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The reflection coefficient of a fractional reflector

Laurent Demanet* and Olivier Lafitte��

May 6, 2023

Abstract

This paper considers the question of characterizing the behavior of waves reflected
by a fractional singularity of the wave speed profile, i.e., of the form

c(x1, x2, x3) = c0

(
1 +

(x1
ℓ

)α
+

)−1/2

,

for α > 0 not necessarily integer. We first focus on the case of one spatial dimension
and a harmonic time dependence. We define the reflection coefficient R from a limiting
absorption principle. We provide an exact formula for R in terms of the solution to a
Volterra equation. We obtain the asymptotic limit of this coefficient in the large ℓω/c0
regime as

R =
Γ(α+ 1)

(2i)α+2

( c0
ℓω

)α
+ lower order terms.

The amplitude is proportional to ω−α, and the phase rotation behavior is obtained
from the i−(α+2) factor. The proof method does not rely on representing the solution
by special functions, since α > 0 is general.

In the multi-dimensional layered case, we obtain a similar result where the nondimen-
sional variable ℓω/c0 is modified to account for the angle of incidence. The asymptotic
analysis now requires the waves to be non-glancing. The resulting reflection coefficient
can now be interpreted as a Fourier multiplier of order −α.

In practice, the knowledge of the dependency of both the amplitude and the phase
of R on ω and α might be able to inform the kind of signal processing needed to
characterize the fractional nature of reflectors, for instance in geophysics.

Acknowledgments

L.D. is supported in part by the Air Force Office of Scientific Research under grant FA9550-
17-1-0316. O. L. thanks MIT for their hospitality during short visits from 2013 to 2022

*Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge,
MA 02139, USA

�LAGA, UMR7539, CNRS and USPN, 99 avenue Jean-Baptiste Clément, F-93430
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1 Introduction

In this paper, we study solutions of the acoustic wave equation in three dimensions,

(1.1)

(
1

c2(x)
∂t2 −∆x

)
u = 0, x = (x1, x2, x3) ∈ R3,

where c(x) presents a singularity of fractional type across the planar interface x1 = 0.

1.1 Motivation

Geophysics offers many scenarios of wave reflections, such as point diffractions, reflections
off of a sharp planar or curved interface, scattering from rough interfaces, etc. This paper
considers another important scenario: that of a “soft” planar interface with a fractional
jump in the value of the wave speed, of the form (constant +(x1)

α
+) for some α > 0, where

the interface is at x1 = 0, and y+ is the positive part of y. This model might arise as
is, or might be the result of upscaling from microscopic mixtures of two materials with
linearly varying volume fractions, as predicted by percolation theory applied to random
mixture models [2]. The planar fractional reflector model is a special case of a layered
model, commonplace in geophysics. This paper does not address the case of fine layering –
alternating thin layers of different materials or sediments. Furthermore, we only consider
acoustic (P) waves in this paper.

The notion of reflection coefficient is standard for acoustic waves propagating in a
medium with a discontinuity along a planar interface. For a jump in the wave speed,
or in the index of refraction, the Fresnel equations predict the amplitudes of the reflected
and transmitted waves as a function of the angle of incidence. The case (constant + (x1)+)
is also known and can be handled with Airy functions [3], which we rehearse in a later
section for completeness.

It is much less well known how to deal with other kinds of singularities in the medium

properties, such as the square root (constant + (x1)
1/2
+ ) singularity. It was argued on

physical grounds that reflection about a singular interface characterized by a fractional
exponent should be the result of the action of a fractional integrator, of the same order, on
the incident wave. See for instance [8, 9, 10]. Recognizing the fractional type of a reflector
from the particular shape of the oscillations of the recorded waves in a seismic trace is an
interesting interpretation question in seismic stratigraphy.
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1.2 Setup

This paper makes the “fractional integrator” heuristic precise by characterizing the re-
flection coefficient as a pseudodifferential operator of fractional order. The dependence of
the amplitudes of the reflected and transmitted waves on the angle of incidence appears
explicitly in the expression of the pseudodifferential symbol.

In the presence of a singularity of c(x1, x2, x3) at x1 = 0, to each incident wave (in
x1 < 0) corresponds a transmitted and a reflected wave (both in x1 ≥ 0). The reflection
coefficient R is the amplitude of the reflected wave, for this unit-normalized incident wave.
More precisely, with x = (x1, x2, x3) and k = (k1, k2, k3), we consider a fixed incident plane
wave

(1.2) ui(x, t) = ei(ωt−k·x), ω = |k|c0,

which is clearly a wave that propagates in the direction of k as t grows, right-going
(obliquely) if we further assume k1 > 0. All the waves in this paper have a harmonic
time dependence eiωt. The complete wave u(x, t) is obtained as a superposition

(1.3) u = ui +Rur = Tut, (ur reflected, ut transmitted)

The concept of transmitted wave ut is clear in a uniform medium c0: it is a right-going
plane wave with k1 > 0, like ui.

In order to generalize the concept of right-going, or outgoing to x1 > 0, in the case when
c depends on x1, observe that a right-going wave like

e−ik·x, k1 =

√
ω2

c20
− k22 − k23 > 0,

corresponds a limiting absorption principle: as k1 is complexified as k1(1 + iσ), the wave
has a eσx1 prefactor, and is now decaying as x1 → +∞ provided σ < 0. This spatial decay
can also be seen as a temporal decay (dissipation) since the wave reaches large x1 > 0 for
large t. In the case when c depends on x1, the limiting absorption principle is formalized by
a complex extension at the level of the model equation (2.12). The definitions of outgoing
and incoming waves, respectively at ±∞, follow and can be found in Definition 2.1. The
transmitted wave is properly defined as a member of the one-dimensional space of waves
outgoing at +∞, which in turn gives meaning to R in (1.3).

1.3 Main result

In this paper we consider the “fractional ramp” model for the wave speed,

(1.4) c−2(x) = c−2
0

[
1 +

(x1
ℓ

)α
+

]
,
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where ℓ > 0, α > 0, and (·)+ denotes the positive part. The length scale ℓ is a skin depth,
and ℓ−α can be interpreted as the strength of the fractional reflector.

The incident wave in x1 < 0 is taken as (1.2), where we further write the wave vector as

(k1, k2, k3) =
ω

c0

(√
1− η2 , η2, η3

)
, η2 = η22 + η23.

The important non-dimensional parameter is

(1.5) θ =
( c0
ℓω

)α
(1− η2)−

α+2
2 .

Our main result is as follows.

Theorem 1.1. For all α > 0, and as θ → 0,

R(θ) =
Γ(α+ 1)

(2i)α+2
θ +O

(
θ1+min( 1

α
,1)
)
.

The asymptotic regime of small θ corresponds to the following situation:

� High frequency (ω large compared to c0/ℓ); or

� Weak reflector (ℓ−α small); and in both cases

� Non-grazing incidence (η < 1).

As we explain in the sequel, this result extends to the case when (x1/ℓ)
α
+ is replaced by

a function λ
(
(x1/ℓ)

α
+

)
where λ(x) is smooth and equal to x in a neighborhood of the origin.

Our construction assumes that the fixed-ω and fixed-η incident wave comes with a unit
coefficient, and details the coefficient R of the corresponding reflected wave. If however the
incident wave is a superposition of such modes for different ω and η in x1 < 0, such as

ui(t;x1, x2.x3) =
1

(2π)3

∫∫
e
iω

(
t−x1

c0

√
1−η2

)
e
i ω
c0

(η2x2+η3x3)ûi(ω; 0, η2, η3) dη2dη3dω,

then the coefficient R acts as a pseudodifferential operator in the expression of ur in x1 < 0:

ur(t;x1, x2.x3) =
1

(2π)3

∫∫
e
iω

(
t+

x1
c0

√
1−η2

)
e
i ω
c0

(η2x2+η3x3)R(θ(ω, η))ûi(ω; 0, η2, η3) dη2dη3dω.

1.4 Standard cases: jump interface and ramp interface

For reference, the expressions of R in the case α = 0 (jump discontinuity) and α = 1 (ramp)
are known explicitly:

� When α = 0,

(1.6) R =

√
( c−c+ )

2 − η22 − η23 −
√
1− η22 − η23√

( c−c+ )
2 − η22 − η23 +

√
1− η22 − η23

There is no θ parameter in the case α = 0, hence this expression cannot conform to
the setup of our main result when α→ 0.
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� When α = 1, introduce β = θ−
2
3 , and w±(X) = Ai(e±iπ

3X). The exact expression of
R is known

R =
w′
+(β) + iβ

1
2w+(β)

−w′
+(β) + iβ

1
2w+(β)

,

and its asymptotic expansion in θ, thanks to classical asymptotics of the Airy function,
is

R =
i

8
θ +O(θ2) =

1

(2i)3
θ +O(θ2),

which matches the general expression (See Proposition 6.1 and Lemma 6.2).

1.5 Related work

Our construction similar to the decomposition into incoming and outgoing waves introduced
by Jost in [13], and also mentioned in [14]. They are sometimes called irregular or Jost
solutions, and for the radial Schrödinger equation −ψ′′+V (r)ψ = k2ψ, are f± = e±ikr+o(1)
as r → +∞. They serve as a base of decomposition of all solutions of the radial Schrödinger
equation. Indeed, with the words einlaufende kugelwelle (entering spherical wave ) f(k, r) ≃
e−ik.r ((4) [13]), and the remark that f(k, .) and f(−k, .) form a fundamental system for
the ODE. The name “outgoing spherical wave” appears in the companion paper of Jost and
Pais [14].

We use extensively the notion of limiting absorption principle, or limiting amplitude
principle, for the definition of the outgoing and incoming waves. This notion was introduced
by A. G. Sveshnikov in [15], who considers a wave number k1 such that k21 = k2 + iϵ.
Sveshnikov himself refers to a paper of Ignatovski [12]; in this paper of 1905, the complex
perturbation was not arbitrary but was given by physical absorption. Complexification of
the wave number of course also underlies the “iϵ” prescription of the propagators for the
Helmholtz and Schrödinger equations [6].

As for discontinuities of the velocity of the wave, the case of the ramp is addressed by
L.M. Brekhovskikh and O.A. Godin [3] (see Chap. 3, expression (3.5.1) for example). Nev-
ertheless, they treat only acoustic wave equations in the case where one has a representation
in terms of special functions, and no nonsmooth profile is otherwise considered.

In [17, 18], K. Wapenaar quantifies the reflection coefficient for the so-called self-similar
profile, when c(x) = c1(−x)α for x < 0 and c(x) = c2x

α for x > 0. His analysis relies on a
self-similar change of variables – which is not directly useful in the context of this paper –
and an asymptotic study of the transfer matrix linking the solution and its derivative across
the interface.

More recently, K. Wapenaar [19] derives a decomposition of the system defining waves
in which there is a preferred direction of propagation in a set of coupled equations for waves
propagation in the opposite directions along this preferred axis and derive the associated
Green’s functions.
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As we put the final touches to this paper, we learned of the work of O. Gannot and J.
Wunsch [7] which establishes a general result, for α > 0, on the propagation of singularities
theorem for the Schrödinger equation with a fractional jump of the potential on a conormal
surface, with regularity improvements for α > 1. They deduce an estimate on the reflection
coefficient which is close to ours, in the particular case of the potential xα+ − 1 for x ∈
(−∞, x0) in a one-dimensional setup. Their analysis relies on a microlocal study of the
bicharacteristics near the jump, and does not deal with the behavior at infinity – which
differs in wave vs Schrödinger equations and is one of the key points of our study. Their
analysis also does not seem to immediately give a precise estimate of the reflection coefficient
in the multi-d set-up.

2 Definitions and setup

2.1 Nondimensionalization

We assume constant density, acoustic waves propagating in a heterogeneous wave speed in
3 space dimensions (1.1),(

1

c2(x)
∂t2 −∆x

)
u = 0, x = (x1, x2, x3) ∈ R3.

The model we consider for the wave speed is the fractional ramp (1.4).
For completeness, we also consider the more general inhomogeneous form

(2.1) c−2(x) = c−2
0

[
1 + λ

((x1
ℓ

)α
+

)]
,

where λ(x) =
∫ x
0 χ(y)dy, for some positive, compactly supported, χ ∈ C∞(R) equal to 1 in

a neighborhood of x = 0. The proof assumes the case λ(x) = x, and treats the modification
in the appendix.

Assume a harmonic time dependence of the form eiωt, i.e., take a Fourier transform in
t. After taking another partial Fourier transform in the transverse coordinates (x2, x3), and

introducing η = c0ω
−1(k22 + k23)

1
2 , the wave equation becomes(

∂2x1
+ ω2c−2

0

[
1 +

(x1
ℓ

)α
+
− η2

])
û = 0,

with boundedness conditions at x1 = ±∞. The continuity of û and ∂x1 û at x1 = 0 owes to
the boundedness of the wave speed c(x).

The equation is further non-dimensionalized by letting

x1 = εx, ε =
c0
ω
(1− η2)−1/2.

We can understand ε as the horizontal wavelength (divided by 2π), when x1 is in a horizontal
direction.
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Freeing up u to let u(x) := û(x1), and freeing up c to let

(2.2) c−2(x) := 1 + θ xα+,

with

(2.3) θ =
( c0
ℓω

)α
(1− η2)−

α+2
2 ,

we obtain the model equation

(2.4)
(
∂2x + c−2(x)

)
u = 0.

Note that the cosine of the incidence angle is cosφi = (1 − η2)1/2. We can therefore
rewrite θ as

θ =
(ε
ℓ

)α 1

(cosφi)α+2
.

This form of θ reveals the importance of the non-dimensional ratio ε/ℓ of the horizontal
wavelength by the skin depth. We see that regimes of small θ correspond to either

� weak strength of the fractional reflector (large ℓ); and/or

� high frequencies (small ε).

Furthermore, this regime is only possible for non-grazing waves (cosφi ̸= 0).
The physical dimensions are gathered in the following table, where m is meter, s is

second, and 1 is dimensionless.

xj , ε, ℓ, k
−1
j m

t, ω−1 s

c0 ms−1

x, c, θ, η 1

Our objective is now to define and estimate the reflection coefficient for (2.4), in terms
of θ.

2.2 WKB approximate solutions

An important analytical tool in this paper is the WKB construction of approximate solu-
tions,

(2.5) v>(x) = b(x)e−iϕ(x), v<(x) = b(x)eiϕ(x),

with

ϕ(x) =

∫ x

0

1

c(y)
dy, b(x) = c

1
2 (x).
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This choice coincides with the first term of the usual WKB expansion; writing the next
terms would require higher degrees of differentiability of c(x). In the sequel, we consider
α > 0 in the fractional ramp problem using c ∈ C0(R) ∩ C2(]0,+∞[), on [x0,+∞[, x0 > 0
to be chosen later.

An important property of the phase ϕ is that limx→±∞ ϕ(x) = ±∞ with ϕ′ > 0. The
identity ϕ′′+2(c1/2)′ϕ′ = 0 is also useful. The two functions v> and v< are not solutions of
(2.4), but they solve the modified equation

(2.6) v′′ + c−2v = c−
1
2

(
c
1
2

)′′
v.

The functions v> and v< have the interpretation of right-going and left-going waves,
respectively. This property is apparent when restoring the time dependence eiωt. This
interpretation can also be formalized by considering the extended equation

(2.7)
(
∂2x + (1 + iσ)2c−2

)
v(x;σ) = c−

1
2

(
c
1
2

)′′
v(x;σ),

with a small parameter σ ∈ R. The solutions are now

(2.8) v>(x;σ) = b(x)e−i(1+iσ)ϕ(x), v<(x;σ) = b(x)ei(1+iσ)ϕ(x).

The left-going or right-going character, or “polarization”, is now tied to the direction in
which exponential decay occurs as a function of the sign of σ. In case ±σ > 0, we have

lim
x→∓∞

v>(x;σ) = 0, lim
x→±∞

v<(x;σ) = 0.

These expressions are used in the next section, as the basis for the definition of polarized
waves for the model equation (2.4).

For future convenience we introduce the notation

(2.9) M(x) = c
1
2

(
c
1
2

)′′
=
(
(v>)′′ + c−2v>

)
v<,

so (2.6) can alternatively be written as

v′′ + c−2v =Mc−1v,

and similarly for (2.7),

(2.10)
(
∂2x + (1 + iσ)2c−2(x)

)
v(x;σ)−Mc−1v(x;σ) = 0.

Many properties of the function M(x) valid for all α > 0 are listed and proven in Appendix
B, including the fact that it is of order θ, and that it is locally integrable at x = +∞.

Also note in passing that c−1v>v< = 1.
Finally, we also introduce the zero-th order WKB approximations

(2.11) w>(x) = e−iϕ(x), w<(x) = eiϕ(x).
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2.3 Incoming and outgoing waves

The notion of reflection coefficient involves a comparison of waves polarized as incoming and
outgoing. As in the previous section, we introduce a small parameter σ ∈ R and consider
the extended problem

(2.12)
(
∂2x + (1 + iσ)2c−2(x)

)
u(x;σ) = 0.

In contrast to the WKB functions v> and v<, we now have four polarized solutions.
Each is defined up to a multiplicative constant.

Definition 2.1. A nonzero solution u of (2.4) is said to be

� outgoing to +∞, if there exists a sequence of solutions u(x;σ) of (2.12) with σ < 0
such that1

lim
σ→0−

u(x;σ) = u(x), lim
x→+∞

u(x;σ) = 0.

The space of such solutions is denoted by U>
+∞.

� incoming from +∞, if there exists a sequence of solutions u(x;σ) of (2.12) with σ > 0
such that

lim
σ→0+

u(x;σ) = u(x), lim
x→+∞

u(x;σ) = 0.

The space of such solutions is denoted by U<
+∞.

� outgoing to −∞, if there exists a sequence of solutions u(x;σ) of (2.12) with σ < 0
such that

lim
σ→0+

u(x;σ) = u(x), lim
x→−∞

u(x;σ) = 0.

The space of such solutions is denoted by U<
−∞.

� incoming from −∞, if there exists a sequence of solutions u(x;σ) of (2.12) with σ > 0
such that

lim
σ→0−

u(x;σ) = u(x), lim
x→−∞

u(x;σ) = 0.

The space of such solutions is denoted by U>
−∞.

We interpret any element u ∈ U>
+∞ as a transmitted wave, u ∈ U<

−∞ as a reflected wave,
and u ∈ U>

−∞ as an incident wave (from the left, as is the case throughout the paper). Using
a classical result on asymptotic behavior of systems of ODEs, we have the

Proposition 2.2. (i) Each of the four subspaces U>
±∞, U<

±∞ has dimension 1.

(ii) Any pair (u1, u2) of nonzero solutions with u1 ∈ U>
−∞ and u2 ∈ U<

−∞; or u1 ∈ U>
+∞

and u2 ∈ U<
+∞, forms a fundamental system for (2.4).

1The σ → 0 limits are all understood to converge uniformly over compact sets of x ∈ R.
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(iii) Any nonzero element u ∈ U>
±∞ admits a nonzero, finite limit limx→±∞

u(x)
v>(x) . Corre-

spondingly, any nonzero element u ∈ U<
±∞ admits a nonzero, finite limit limx→±∞

u(x)
v<(x) .

(iv) limx→∞ u(x;σ) = 0 if and only if ∥u(·;σ)∥∞ <∞.

We leave the proof of this result in Appendix A.
This proposition provides a natural way of normalizing the polarized solutions:

� we let u>±∞(x) for the element u of U>
±∞ such that limx→±∞

u(x)
v>(x) = 1; and

� we let u<±∞(x) for the element u of U<
±∞ such that limx→±∞

u(x)
v<(x) = 1.

In the familiar case of a plane wave, when θ = 0, we have u>−∞(x) = u>+∞(x) = e−ix

and u<−∞(x) = u<+∞(x) = eix, but in a heterogeneous medium the four polarized waves are
in general distinct. In the fractional ramp example, where c−2(x) = 1+ θxα+, or in any case
where the medium is homogeneous uniform in x < 0, we still have

(2.13) u>−∞(x) = v>(x) = e−ix, u<−∞(x) = v<(x) = eix, x < 0.

For illustration, in the case α = 1, it is shown in Section 6 that

u>+∞(x) = u<+∞(x) = 2π1/2ei
π
12 θ−

1
6Ai(ei

π
3 θ

1
3 (x+ θ−1)), x > 0.

The transmitted wave is then expanded as

(2.14) u>+∞ = Au<−∞ +B u>−∞,

and the reflection coefficient defined as R = A/B. Notice that the value of R does not
depend on the choice of normalization of u>+∞. The transmission coefficient is 1/B, and
does depend on this choice.

It is easy to see from (2.13), and from continuity of u and u′ near x = 0, that for
u ∈ U>

+∞, the reflection coefficient can be determined from

(2.15)
u′(0)

u(0)
= i

R− 1

R+ 1
.

This relation is key to computing R in the sequel. The case R = −1 corresponds to
u(0) = 0, but we will see in the sequel that an assumption of small θ prevents this scenario.
The quantity R−1

R+1 can be seen as a nondimensionalized impedance.
We can now remind the reader of our main result (Theorem 1.1 in the introduction).

Theorem 2.3. For all α > 0, as θ → 0,

R =
Γ(α+ 1)

(2i)α+2
θ +O

(
θ1+min( 1

α
,1)
)
.



2 DEFINITIONS AND SETUP 11

2.4 First steps and architecture of the proof

Section 3 contains preparatory material. The core of the proof is in Section 4. It establishes
that the remainder is a o(θ). Section 5 establishes the more precise form quoted above
for this remainder. Although the proof covers all cases α ≥ 0, Section 6 gives an explicit
(exact, non-asymptotic) formula for R that matches Theorem 1.1 in the special case α = 1
(available from special function analysis).

The main idea of the proof is to express any nonzero solution that is outgoing to +∞,
denoted u for brevity, and defined up to an unimportant nonzero multiplicative scalar,
in terms of the WKB functions v> and v<. This requires writing a Volterra equation,
and solving it iteratively. This is performed on [x0,+∞), for an arbitrary x0, such that
the Volterra equation has a contracting kernel when θ < θ0(x0). As a consequence of
the contractibility of this kernel, we obtain u(x0) ̸= 0. This argument provides a value of

q = u′(x0)
u(x0)

, which is then linked to u′(0)
u(0) via a Cauchy problem on (u(x), u′(x)), for x ∈ [0, x0],

with data at x0 equal to (1, q). The reflection coefficient is then deduced from (2.15).
For x ∈ [0, x0], it is clear that this Cauchy problem is well-posed, but it is advantageous

to express its solution in terms of w>(x) := e−iϕ(x) and w<(x) := eiϕ(x), via(
u(x)
u′(x)

)
= a>(x)

(
w>(x)

(w>)′(x)

)
+ a<(x)

(
w<(x)

(w<)′(x)

)
(which makes use of a>(x)(w>)′((x) + a<(x)w<)′(x) = 0). One then deduces k such that
a<(x0) = ka>(x0) through the equality q(1 + ke2iϕ(x0)) = iϕ′(x0)(−1 + ke2iϕ(x0)).

For x ∈ [x0,∞), it is preferable to express u in terms of v< and v>. Equation (2.10) is a
homogeneous linear differential equation for which v>(·;σ) and v<(·;σ) is a generating pair
of solutions. Since equation (2.12) can be seen as a inhomogeneous version of (2.10), where
the right-hand side is −Mc−1v, any solution of (2.12) can be sought as a combination of
v>(.;σ) and v<(.;σ) via Duhamel’s principle (the method of variation of parameters) as

(2.16) u(x;σ) = Aσ(x) v
>(x;σ) +Bσ(x) v

<(x;σ).

In a standard fashion, we additionally impose

(2.17) (Aσ(x))
′ v>(x;σ) + (Bσ(x))

′ v<(x;σ) = 0,

so that

(2.18) u′(x;σ) = Aσ(x) (v
>)′(x;σ) +Bσ(x) (v

<)′(x;σ).

With the Wronskian equal to 2ib2(x)c−1(x) = 2i, equations (2.16) and (2.18) determine the
coefficients Aσ(x) and Bσ(x) uniquely as

(2.19)

{
Aσ(x) =

1
2i(1+iσ) [u(x;σ)(v

<)′(x;σ)− u′(x;σ)v<(x;σ)]

Bσ(x) =
1

2i(1+iσ) [−u(x;σ)(v
>)′(x;σ) + u′(x;σ)v>(x;σ)]
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A closed system for Aσ and Bσ is obtained from (2.17), and by substituting (2.16) and
(2.18) into (2.12):{

(Aσ)
′(x)v>(x;σ) + (Bσ)

′(x)v<(x;σ) = 0
(Aσ)

′(x)(v>)′(x;σ) + (Bσ)
′x)(v<)′(x;σ) = −M(x)c−1(x)(Aσ(x)v

>(x;σ) +Bσ(x)v
<(x;σ))

Using the fact that the Wronskian of the two basis functions is 2i(1 + iσ), one obtains{
(Aσ)

′(x) = 1
2i(1+iσ)M(x)c−1(x)[Aσ(x)v

>(x;σ) +Bσ(x)v
<(x;σ)]v<(x;σ)

(Bσ)
′(x) = − 1

2i(1+iσ)M(x)c−1(x)[Aσ(x)v
>(x;σ) +Bσ(x)v

<(x;σ)]v>(x;σ)

which can be rewritten, using c−1(x)v>(x;σ)v<(x;σ) = 1,{
(Aσ)

′(x) = 1
2i(1+iσ)M(x)[Aσ(x) +Bσ(x)e

2i(1+iσ)ϕ(x)]

(Bσ)
′(x) = − 1

2i(1+iσ)M(x)[Aσ(x)e
−2i(1+iσ)ϕ(x) +Bσ(x)]

It is now natural to define an auxiliary function

(2.20) S>
σ (x) = Aσ(x)e

−2i(1+iσ)ϕ(x) +Bσ(x),

in order to link u to v< via

(2.21) u(x;σ) = S>
σ (x) v

<(x;σ).

The intention is to use this relation when u is outgoing to +∞ (when σ = 0), or when
limx→∞ u(x;σ) = 0 (when σ < 0, prior to taking the limit σ → 0−). There is no typo:
we express the wave outgoing to +∞ in terms of the incoming WKB wave. The proof will
make it clear why this choice of S is necessary, rather than Aσ(x) +Bσ(x)e

2i(1+iσ)ϕ(x).
After integrating the equations for (Aσ(x))

′ and (Bσ(x))
′, we obtain the functional

equation (which depends on x0)

S>
σ (x) = Aσ(x0)e

−2i(1+iσ)ϕ(x) +Bσ(x0)(2.22)

+
1

2i(1 + iσ)

∫ x

x0

M(y)S>
σ (y)(e

−2i(1+iσ)(ϕ(x)−ϕ(y)) − 1)dy,

with two integration constants Aσ(x0) and Bσ(x0). For σ < 0, it will be shown in Proposi-
tion 3.1 that the condition limx→∞ u(x;σ) = 0 determines Bσ(x0) uniquely as

Bσ(x0) =
1

2i(1 + iσ)

∫ +∞

x0

M(y)S>
σ (y)dy,

hence that equation (2.22) becomes the Volterra equation for S>
σ (x):

(2.23) S>
σ (x) = Aσ(x0)e

−2i(1+iσ)ϕ(x) +Kσ(S
>
σ )(x),



2 DEFINITIONS AND SETUP 13

where the operator Kσ is given by

(2.24)

Kσ(f)(x) =
1

2i(1 + iσ)
[

∫ x

x0

M(y)f(y)e−2i(1+iσ)(ϕ(x)−ϕ(y))dy+

∫ +∞

x
M(y)f(y)dy], f ∈ C0

b ([x0,∞)).

A sufficient condition for convergence of the fixed-point iteration for this Volterra equation
is the condition

(2.25) Mx0 :=

∫ ∞

x0

|M(x)| dx < 2.

Note that M(x) also depends on θ; Lemma B.1 shows that (2.25) is satisfied for all 0 < θ <
θ0(x0). In that case, the Volterra equation can be solved as a convergent series

S>
σ (x) = Aσ(x0)

∑
j≥0

s>σ,j(x)

 e−2i(1+iσ)ϕ(x),

which defines the functions s>σ,j(x).
Denote by S> the unique solution of (2.23) when σ = 0, and normalized via Aσ(x0) = 1:

(2.26) S>(x) = e−2iϕ(x) +K0(S>)(x).

It is then shown in Proposition 3.2 that the Volterra equation (2.23) remains valid for σ = 0
when the limit σ → 0− is taken, and indeed expresses the desired outgoing solution u(x) as

u(x) = S>(x) v<(x),

which is the σ → 0 limit of (2.21) (again, when Aσ(x0) = 1).
We are now in a position to present an equivalent reformulation of u(x) in terms of a

radiation condition at x0 > 0.

Theorem 2.4. For all α > 0 and x0 ≥ 0, there exists θ0(x0) such that, for all θ < θ0(x0),
the family of solutions of (2.4) outgoing at +∞ is characterized by

u′(x0)

u(x0)
=

(v>)′(x0) +Rx0(v
<)′(x0)

v>(x0) +Rx0v
<(x0)

,

where

(2.27) Rx0 =
1

2i

∫ +∞

x0

M(x′)S>(x′)dx′.

This radiation condition at x0 > 0 must now be compared with the reference formula
for the reflection coefficient R, namely

u′(0)

u(0)
= i

R− 1

R+ 1
.
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As it is written, it may seem not straightforward to see the similarity. Nevertheless, one
can rewrite the identity of Theorem 2.4 as

u′(x0)

u(x0)
=

(v>)′(x0)

v>(x0)

1 +Rx0

(v<)′(x0)
(v>)′(x0)

1 +Rx0

v<(x0)
v>(x0)

where it can be noticed that, in the constant coefficient case, (v<)′(x0)
(v>)′(x0)

= −v<(x0)
v>(x0)

= −1 and
(v>)′(x0)
v>(x0)

= −i.
The interpretation of the role of x0 is also enlightened by the following remarks:

� When α > 1, the limit as x0 → 0 exists, is finite, and gives

R =
1

2i

∫ +∞

0
M(x′)S>(x′)dx′,

where S>(x) is now understood to correspond to x0 = 0 in (3.1) and (2.26). In fact,
the whole argument could have used x0 = 0 in that case.

� When α < 1, the limit cannot be taken in the same fashion. The operator Kσ can
no longer be defined by (2.24) in the limit x0 → 0, due to the lack of integrability of
M(x) at x = 0. The quantity Rx0 also diverges as x0 → 0. Instead, we consider the
Cauchy problem on [0, x0], and find an expression to relate R to Rx0 . Since this more
general argument also applies to the case α > 1, we do not differentiate the two cases
in the proof in Section 4.

The limit of R
θ is finally considered when θ → 0, which establishes Theorem 1.1. This

is the aim of Section 4. Precise estimates on R
θ − Γ(α+1)

(2i)α+2 and on the function Γ are given in
Section 5.

3 Volterra series and radiation condition

In this section, we establish the Volterra equation for S>
σ (x), the convergence properties of

the corresponding Volterra series. We also prove Theorem 2.4.
Recall that S>

σ (x) is defined by (2.20) or (2.21), without restriction on σ ∈ R, in relation
to any solution u(x;σ) of (2.12), and that it obeys equation (2.22) with two arbitrary
constants Aσ(x0) and Bσ(x0). In the case σ < 0, we start by fixing Bσ(x0) in equation
(2.22), from imposing the condition that u(x;σ) → 0 as x → ∞ (which is equivalent to
u(x;σ) uniformly bounded on [x0,∞) by (iv) of Proposition A.1.) The result is a Volterra
equation on the half-line [x0,∞), which involves the operator Kσ (Definition 2.24):

Proposition 3.1. Assume x0 > 0 and σ < 0. When u(x;σ) is uniformly bounded for
x ∈ [x0,∞), then the function S>

σ given by (2.21) obeys the Volterra equation

(3.1) S>
σ (x) = Aσ(x0)e

−2i(1+iσ)ϕ(x) +Kσ(S
>
σ )(x).
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Proof of proposition 3.1. Fix σ < 0. If u(x;σ) is bounded on [x0,∞), then S>
σ (x) =

u(x;σ)

v<σ (x)

tends to 0 when x→ +∞, thanks to the inequality

|u(x;σ)
v<σ (x)

| ≤ b−1(x)eσϕ(x) max
x0≤x<∞

|u(x;σ)|,

and the fact that b−1(x)eσϕ(x) = (1+θxα)
1
4 eσ

∫ x
0 (1+θyα)

1
2 dy tends to zero2 when x→ +∞ for

σ < 0. It is thus bounded on [x0,+∞). Since (i) S>
σ is bounded, (ii)

∫ +∞
x0

|M(y)|dy < +∞,

(iii) |e−2i(1+iσ)(ϕ(x)−ϕ(y)) − 1| ≤ 2 for y ≤ x, and (iv) e2σϕ(x) → 0 for x→ ∞, the conditions
of Lebesgue’s dominated convergence theorem are met and we obtain

lim
x→+∞

∫ x

x0

M(y)S>
σ (y)

(
e−2i(1+iσ)(ϕ(x)−ϕ(y)) − 1

)
dy = −

∫ +∞

x0

M(y)S>
σ (y)dy.

Hence a necessary condition for limx→+∞ S>
σ (x) = 0, in view of equation (2.22), is that

Bσ(x0) =
1

2i(1 + iσ)

∫ +∞

x0

M(y)S>
σ (y)dy.

Equation (2.22) thus becomes

S>
σ (x) = Aσ(x0)e

−2i(1+iσ)ϕ(x) +
1

2i(1 + iσ)
[

∫ x

x0

M(y)S>
σ (y)e

−2i(1+iσ)(ϕ(x)−ϕ(y))dy(3.2)

+

∫ +∞

x
M(y)S>

σ (y)dy],

or simply S>
σ (x) = Aσ(x0)e

−2i(1+iσ)ϕ(x) +Kσ(S
>
σ )(x).

Note in passing that the proof argument with Lebesgue’s theorem would not have been
possible if S>

σ had been defined from v> instead of v< in equation (2.21).
The Volterra equation (3.1) can now be considered in the case σ = 0 as well. The

following result shows that Mx0 < 2, as in equation (2.25), is a sufficient condition under
which Kσ is a contraction, hence for which the equation can be solved by iteration.

Proposition 3.2. Let x0 > 0 and θ > 0, such that Mx0 < 2, and let σ ≤ 0.

(i) The operator Kσ is a contraction, and satisfies the functional inequality

||Kσ(f)(x)||L∞(x0,∞) ≤
Mx0

2
||f ||L∞(x0,∞).

(ii) The unique solution to equation (3.1) is Aσ(x0)S
>
σ (x), where

S>
σ (x) =

+∞∑
n=0

S>
σ,n(x),

2This is also the case for the more general form λ(x) ̸= x.
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where S>
σ,n(x) are defined in sequence as

(3.3)
S>
σ,0(x) = e−2i(1+iσ)ϕ(x),

S>
σ,n+1(x) = Kσ(S

>
σ,n)(x), n ≥ 0

and satisfy

||S>
σ,n(x)||L∞(x0,+∞) ≤

(
Mx0

2

)n

.

Furthermore, introduce s>σ,n = S>
σ,n(x)e

2i(1+iσ)ϕ(x). One has

S>
σ (x) =

(
+∞∑
n=0

s>σ,n(x)

)
e−2i(1+iσ)ϕ(x),

with

||s>σ,n(x)||L∞(x0,+∞) ≤
(
Mx0

2

)n

and

||
+∞∑

n=N+1

s>σ,n(x)||L∞(x0,+∞) ≤
1

1− Mx0
2

(
Mx0

2

)N+1

(iii) For each σ < 0, the family of solutions of (2.12), bounded for each σ ≤ 0 when
x→ +∞, is given by

(3.4) u(x;σ) = Aσ(x0)

(
+∞∑
n=0

s>σ,n(x)

)
b(x)e−i(1+iσ)ϕ(x).

Proof of Proposition 3.2. The proof of (i) is a simple calculation. For (ii), consider the
sequence S>

σ,n as defined in the proposition. As Kσ is a contraction, the series
∑

n≥0 S
>
σ,n(x)

is uniformly convergent on [x0,+∞). This implies that the partial sum S>
σ,N =

∑N
k=0 S

>
σ,k

converges uniformly towards a continuous function as N → +∞.
Note that the inequality on S>

σ,n does not imply the inequality on s>σ,n (s>σ,n = e2i(1+iσ)ϕ(x)S>
σ,n

implies |s>σ,n(x)| ≤
(
Mx0
2

)n
e−2σϕ(x), which is not bounded for σ < 0). The equality which

leads to the estimate on s>σ,n is the sequence

s>σ,n+1(x) =
1

2i
[e−2i(1+iσ)ϕ(x)

∫ x

x0

M(y)s>σ,n(y)dy +

∫ +∞

x
M(y)s>σ,ndy]

which imply

|s>σ,n+1(x)| ≤
1

2
[e2σϕ(x)

∫ x

x0

|M(y)||s>σ,n(y)|dy+
∫ +∞

x
|M(y)||s>σ,n(y)|dy] ≤

Mx0

2
max[x0,+∞)|s>σ,n(y)|.



3 VOLTERRA SERIES AND RADIATION CONDITION 17

It is easy to deduce, by iteration, the estimate on s>σ,n and to deduce from the estimate on
s>σ,n the estimate on

∑
n≥N+1 s

>
σ,n.

Item (iii) is a consequence of v<σ (x) = b(x)ei(1+iσ)ϕ(x) and the fact that if u(x, σ) is a
bounded solution of (2.12), then u(x, σ) = S>

σ (x)v
<
σ (x). AsAσ(x0)

(∑+∞
n=0 s

>
σ,n(x)

)
b(x)e−i(1+iσ)ϕ(x)

is bounded on [x0,+∞), we proved that u(x;σ) obtained by this procedure is bounded.
The proof of (iii) is a consequence of the uniform bound |

∑+∞
n=0 s

>
σ,n(x)| ≤ 1

1−Mx0
2

and

b ≤ 1, ϕ ≥ 0, σ < 0. Using the previous estimate, one obtains

|u(x;σ)| ≤ |Aσ(x0)|
1

1− Mx0
2

eσϕ(x)b(x) ≤ |Aσ(x0)|
1

1− Mx0
2

thanks to b(x) ≤ 1, ϕ(x) ≥ 0 and σ < 0. Hence u given by (3.4) is bounded. The proposition
is proven.

Note that in the third item one must consider σ < 0 because, for σ = 0, all solutions of
(2.10) are bounded.

For illustration, the first two terms are

s>σ,0(x) = 1,

s>σ,1(x) =
1

2i(1 + iσ)
[

∫ x

x0

M(y)dy +

∫ +∞

x
M(y)e2i(1+iσ)(ϕ(x)−ϕ(y))dy],

. . .

Proposition 3.3. Let x0 > 0 and θ > 0, such that Mx0 < 2.

1. The family of solutions of (2.4), outgoing at +∞, is given by a constant times the
nonzero function

S>(x)v<(x),

where S> solves (2.26).

2. The function S>(x)e2iϕ(x) has a uniformly convergent expansion

S>(x)e2iϕ(x) = 1 +
∑
j≥1

s>j (x)

3. The inequalities of Proposition 3.2 extend to the case σ = 0.

Proof of Proposition 3.3. Prove first that S>v< is nonzero. One checks the two relations

(S>v<)(x0) = b(x0)(e
−iϕ(x0)+Rx0e

iϕ(x0)), (S>v<)′(x0) = b′(x0)(S
>v<)(x0)+iϕ

′(x0)(Rx0e
iϕ(x0)−e−iϕ(x0))

thanks to (K0(f))′(x) = −ϕ′(x)
∫ x
x0
M(y)f(y)e−2i(ϕ(x)−ϕ(y))dy and to v<(x0) = b(x0)e

iϕ(x0), (v<)′(0) =

b′(x0)e
iϕ(x0) + iϕ′(x0)b(x0)e

iϕ(x0).
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As there is no value of Rx0 such that (S>v<)(x0) = (S>v<)′(x0) = 0, S>v< is a nonzero
element of U>

+∞.
Now consider a nonzero element u of U>

+∞. There exists a sequence of functions
u(x;σ), σ < 0 solution of (2.12) with u(x, σ) → u(x) for σ → 0 and u(x, σ) → 0 when
x→ +∞.

The latter condition implies u(x, σ) bounded on [0,+∞). Thanks to Proposition 3.2,
one has, under the condition Mx0

∞ < 2

u(x;σ) = Aσ(x0)(1 +
∞∑
j=1

s>σ,j(x))v
<(x;σ).

Let us now show that limσ→0− Aσ(x0) exists and is nonzero. As u is nonzero, there exists
X0 > 0 such that u(X0) ̸= 0.

We had observed that S>v< is nonzero. Hence there existsX1 > 0 such that (S>v<)(X1) ̸=
0 and there exists σ∗ such that |(S>

σ v
<
σ )(X1)| > |(S>v<)(X1)|

2 > 0 and |u(X1;σ)| < 2|u(X1)|
for all σ∗ < σ < 0. Hence

|Aσ(x0)| = | u(X1, σ)

(S>
σ v

<
σ )(X1)

| ≤ 2

|(S>v<)(X1)|
2|u(X1)|,

which shows that |Aσ(x0)| ≤ C < ∞. Therefore, there exists a subsequence σn → 0− such
that limn→∞Aσn(x0) exists. This limit cannot be zero, because then u(x, σ) → 0 for each
x, which is in contradiction with the fact that u(X0) ̸= 0.
We thus conclude that Aσ(x0) has a nonzero limit, that we call A∗. This proves that
u(x) = A∗S

>(x)v<(x) for all x. The first item of Proposition 3.3 is proven. The estimates
of the two other items are easy consequences of the inequalities of Proposition 3.2. Note
that this result is equivalent to the general result for u belonging to U>

+∞ stated in Corollary

A.1. It is equivalent to finding solutions u of (2.4) such that b−1(x)u(x)e−i(1+iσ)ϕ(x) → 0
when x→ +∞.

We may notice that this expansion is similar to the Bremmer coupling series for the
one-way operators, see [11] for example.

Proof of Theorem 2.4. Consider S> given by (2.26) as before. As u is an outgoing solution,
there exists a constant A∗ such that u = A∗S

>v<. The functions A and B introduced in
the proof of Proposition 3.3 above satisfy u = A∗(Av

> + Bv<), u′ = A∗(A(v
>)′ + B(v<)′).

Moreover, B(x0) =
1
2i

∫ +∞
x0

M(y)S>(y)dy = Rx0 and A(x0) = 1. This leads to the desired
equality

u′(x0)

u(x0)
=
A(v>)′ +B(v<)′

Av> +Bv<
(x0) =

(v>)′(x0) +Rx0(v
<)′(x0)

v>(x0) +Rx0v
<(x0)

.

Reciprocally, assume that u is a solution of (2.4) satisfying

u′(x0)

u(x0)
=

(v>)′(x0) +Rx0(v
<)′(x0)

v>(x0) +Rx0v
<(x0)

.
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Introduce

u∗ =
u(x0)

S>(x0)v>(x0)
S>v>.

As S>v> is an outgoing solution at +∞, so is u∗. Hence u′
∗(x0)

u∗(x0)
=

(v>)′(x0)+Rx0 (v
<)′(x0)

v>(x0)+Rx0v
<(x0)

.

Using u∗(x0) = u(x0), one deduces u′∗(x0) = u′(x0). As u∗ and u are solutions of (2.4), by
uniqueness u = u∗ and u is outgoing at +∞. We have the characterization of u outgoing
at +∞ through the condition at x0 of Theorem 2.4.

4 Expression of the reflection coefficient

4.1 General formula for α > 0

Introduce u ∈ C1([0,+∞[) a solution of (2.4), and define a>, a< the functions such that

(4.1)

{
u(x) = a>(x)w>(x) + a<(x)w<(x), x ∈ [0, x0[
(a>)′(x)w>(x) + (a<)′(x)w<(x) = 0, x ∈ [0, x0[

Introduce

(4.2)
k = e−2iϕ(x0)

1−ibb′(x0)+
Rx0eiϕ(x0)−e−iϕ(x0)

Rx0eiϕ(x0)+e−iϕ(x0)

1+ibb′(x0)−
Rx0eiϕ(x0)−e−iϕ(x0)

Rx0eiϕ(x0)+e−iϕ(x0)

= e−2iϕ(x0) (2−ibb′(x0))Rx0−ibb′(x0)e−2iϕ(x0)

ibb′(x0)Rx0+(2+ibb′(x0)e−2iϕ(x0))

Proposition 4.1. A function u, solution of (2.4), belongs to U>
+∞ if and only if a<(x0) =

k a>(x0).

Proof. Recall that u ∈ U>
+∞ if and only if u′(x0)

u(x0)
= i

Rx0−1
Rx0+1 . As all continuous on [0,+∞[

solutions of (2.4) belong to C1, thanks to α > 0, equalities (4.1) yield

u′(x0)

u(x0)
= −iϕ′(x0)

1− ke2iϕ(x0)

1 + ke2iϕ(x0)
= i

Rx0 − 1

Rx0 + 1
,

hence the relation a<(x0) = k a>(x0).

The behavior of Rx0 , which is one of the key points of the estimate of the reflection
coefficient R , is given by the following proposition.

Proposition 4.2. The limit of
Rx0
θ when θ → 0 is, for α ≥ 1,

1

2i
[e−2ix0

[α]+1∑
p=2

dp

dyp
(

yα

(2i)p+1
) +

∫ +∞

x0

e−2iy

(2i)[α]+2

d[α]+2

dy[α]+2
(yα)dy],

and, for 0 < α < 1,
α(α− 1)

(2i)3

∫ +∞

x0

yα−2e−2iydy.
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The proof of Proposition 4.2 is the content of Section 4.2.
We now have all the ingredients to complete the proof of Theorem 1.1 with the rough

estimate o(θ) for the remainder.
As Rx0 = O(θ) (from Proposition 4.2), it is straightforward, using b′(x0) = O(θ) and

ϕ(x0) = 1 +O(θ), and the expression of k given by (4.2), to deduce

(4.3) k = Rx0 +
bb′(x0)

2i
+O(θ2).

With this expression for k, the solution of the Cauchy problem on [0, x0[ with Cauchy data
at x = x0, yields the leading-order behavior of the coefficient R.

Proposition 4.3. 1. If u is solution of (2.4), then

(
a>

a<

)
defined through (4.1) solves

(
a>

a<

)
(y) =

(
a>

a<

)
(x0) + V(

(
a>

a<

)
)(y),∀y ∈ [0, x0]

the matricial Volterra operator V being defined by (4.5).

2. There exists θ1 > 0 such that, for all θ < θ1, one has the equality

R =

[(Id− V)−1(0)

(
1
k

)
]2

[(Id− V)−1(0)

(
1
k

)
]1

.

(where [·]j denotes the j-th component.)

3. For θ < min(θ0(x0), θ1), one obtains

(4.4) R = Rx0 +
bb′(x0)

2i
e−2iϕ(x0) +

∫ x0

0

b′

b
(y)e−2iϕ(y)dy +O(θ2).

Proof. Item 1):
Consider u given by (4.1), with (a>)′e−iϕ(x) + (a<)′eiϕ(x) = 0. Equation (2.4) yields(

a>

a<

)′
=

ϕ′′(x)

2ϕ′(x)

(
iϕ′(x)eiϕ(x) −eiϕ(x)
iϕ′(x)e−iϕ(x) e−iϕ(x)

)(
0 0

e−iϕ(x) −eiϕ(x)
)(

a>

a<

)
,

which implies

(4.5)

(
a>

a<

)
(x) =

(
a>

a<

)
(x0) +

∫ x
x0

ϕ′′(y)
2ϕ′(y)

(
−1 e2iϕ(y)

e−2iϕ(y) −1

)(
a>

a<

)
(y)dy

:=

(
a>

a<

)
(x0) + V(

(
a>

a<

)
)(x),
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this equality defining the matricial Volterra operator V.
Item 2) As ϕ′′(x)

ϕ′(x) ∈ L1([0, x0]), the kernel of this integral operator belongs to L
1([0, x0]).

Observe that, for all x ∈ [0, x0],

|V(f)(x)| ≤
∫ x0

x
|ϕ

′′(y)

ϕ′(y)
|dy||f ||L∞[0,x0]

As ϕ′ = c−1 and c is decreasing, ϕ′ is increasing and positive, hence

|V(f)(x)| ≤ ln
ϕ′(x0)

ϕ′(x)
||f ||L∞[0,x0].

There exist a constant C(x0), independent on θ, such that

lnϕ′(x0) ≤ C(x0)θ

The map U → S + V(U) is thus a contraction for θ < θ1, θ1 small enough, hence has a

unique fixed point, which yields the unique solution

(
a>

a<

)
of (4.5) which is

(
a>

a<

)
(x) = (Id− V)−1(y)

(
a>

a<

)
(x0).

Proposition 4.1 yields

(
a>

a<

)
(x0) = a>(x0)

(
1
k

)
.

Let r(x) =

(
a>

a<

)
(x)− a>(x0)[

(
1
k

)
V(
(

1
k

)
)(x)]. It satisfies

r(x) = a>(x0)V2(

(
1
k

)
)(x) + V(r)(x).

As V is a contraction for θ < θ1, here exists c such that ||r||(L∞[0,x0])2 ≤ c θ2.
From (2.14) and the relations u(0) = a>(0) + a<(0), u′(0) = ia>(0)R − ia>(0), one

deduces that R = a<

a> (0). From(
a>

a<

)
(0) = (Id− V)−1(0)

(
a>

a<

)
(x0) = a>(x0)(Id− V)−1(0)

(
1
k

)
(x0),

one obtains the reflection coefficient R thanks to a>(0) ̸= 0, hence proving item 2) of
Proposition 4.3.

Item 3) Use k = O(θ), one obtains(
a>

a<

)
(0) = a>(x0)[

(
1
k

)
+ V(

(
1
0

)
)(x)] +O(θ2).
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As

V(
(

1
0

)
)(0) =

∫ 0

x0

ϕ′′(x)

2ϕ′(x)

(
−1 e2iϕ(x)

e−2iϕ(x) −1

)(
1
0

)
dx =

(
−
∫ 0
x0

ϕ′′(x)
2ϕ′(x)dx∫ 0

x0

ϕ′′(x)
2ϕ′(x)e

−2iϕ(x)dx

)
,

using b2ϕ′ = 1 and ϕ′′

ϕ′ = O(θ), one obtains:

V(
(

1
0

)
)(0) =

(
O(θ)∫ 0

x0

ϕ′′(x)
2ϕ′(x)e

−2iϕ(x)dx

)
=

(
O(θ)∫ x0

0
b′(x)
b(x) e

−2iϕ(x)dx

)
.

The first component of [

(
1
k

)
+ V(

(
1
0

)
)(0)] is 1 +O(θ) while the second component is

k +
∫ x0

0
b′(x)
b(x) e

−2iϕ(x)dx, from which one deduces

R = k+

∫ x0

0

b′

b
(x)e−2iϕ(x)dx+O(θ2) = Rx0+

bb′(x0)

2i
e−2iϕ(x0)+

∫ x0

0

b′

b
(x)e−2iϕ(x)dx+O(θ2).

Proof of Theorem 1.1 From (4.4), one deduces

R

θ
=
Rx0

θ
+
αxα−1

0

(2i)3
e−2ix0 −

∫ x0

0

αyα−1

4
e−2iydy +O(θ)

From Proposition 4.2, one has

R

θ
=

1

2i
[e−2ix0

[α]+1∑
p=2

dp

dyp
(

yα

(2i)p+1
)+

∫ +∞

x0

e−2iy

(2i)[α]+2

d[α]+2

dy[α]+2
(yα)dy]−αx

α−1
0

8i
+

1

(2i)2

∫ x0

0

d

dy
yαe−2iydy+o(1)

Using equality (D.3), the above expression can be written as

R

θ
=

Γ(α+ 1)

(2i)α+2
+ o(1),

which proves Theorem 1.1.

When α > 1, remark that bb′(x0)
2i +

∫ x0

0
b′

b (x)e
−2iϕ(x)dx = 1

2i

∫ x0

0 (M(y)+(b′(y))2)e−2iϕ(y)dy.
This allows to verify that, in the case α > 1, one could have chosen x0 = 0.

4.2 Calculation of limθ→0
Rx0

θ

We now address the proof of Proposition 4.2.
One relies in this section on a fixed value of x0 > 0 independent on θ. In the case

0 < α < 1, the calculation of the limit, as well as the estimate of the remainder term
Rx0
θ − limθ→0

Rx0
θ , are both straightforward, as the following lemma shows.
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Lemma 4.4. For 0 < α < 1, there exists θ0(x0) and c such that, for all θ < θ0(x0) and
θ < c−1

|Rx0 −
1

2i

∫ +∞

x0

M(y)e−2iϕ(y)dy| ≤ c2θ2

1− cθ
.

and one gets the estimate

|Rx0

θ
+

1

2i

∫ +∞

x0

yα−2T0(0)dy| ≤ Cθ.

Indeed, there exists a constant C and a constant c such that, for x0 > 0 given and
0 < α < 1

(4.6) Mx0 ≤ θ
xα−1
0

1− α
C = 2cθ

Under this estimate, one checks that, for 0 < α < 1,

(4.7) |S>(x)− e−2iϕ(x)| ≤ cθ

1− cθ
,

and one deduces that

|Rx0 −
1

2i

∫ +∞

x0

M(x′)e−2iϕ(x′)dx′| ≤ (cθ)2
1

1− cθ
.

This proves Lemma 4.4.
The proof for α > 1 is more complicated. Indeed, one of the difficulties is that, when

θ > 0, θ−1M(x) belongs to L1([x0,+∞[) while its limit when θ → 0 is −α(α−1)
4 xα−2, which

does not belong to L1([x0,+∞[).
As M is multiplied by an oscillating term, we will use repeated integrations by parts to

decrease the degree of xα−2.
Before writing the details of the proof of Proposition 4.2 in this case, let us give a

synopsis of it.
Introduce the operator L given by

(4.8) L(f)(x) = d

dx
(cf)(x),

where c(x) is from equation (2.2).

� Using the estimate Mx0 = O(θ
1
α ), it is enough to study, instead of Rx0 , the quantity

1

2i

∫ +∞

x0

M(y)e−2iϕ(y)(

j0−1∑
j=0

s>0,j(y))dy

with j0+1
α > 1 > j0

α ,
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� Using repetitive integration by parts (Lemma 4.6), one gets the identity
(4.9)∫ +∞

x0

f(y)e−2iϕ(y)dy =
c(x0)

2i
e−2iϕ(x0)[

n−1∑
p=0

(2i)−pLp(f)(x0)]+(2i)−n

∫ +∞

x0

Ln(f)(y)e−2iϕ(y)dy,

� Observe finally that, for f(y) = T0(θy
α)(
∑j0−1

j=0 s>0,j(y)), Lp(f)(x0) converges, when

θ → 0, to dp

dxp (T0(0)x
α−2)(x0).

These steps being proven, we choose, for α /∈ N, n such that α − 2 − n < −1. The
dominated convergence theorem proves that

∫ +∞
x0

Ln(f)(y)e−2iϕ(y)dy converges, when θ →
0, to

∫ +∞
x0

dn

dyn (T0(0)y
α−2)e−2iydy.

Remark that a special treatment shall be used for α ∈ N.
The proof of Proposition 4.2 relies on Lemma 4.6 and Appendix C. We introduce j0

such that j0 < α < j0 + 1.
The first Lemma suppresses all terms whose L∞ norm is a o(θ), for all α > 0:

Lemma 4.5. Let α > 1. For all θ such that θ < θ0(x0) (see Lemma B.1), one has

|Rx0 −
1

2i

∫ +∞

x0

M(y)e−2iϕ(y)(

j0−1∑
j=0

s>0,j(y))dy| ≤ θ
j0+1
α (

I

2
)j0+1(1− 1

2
θ

1
α I)−1.

The second lemma yields a formula of integration by parts which is crucial for the
estimate on [x0,+∞[ based on∫ +∞

x0

f(y)e−2iϕ(y)dy =
f(x0)c(x0)

2i
e−2iϕ(x0) +

1

2i

∫ +∞

x0

L(f)(y)e−2iϕ(y)dy,

for f ∈ L1([x0,+∞[) and L(f) ∈ L1([x0,+∞[). It can be generalized into

Lemma 4.6. Let f be a function of class Cj0−1([0,+∞[), bounded, such that all derivatives
are bounded by y−1 when y large. For every n0 ≥ 0, (4.9) holds.

Proof of Proposition 4.2 We differentiate two cases for α. Indeed, the proof we rely
on is based on the behavior of Ln(f) for f proportional to xα−2, and one of the arguments
that may be used is the fact that Ln(xα−2) behaves as xα−2−n, and that α−2−n is strictly
smaller than −1 for n large enough, except if α is integer because the derivative of x0 is 0.

First case: α /∈ N Let f be given by

(4.10) f(y) = yα−2T0(θy
α)(

j0−1∑
j=0

s>0,j(y)).
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such that M(y)(
∑j0−1

j=0 s>0,j(y)) = −θf(y). There exists θ0(x0) and D0 such that, for θ <
θ0(x0):

∀y ≥ x0, ||f(y)|| ≤ D0y
α−2.

This comes from T0 bounded, Mx0 bounded by K0θ
1
α , and all the terms of the expansion

are bounded (Proposition 3.3).
Thanks to c(y) → 1 for all y ∈ [x0,+∞[ when θ → 0, f(y) converges to yα−2T0(0) when

θ → 0, that is L(f) converges to (α− 2)yα−3T0(0).
Moreover, uniformly on [x0,+∞[, for all n ≥ 0;

(4.11) limθ→0Ln(f)(x) =
dn

dyn
(yα−2)T0(0).

Let us choose n0 = [α] and recall that x0 is given, independent on θ. As α /∈ N, for all
p ≥ 1, there exists Tp, bounded on [0,+∞), such that

Lp(f)(x) = xα−2−pTp(θx
α),

with Tp(0) ̸= 0 for all p ≥ 0 thanks to α /∈ N.
The estimates obtained in Lemma C.2 allow us to use the dominated convergence theo-

rem on
∫ +∞
x0

Ln0(M)e−2iϕ(y)dy. This method can be applied in the two cases studied in the

present paper (one gets Ln(M)(x) = θxα−2−nT ∗
n(θx

α), where T ∗
n is a bounded on [0,+∞[

rational fraction in the model case (1.4) and it is a compactly supported function for (2.1),
hence in both cases it is uniformly bounded by a constant K0) and the use of the limit
(4.11) allows us to obtain:

limθ→0

∫ +∞
x0

f(y)e−2iϕ(y)dy = e−2ix0

2i

∑n0−1
p=0 limθ→0

Lp(f)
(2i)p (x0)) +

∫ +∞
x0

limθ→0
Ln0 (f)
(2i)n0

(y)e−2iydy

= T (0)[ e
−2ix0

2i

∑[α]−1
p=0

1
(2i)p

dp

dyp (y
α−2)(x0)) +

1
(2i)[α]

∫ +∞
x0

d[α]

dy[α] (y
α−2)e−2iydy].

that is, using T (0) = −α(α−1)
(2i)2

and T[α](0) = (α− 2)...(α− [α]− 1)T0(0)

(4.12)

−limθ→0

∫ +∞
x0

f(y)e−2iϕ(y)dy = e−2ix0

2i [
∑n0−1

p=0 limθ→0
Lp(f)
(2i)p (x0)] +

∫ +∞
x0

limθ→0
Ln0 (f)
(2i)n0

(y)e−2iydy

= e−2ix0

2i [
∑[α]+1

p=2
1

(2i)p
dp

dyp (y
α)(x0))] +

1
(2i)[α]+2

∫ +∞
x0

d[α]+2

dy[α]+2 (y
α)e−2iydy].

One recognizes the last part of the expression (D.3).

Second case: α ∈ N, denoted by n. Note that there exists, for p ≥ 1, a function
Tp ∈ L1([0,+∞[) (it is a bounded on [0,+∞[ rational fraction in the model case (1.4) and
it is a compactly supported function for (2.1)) such that Ln0(f)(x) = xn−2−n0Tn0(θx

n),
and Tn0(0) = (n− 2)(n− 3)...(n− 1− n0)T0(0) for every n0. The function x→ Tn0(θx

n) is
uniformly bounded by a constant Kn0 . Choose n0 = n− 2. One has

Ln−2(f)(x) = Tn−2(θx
n).
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Considering two additional derivatives, there exists a function Qn, uniformly bounded by a
constant Cn, independent on θ for θ < θ0(x0), such that

(4.13) Ln(f)(x) = θxn−2[(n− 1)c(cTn−2)
′(θxn) + nθxn(c(cTn−2)

′)′(θxn)] = x−2Qn(θx
n),

In addition, Qn(0) = 0. One has thus

∫ +∞

x0

Tn−2(θx
n)e−2iϕ(x)dx = c(x0)e

−2iϕ(x0)[
Tn−2(θx

n
0 )

2i
+
L(Tn−2)(θx

n
0 )

(2i)2
]+

∫ +∞

x0

x−2Qn(θx
n)

(2i)2
e−2iϕ(x)dx,

The uniform bound in the integral by Cx−2, C independent on θ for θ < θ1, allows to use
the dominated convergence theorem, and one obtains, using x−2Qn(θx

n) → 0 when θ → 0

thanks to Qn(0) = 0 (and if α ∈ N, d[α]+2

dy[α]+2 (y
α) = 0)

(4.14) limθ→0

∫ +∞

x0

f(y)e−2iϕ(y)dy = T0(0)e
−2ix0 [

n−2∑
p=0

(2i)−p d
p

dyp
(yn−2)]|y=x0 ,

which proves Proposition 4.2 in the case α ∈ N.
This ends the proof of Proposition 4.2 for all α > 0.
In the sequel, we shall denote by θ1 any constant satisfying 0 < θ1 < θ0(x0) and by C,

when needed, a general constant. The aim of the next Section, which is rather technical, is
to evaluate the remainder terms in Rx0 and its order of magnitude in θ.

5 Asymptotic bounds for R

This section quantifies the remainder term in the expression of R, and in particular identifies
its magnitude in θ.

The case 0 < α < 1 was already addressed in Lemma 4.4. It therefore remains to show

Theorem 5.1. For all α ≥ 1, there exists a constant C and θ1 such that, for all θ < θ1,

|R
θ
− Γ(α+ 1)

(2i)α+2
| ≤ Cθ

1
α .

This is the most technical part of the paper, and we shall differentiate two cases, namely
the case where α is integer and the case where α is not an integer. This is a consequence
of the method used in this proof, namely the repeated integration by parts we perform for
the study of an integral of the form

∫ +∞
x0

xα−2T (θxα)e−2iϕ(x)dx. In the case α not being

an integer, there exists n such that α − n < −1 and the coefficient of xα−n in the integral
obtained after n−2 integration by parts is not zero. In the case α being an integer, if n = α
one obtains an integral of the form

∫ +∞
x0

Tn−2(θx
n)e−2iϕ(x)dx, and an additional integration

by parts would lead to an integral containing xn−1, which is not in L1([1,+∞)).
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Remark first that an estimate similar to the estimate of Lemma 4.5 is

|Rx0 −
1

2i

∫ +∞

x0

M(y)e−2iϕ(y)(

j0+1∑
j=0

s>0,j(y))dy| ≤ θ
j0+2
α (

I

2
)j0+2(1− 1

2
θ

1
α I)−1,

from which one deduces

(5.1) |Rx0

θ
− 1

2i

∫ +∞

x0

θ−1M(y)e−2iϕ(y)(

[α]+1∑
0

s>j (y))dy| ≤ Cθ
1
α .

Note that we are not limited to this estimate, we have as well

(5.2) |Rx0

θ
− 1

2i

∫ +∞

x0

θ−1M(y)e−2iϕ(y)(

2[α]+1∑
0

s>j (y))dy| ≤ Cθ.

Appendix C leads to

|Rx0

θ
− 1

2i

∫ +∞

x0

θ−1M(y)e−2iϕ(y)dy| ≤ C2θ
1
α .

The proof of Theorem 5.1 relies on the estimate

|Rx0

θ
− 1

2i
[e−2ix0

[α]+1∑
p=2

dp

dyp
(

yα

(2i)p+1
) +

∫ +∞

x0

e−2iy

(2i)[α]+2

d[α]+2

dy[α]+2
(yα)dy]| ≤ Cθ

1
α

for α ≥ 1. As for the limit
Rx0
θ , it is split into the cases α /∈ N and α ∈ N. Observe that

c(x0) = 1+O(θ) and ϕ(x0) = x0+O(θ), hence the contributions of order θ
1
α can only come

from the terms s>j , and from the integrals
∫ +∞
x0

Lp(f)(x)e−2iϕ(x)dx.
• In the case α ∈ N, using (4.13) one obtains

Ln+1(f) = x−2θxn−1[(n− 2)Rn(θx
n) + nθxnR′

n(θx
n)].

Observe that∫ +∞

x0

Tn−2(θx
n)e−2iϕ(x)dx =

c(x0)e
−2iϕ(x0)

2i
[Tn−2+

L(Tn−2)

(2i)
+
L2(Tn−2

(2i)2
])(θxn0 )+

1

(2i)3

∫ +∞

x0

Ln+1(f)e−2iϕ(x)dx,

One proved the uniform optimal bound on [x0,+∞[ (Lemma C.2)

|θxn−1[(n− 2)Rn(θx
n) + nθxnR′

n(θx
n)]| ≤ Cθ

1
n

from which one deduces that there exists a constant C such that

|
∫ +∞

x0

Tn−2(θx
n)e−2iϕ(x)dx− c(x0)e

−2iϕ(x0)

2i
[Tn−2 +

L(Tn−2)

(2i)
+

L2(Tn−2)

(2i)2
](θxn0 )| ≤ Cθ

1
nx−1

0
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hence, as c(x0)
2i [Tn−2(θx

n
0 )+

L(Tn−2)(θxn
0 )

(2i) +
L2(Tn−2)(θxn

0 )
(2i)2

] depend only on θ and θ ≤ (θ0(x0))
1− 1

n θ
1
n

for θ < θ0(x0), there exists a constant M such that, for θ < θ0(x0)

(5.3) |
∫ +∞

x0

Tn−2(θx
n)e−2iϕ(x)dx− Tn−2(0)

2i
e−2ix0 | ≤Mθ

1
n .

One thus deduces that, using Lemma 4.6 for n ≥ 3

|Rx0

θ
− c(x0)

2i
e−2iϕ(x0)[

n−3∑
p=0

(2i)−pLp(f)(x0)]−
Tn−2(0)

2i
e−2ix0 | ≤ 2−n+2Mθ

1
n ,

and using

c(x0)

2i
e−2iϕ(x0)[

n−3∑
p=0

(2i)−pLp(f)(x0)] =
1

2i
e−2ix0 [

n−3∑
p=0

(2i)−pxn−2−p
0 Tp(0)] +O(θ

1
n ),

we obtain the estimate

Rx0

θ
=

1

2i
e−2ix0 [

n−2∑
p=0

(2i)−pxn−2−p
0 Tp(0)] +O(θ

1
n ),

which is exactly, thanks to Equality D.3

Rx0

θ
=

Γ(n+ 2)

(2i)n+2
−
∫ x0

0
yn+1e−2iydy +O(θ

1
n ).

Theorem 5.1 is thus proven in the case α ∈ N.
• In the case α /∈ N, α > 1:
Use again Appendix C with an exact expression of r0(x0, θ). One has the identity

(coming from Lemma C.1 for j = 0 and m =M):∫ +∞

x0

θ−1M(y)e−2iϕ(y)dy =
c(x0)

2i
TS
k (x

−1
0 , θxα0 ) +

1

(2i)k+1

∫ +∞

x0

Lk+1(θ−1M)e−2iϕ(y)dy.

Notice first that | c(x0)
2i TS

k (x
−1
0 , θxα0 ) − 1

2iT
S
k (x

−1
0 , 0)| = O(θ). One has just to study the

second term of this equality. Denote this second term by J . We use then the identity (C.3)
of Lemma C.2:

−J =
1

(2i)k+1

∫ +∞

x0

yα−3−kTk+1(θy
α)e−2iϕ(y)dy.

We assume now that α − 2 − k < 0. The uniform bound |Tk+1| ≤ T∞
k+1 translates into

|yα−3−kTk+1(θy
α)| ≤ yα−3−kT∞

k+1, hence the integral converges for all θ ≥ 0.

Use the change of variable y = θ−
1
αX. One obtains

−J =
1

(2i)k+1
θ

2+k
α

∫ +∞

θ
1
α x0

Xα−3−kTk+1(X
α)e−2iθ−

1
αXh(Xα)dX.
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Use the change of variable u = Xh(Xα). As X →
√
1 +Xα is greater than 1, X → u(X) is

a diffeomorphism from [0,+∞[ to [0,+∞[, such that u′(0) = 1, hence its reciprocal is also
a diffeomorphism and X ′(0) = 1. One deduces

J = − 1

(2i)k+1
θ

2+k
α

∫ +∞

θ
1
α x0h(θxα

0 )
(1 + (X(u))α)−

1
2 (X(u))α−3−kTk+1((X(u))α)e−2iθ−

1
α udu.

Denote by Q(u) the quantity such that

(1 + (X(u))α)−
1
2 (X(u))α−3−kTk+1((X(u))α)− (1 + uα)−

1
2uα−3−kTk+1(u

α) = uαQ(u).

When 0 ≤ u ≤ 1, observing that there exists a function Z solving Z(τ)h(τ(Z(τ))α) = 1
such that X(u) = uZ(uα), there exists a function r smooth such that

u−X(u) =
1

h(uα(Z(uα))α)
[h(uα(Z(uα))α)− 1] = uαr(uα),

which imply that Q is bounded in the neighborhood of 0.
On the other side, the estimate, whenX is large, u ≃ X

α
2
+1 leads to (1+(X(u))α)−

1
2 (X(u))α−3−k ≃

u−1u
− 2+k

α
2 +1 .

One has then

−J =
1

(2i)k+1
θ

2+k
α

∫ +∞

x0h(θxα
0 )
(1+θtα)−

1
2 t1−

3+k
α Tk+1(θt

α)e−2itdt+
1

(2i)k+1
θ

2+k
α

∫ +∞

θ
1
α x0h(θxα

0 )
uαQ(u)e−2iθ−

1
α udu.

The last term of this equality is equal to

K =
1

(2i)k+1
θ1+

3+k
α

∫ +∞

x0h(θxα
0 )
uαQ(θ

1
α t)e−2itdt

The estimates of (1+uα)−
1
2u1−

3+k
α Tk+1(u

α) and of (1+(X(u))α)−
1
2 (X(u))α−3−kTk+1((X(u))α)

at +∞ show that K = O(θ1+
3+k
α ). One then deduces

−θ−1J =
1

(2i)k+1

∫ +∞

x0h(θxα
0 )
(1 + θtα)−

1
2 tα−3−kTk+1(θt

α)e−2itdt+O(θ1+
3+k
α ).

Concentrate now on J0 :=
∫ +∞
x0h(θxα

0 )
(1 + θtα)−

1
2 tα−3−kTk+1(θt

α)e−2itdt. We check that, for

α − 2 − k < 0, x0h(θx
α
0 ) − x0 = O(θ), and tα−3−k ∈ L1([x0,+∞[). Using the dominated

convergence theorem, the limit of J0 is easily obtained as being
∫ +∞
x0

tα−3−kTk+1(0)e
−2itdt.

To obtain the difference between J0 and its limit, we perform integrations by parts on the
integral defining J0, in order to have α− 2−m where α− 2−m < −α− 2, such that this
difference is of order θ. As it uses (4.9) with a “simplified” L, we do not write the details.
Finally,
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(5.4) θ−1J − 1

(2i)k+1

∫ +∞

x0

tα−3−kTk+1(0)e
−2itdt = O(θ).

This proves the inequality∫ +∞

x0

θ−1M(y)e−2iϕ(y)dy − 1

2i
TS
k (x

−1
0 , 0)− 1

(2i)k+1

∫ +∞

x0

tα−3−kTk+1(0)e
−2itdt = O(θ)

hence, for α > 1, using the inequality (5.1)

(5.5)
Rx0

θ
− 1

2i
TS
k (x

−1
0 , 0)− 1

(2i)k+1

∫ +∞

x0

tα−3−kTk+1(0)e
−2itdt = O(θ

1
α ).

We thus proved Theorem 5.1.

6 The case α = 1

As an illustration of the results of this paper, we recover the result of Theorem 5.1 in the
model case

c−2(x) = 1 + θx+

associated with the equation

(6.1) u′′ + (1 + θx+)u = 0, u ∈ C1.

This case is easier, because we have an exact representation of the solutions in [0,+∞)
using special functions, hence we may use the classical asymptotic results known for these
functions.

Let us use Ai and Bi for the two classical solutions of the Airy equation u′′ = xu

(namely Ai ∈ S ′(R) is the inverse Fourier transform of ei
t3

3 and Bi is the unique solution
of u′′(x) = xu such that Bi(0) =

√
3Ai(0) and Bi′(0) = −

√
3Ai′(0), see [1]).

Introduce w±(X) = Ai(e±iπ
3X) a pair of satisfactory solutions3 of U ′′ = −XU , and

recall that for X ∈ C, |X| large:

Ai(X) ≃ 1

2
π−

1
2X− 1

4 e−
2
3
X

3
2 .

A pair of independent solutions of (6.1) in x > 0 is (w+(β(1 + θx)), w−(β(1 + θx))), where

β3θ2 = 1, β > 0 (that is β = θ−
2
3 ). In the region x > 0, one has

u(x) = Aw+(β(1 + θx)) +Bw−(β(1 + θx)).

We show in this paragraph that the decomposition of solutions of (6.1) on w+ and w−
is the suitable decomposition to study outgoing and incoming solutions at +∞. Indeed, we
have

3Equal to u± up to a multiplicative constant.
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Proposition 6.1. The function w− is in the space of incoming solutions from +∞, and
the function w+ is in the space of outgoing solutions to +∞ for (6.1).

The reflection coefficient R is given by

R =
w′
+(β) + iβ

1
2w+(β)

−w′
+(β) + iβ

1
2w+(β)

.

Proof. Consider x → w±((1 + iσ)
2
3β(1 + θx)). These two functions are solution of (2.12),

and in addition, converge, pointwise, when σ → 0− to x→ w±(β(1 + θx)).
The deformation (1 + θx) → (1 + iσ)(1 + θx) transforms β into β̃ such that β̃3θ2 =

(1 + iσ)2, that is β̃ = β(1 + iσ)
2
3 , and −2

3X
3
2 (which is the argument of the phase of Ai) is

equal to (β̃(1 + θx))
3
2 = (1 + iσ)β

3
2 (1 + θx)

3
2 .Use 10.4.59 of [1]. Noticing that βθ > 0, and

observing that

ℜ(−2

3
(e±iπ

3 θ
1
3 (x+ θ−1)(1 + iσ)

2
3 )

3
2 = ±2

3
σ(θ

1
3 (x+ θ−1))

3
2 ,

one checks that |Ai(e−iπ
3 θ

1
3 (1+ iσ)

2
3 (x+ θ−1))| → +∞ for σ < 0, hence for each σ < 0, the

family of solutions of (2.12) which go to zero when x→ +∞ is

A+Ai(e
iπ
3 θ

1
3 (1 + iσ)

2
3 (x+ θ−1)).

This describes the space of solutions of (2.4) which are outgoing at +∞, that is x →
w+(β(1 + θx)) generates the space U>

+∞.
Since

w+(β(1 + θx))

(1 + θx)−
1
4 e−

2
3
θ−1/2(1+θx)3/2

:=
w+(β(1 + θx))

b(x)e−iφ(x)

tends to 1
2π

− 1
2 e−i π

12 θ
1
6 as x→ ∞, the unique normalized outgoing solution (in U>

+∞) is

2π
1
2 ei

π
12 θ−

1
6w+(β(1 + θx)).

The outgoing solution to −∞ of (6.1) is e−ix, the incoming solution from −∞ of (6.1)
is eix, hence one has:
• in ]−∞, 0[, u(x) = e−ix +Reix,
• in ]0,+∞[, u(x) = Tw+(β(1 + θx)).
The solution is C1(R), hence {

1 +R = Tw+(β)
i(R− 1) = βθTw′

+(β)

The relation βθ = β−
1
2 ends the proof of Proposition 6.1.

Using estimates on the Airy functions, one proves now
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Lemma 6.2. There exists θ0 and C such that, for 0 < θ < θ0

(6.2) |R− iθ

8
| ≤ Cθ2.

Proof. The asymptotic expansion

lnAi(u) = lnC − 1

4
lnu− 2

3
u

3
2 + ln(

∞∑
k=0

(−1)kck(
2

3
u

3
2 )−k), |u| > 1

leads to
Ai′(u)

Ai(u)
= −

√
u− 1

4u
+ u

1
2

∑∞
k=1(−1)k+1kck(

2
3u

3
2 )−k−1∑∞

k=0(−1)kck(
2
3u

3
2 )−k

.

From this expression, and for |u| ≥ 1, we get the inequality

(6.3) |Ai
′(u)

Ai(u)
+
√
u+

1

4u
| ≤ C

u
5
2

which is valid also in the complex region | arg(u)| < π. An estimate of R can then be
obtained as

R =

w′
+(β)

w+(β) + iβ
1
2

−w′
+(β)

w+(β) + iβ
1
2

=
e−iπ

3
w′

+(β)

w+(β) +

√
ei

π
3 β

−e−iπ
3
w′

+(β)

w+(β) +

√
ei

π
3 β
.

The resulting estimate in R turns out to be a particular case of 5.1 and the value of
R for α → 1+ matches the one obtained directly for α = 1. For 1 ≤ α < 2, the reflection
operator is of order −α, where α > 1 is the fractional regularity of c−2

0 (x1) at x1 = 0. In
the case α = 1 it can also be expressed through Jost integrals.

A Proof of the existence of polarized waves

The existence of polarized waves (and the fact that the dimension of U>
+∞ and of U>

+∞ is 1)
rely on Lemma A.1 below. As c > 0, define the new variable y = ϕ(x) such that y(0) = 0 and
dy
dx = c−1(x). The equation (2.12) is equivalent to the equation on U(y) = c−

1
2 (x(y))u(x(y))

(A.1) ∂2yU = [(σ − i)2 + ϵ(y)]U,

where ϵ(y) = c(x(y))M(x(y)). A necessary condition which ensures that the behavior of
the solutions of (A.1) is well predicted by the limiting system at infinity is

(H) There exists y0 ≥ 0 such that
∫ +∞
y0

|ϵ(y)|dy < +∞.
We note that∫ +∞

y0

|ϵ(y)|dy =

∫ +∞

y0

c(x(y))|M(x(y))|dy =

∫ +∞

x(y0)
c(x)|M(x)|c−1(x)dx =

∫ +∞

x(y0)
|M(x)|dx,
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Lemma A.1. Let σ < 0. Under the assumption (H), the system

∂y

(
U
∂yU

)
=

(
0 1

(σ − i)2 + ϵ(y) 0

)(
U
∂yU

)
satisfies the conditions of Theorem 8.1 of chapter 3 of Coddington-Levinson, hence there
exists a solution W σ

+(y) of it such that

W σ
+(y)e

(i−σ)y →
(

1
σ − i

)
, y → +∞,

and a solution W σ
−(y) of it such that

W σ
−(y)e

(σ−i)y →
(

1
−σ + i

)
, y → +∞.

The solutions of this system are AW σ
+(y) +BW σ

−(y).

We may thus deduce

Corollary A.1. Let σ < 0. The space of solutions of (2.12) which tend to 0 at +∞ is of

dimension 1, generated by c
1
2 (x)Uσ

+(y(x)), where U
σ
+ is the first component of W σ

+ . It is
the same as the space of solutions of (2.12) which are bounded on [x0,+∞[.

Note that ∂2yU = [(σ−i)2+ϵ(y)]U is equivalent to the system of Lemma A.1. All solutions
of this system are W (y) = AW σ

+(y) +BW σ
−(y), because W

σ
+ and W σ

− are linearly indepen-

dant. Hence u(x) = c
1
2 (x)[AUσ

+(y(x))e
(i−σ)ϕ(x)e2(σ−i)ϕ(x) + BUσ

−(y(x))e
(σ−i)ϕ(x)]e(i−σ)ϕ(x).

Hence the limit of |u(x)| is not finite if B ̸= 0. Hence if u has a finite limit then B = 0,

hence u(x) = Ac
1
2 (x)Uσ

+(y(x)). This function goes to 0 when x goes to +∞. The corollary
is proved.

B Properties of the function M

A key lemma for the normal convergence of the Volterra series of Section 3 is the following

Lemma B.1. For all x0 > 0, there exists θ0(x0) such that, for all θ < θ0(x0), Mx0 < 2.

It is a consequence of

Lemma B.2. For all x0, there exists θ∗ and I∗ such that for all θ < θ∗

Mx0 ≤ θ
1
α I∗, α > 1

Mx0 ≤ θI∗, 0 < α < 1.
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Proof One obtains that M , defined by (2.9), is equal to

M(x) = −1

4
θαxα−2

+ c3[α− 1− 5

4
θαc2xα+] := −θxα−2

+ T0(θx
α
+)

where T0(X) = (α(α−1)
4 − α2 X

1+X )(1 + X)−
3
2 in the case λ(x) = x. This expression holds

also for the inhomogeneous case (2.1) (changing the function T0 accordingly: for λ(x) =∫ x
0 χ(y)dy hence b(x) = B1−η2(θx

α),
(B.1)

T0(X) =
1

4
(B1−η2(X))6[α(α−1)χ(X(1−η2))+αX(1−η2)[χ′(X(1−η2))−5

4
(χ(X(1−η2)))2(B1−η2(X))4]],

which is compactly supported).
One obtains, for α > 1 ∫ +∞

x0

|M(y)|dy = θ
1
α I.

The integral I is equal to
∫ +∞
x0θ

1
α
zα−2|T0(zα)|dz. As α > 1 and as there exists a constant

C such that zα−2T0(z
α) ≤ Cz−

1
2
α−2 for z > 1, the integral

∫ +∞
0 zα−2|T0(zα)|dz is finite

and is a majorant of I (in the case λ(x) = x). In the case (2.1) a majorant of I is∫ z0
0 zα−2|T0(zα)|dz. There exists a constant I∗ such that∫ +∞

x0

|M(y)|dy ≤ θ
1
α I∗.

In the case 0 < α < 1, one has |M(x)| ≤ θxα−2
+ max|T0| hence for α < 1∫ +∞

x0

|M(y)|dy ≤ θ
xα−1
0

1− α
max|T0|.

Together, these two inequalities imply Lemma B.1.

C Estimate of the sequence s>j

Recall that one constructs a sequence s>j such that

s>j+1(x) =
1

2i
[

∫ x

x0

M(y)s>j (y)dy +

∫ +∞

x
M(y)s>j (y)e

−2iϕ(y)+2iϕ(x)dy]

hence satisfying

c
ds>j+1

dx
=

∫ +∞

x
M(y)s>j (y)e

−2iϕ(y)+2iϕ(x)dy.

Recall that L is given by (4.8).
The first tool is the following



C ESTIMATE OF THE SEQUENCE s>j 35

Lemma C.1. Assume that the function m is regular enough at +∞, meaning that Lk(m)
is integrable and goes to 0 as y → +∞ for all k ≥ 0.
One has the identity, for all k and j∫ +∞

x m(y)s>j (y)e
−2iϕ(y)dy =

cs>j (x)

2i e−2iϕ(x)[
∑k

p=0
Lp(m)
(2i)p ] + 1

2i

∫ +∞
x (

∑k
p=0

Lp(m)
(2i)p )c

ds>j
dy (y)e−2iϕ(y)dy

+ 1
(2i)k+1

∫ +∞
x Lk+1(m)s>j (y)e

−2iϕ(y)dy.

Proof. As ϕ′c = 1, one obtains∫ +∞

x
m(y)s>j (y)e

−2iϕ(y)dy = − 1

2i

∫ +∞

x
cm(y)s>j (y)

d

dy
(e−2iϕ(y))dy.

If m and L(cm) belong to L1([x0,+∞[), and m goes to 0 when y → +∞, one obtains:∫ +∞

x
m(y)s>j (y)e

−2iϕ(y)dy = e−2iϕ(x)
cm(x)s>j (x)

2i
+

1

2i

∫ +∞

x
L(ms>j )(y)e

−2iϕ(y)dy,

and using L(ms>j )(y) = L(m)s>j +m(y)c
ds>j
dy (y), one obtains Lemma (C.1) for k = 0.

Using

L(m)(y)s>j e
−2iϕ(y)dy = − 1

2i
L(m)(y)cs>j (y)

d

dy
(e−2iϕ(y))

one obtains∫ +∞

x
L(m)(y)s>j e

−2iϕ(y)dy =
1

2i
L(m)(x)cs>j (x)e

−2iϕ(x) +
1

2i

∫ +∞

x
L[L(m)s>j ](y)e

−2iϕ(y)dy

and L[L(m)s>j ](y) = L2(m)s>j (y) + L(m)(y)c
ds>j
dy (y) yields Lemma (C.1) for k = 1.

One proceeds successively.

An easy consequence is the identity

(C.1) c
ds>,1

dy
=

c

2i
[

k∑
p=0

Lp(M)

(2i)p
] +

1

(2i)k+1
e2iϕ(x)

∫ +∞

x
Lk+1(M)e−2iϕ(y)dy

as well as the generalization, j ≥ 2

(C.2)
c
ds>,j

dy =
cs>,j−1

2i [
∑k

p=0
Lp(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k
p=0

Lp(M)
(2i)p )c

ds>,j−1

dy (y)e−2iϕ(y)dy

+ 1
(2i)k+1 e

2iϕ(x)
∫ +∞
x Lk+1(M)e−2iϕ(y)s>,j−1(y)dy

Lemma C.2. i) There exist functions Tp(X), uniformly bounded in θ for X ∈ [0,+∞[ by
T∞
p , such that

(C.3) Lp(M)(x) = −θxα−2−pTp(θx
α)
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In addition Tp+1(0) = (α− 2− p)Tp(0), T0(0) =
α(α−1)

4 .
ii) If α− 2− k < 0, one has the inequality

(C.4) |
∫ +∞

x
Lk+1(M)e−2iϕ(y)dy| ≤ θ

xα−2−k

k + 2− α
T∞
k+1

iii) Consider the functions TS
k (x,X) =

∑k
p=0 x

−p Tp(X)
(2i)p . One has

k∑
p=0

Lp(M)

(2i)p
= −θxα−2TS

k (x, θx
α)

with

(C.5) |TS
k (x, θx

α)| ≤
k∑

p=0

T∞
p

(2x0)p
.

iv) For α > 2, there exists θ1(x0) and a constant C such that, for all θ < θ1(x0) and x ≥ x0

(C.6) |
k∑

p=0

Lp(M)

(2i)p
(x)| ≤ Cθ

2
α

and there exists x ∈ [x0,+∞) such that

|
k∑

p=0

Lp(M)

(2i)p
(x)|θ−

2
α ≥ 1

2
C.

For 1 < α < 2, there exists θ2 such that, for θ < θ2 and for all x ≥ x0

|
k∑

p=0

Lp(M)

(2i)p
(x)| ≤ |

k∑
p=0

Lp(M)

(2i)p
(x0)| ≃ Cθ

Note that item iv) of this Lemma proves that
∑k

p=0
Lp(M)
(2i)p (x) is optimally of order θ

2
α

for α > 2 and of order θ for 1 < α < 2 on [x0,+∞).

Proof of Lemma C.2 The item i) is a consequence of the induction relation Tp+1(X) =

(α− 2− p)Tp(X) + αXT ′
p(X) and T0(X) = (α(α−1)

4 − 5
4α

2 X
1+X )(1 +X)−

3
2 . One gets then

Lp+1(M) = −θxα−2−pTp+1(θx
α)

with Tp+1(0) = (α− 2− p)Tp(0). In addition, using Tp(X) = (1+X)−p− 5
2Qp(X) where Qp

is a polynomial of degree p+ 1 (which is also proven by the induction relation)
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The proof of the second and of the third item comes from |Tp(X)| ≤ Cp(1 + X)−
3
2 ,

decreasing at +∞ as well as all its derivatives, smooth for X ∈ [0,+∞[ in the case λ(x) = x
and bounded uniformly as well as all its derivatives for λ(x) =

∫ x
0 χ(y)dy.

The proof of item iv) comes from, for α > 2,

k∑
p=0

Lp(M)

(2i)p
(x) = θ

2
α

p∑
k=0

θ
p
α zα−2−pTp(z

α), θxα = zα.

One observes that |zα−2T0(z
α)| is maximum when (α − 2)T0(z

α) + αzαT ′
0(z

α) = 0. This
equation have roots, the one leading to the point of maximum of |zα−2T0(z

α)| being denoted
by z∗. The value of this maximum is C∗ = |zα−2

∗ T0(z
α
∗ )| > 0. Using the implicit function

theorem when θ → 0, there exists a point of maximum of
∑p

k=0 θ
p
α zα−2−pTp(z

α) close to
z∗, and the maximum is close to |zα−2

∗ T0(z
α
∗ )|. Hence, as the limit of |zα−2T0(z

α)| is zero
when z → +∞, there exists Z1 > z∗ such that |Zα−2

1 T0(Z
α
1 )| = C∗

2 .
For 1 < α < 2, the limit of zα−2T0(z

α) when z → 0 is +∞, while its limit is 0 when
z → +∞. Again, there is a unique point of minimum of zα−2T0(z

α), which is a point of

maximum of |zα−2T0(z
α)|. For θ small enough, the maximum value of |

∑k
p=0

Lp(M)
(2i)p (x)| is

obtained for x = x0. In addition, as for α = 2, T0(1) = 0 and the limit of T0 at +∞ being
zero, there exists a point of maximum of |T0(z2)| in [1,+∞[.

We may prove using Lemmas C.1 and C.2 that s>,1 is no better than θ
1
α for α > 1

Lemma C.3. There exists a constant C1 such that, for α > 2

|2is>,1(x)−
∫ x

x0

M(y)dy| ≤ C1θ
2
α , x ≥ x0

and for 1 < α ≤ 2

|2is>,1(x)−
∫ x

x0

M(y)dy| ≤ C1θ, x ≥ x0

Note that Lemma C.3 proves that also that the estimate ||s>,1||∞ = O(θ
1
α is optimal.

Proof of Lemma C.3 Let k = [α− 1]. Consider j = 0 in the identity of Lemma C.1 and
m(y) =M(y). We check that

−
[
2is>,1(x)−

∫ x

x0

M(y)dy+
c

2i
[

k∑
p=0

θxα−2−pTp(θx
α)]
]
=

∫ +∞

x
θyα−3−kTk+1(y)e

2i(ϕ(x)−ϕ(y)dy.

As α− 3− [α− 1] < −1, one has, for x ≥ x0,

|
∫ +∞

x
θyα−3−kTk+1(y)e

2i(ϕ(x)−ϕ(y)dy| ≤ θT∞
[α]

xα−[α]−1

[α] + 1− α
≤ θT∞

[α]

x
α−[α]−1
0

[α] + 1− α
.
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Hence there exists C0 > 0 such that

|2is>,1(x)−
∫ x

x0

M(y)dy +
c

2i
[

k∑
p=0

θxα−2−pTp(θx
α)]| ≤ C0θ.

For α > 2, one obtains, thanks to 2
α < 1, that there exists θ2 such that for θ ≤ θ2, using

estimate (C.6)

|2is>,1(x)−
∫ x

x0

M(y)dy| ≤ C2θ
2
α .

For 1 < α ≤ 2, one obtains, for θ ≤ θ2

|2is>,1(x)−
∫ x

x0

M(y)dy| ≤ C2θ.

Remark finally that
∫ x
x0
M(y)dy = θ

1
α

∫ xθ
1
α

x0θ
1
α
zα−2T0(z

α)dz, hence
∫ x
x0
M(y)dy is of order θ

1
α .

Lemma C.4. For each given m0, for all j, there exists j functions Al
j (depending on m0)

and Bl
j such that Al

j(x, θ) = (θxα−2)j−lBl
j(x

−1, θxα) such that the function rj given by

(C.7) rj(x) = c
ds>,j

dx
−

j−1∑
l=0

Al
j(x, θ)s>,l(x)

satisfies, for all x ≥ x0,
|rj(x)| ≤ θCj

m0
jxα−m0 .

for a constant Cj
m0

The proof is done by induction, and we begin by the two first steps explicitely to show
the way of obtaining Al

j and rj .

We observe first c
ds>,1

dy = θA0
1(x) + r1(x), with A

0
1(x) =

1
2ix

α−2TS
k (x, θx

α)c(θxα) and

r1(x) =
1

(2i)k+1
e2iϕ(x)

∫ +∞

x
Lk+1(M)e−2iϕ(y)dy.

From the identity of Lemma C.1 written for k = k2 and the equality (C.1) written for
k = k1 one obtains
(C.8)

c
ds>,2

dy =
cs>,1

2i [
∑k2

p=0
Lp(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k2
p=0

Lp(M)
(2i)p ) c

2i [
∑k1

p=0
Lp(M)
(2i)p ]e−2iϕ(y)dy

+ 1
(2i)k1+k2+2 e

2iϕ(x)
∫ +∞
x (

∑k2
p=0

Lp(M)
(2i)p )

∫ +∞
y Lk1+1(M)(z)e−2iϕ(z)dzdy

+ 1
(2i)k2+1 e

2iϕ(x)
∫ +∞
x Lk2+1(M)e−2iϕ(y)s>,1(y)dy

This rewrites

c
ds>,2

dy
= θA1

2(y)s>,1(y) + θ2A0
2(y) + r2(y)
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where A1
2 = A0

1 (for the same choice of k, number of terms of the expansion) and A0
2(y) =

c(θyα)
∑k

l=0
Ll(m)
(2i)l

, m(y) = c
2iy

2α−4TS
k1
(x, θxα)TS

k2
(x−1, θxα). One then obtains

A0
2(y) = (θyα−2)2B2,0(y

−1, θyα)

Using (C.2) for i = 3, one has

c
ds>,3

dy =
cs>,2

2i [
∑k3

p=0
Lp(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k3
p=0

Lp(M)
(2i)p )c

ds>,2

dy (y)e−2iϕ(y)dy

+ 1
(2i)k3+1 e

2iϕ(x)
∫ +∞
x Lk3+1(M)e−2iϕ(y)s>,2(y)dy

Using (C.8) in this equality, one obtains

c
ds>,3

dy =
cs>,2

2i [
∑k3

p=0
Lp(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k3
p=0

Lp(M)
(2i)p )[

∑k2
p=0

Lp(M)
(2i)p ](y)

cs>,1

2i e−2iϕ(y)dy

+ 1
(2i)2

e2iϕ(x)
∫ +∞
x (

∑k3
p=0

Lp(M)
(2i)p )

∫ +∞
y (

∑k2
p=0

Lp(M)
(2i)p ) c

2i [
∑k1

p=0
Lp(M)
(2i)p ]e−2iϕ(z)dzdy

+ 1
(2i)k2+2 e

2iϕ(x)(
∑k3

p=0
Lp(M)
(2i)p )

∫ +∞
y

∫ +∞
x Lk2+1(M)e−2iϕ(z)s>,1(z)dzdy

+ 1
(2i)k1+k2+4 e

2iϕ(x)
∫ +∞
x (

∑k3
p=0

Lp(M)
(2i)p )

∫ +∞
y (

∑k2
p=0

Lp(M)
(2i)p )(y)

∫ +∞
z Lk1+1(M)(t)e−2iϕ(t)dtdzdy

+ 1
(2i)k3+1 e

2iϕ(x)
∫ +∞
x Lk3+1(M)e−2iϕ(y)s>,2(y)dy

We have to analyse all terms of this equality. The three last terms are uniformly bounded as
soon as k1, k3 are large enough, owing to the regularizing effect of L characterized through
Lemma C.2. Let us consider, for example, the term

1

(2i)k1+k2+4
e2iϕ(x)

∫ +∞

x
(

k3∑
p=0

Lp(M)

(2i)p
)

∫ +∞

y
(

k2∑
p=0

Lp(M)

(2i)p
)(y)

∫ +∞

z
Lk1+1(M)(t)e−2iϕ(t)dtdzdy

The estimate for this term uses (C.5) as follows:

|
∫ +∞

z
Lk1+1(M)(t)e−2iϕ(t)dt| ≤ θT∞

k1+1

zα−2−k1

2 + k1 − α
, k1 > α− 2

from which one deduces

|
∫ +∞
y (

∑k2
p=0

Lp(M)
(2i)p )(y)

∫ +∞
z Lk1+1(M)(t)e−2iϕ(t)dtdz| ≤ θT∞

k2+1θT
∞
k1+1

z2α−4−k1−1

3+k1−α dz

= θ2T∞
k2+1T

∞
k1+1

y2α−3−k1

(3+k1−2α)(2+k1−α) , k1 > 2α− 3

hence a final estimate of this remainder term by Cθ2x3α−4−k1 for k1 > 3α−4. When α > 1,
the condition which contains all is k1 > 3α− 4.
The third term is an integral which do not contain any term of the form s>j , hence can be
easily treated by integration by parts and leads to a term of the form

(θyα)3B3,0(y
−1, θyα).
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The first term is the finite sum A1
2(y). The only term left to consider is the second

term, on which we use Lemma C.1. The coefficient of s>,1 in this integral is of the form
(θyα−2)2B2,0(y

−1, θyα), hence the action of
∑

p
Lp

(2i)p returns a similar term, which writes
then

(θyα−2)2B3,2(y
−1, θyα).

This allows us to write the existence of three functions A2
3, A

1
3 and A0

3, and a remainder
term r, such that

c
ds>,3

dy
= A2

3(x)s>,2(x) +A1
3(x)s>,1(x) +A0

3(x) + r3(x)

where |r3(x)| ≤ C3
Mθx

α−M where M is large enough.
For the general proof by induction, let us assume that the Lemma is true for all j′ ≤ j.
One uses Lemma C.1 to obtain

c
ds>j+1

dy =
cs>j
2i [
∑k

0
(L)p(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k
0

(L)p(M)
(2i)p )c

ds>j
dy e

−2iϕ(y)dy

+ 1
(2i)k+1

∫ +∞
x Lk+1(M)s>j (y)e

−2iϕ(y)dy.

We plug the induction hypothesis in the equality to obtain

c
ds>j+1

dy =
cs>j
2i [
∑k

0
(L)p(M)
(2i)p ] + 1

2ie
2iϕ(x)

∫ +∞
x (

∑k
0

(L)p(M)
(2i)p )[

∑j−1
l=0 A

l
j(y)s>,l(y)]e

−2iϕ(y)dy

+ 1
2ie

2iϕ(x)
∫ +∞
x (

∑k
0

(L)p(M)
(2i)p )rj(y)e

−2iϕ(y)dy + 1
(2i)k+1

∫ +∞
x Lk+1(M)s>j (y)e

−2iϕ(y)dy.

Hence the coefficient of s>j comes from the first term only and is equal to c
2i

∑k
0

(L)p(M)
(2i)p .

We denote it by

Aj
j+1 =

1

2i
xα−2c(θxα)MS

k (x, θx
α)

The identity of Lemma C.1 yields, with the notation ml
j(x) = (

∑k
0

Lp(M)
(2i)p )Al

j(x) and
l ≤ j − 1

∫ +∞
x ml

j(y)s>,l(y)e
−2iϕ(y)dy =

cs>,l(x)
2i e−2iϕ(x)[

∑k
p=0

Lp(ml
j)

(2i)p ] + 1
2i

∫ +∞
x (

∑k
p=0

Lp(ml
j)

(2i)p )c
ds>,l

dy (y)e−2iϕ(y)dy

+ 1
(2i)k+1

∫ +∞
x Lk+1(ml

j)s
>
j (y)e

−2iϕ(y)dy.

We use the induction hypothesis for all terms of the equality above containing c
ds>,l

dy . We
are thus left to evaluate, for l ≥ 1

1

2i

∫ +∞

x
(

k∑
p=0

Lp(ml
j)

(2i)p
)c
ds>,l

dy
(y)e−2iϕ(y)dy =

1

2i

∫ +∞

x
(

k∑
p=0

Lp(ml
j)

(2i)p
)[rl(y)+

∑
l′≤l−1

Al′
l (y)s>,l′(y)]e

−2iϕ(y)dy.

On each individual term 1
2i

∫ +∞
x (

∑k
p=0

Lp(ml
j)

(2i)p )Al′
l (y)s>,l′(y)e

−2iϕ(y)dy, one uses Lemma C.1

which reduces the evaluation of this sum to the evaluation of c
ds>,l′
dy for l′ ≥ 1 (because for
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l′ = 0, this term is equal to 0. This evaluation, thanks to identity (C.2), involves only terms
of the form Al′′

l′ s>,l′′ with l′′ ≤ l′ − 1 ≤ l − 2 ≤ j − 3. For each of these terms, one uses
Lemma C.1. As the index j, l, l′, l′′ form a strictly decreasing sequence of integers, one is left
with a finite iteration process. All terms involved are functions thanks to the application
of Lemma C.1 in the particular case j = 0, because s>,0 = 1.
The remainder terms in these successive equalities are either terms of the form∫ +∞

x
Lk+1(ml′

l )(y)s
>
j e

−2iϕ(y)dy

or ∫ +∞

x
rl(y)m(y)e−2iϕ(y)dy.

We use Lemma C.2 to have explicit expressions for

Lp(M),
k∑

p=0

Lp(M)

(2i)p
,

k∑
p=0

Lp(ml
j)

(2i)p
,

All these terms write, respectively

−θxα−2−pTp(θx
α),−θxα−2TS

k (θx
α),−θxβ−2Tj,l,k(θ, θx

α)

where β depends on α and j, l, k and the expression of TS
k and of Tj,l,k is complicated and

not needed. From these explicit expressions, we obtain similar expressions for Lk+1(ml′
l ),

the factor being θxα−2−k−1. Using the explicit integration by parts with L and the bound
of Tp, T

S
k , Tj,l,k one deduces similar relations for the remainder terms.

The relation on c
ds>,j+1

dy is thus obtained, which ends the proof of Lemma C.4. It is also a
(difficult) consequence of this proof that

Al
j(x) = (θxα−2)j−lBj,l(x

−1, θxα).

Along with |s>j (x)| ≤ Cjθ
j
α for x ∈ [x0,+∞[, this helps to evaluate all the terms of the

expansion of c
ds>j
dx .

Note in particular that, for x ∈ [x0,+∞[ and x0 > 0 fixed, all terms Bj,l(x
−1, θxα) are

uniformly bounded for θ < θ0(x0) given.
This estimate is crucial to allow us to use the dominated convergence theorem as follows,
for α− 2− p < −1

limθ→0+

∫ +∞

x0

xα−2−pMp(θx
α)e−2iϕ(x)dx =

∫ +∞

x0

xα−2−pMp(0)e
−2ixdx.

The condition α− 2− p < −1 is ensured by using the identity of Lemma C.1 for x = x0, k
large enough, j = 0 for treating the term

∫ +∞
x0

Lk+1(m)e−2iϕ(y)dy. For example, one is left
with

limθ→0+

∫ +∞
x0

θ−1M(y)e−2iϕ(y)dy = 1
2i [
∑k

p=0
1

(2i)p
dp

dyp (−
α(α−1)

4 yα−2)(x0)]

+ 1
(2i)k+1

∫ +∞
x0

dk+1

dyk+1 (−
α(α−1)

4 yα−2)e−2iydy.
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We thus deduce

Proposition C.5. For all k large enough, there exists a function rkj such that one has∫ +∞

x0

θ−1M(y)s>j (y)e
−2iϕ(y)dy =

cs>j
2i

xα−2
0 TS

k (x
−1
0 , θxα0 ) + θ

j
α rkj (x0; θ) +O(θ).

One deduces, for k large enough∫ +∞

x0

θ−1M(y)e−2iϕ(y)(

n0∑
j=0

s>j )(y)dy =
1

2i
xα−2
0 TS

k (x
−1
0 , θxα0 ) + rn0,k(x0, 0) +O(θ

1
α ).

Let us use Lemma C.1. The proof of this proposition reduces then to proving

1

2i

∫ +∞

x0

θyα−2MS
k (y

−1, θyα)c
ds>j
dy

e−2iϕ(y)dy = O(θ),

id est 1
2i

∫ +∞
x0

yα−2MS
k (y

−1, θyα)c
ds>j
dy e

−2iϕ(y)dy bounded uniformly. Use Lemma C.4. One
has ∫ +∞

x0
yα−2MS

k (y
−1, θyα)c

ds>j
dy e

−2iϕ(y)dy

=
∫ +∞
x0

yα−2MS
k (y

−1, θyα)[
∑j−1

l=0 (θy
α)j−lBj,l(y

−1, θyα)s>,l(y)]e
−2iϕ(y)dy + r

=
∑j

l′=1 θ
l′
∫ +∞
x0

y(α−2)(1+l′)MS
k (y

−1, θyα)Bj,j−l′(y
−1, θyα)s>,l(y)e

−2iϕ(y)dy + r

As every term
∫ +∞
x0

y(α−2)(1+l′)MS
k (y

−1, θyα)Bj,j−l′(y
−1, θyα)s>,l(y)e

−2iϕ(y)dy is bounded
(using integration by parts and properties of s>,l′ for all l

′), this ends the proof of the first

equality of Proposition C. The second equality is a consequence of |s>j (x)| ≤ Cjθ
j
α for all

j. Proposition C is proven.

D Properties of the Gamma function

We recall the expression of the Gamma function by a semi-convergent integral for 0 < δ < 1:

(D.1)

∫ +∞

0
tδ−1e−itdt = i−δΓ(δ).

The equality (D.1) is a consequence of

Γ(δ) = kδ
∫ +∞

0
tδ−1e−ktdt,ℜk > 0

The generalization to α > 0 arbitrary is straightforward, thanks to (α not an integer)

(D.2) Γ(α+ 1) = α(α− 1)...(α− [α] + 1)Γ(α− [α]),
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which ensures that

Γ(α+ 1) = kα+1

∫ +∞

0
tαe−ktdt,ℜk > 0

from which one deduces

(D.3)
Γ(α+ 1)

(2i)α+1
=

∫ x0

0
yαe−2iydy+ (2i)−n

∫ +∞

x0

dn

dyn
(yα)e−2iydy+ e−2ix0

n−1∑
p=0

dp

dyp (y
α)

(2i)p+1
(x0).

This equality is a consequence of

Γ(δ) = (2i)δ
∫ x0

0
tδ−1e−2itdt+ (2i)δ−1[xδ−1

0 e−2ix0 +

∫ +∞

x0

(δ − 1)tδ−2e−2itdt]

obtained by choosing k = ϵ+ 2i, ϵ > 0 and to notice that

Γ(δ) = (ϵ+2i)δ
∫ x0

0
tδ−1xδ−1

0 e−(ϵ+2i)tdt+(ϵ+2i)δ−1[e−(2i+ϵ)x0 +

∫ +∞

x0

(δ−1)tδ−2e−(ϵ+2i)tdt]

then using ϵ→ 0+ and the dominated convergence theorem
Choose δ = α− [α] ∈ (0, 1). One then has, thanks to (D.2)

Γ(α+1) = (2i)δ
∫ x0

0
α.(α−1)....δtδ−1e−2itdt+(2i)δ−1[α.(α−1)....δxδ−1

0 e−2ix0+

∫ +∞

x0

α.(α−1)....δ(δ−1)tδ−2e−2itdt],

which rewrites

Γ(α+1) = (2i)δ
∫ x0

0

d[α]+1

dt[α]+1
(tα)e−2itdt+(2i)δ−1[α.(α−1)....δxδ−1

0 e−2ix0+

∫ +∞

x0

d[α]+1

dt[α]+1
(tα)e−2itdt],

Using repetitively integration by parts on the first term leads to equality (D.3).
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