn).

n = 200 n = 500 n = 1000 n = 2000

E(M)(k̂
(M)
n ) 1.526 % 0.932 % 0.622 % 0.292 %

E(BR)(k̂
(BR)
n ) 1.420 % 0.585 % 0.261 % 0.482 %

E(M)(bn/5c) 2.948 % 1.732 % 1.020 % 0.52 %

E(BR)(bn/5c) 2.31 % 0.970 % 0.709 % 0.268 %

Table 2: Student distribution with µ = 1. Value of the accuracy measures
E(M)(kn) and E(BR)(kn) for different choice of the intermediate sequence (kn).
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n = 200 n = 500 n = 1000 n = 2000

E(M)(k̂
(M)
n ) 2.052 % 1.374 % 0.920 % 0.544 %

E(BR)(k̂
(BR)
n ) 0.125 % 1.364 % 1.911 % 2.102 %

E(M)(bn/5c) 3.352 % 2.248 % 1.434 % 0.852 %

E(BR)(bn/5c) 0.620 % 0.554 % 1.382 % 1.400 %

Table 3: Burr distribution with κ = 1 and c = 1/2. Value of the accuracy
measures E(M)(kn) and E(BR)(kn) for different choice of the intermediate
sequence (kn).

95% CIs for the 1/250th quantile
in French people aged 105 or more
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ξ̂=0.002

1893

n = 238

ξ̂=−0.012

1894

n = 239

ξ̂=0.036

1895

n = 246

ξ̂=0.001

1896

n = 276

ξ̂=−0.040
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ξ̂=−0.131

1898

n = 310

ξ̂=−0.102
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n = 277

ξ̂=−0.242

10
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11
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12
0
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5

95% confidence interval
{Xi, 1 ≤ i ≤ n}
Xn−jR:n

Xn−jL:n

dean of humanity (born 1875, France)

Figure 1: Confidence intervals of level 95% for the lifespan of French super-
centenarians for the years 1890 to 1899.
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n = 200 n = 500 n = 1000 n = 2000

Exponential distribution with λ = 1/2

E(M)(k̂
(M)
n ) 1.206 % 0.892 % 0.452 % 0.146 %

E(M)(bn/5c) 2.106 % 1.310 % 0.500 % 0.146 %

Normal distribution with µ = 0 and σ2 = 1

E(M)(k̂
(M)
n ) 1.776 % 1.782 % 1.410 % 1.260 %

E(M)(bn/5c) 2.334 % 2.116 % 1.898 % 1.812 %

Log-Normal distribution with µ = 0 and σ2 = 1

E(M)(k̂
(M)
n ) 0.886 % 0.418 % 0.334 % 0.582 %

E(M)(bn/5c) 2.316 % 1.174 % 0.284 % 0.486 %

Table 4: Gumbel MDA. Value of the accuracy measure E(M)(kn) for different
choice of the intermediate sequence (kn).
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n = 200 n = 500 n = 1000 n = 2000

Beta distribution with α = 4 and β = 4

E(M)(k̂
(M)
n ) 2.136 % 2.168 % 2.174 % 1.930 %

E(M)(bn/5c) 2.442 % 2.256 % 2.226 % 2.206 %

Reverse Burr distribution with κ = 1 and c = 1/4

E(M)(k̂
(M)
n ) 1.478 % 1.462 % 1.138 % 0.890 %

E(M)(bn/5c) 2.190 % 2.078 % 1.918 % 1.774 %

Reverse Burr distribution with κ = 1 and c = 1/2

E(M)(k̂
(M)
n ) 0.736 % 0.848 % 0.752 % 0.596 %

E(M)(bn/5c) 2.082 % 2.508 % 2.886 % 3.112 %

Table 5: Weibull MDA. Value of the accuracy measure E(M)(kn) for different
choice of the intermediate sequence (kn).
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