N

N

On the Krein-Rutman theorem and beyond
Claudia Fonte Sanchez, Pierre Gabriel, Stéphane Mischler

» To cite this version:

Claudia Fonte Sanchez, Pierre Gabriel, Stéphane Mischler. On the Krein-Rutman theorem and be-
yond. 2024. hal-04093201v2

HAL Id: hal-04093201
https://hal.science/hal-04093201v2

Preprint submitted on 10 Jan 2024

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License


https://hal.science/hal-04093201v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

1.

1.1.
1.2.
1.3.
1.4.

2

2.1.
2.2.
2.3.

3

3.1.
3.2,
3.3.
3.4.
3.5.

4

4.1.
4.2.
4.3.
4.4.

5

o.1.
9.2,
5.3.
5.4.
9.5.
5.6.

6

6.1.
6.2.
6.3.
6.4.
6.5.

7

7.1.
7.2.
7.3.
7.4.

8

8.1.
8.2.
8.3.
8.4.
8.5.

ON THE KREIN-RUTMAN THEOREM AND BEYOND

CLAUDIA FONTE SANCHEZ, PIERRE GABRIEL, AND STEPHANE MISCHLER

CONTENTS
Introduction 2
Framework and the main result 2
Discussion about Theorem 1.1 6
Some examples of applications 11
Organization of the paper 15
Existence through a stationary problem approach 16
The Banach lattice framework 16
Existence part of the Krein-Rutman theorem 18
Discussion 28
Existence through a dynamical approach 31
About dissipativity 31
Existence in the dissipative case 32
About weak dissipativity 35
First existence result in the weakly dissipative case 37
Second existence result in the weakly dissipative case 39
Irreducibility and geometry of the first eigenvalue 41
More about positivity 42
Irreducibility and strong maximum principle 44
The geometry of the first eigenvalue problem 47
Mean ergodicity 49
The geometry of the boundary point spectrum 53
Complexification and the sign operator 53
On the subgroup and discrete structure of the boundary point spectrum 55
Stronger positivity 57
On the triviality of the boundary spectrum 61
Ergodicity 62
A word about spectral analysis argument 66
Quantitative stability 69
About quantified positivity conditions 69
Asymptotic stability under Doblin condition 70
Asymptotic stability under Harris condition 71
Quantified isolation of the first eigenvalue 73
The weak dissipativity case 74
Parabolic equations 76
Diffusion with rough coefficients in a bounded domain 77
Diffusion in R? with strong potential confinement 89
Diffusion in R? with weak potential confinement 91
Diffusion in R¢ with drift confinement 94
Transport equations 100
The trace problem 101
Well-posedness for the transport equation with given inflow at the boundary 107
Optimal weighted trace theorem and transport equation with reflection at the boundary114
Characteristics 120

On the Krein-Rutman theorem for the transport equation with kernel terms 127



2 C. FONTE SANCHEZ, P. GABRIEL, AND S. MISCHLER

8.6. A word about the renewal equation 131
9. The growth-fragmentation equation 133
9.1. The mitosis equation with mixing growth rate 134
9.2. The mitosis equation with non-mixing growth rate 139
9.3. The model with variability 143
10. The kinetic linear Boltzmann equation 147
10.1. The torus 148
10.2. The whole space case 153
11. The kinetic Fokker-Planck equation 156
11.1. The trace problem 157
11.2.  Well-posedness problem with inflow term at the boundary 158
11.3.  Well-posedness problem with reflection condition at the boundary 162
11.4. The first eigenvalue problem in a domain with reflection at the boundary 165
12. A mutation-selection model 173
12.1.  Almost regular mutation kernel 173
12.2. A singular mutation kernel 179
References 183

1. INTRODUCTION

1.1. Framework and the main result. In this work, we revisit the Krein-Rutman theory for
semigroups of positive operators in a Banach lattice framework and we provide some very general,
efficient and handy results with constructive estimates about

- the existence of a solution to the first eigentriplet problem;

- the geometry of the principal eigenvalue problem;

- the asymptotic stability of the first eigenvector with possible constructive rate of convergence.

This abstract theory is motivated and illustrated by several examples of differential, intro-differential
and integral operators. In particular, we revisit the first eigenvalue problem and the asymptotic
stability of the first eigenvector for

- some parabolic equations in a bounded domain and in the whole space;

- some transport equations in a bounded or unbounded domain, including some growth-fragmentation
models and some kinetic models;

- the kinetic Fokker-Planck equation in bounded domain;

- some mutation-selection models.

The results we establish on these examples are more general and more accurate that what we can
find in the literature. Our approach is in the same time able to tackle some critical cases, but also
it is very natural and makes possible to bring out the main important properties for each example
and to get rid of many technical issues.

The present work is motivated by new problems and ideas presented in the lectures on the Krein-
Rutman theorem by P.-L. Lions at College de France [252] and by the recent contributions by
Bansaye et al [35] and by Canizo and Mischler [81] developing Harris techniques. Bringing and
developing these ideas and techniques together with the more classical spectral analysis approach
developed or synthesized in previous contributions by Krein and Rutman [238], by Arendt et al [15],
by Mischler and Scher [278], by Bétkai et al [41] and many others, we are then able to significantly
generalize and improve the Krein-Rutman theory for positive semigroups.

The abstract results are developed in the framework of a quite general Banach lattice X, that is
a Banach space (X, || - ||) endowed with a compatible order relation > and thus with associated
positive cone Xy := {f € X; f > 0}, which satisfies either X =Y’ or X’ =Y for another dual
Banach lattice Y. The precise (and standard) framework will be presented in Section 2.1, and
some additional properties will be added when needed (these ones always hold in usual Banach
lattices used in PDE and stochastic processes theory). On the other hand, all the applications we
will presented are made in the following examples of usual Banach lattices :
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o X := Cy(FE), the space of continuous functions which tend to 0 at infinity (when E is not a
compact set) endowed with the uniform norm, or X := Cy ,,,(F) its weighted variant;

e X :=LP(E)=LP(E,&, ), the Lebesgue space of functions associated to the Borel o-algebra &,
a positive o-finite measure p and an exponent p € [1,00], or X := LE (E) its weighted variant;

e X := MYE) = (Co(E))’, the space of Radon measures defined as the dual space of Co(E), or
X := M} (E) its weighted variant.

In all the above examples, E denotes a o-compact metric space, and we write £ = UEg, with
Er C Ery1, Er compact.

We next consider a positive one-parameter semigroup of operators S = S, on X (we will indiffer-
ently writes Sy = S(t) = Sg(t) for ¢ > 0), and we denote by L its generator, by D(£) C X the
domain of £, by p(L£) C C the resolvent set of £ and by X(L£) = C\p(L) the spectrum of £. We
also denote by S* and L* the corresponding semigroup and generator on the dual space Y, and we
refer to Section 2.1 for more notations.

As announced, we may split the issue into several pieces concerning the stationary and the evolution
associated problems.
e Existence. We are first interested in the existence part of the first or principal eigentriplet
problem, namely we wish to bring out very general conditions under which

(S1) there exists a solution (A1, f1,¢1) € R x X x Y to the eigentriplet problem

(1.1) Lfi=Mf1, f120, fLr#0,

(12) L*QSl = )\1(;51; (bl > 0) ¢1 7é 07

and furthermore \; coincides with the spectral bound, namely

(1.3) A1 = s(L) :=sup{ReX; A € (L)} = inf{x € R; Ax C p(L)},

where A, is the open half plan A, := {z € C; Rez > a}.

We emphasize on the fact that this problem is named as the principal eigenvalue problem because

M eX(L) Cc{zeC, Re(z) < \i}.

e Geometry. A second issue is about an accurate analysis of the principal eigentriplet solution
and of the geometry of the (principal part of the) spectrum.

On the one hand, concerning the eigentriplet solution, we investigate conditions such that

(S2) fy is strictly positive (we refer to Section 4.1 for a definition) and f; is the unique (up
to normalization) positive eigenvector for £, ¢ is strictly positive and ¢; is the unique (up to
normalization) positive eigenvector for £*, and finally \; is geometrically and algebraically simple
for both £ and £*. We then may make the (usual) normalization choice

(1.4) (Il =1, {fr,e1) =1) or (lgull =1, (f1.01) =1).
We are next interested by describing the boundary point spectrum
SH(L) = Sp(L) N T4 (L),

where we define the boundary spectrum ¥4 (£) := s(£) + iR and £p (L) as the point spectrum (or
set of eigenvalues). More precisely, we exhibit some conditions such that

(S31) T5(L£) — A is a (discrete) additive subgroup of iR;

(S32) X5(£L) is trivial, namely
(1.5) Sp(L) = { M}
or

(S33) X5(£) is trivial and (L) enjoys a spectral gap property (on its principal part), namely
(16) dr < Aq; E(,C) NA, = {)\1}
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In the last situation (1.6), a band separates the spectral value A; to the remainder of the spectrum,
while there is no spectral gap when (1.5) holds but (1.6) does not.
The importance of such a eigentriplet comes from the fact that we may associate the Malthusian
function

Fy(t) = eMtf,
which is a particular solution to the evolution equation (with maximal growth) and a natural
candidate to capture the main asymptotic feature of generic semigroup flow.

e Asymptotic stability. In order to formulate our third main issue, namely the asymptotic
stability of F7, we introduce the rescaled operators L=L—) and L* = L* — A1, so that

Lfi=0, L'¢1=0,
or in other words, f; is a stationary state of the sermgroup S = Sz and ¢ is a stationary state of

the semigroup S* =5~ 7+, and thus a conservation law for S:

St fi=fi, S t)or=d1, (SOVf,¢1) = (f, 1),

for any ¢ > 0 and any f € X. Because of the property of the eigentriplet and of the normalization
assumption (1.4), we may reduce the issue to considering the case f € X satisfies (¢1,f) = 0
when (S33) or (S33) holds and more generally f € Y5~ when (S31) holds, where Y; stands for
the eigenspace associated to the eigenvalues belonging to EJIS (£). Depending of the hypotheses we
made on £ and S, we are able to establish some

(E1) mean ergodic property, namely
R
—/ Sifdt —0 as T — oo;
T Jo

(E2) ergodic property, namely
gtf —0 as t— o0;

(E3) quantitative asymptotic stability, which may be geometric (or exponential) in the
spectral gap (1.6) case, namely

(E31) [IS@)f] < Ce | fll, Vt>0,VfeX, (fodr)=0

for possible constructive constants € > 0 and C > 1, or under the weaker condition (1.5) only
subgeometric, namely

(E32) IS fllr < OW)||flla, VE>0,VfEX, (f,¢1) =0

where || - |2 = - lx, || - |1 is & weaker norm and © : Ry — R4 is a constructive decay function
satisfying ©(¢) \, 0 when ¢t * co.

We aim now to allude some general hypotheses on the semigroup S, or its generator £ such that
the above three main issues may be tackled. Additionally to the yet mentioned fact that S, is
positive (which is almost equivalent to the fact that its resolvent is a positive operator, that £
enjoys a weak maximum principle or that £ enjoys Kato’s inequality) our hypotheses are mainly
of two kinds :

- strict positivity conditions;

- regularity conditions;

and these ones may be formulated at the stationary level directly on the generator £ or its resolvent
R or they may be formulated at the evolution level on the semigroup of operators S.. Of course, in
order to establish constructive results these hypotheses will have to be formulated in a quantitative
way.

The strict positivity we will introduce and use are of different kinds:

- strong maximum principle on the generator, or equivalently irreducibility of the semigroup;

- reverse Kato’s inequality for the generator or aperiodicity condition of the semigroup;

- Doblin-Harris condition on the semigroup, which may be formulated as

(1.7) Srf>go(o, f), YfeXy,
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for some for some 7" > 0 and convenient gg € X4+ \{0}, o € Y \{0}.

Less systematically but in a crucial way, we will make use of somehow related
- barrier functions and positive subeigenfunctions, which for the last one typically writes

(18) dkg € R, 3(;50 S Y+\{0}, L*qf)o > Hoqf)o.

On the other hand, some regularity is needed on the dominant part of the semigroup. In order to
briefly explain the issue, we assume that £ = A + B with A € #(X) and B is the generator of a
positive semigroup Sp. In such a context, we may write the resolvent factorization identity

Re=Rp+RAR,
on the resolvent R, of £ and Rp of B, and its iterated version
(1.9) Re=V+WRe, V:=Rpg+- - +Re(AR)N ', W:=(RgAY.
At the level of the generator, our regularity assumption then typically writes

(1.10) sup [[V(2)||lzx) < oo, sup [W(z)|lzxx,) < 0,
ZEA, zEA

for some k € R and X; C X, which is nothing but the classical Voigt’s power compact condition
when X; C X with compact embedding. Similarly, at the level of the semigroup, we may write
the associated Duhamel formula
Sy =5+ (SB.A) * S,

(we refer to Section 3.1 for a precise definition) and its iterated version

N-1
(1.11) Se=V+WxSe, V=Y Sgx(ASp)*, W= (SpA)*N),

£=0
with N > 1. At the level of the semigroup, our regularity assumption then typically writes

(1.12) sup ||V (t)e || g(x) < 00, sup||[W(t)e™ || z(x,x,) < o0,
t>0 t>0

for some k € R and X; C X in the dissipative framework and a variant of these estimates in a
weak dissipative framework. The crucial information is k < k¢ (dissipative framework) or £ = kg
(more involved weak dissipative framework).

We are now in position to state in a very informal way our main result at the level of the abstract
Banach lattice framework.

Theorem 1.1 (rough version). Let us consider a Banach lattice X picked up in the examples listed
above and a positive semigroup Sp on X which enjoys the above splitting structure (1.9), (1.10),
(1.11), (1.12).

(1) Conclusion (S1) holds under the localization of the principal spectrum assumption k < ko and

a weak compactness assumption on the regular part W or W in the splitting.

1
loc?’

(2) Under an additional strong maximum principle the conclusion (S2) holds. When X C L
we additionally conclude that (S31) and (E1) hold.

In order to make one step further, we have the three next possibilities

(8) Under an additional inverse Kato’s condition or an aperiodicity property, the conclusion (S33)
holds, as well as (E2) when X C Li

loc*

(4) Alternatively, under an additional strong compactness assumption on the regular part W of
the semigroup, the quantitative exponential asymptotic stability (E31) holds without constructive
constants, and thus also the spectral gap conclusion (S33) holds (in a not constructive way).

(5) Alternatively, under the additional Doblin-Harris condition (1.7) and an appropriate regularity
estimate on the regqular part of the splitting W, the quantitative asymptotic stability (E3) holds for
both the geometric and subgeometric framework with now constructive constants.

More general and precise statements will be presented in Sections 2, 3, 4, 5 and 6, where in
particular some variants in a weak dissipative framework (k = kg) will be presented. It is worth
emphasizing that the assumptions in (4) and (5) may be optimal in the sense that reciprocal
implications are likely to be true. We do not follow that line of investigation but rather refer to
[278, 35] where such kind of results are established.
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1.2. Discussion about Theorem 1.1. We discuss several works related to the main Theorem 1.1
as well as the hypotheses and the techniques used during the proof.

1.2.1. The Krein-Rutman work and related approaches. For a strictly positive matrix in a
finite dimensional space, Perron [311] and Frobenius [167] establish at the beginning of the 20th
Century that the eigenvalue with largest real part is unique, real and simple. In their pioneer work,
Krein and Rutman establish in [238] for the very first time possible infinite dimensional functional
space versions of the Perron-Frobenius theorem.

Theorem 1.2 (Krein-Rutman). Consider a Banach lattice with positive cone Xy and strictly
positive cone Xy = intX, # (0. Consider a linear and compact operator R : X — X such that
R:X: — X, and R : X4\{0} — Xyy. Then there exists a unique eigentriplet (p1, f1,¢1) such
that iy >0, fre X4y, fi=mRf, ¢1 € X\ |, o1 = R 1.

The non-emptiness of X, and the strict positivity assumption R : X, \{0} — X, can be
relaxed, to the price of loosing the uniqueness and strict positivity properties of the eigenvectors.
For a bounded operator R on X, we denote by 7(R) the spectral radius

r(R) :=sup{|Al; A € X(R)} < [[R]|.

Theorem 1.3 (Krein-Rutman). Consider a Banach lattice with positive cone Xy and a linear
and compact operator R : X — X such that R : X1 — X4 and r(R) > 0. Then there exists an

eigentriplet (p1, f1, ¢1) with p1 = r(R), f1 € X4\ {0}, f1 = mRf1, ¢1 € X\ \ {0}, ¢1 = 1uR*¢1.

In Theorems 1.2 and 1.3, the operator R corresponds to a resolvent operator R := (x — £)~ ! for
k > 0large enough, so that when it applies, we deduce in particular that the first eigenvalue problem
(1.1)-(1.2) has a solution with A\; = x— 1. The two conditions int X4 # § and R : X1 \{0} — X4+
are very strong. The first one essentially imposes to work in the space of continuous function and
the second one to work in a bounded domain. The result is however suitable and directly applicable
(and somehow restricted) to an elliptic operator with smooth coefficients set in a bounded domain
with suitable boundary conditions or to a Fredholm integral operator with positive kernel also set
in a bounded domain. In the elliptic context, the property R : X \{0} — X is nothing but the
strong maximum principle while the compactness property of R comes from the elliptic regularity.
We refer to Section 2.3 for further discussions. The weaker condition r(R) > 0 is less restrictive
and is in particular always satisfied for irreducible operators, by virtue of de Pagter’s theorem [128].
In the same framework, Theorems 1.2 and 1.3 have been next slightly extended by Bonsall [65],
Schaefer [336], Karlin [228] or Nussbaum [300] for instance. We also refer to the book by Dautray
and Lions [125] for a clear and comprehensible presentation and several possible versions.

In his paper [58], G. Birkhoff derived the Perron-Frobenius theorem by proving a contraction
principle in Hilbert’s projective metric for positive matrices. His result actually applies to any
“uniformly positive bounded” linear operators of a Banach lattice, such as integral operators with
positive kernels, and also provides geometric stability estimates. A closely related result was proved
by E. Hopf [216], and this Birkhoff-Hopf contraction theorem was subsequently generalized and
sharpened, and its proof simplified, by several authors, see in particular [42, 73, 78, 155, 156,
233, 301, 305]. This approach of the Krein-Rutman theorem requires some “uniform positivity
and boundedness” of the operator, which is quite restrictive, but it nevertheless allows to recover,
through an approximation procedure, the standard result of Theorem 1.2, see [73, Thm. 6.18].
The contraction in Hilbert’s projective metric has the advantage to be applicable in partially order
linear vector spaces without any topological structure [156], and to nonlinear maps [301].

1.2.2. Spectral analysis approach. In his paper [315], R.S. Phillips formalized the notion of
positive semigroup acting on a Banach lattice paving the way to a new field of research. In the
precursory work [351] by Vidav and next in a series of papers by Greiner and co-authors [187,
189, 15], Webb [359, 360] and Biirger [75] (see also [15, C-III, Cor. 2.12, Thm. 3.12], [152, Thm.
VI.1.12, Cor. VI.1.13] or more recently Theorem 14.17 in the very pedagogical book [41]) significant
generalizations of the Krein-Rutman theory were established leading to, roughly speaking, the
following result.

Theorem 1.4. Consider a positive semigroup Sg on a (suitable) Banach lattice X which is irre-
ducible and such that s(L) > —oo is a pole, then
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e s(L) is a first-order pole with one-dimensional and strictly positive residue, so that in particular
there exists a solution (A1, f1,¢1) to the eigentriplet problem;

o There exists a € R such that X4 (L) = {s(L) + iaZ} consists of first-order poles with one-
dimensional residue.

e A practical way for verifying that s(L) > —oo is a pole consists in assuming that L enjoys the
splitting structure L = A+ B, as described above, with s(B) < s(L) and A is B power compact,
that is to say W is compact, on Ayp-

Assuming furthermore that gg s quasi-compact then

° gg is exponential asymptotically stable in Span{¢p1}+ (without constructive constants).

The most important improvements here are the fact that the condition int Xy # () and the strong
compactness of the resolvent operator R are removed, and also that the exponential asymptot-
ically stability is established. The hypotheses seem stronger to those stated in Theorem 1.1-(1),
where only weak compactness is required what is not the case here. It is however worth empha-
sizing that in an AL-space and an AM-space (what includes the examples Co(E) and L(E)) a
power weak compactness implies a power strong compactness (see [75, Rk. 2.1] and [337, Cor. 1
of Thm. I1.9.9]). The hypotheses and conclusions are similar to those stated in Theorem 1.1-(4).
The proof is based on the one hand on the Banach lattices theory as formalized for instance by
Schaefer [337] (see also [11, 12, 13, 15] for significant developments) using notions as ideals and
quasi-interior points. On the other hand, it takes advantage on the perturbation techniques initi-
ated by Phillips in [314] and developed further by Jorgens [225], Vidav [331, 352] and Voigt [355]
leading to the notions of power compact resolvent and quasi-compact semigroup, essential spectrum
and Calkin algebra.

The above theorem in particular applies to a positive and irreducible semigroup which is eventually
norm continuous and its generator has compact resolvent (see for instance Corollary VI.1.13 in [152]
and for the definition of an eventually norm continuous). In that case indeed, one can show that
s(L) > —o0, X4 (L) is bounded and consists of poles, so that ¥4 (£) = {s(£)} and the essential
growth bound wess(S) associated to the essential spectrum (see for instance [41, Sec 14.1] for a
definition) satisfies wess(S) < w(S) = s(L£). The theorem was motivated and successfully applied
to Boltzmann like transport operator [351], cell division operator [134], age structured equation
[360] and selection-mutation dynamics [75]. We also refer to [152, Ch. VI] and [41] for other
numerous applications. Although very general and quite efficient, we formulate several criticisms
about the above result.

- The exponential convergence result is definitively not constructive and that approach is not able
to say anything about the weak dissipative case (a framework we will introduce latter, see in
particular Section 3.3).

- We may observe that Theorem 1.4 is not so popular in the probability and the PDE communities
and still many works in these domains refer to the original Krein and Rutman theorem even when
some additional (approximation) arguments are needed rather than applying directly Theorem 1.4.
By the way, we did not find in the literature where Theorem 1.4 is stated in such an handy way
(the closer formulation is probably [152, Thm. VI.1.12] which is given without proof).

- The proof of Theorem 1.4 that we may find in the above quoted references is written in a very
specific and abstract language which make it quite obscure.

In [278, 273], one of the authors proposes the following variant.

Theorem 1.5. Consider a positive semigroup Sy which satisfies (1.8) with ko € R, it is irreducible
and its generator enjoys the splitting structure (1.9)-(1.10) for some k < kg and X1 C X with
compact imbedding. Assuming furthermore that

(1.13) Fa>0,  sup ()% |W(2)zx) < oo,
z€EA,

the quantitative exponential asymptotic stability (E31) holds (without constructive constants).

The proof of Theorem 1.5 is based on a partial (but principal) spectral mapping and Weyl’s
theorem (in the spirit of Voigt [355]) coupled with a simple analysis of the first eigenelement
problem based on the irreducibility of the semigroup, but which is really simpler than the deep
result on irreducible semigroup stated in Theorem 1.4. On the other hand, that approach is unable
to tackle the situation when X} (£) is not a singleton. One of the main features in Theorem 1.5
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and the other results established in [278, 273] is the clear identification of the simple localisation
of the principal spectrum condition with (1.8).

1.2.3. Dynamical and probabilistic approach.

It is well known from the mean ergodicity theory of Von Neumann and Birkhoff introduced in the
1930s in [356, 60] that for a bounded semigroup a possible stationary state (and thus a first eigen-
vector associated to the first eigenvalue A\; = 0) can be obtain through a dynamical approach by
establishing that the Cesaro mean of the semigroup appropriately converges. A classical reference
is [239], see also [152, Sec. V.4] for a short presentation.

The existence of invariant measures for Markov chains/processes can be derived through a con-
traction approach by using coupling arguments reminiscent from the ideas of Doeblin [140] and
Harris [202]. This yields a simplified Krein-Rutman theorem in the Banach lattice of finite mea-
sures for Markov operators, providing the existence of f; whilst A\; = 0 and ¢; = 1 are known
by definition. Doeblin’s condition is a handy criterion which ensures contraction in total variation
norm, and hence existence, uniqueness, and geometric stability of the invariant measure, see for
instance [168, 81] for this very classical and easy result. It turns out that this contraction is re-
lated to the contraction in Hilbert’s metric, see [174]. The drawback of Doeblin’s condition is that
it is quite demanding and typically requires the state space to be bounded. Harris’s idea allows
an extension to the unbounded setting by localizing Doeblin’s condition in a “small set” which
is visited infinitely often. The return to small sets is often obtained by using a Lyapunov func-
tion. When the Lyapunov function is strong enough for ensuring exponential return, contraction in
weighted total variation norm can be established and geometric stability of the invariant measure
is inferred [265, 266, 267, 268, 198, 81], leading to the following result (which is made constructive
in the two last references).

Theorem 1.6. Consider a positive semigroup S on the Banach space X = M}, (E) for some weight
function m : E — [1,00). Suppose that S is conservative, in the sense that

(1) S;1 =1 for allt >0,

and assume that, for some subset K C E on which m is bounded and some time T > 0,

(2) Sim < am+ 01k, for some o € (0,1) and § > 0;

(8) Stf > (f,1k)g0, for all f € X+ and some go € Xy such that {go,1x) > 0.

Then there exists a unique probability measure fi € M} such that (A = 0, f1,¢1 = 1) is solu-

tion to the first eigentriplet problem, and the quantitative exponential stability (E31) holds with
constructive constants. Moreover, some reciprocal implication holds true.

When only a weak version of the above Lyapunov condition (2) is available, an extension of the
theory to a weakly dissipative framework is possible and has been developed in [347, 145, 144, 197,
81] leading to existence, uniqueness, but only sub-geometric stability of the invariant measure. We
also mention that ergodicity properties of Feynman-Kac semigroups were investigated in [130, 131]
and [235, 236].

Using a condition proposed in [131, Condition Z], the Doeblin-Harris method was extended to
non-conservative semigroups in [35, 103, 105, 104, 109]. In [35] necessary and sufficient conditions
for the geometric stability of (A1, f1,¢1) in weighted total variation norm are obtained. To our
knowledge, no extension to the above mentioned weakly dissipative setting is available.

The following result is an immediate consequence of [35, Thm. 2.1].

Theorem 1.7. Consider the same situation as in Theorem 1.6 but relax the conservativeness
assumption (1) by the assumption that there exists a function ¢ : E — (0,00), bounded from above
and below by positive constants on K, such that ¢g < m on E, and satisfying

(1a) Sk > Beoo, for some B> 0;
(1) 1S < C{go, Lk Sfdo), for allt > 0 and some C > 0;
and replace the condition o € (0,1) by « € (0, 8) in the assumption (2).

Then, there exists a unique solution (A1, f1,$1) to the first eigentriplet problem and the quantitative
exponential stability (E31) holds with constructive constants. Moreover, some reciprocal implication
holds true.
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Positivity conditions required for the Doeblin-Harris approach are less restrictive than for Birkhoff
contraction. Conversely, unlike contraction in Hilbert’s metric, Doeblin-Harris method strongly
uses the linearity of the operators, and may thus not be easily extendable to nonlinear operator.
However, since it is based on contraction arguments, it can be extended to time-inhomogeneous
semigroups [34]. Finally, the existence of a first eigenmeasure in a non-conservative setting were
established in [111, 112] through a Lyapunov function property, a suitable renormalization and a
fixed point argument.

The key point in this approach is that it provides a constructive rate of convergence while its
drawback is that it is somehow restricted to a M}, (or Ll ) framework and that some of the
conditions (typically (1b) in Theorem 1.7) are not fully intuitive and may be hard to verify in the
applications.

1.2.4. PDE approaches.

At least as far as the existence issue is concerned, one of the most common way in PDE papers
in order to tackle the existence part of the first eigentriplet problem consists in approximating (by
regularization of the coefficients, add of a small viscosity, discretization) the eigentriplet problem,
then use the most classical Perron-Frobenius Theorem [311, 167] or Krein-Rutman Theorem [238,
125] and next to derive appropriate estimates and pass to the limit through a “stability argument”.

Recently, in order to circumvent the above approximation step, a new abstract and general version
of the existence part of the Krein-Rutman theory has been developed by Lions in [252] which, as
for the early works [254, 253], is also adapted to nonlinear operators and it includes the following
statement (in the linear operators framework).

Theorem 1.8. Consider a Banach lattice with positive cone X and a linear and bounded operator
R : X — X such that

(Z) R : X+ — X+,'

(11) g2 € X \{0}, 3C5 > 0 such that Rgs < Caga, and set Ky :={g € X4; 3C, g < Cgs2};

(#1) p1 = sup J < +oo, where

J:={u>0; 3h € Ko, h > iRh + ga};

(iv) any sequence (g") of almost first eigenvectors is relatively (possibly weakly) compact, where
we say that (¢g") is a sequence of almost first eigenvectors if g" = u"Rg™ + ™, (¢g") is bounded,
u” S ur and €™ — 0.

Then there exists f1 € Ko such that fi = ;1R f1 and || f1]| = 1.

The statement and proof of Theorem 1.8 somehow generalize the existence part of the Krein-
Rutman theorem presented in Theorem 1.4 because the required splitting structure and associated
power compactness are replaced by the very natural stability principle (iv). Applications to ellip-
tic operator with strong or critical confinement property in the whole space R setting are also
presented in [252].

Let us also mention the huge literature on the characterization of the first eigenvalue by a min-
max formula. As explained with more details below, this approach has first been introduced in
the Courant-Fischer min-max theorem [160, 114, 115] providing a variational characterization of
eigenvalues in an abstract Hilbert setting for self-adjoint elliptic operators. Inspired next by point-
wise minmax formula established for simple self-adjoint operators [149, 323, 212] using a technique
which goes back to Picard [316], it has been next generalized to non self-adjoint elliptic operators
in [324, 47] among others. More recently, the same approach has been generalized to non elliptic
operators, see for instance [118] and the references therein.

On the other hand, and beyond the eigentriplet problem, the convergence towards the first eigen-
function may be proved using the general relative entropy (GRE) method which has been ap-
plied to a large class of evolution PDE in [269] which principle is as follows. Assume that
(M, f1,41) € R x X x X’ is a solution to the first eigenvalue problem, that A\; = 0 (a case to
which one can always reduces from the general case by a mere change of operator and unknown),
that X, X’ C L _(O) and then define the generalized relative entropy

loc
T() = /O S/ ) fr én d
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for any given convex function j : R — R, . For any solution f(¢) € X to the (appropriate) evolution
PDE, one may establish (at least formal) the identity

(1.14) JUO)+ [ Pats)as = T(0). Ve,

where D7 > 0 is the associated generalized dissipation of relative entropy, so that J is a Lya-
punov functional (it is decreasing along the flow associated to the evolution PDE). Under suitable
positivity hypothesis, one has D7 (f) = 0 if and only if f € Vect(f1), and then one may deduce
from (1.14) and some lower semicontinuity assumption on the operator Ds that f(t) — cf1 as
t — oo (without rate and with ¢ € R). The GRE method is of course connected to j-divergence
in information theory and statistics [121, 122, 74, 262] and to j-entropy in probability and PDE
theory [101, 176], where however here it is crucial to identify the associated operator D and that
this last one enjoys suitable properties.

1.2.5. Hypotheses and proof.

We now briefly discuss the strategy of the proof of Theorem 1.1 and how it is connected to the
above material. Additional comments will be made in the corresponding Sections 2 to 6. As
already said, the first eigenvalue problem is mainly split into three steps: existence, geometry and
asymptotic stability. From a general point of view, our approach is more general than the initial
Krein-Rutman theorem as well as less abstract than the usual semigroup school approach. We
believe it is more intuitive and handy for the possible applications since it is presented as a series
of estimates to be checked and the necessary assumptions are made clearer at each step.

e Concerning the existence of a solution to the first eigentriplet problem, our result improves the
previous known results because (1) only weak compactness property is needed (while Theorems 1.4
& 1.5 require strong compactness assumptions), (2) it is more flexible than Theorems 1.4, 1.5, 1.7
& 1.8 (the two first ones being restricted to the generator of a strongly continuous semigroup, the
third one being restricted to a M}, framework and involving the tricky condition (1b) and the last
one being somehow restricted to a weighted L™ framework), (3) it applies to weakly dissipative
cases (so that no spectral gap is needed). We present two different proofs: one based on a stationary
problem approach and another one based on a dynamical problem approach (with which we are
able to tackle the weakly dissipative case).

Our stationary problem approach mixes in a first step the (clearly formulated) approximation
argument of [41, proof of Thm. 12.15] together with the stability argument of [252], where it
is worth emphasizing that the condition x < k¢ in Theorem 1.1 is nothing but a practical (and
possibly constructive) condition ensuring that assumption s(8) < s(£) holds in Theorem 1.4. On a
second step, we exhibit several practical situations where the required stability condition is fulfilled
recovering as a particular case the existence part in Theorems 1.4 & 1.7. We would like to point
out here that the splitting hypothesizes (1.11)-(1.12) on the semigroup is a generalization of the
Lyapunov condition (2) in Theorem 1.6 on the semigroup which in turn generalizes the classical
Lyapunov condition on the generator, namely for instance

L5y < khy + Ko

with 1; € X', 11,12 > 1)y together with 19 < 91 (super Lyapunov condition), 1o = 11 (standard
Lyapunov condition), 12 > 11 (weak Lyapunov condition). We refer to [81] and to Sections 2 and
3 for further discussions on that question.

On the other hand, our dynamical approach mixes the splitting method yet alluded above together
with some argument picked up from Von Neumann & Birkoff mean ergodic theory in the spirit of
but in a more elaborate way than in [81, Sec. 6].

e The proof about the geometry of the principal eigenvalue problem in Theorem 1.1 is a refinement
of many arguments already developed in the literature. More precisely, the uniqueness of the
first eigentriplet (A1, f1,¢1) and the strict positivity of the eigenvectors is established by taking
up again in a more general setting some arguments developed in [313, 278, 231]. The subgroup
structure of the boundary point spectrum 2 5(L) is next established under suitable (but not very
restrictive) geometrical properties on the Banach lattice X, these ones being always true for the
usual examples we have in mind and thath we have already listed above. The proof mainly mimics
the usual proof (as for instance presented in [41, Sec. 14.3]) but it is less abstract and more general.
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Especially, the proof does not refer to the notions of ideals, quasi-interior points or Calkin algebra
nor uses the Kakutani lattice isomorphism theorem but rather uses the simpler notion of strict
positivity (defined by duality) and some convient structural properties of the signum operator. In
order to go one step further and to prove the triviality property EJIS(E) = {\}, we propose one
quite original approach (which we believe to be new at this level of generality) based on an inverse
Kato’s inequality condition of L (by refining some arguments picked up from [278, 231]) and some
more standard ones based on an aperiodicity condition on the semigroup S,, on a localisation of
the point spectrum condition or on a quasi-compacteness condition on the semigroup S¢.

e Finally, the proof on the asymptotic stability of the first eigenvector picks up and mixes some
spectral analysis, dynamical system, entropy method and Doblin-Haris coupling arguments. On a
first step, we mainly rewrite some very classical dynamical system results mixed together with some
arguments coming from the General Relative Entropy method in order to get our mean ergodicity
and ergodicity results which are really general and very little demanding about the trajectories.
We also rewrite the most classical result about the exponential asymptotic stability (without con-
structive constants) of the first eigenfunction proposing a very simple (and self-contained) proof
which does not make any references to abstract notions as Calkin algebra, essential spectrum or
essential growth bound. Last, we adapt the Doblin-Harris approach as qualitatively formulated in
[198, 81, 35] in order to get the quantitative asymptotic stability of the first eigenfunction with
constructive constants.

1.3. Some examples of applications.

The abstract Krein-Rutman theory developed in these notes and alluded above have been cooked
up in order to answer to the first eigenvalue problem for PDEs. We show its efficiency by applying
it to several examples of evolution PDEs. These examples must be thus considered both as a
motivation and an illustration of simultaneously developed abstract theory.

1.3.1. Parabolic equations. In Part 7, we are interested by parabolic equations in divergence form
Of = 0i(ai;0; f) + 0i(Bif) + b;0;f +c¢f in (0,00) x €,

on the function f = f(t,x), t > 0, € Q, with general conditions on the coefficients a;;, 5;, bj, c
and in both the case of a bounded domain @ C R? (and we then complement the equation with
a Dirichlet boundary condition) and the case 2 = R%. The importance of parabolic equations for
Physics, Chemistry, Biology and Economy modeling is well known and we do not discuss it here.
We consider the four following casses.

e For a bounded domain Q C R?, we consider a general elliptic operator in divergence form
Lf = 0i(aijO; f) + bi0if + 0;(Bif) +cf, f € HHQ),
under the very general assumption about the regularity of the coefficients a;; € L>(Q), a;; > vd;j,
for some v > 0, b;, 3; € L"(Q), c € L™/3(Q), r > d.
e In the case when Q = R?, we focus first our analysis by considering
Lf:=Af+b-Vf+ecf, feHY(RY,
with drift b € L (R?), potential ¢ € L2 (R?) and a confinement condition that (roughly speaking)

loc loc
we impose through the properties ¢ — —o0 as |z| — 0o and b is dominated by ¢ at the infinity. A

typical case is given by ¢ ~ —|z|” and b ~ z|z|?~! as |z| — oo, with v > max(0, 5 — 1).
e Still in the case when Q = R%, we next consider the similar problem
Lf:=Af+b-Vf+rcef, [feH'(R?),
with now ¢ € Co(R?), b € Co(R?) and r € Ry a parameter. That hypotheses correspond to a
critical confinement case and we further assume that r > 0 is large enough.

e In the case when © = R? again, we finally consider the elliptic operator
Lf:=Af+b-Vf+cf,
with the drift confinement

b=VU, U(z)==(x)", ~>0,

|~
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and with ¢ dominated by b at the infinity. We further assume ¢ > divb when v € (0,1]. It is
worth emphasizing that this corresponds to a perturbation of the classical Fokker-Planck operator
associated to the potential U.

For each of these operators we are able to complete the existence, geometric and stability program
as stated in Theorem 1.1, with constructive estimates on the first eigentriplet solution and more
or less explicit rate of convergence to the first eigenfunction. Few suitable additional assumptions
on the coefficients and on the regularity of 2 as well as the precise results will be discussed in the
corresponding sections.

The first eigenvalue problem in the three first situations has been studied in [252, 8th and 9th
courses| which inspired our study and to which we refer for motivations and possible extensions.
Since mainly the existence issue is considered in [252], our results supplement the previous analysis
by tackling the geometry of the principal spectrum and the exponential asymptotic stability of the
first eigenfunction. On the other hand, the fourth situation in the conservative case (¢ = divd) is
very classical and we refer to [27, 28, 190, 274, 231] and the references therein. We believe that
the extension to a non conservative case as considered here is new.

Of course, when the operator £ is the Laplace operator or more generally is a self-adjoint elliptic
operator, there exists a huge literature about the analysis of its spectrum and in particular about its
first eigenvalue problem because among other things this is related to the ground state problem in
quantum mechanic. We do not have the precise historical reference where similar results to the ones
developed here are established for the first time. We may for instance refer to the contributions
by Poincaré [319] and by Courant and Hilbert [114, 115]. We also refer to the textbook [179,
Thm 8.38] for the quite general and modern proof which mixes minimisation technique, strong
maximum principle and Hilbert structure arguments. It is worth mentioning that in earlier works,
the Krein-Rutman theorem has been proved using elementary ODE method when considering the
Sturm-Liouville operator (in dimension d = 1), see for instance [63]. Still for a self-adjoint elliptic
operator, the Courant-Fischer min-max theorem [160, 114] gives a variational characterization of
eigenvalues through Rayleigh quotient [329] and the Weyl theorem [362, 363, 288, 312] provides
some information about the distribution of the eigenvalues. More specifically, some constructive
lower bound on the best constant in Poincaré inequality and thus on the first eigenvalue may be
obtain through the Faber-Krahn [157, 237] isoperimetric inequality as presented in [92], see also
Polya-Svzego [321, 320] and Payne-Weinberger [307, 308]. Other results on that direction but based
on the Lyapunov condition are obtained in [27, 28] and we also refer to [30] and the references
therein.

On the other hand, in the case of an elliptic operator which is not self-adjoint the first result on the
principal eigenvalue problem seems to be Protter, Weinberger [324, Rk. 2] who consider the case of
smooth domain and coefficients (without precise statement about the regularity) and use minmax
formula and the Krein-Rutman Theorem 1.2, see also [310]. Next, Chicco [106, 107] establishes
the existence, uniqueness and some monotony properties of the first eigenvalue-eigenfunction in
the weak solutions framework of Stampacchia [339, 340] with mild regularity assumptions on the
coefficients and which corresponds to the framework we will consider here (when we will consider
the case of a bounded domain). These work has been followed by several papers by Donsker and
Varadhan [143, 142] and next by the famous work of Berestycki, Nirenberg, Varadhan [47] opening
a new field of research. These works are mainly based on strong maximum principle technique, see
[325]. We also mention the recent works by Champagnat and Villemonais [104, 105] where similar
results to ours for smooth enough coefficients are established using a variant of the probabilistic
Doblin-Harris argument as already mentioned in Section 1.2.3. We also emphasize that in the
conservative case, the long time behavior problem has been widely studied and some constructive
estimates has been obtained in [29, 44, 215, 343, 344] by the mean of log-Sobolev inequality, in
[27, 28, 332, 231] by the mean of Poincaré inequality and in [190, 231] by the mean of semigroup
arguments.

1.3.2. Transport equation. In Part 8, we are interested in the general transport equation

(1.15) Of+a-Vyf=H[f]-Kf in (0,00)xO,
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on the function f = f(t,y), t >0,y € O, with O C RP, D > 1, a smooth open connected set. We
assume that a : O = RP, K : O — R, and that the collision operator K is linear and defined by

(Hg)(y) = /O k(y,.) 9(u) dy.,

for some kernel k£ : O x O — Ry. When O # R”, we complement the equation with a boundary
condition on the incoming boundary ¥_ which writes

(v-Ht,y) = Rolf @, )] + Rl f(t,)](y) on (0,00) x X,
where 4 f are the trace functions on the incoming and out going set ¥+ and

(Rog)(y) = /O ro(y,ys) 9(ys) dys,  (Rsh)(y) = /E (Y, y«) h(y.) doy. ,
+
for some kernels ro : X_ x O - Ry, ry : ¥_ x X4 — R4, All the (quite usual) notations will be
explained at the begin of Part 8. It is worth emphasizing here that this framework in particular
covers the cases of the renewal equation, the growth-fragmentation equation and the kinetic linear
Boltzmann equation on which we will come back below. This framework is motivated by and
generalizes the transport theory developed in [37, 43, 139, 70, 119].

In a first step, we consider a very general vector field a by assuming that it satisfies the usual Sobolev
regularity condition of DiPerna-Lions transport theory [139]. We also make general assumptions
on Rp and Ry, but a very strong and somehow restrictive positivity condition on .#". Such an
equation can be motivated by the abstract transport theory developed [43] as well as non-local
reaction-diffusion models [109, 118, 249] and selection-mutation models in changing environment
[162, 207]. Under these general conditions and additional ones we will detail later, we are able to
solve the existence and geometrical part of the first eigenvalue problem and to prove an ergodicity
result (without rate of convergence) generalizing some similar results obtained in [109, 118, 249].

Because of the strong positivity condition made on £, the above mentioned result does not apply to
the growth-fragmentation equation and the kinetic linear Boltzmann equation. We thus consider
separately these important particular cases in the two next parts. Other singular jump kernels
lacking strong positivity can appear in other models, for instance in neurosciences [150], and must
also be treated through a specific study.

Another related model is the age structured (or renewal) equation
Ohf+0y,f=—Kf in (0,00) x (0,00),

0.0 = Rf(t )0 = [ @) F(ty)dy.

It corresponds to the case D =1, O = (0,00), a = 1, Ry = 0, ¥_ = {0} and # = 0 in the
transport equation (1.16). The age structured equation is very popular because it is useful for
describing dynamic of populations [338, 19, 123, 359, 263] and simple neuronal dynamic [295, 306].
The long time behaviour can be analyzed though Laplace transform technique [158, 159, 221],
relative entropy method [275, 269, 196], spectral analysis tool [358, 187, 278, 280, 277] and Doblin
approach [34, 82, 168]. Because .# = 0, our previous result on the first eigenvalue problem does
not apply. We just briefly observe that the method can be applied on the dual equation, thus
guaranteeing the existence of (A1, ¢1), and then that the validity of Doblin’s condition ensures the
existence and uniqueness of the triplet (A1, f1, ¢1), its positivity, and the exponential ergodicity.

1.3.3. Growth-fragmentation equation. In Section 9, we consider the growth-fragmentation equa-
tion

Of=Lf=Gf+Ff
posed on R4, with the growth operator Gf = —0;(af) and the fragmentation operator

@) = [ 0wy - K@fw). K@) = [ koL

Since the work of Diekmann, Heijmans and Thieme [134], many authors studied this equation by
using various methods. We can mention, among many others, [269, 313, 246, 148, 84, 31, 50] for
studies based on suitable weak distance, entropy and functional inequalities, [263, 317, 83, 33, 51,
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52, 278, 287] in the framework of positive semigroups, [56, 57] for a probabilistic approach via
the Feynman-Kac formula, [35, 80, 169, 354] for Harris’s method, and also [163] for a recent new
approach based on the reformulation of the equation as an abstract renewal problem. Our aim
here is not to treat the most general cases of coefficients, but rather to illustrate the variety of
the possible behaviors of the equation together with the efficiency and flexibility of the method
developed in the first sections. We thus focus on a specific case of fragmentation operator, namely
the equal mitosis kernel

k@, y) = 2K (2)0,/a(dy) = AK ()02, (dz),
so that the equation writes
Ouf(t,x) = =0y (alz)f(t,x)) — K(2)f(t,x) + 4K (22) f(t, 22).

In particular, we are interested in the case when the growth rate a is such that a(2z) = 2a(x) for
all sizes x, for which the boundary spectrum is not trivial and the solutions then exhibit persistent
oscillations in time. When this condition is not satisfied, we recover the more usual exponential
convergence to the first eigenfunction.

We also aim at studying the variant of this equation where a variability v is introduced as a growth
speed parameter which is inherent to any individual, in the spirit of [275, 333] where such a variable
is added in the renewal equation. More precisely we consider the growth-fragmentation equation
with variability v € [1,2] and the equal mitosis division kernel which reads

O f(t,x,v) = —vy (al(z) f(t, x,v)) — K(z)f(t,x,v) + 4/1 K(Q2z)p(v,vs) f(t, 22, v.)dv,.

This model was introduced in [146], and then also considered in [304]. We prove that, unlike the
case without variability, it exhibits exponential relaxation to the first eigenfunction even when
a(2z) = 2a(x) for all x.

1.3.4. Kinetic linear Boltzmann equation. In Part 10, we are interested in another important sub-
class of transport equations, namely in the kinetic linear Boltzmann equation

(1.16) Of+v-Vuf =V, 0(x) Vo f =X[f]-Kf in (0,00)x 0O,

on the function f = f(t,z,v),t >0, (z,0) € O =Q x V, Q Cc R? V Cc R? d > 1. We assume that
K : O — Ry, that £ is a linear integral operator defined by

Hg] = /Rd rk(z,v,vs) g(vs) doy,

for some real number r > 0 and some kernel k£ : Q x V x V — R, and that ® is a space confining
potential ® : O — R. We restrict our analysis to the case V := R? and Q is either the torus
Q = T? (and we assume ® = 0) or it is the whole space Q := R? (and we assume that ® is a
power function). This equation is vey famous because it provide a model for neutron transport
theory in nuclear reactors [93, 45] and for cells migration in a chemotactic gradient [7]. We refer
to [40, 183, 39, 38, 282] for a mathematical analysis of the neutron transport equation and its
diffusive approximation and to [214, 102] for the same concerning kinetic models for chemotaxis.
Because the linear integral operator J# is local in the position variable, this problem does not fall
in the class of transport equation covered by the Krein-Rutman theorem established in Part 8 and
a specific analysis is necessary. Under suitable positivity and regularity conditions on the kernel,
we are able to complete the existence, geometric and stability program as stated in Theorem 1.1,
with constructive estimates in the torus case, generalizing and improving previous works [59, 351,
352, 186, 257, 281, 283, 284, 285] where spectral analysis arguments are used and [103] based
on a probability approach. It is worth emphasizing that these works are concerning the same
equation in a bounded domain with no-flow boundary condition. Most of the literature is about
the conservative case (when A\; = 0 and ¢; = 1) which has been tackled by the mean of spectral
analysis method [53, 285, 286], of entropy method [132, 54], of geometric control method [200, 135],
by hypocoercivity method [208, 141, 154] or by Harris coupling approach [79].
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1.3.5. Kinetic Fokker-Planck equation. In Part 11, we consider a kinetic Fokker-Planck equation
(1.17) Of+v-Vyf=Ayf+b-Vyf+ecf in (0,00) x0O,
on the function f = f(t,z,v), t > 0, (z,v) € O = Q@ x R4, Q C R? is a bounded domain,

b: O — R?is a given vector field and ¢ : O — R is a given function. In contrast with the previous
part, collisions are typically modeled by a Fokker-Planck operator A, f 4+ div,(vf) which takes into
account a thermal bath of (Gaussian) white-noise, see Kolmogorov [234], instead of the integral
collisional operator #[f] — K f in the linear Boltzmann equation (1.16). The above equation is

complemented with the Maxwell boundary condition
V-f = a(@)Davi f + B@)Tavs f,

where 4 f stand for the outgoing and incoming trace functions, a and S are accommodation
coefficients, D, is a boundary diffusive operator and I, is the specular reflection operator. All
these classical objects will be precisely defined in Part 11. We refer to [217, 298, 129, 66, 91,
67, 272, 353, 365] for a mathematical analysis of the kinetic Fokker-Planck equation or related
problems. Under suitable boundedness and regularity conditions on the coefficients we are able
to complete the existence, geometric and stability (without constructive estimates ) program as
stated in Theorem 1.1, generalizing the previous works [248, 193] (partially based on [330, 213, 247])
where similar results are established for the same kind of equation in a bounded domain with no-
flow boundary condition. From a technical point of view, our proof is based on trace results as
those developed in [257], boundary estimates picked up from [18, 257, 55] and regularity estimates
recently obtained in [210, 181, 192]. We also emphasize that in the conservative case, many works
have been done related to hypocoercivity and constructive rate of convergence to the steady state
in [133, 195, 151, 209, 205, 353] or more recently in [141, 274, 87, 68, 5].

1.3.6. Mutation-selection equation. Last, in Section 12, we consider the mutation-selection evolu-
tion equation

Wf=Lf=Jxf-W()f in (0,00) xR
This nonlocal-diffusion equation appears for instance in the modeling of genetic variability in
evolutionary biology. In this context, f = f(t, z) represents the density of a population, at time ¢ >
0, of phenotypical trait = on the multi-dimensional phenotypic trait space R%. The rate of change
in f per generation is given by the convolution term with kernel .J which models the mutations, and
the fitness function —W which stands for the difference between birth and death. This model has
been widely used in the literature; we refer, for example, to the works of Kimura [232], Lande [245],
Fleming [161] and Biirger [76] as examples of biological applications.
On the mathematical analysis point of view, the Krein-Rutman problem was investigated by Biirger
in [75, 77] and more recently by Coville and co-authors [116, 249], as well as by Alfaro and co-authors
in [6] where a quantified spectral gap is obtained for symmetric kernels J. A main difference of this
equation compared to more classical “local” diffusion models, where the convolution is replaced by
a Laplacian, is that the first eigenvector f; might be a measure with atoms [75, 77, 117]. Some
conditions are then needed relating W and J for guaranteeing that the first eigenvector is an
eigenfunction [6, 75, 249].
All the above mentioned results deal with kernels J which are densities, namely absolutely contin-
uous with respect to the Lebesgue measure. In our study, we allow the convolution kernel to have
a singular part. In Section 12.1 we extend the results of the literature to the case of a small enough
singular part. In Section 12.2 we consider a specific kernel which is purely singular, supported by
the canonical axes of R?, and we extend the recent result of Velleret [350] to more general confining
functions W.

1.4. Organization of the paper. The paper is organized in two main parts: the sections 2 to 6
are dedicated to the development of the abstract results about the Krein-Rutman problem, and the
last sections 7 to 12 aim at illustrating the applicability of these results to various linear positivity
preserving PDEs.

More precisely, with start with the existence part of the Krein-Rutman theorem, namely the
conclusion (S1). This question is addressed through a stationary approach in Section 2 and through
a dynamical approach in Section 3. Section 4 is devoted to the stronger conclusion of uniqueness
of the first eigentriplet in the sense of (S2), as well as to the mean ergodic property (E1). In
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Section 5, we are interested in the geometry of the boundary point spectrum, deriving conditions
that guarantee (S31), (S32) or (S33), as well as in the ergodic properties (E2) and (E3,).
Finally, in Section 6, we tackle the problem of quantifying the conclusions (S33) and (E3) by
using constructive contraction arguments of the Doeblin-Harris type.

The purpose of the last six sections is to apply the theory developed in the first sections to the ex-
amples of PDEs presented in Section 1.3: some parabolic equations (Section 7), transport equations
with integral terms (Section 8) and in particular growth-fragmentation equations (Section 9) and
kinetic equations (Section 10), kinetic Fokker-Planck equations (Section 11), and purely integral
mutation-selection equations (Section 12).

2. EXISTENCE THROUGH A STATIONARY PROBLEM APPROACH

In this part we provide a general existence result for the first eigentriplet problem by considering a
family of approximating stationary problems and using a stability argument. We start by presenting
the basic material about the Banach lattice framework and conclude with a comparison with several
previous works.

2.1. The Banach lattice framework. We start recalling the Banach lattice framework by stating
(most of the time without proof) some well-known facts that one can find in reference monographs
as [69, Chapitre II: Espaces de Riesz] or [337, 15, 32, 41].

Banach lattice. A real Banach lattice is a real Banach space (X, || - ||) endowed with a partial
order denoted by > (or <) such that the following holds:

(1) The set X4 := {f € X; f > 0} is a nonempty convex cone (compatibility of the order with
the vector space structure).

(2) For any f € X, there exist some unique positive part f1 € X and negative part f_ € X such
that f = f; — f— which are minimal: f =g —h, g,h > 0 imply g > f4 and h > f_ (generation
and properness of the positive cone). We set |f| := f + f— € X the absolute value of f € X.
(3) For any f,g € X, |f] < |g| implies || f|| < ||g|l (compatibility of norm and order structures).
Under these assumptions, one can show that

- The convex cone X is closed, pointed X, N (—X) = {0} and generating X = X, — X .

- The lattice operations f +— fi, f — f_ and f — |f| are continuous (1-Lipschitz).

- The order intervals {h € X; g < h < f} are closed and bounded for any given f,g € X, f > g.
It is worth emphasizing that one commonly defines the supremum and infimum operations by

fvog=g9g+(f-9+=fg [frg=9-(- +=1fy,
for any f,g € X, and these operations can be used as an alternative way for defining a Banach
lattice (the lattice structure refers indeed to these supremum and infimum operations). We may
note the following elementary formulas

(2.1) fe N =0, A=Al Ve X
We write f L g when |f| A |g| = 0 or equivalently when |f| + |g| = |f| V |g|. In that case, we have

[f1+ gl = 1f + gl

Dual Banach lattice. On the dual space X', we may naturally associate a dual order > (or <)
by writing for ¢ € X’

>0 (orpeX) iff VfeXy (pf)=0.
For ¢ € X', there exist some unique ¢+ € X’ such that ¢ = ¢ — ¢_ which also satisfy (and are
defined by)

vf€X+7 <Q0i7f>: sup <3|38079>
0<g<f

One can show that the above conditions (1), (2) and (3) of a Banach lattice are fulfilled, and thus
X' = (X',]| - [[xs,>) is a Banach lattice. We observe that for any f € X there exists f* € X/
such that

(2.2) 6 =117 =111
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as a classical corollary of the Hahn-Banach dominated extension theorem. Moreover, for any f € X,
(2.3) f>0 iff (o, f)>0, VpeX,,

as an immediate application of the Hahn-Banach separation theorem. In other words, the restric-
tion to X of the dual order in X" associated to the order defined (by duality) on X’ is nothing
but the initial order, in particular the positive cone X' is weakly * closed.

The functional framework : The duality bracket. We consider two Banach lattices X,Y
such that X =YY" with Y separable or such that Y = X’. We emphasize on the facts that

(2.4) for fe X : feX it (fip) >0, VoeYy,
(2.5) forpeY: peYLiff (fip) >0, Vfe Xy,
which are immediate consequences of (2.3) and of the definition of the dual order.

Examples. For the space Cy(F), the order is defined by f > 0 iff f(x) > 0 for any = € E. For
a space LP(E,&, 1), 1 < p < oo, the order is defined by f > 0 iff f(z) > 0 for y-a.e. © € E. For
the space M'(E), the order is defined by f > 0 iff in the Hahn decomposition f = f, — f_, there
holds f_ = 0, or equivalently, by duality: f > 0iff (f, ) > 0 for any ¢ € Co(E), ¢ > 0.

Because confinement will play a major role in our analysis, we will use some weighted version of
the above space associated to a weight (continuous or Borel measurable) function m : E — (0, 00)
that we introduce now. We recall that E always denotes a o-compact metric space, and we write
E = UFER, with Er C Eg41, Er compact. In that context, we write z,, — oo if for any R > 1
there exists ng such that x,, ¢ Er for any n > ng.

e We denote by C,, 0(E) the space

Cmo(E):={p e C(E); |p()|/m(z) - 0asz— oo}
endowed with the norm ||¢|c,. , == [lo/m|c,-
e We denote by M} (E) := (Cp0(E)) the associated space of Radon measures.
e We denote by L?,(E) = LP (E, &, i) the space

Ly (E) == {f € Lige(E): I fllzs, := I fmllLe < oo}.
It is worth emphasizing that L (E, &, u) = LP(E, &, mPu) when p € [1, 00).
Positive operator. We denote by Z(X) the set of linear and bounded operators on X. We also
denote by J#(X) the subspace of compact operators. We say that a bounded operator A € Z(X)
is positive, and we write A > 0, if
Afe X4, VfeX,.

We will also sometimes abuse notations by writing A € (X, ) for meaning that A > 0. For a
positive operator A € (X)), we have

(2.6) |AfI < Alf], VfeX, and [|A]l= sup [Af],
0<fEBx

where Bx is the unit closed ball. More generally, we have

(2.7) (Af) vV (Ag) < A(fVvyg), VfgeX

For X and Y in duality, and A € #(X) and A* € Z(Y) in duality, in the sense that
(Af,0) =(f.A"¢), VfeX o€y,

there holds

(2.8) A>0 iff A*>0.

Let us present the elementary and classical but instructive proof of the direct implication, the
reciprocal way being similar. We assume thus A > 0. We take ¢ € Y, and we define ¢ := A*p.
We then take f € X, and we define g := Af, so that g > 0 by assumption. We compute

<w7f> = <A*907f> = <907Af> = <9079> > 0.
Since f € X is arbitrary, we get ¢ € Y, and thus A* > 0.
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Semigroup, generator and spectrum. In this work, a semigroup S = S(t) = (S;) on X
will always denote a semigroup of linear and bounded operators on a Banach lattice X which
trajectories are

- either strongly continuous, namely, the mapping ¢ — S¢f is continuous for the norm of X for any
fixed f € X;

- either weakly * continuous, namely X = Y’ for some separable Banach lattice Y such that
Vie X, Vo eV, t— (Sf,¢)xy is continuous and V¢ > 0, V¢ € Y, f — (Sif,d)x,y is
continuous. That is in particular the case when there exists a strongly continuous semigroup P on
Y such that S; = P; for any ¢ > 0.

For a semigroup S, we denote by L its generator and D(L) the associated domain, and thus we
sometimes write S = Sz. We also denote the iterated domain defined recursively by D(LF) :=
{f € D(LkY), Lf € D(LF1)} for any k > 2 and D(L>) := (>, D(£¥). We recall that D(L) is
dense in X and the graph of £ is closed in X x X. We define the growth bound

1
(2.9) w=w(S) = limsup¥10g|\5(t)|| € RU{—o0},
t—o0
so that
(2.10) Vo' >w, IM>1, [[SO)|lax) < Me¥'t, V>0,

and w is the infimum of w’ € R such that (2.10) holds. We say that S is a semigroup of contractions
when S satisfies (2.10) with M =1 and w’ = 0.

The resolvent set p(L£) is the set of z € C such that if z— £ : D(£) — X is bijective and its inverse
belongs to #(X). We define the resolvent operator by

(2.11) R(2) =Re(z) :=(z— L)', Vzepk),
and the spectrum by ¥(L£) := C\p(L). Denoting the half complex plane of abscissa o € R by
(2.12) A, = {z € C; Re(z) > a},
we have p(£) D A, and, for any z € A, there holds
(2.13) R(z) = / S(t)e dt.
0

Positive semigroup. We say that a semigroup (S;) on a Banach lattice X is positive if
Sy >0, Vt>D0.

Lemma 2.1. For a semigroup S on a Banach lattice X, there is equivalence between

(a) S is positive;

(b) the associate resolvent operator R is positive: R(k) > 0 for all k > w (or for all sufficiently
large k).

It is immediate from Hille’s identity (2.13) that (a) implies (b). The reciprocal implication comes
from the relation S(t) = lim,_, o [n/tR(n/t)]" at the foundation of the Hille-Yosida theory, see for
instance [309, Thm. 1.8.3].

2.2. Existence part of the Krein-Rutman theorem. From now on in this section, we consider
a Banach lattice X and an operator £ with dense domain and closed graph. Our goal is mainly to
prove the existence part for the primal problem in the Krein-Rutman theorem, namely

(2.14) I eR, 3f1 € X \{0}, Lfi=Xf1.
We will also discuss the existence part for the dual problem at the end of the section.
We first assume

(H1) Jk; € R such that A — £ is invertible and (A — £)~! : X; — X for any A > k1.

Note that an operator £ satisfying (H1) is sometimes called a resolvent positive operator after the
paper of Arendt [14].

We then set
(2.15) T:={x € R; \— L is invertible, (A —£)"* >0 for any A > x},
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which is a non empty and non upper bounded interval due to (H1). We finally set
(2.16) A =1nf7 € [—o0, k1]

For the sake of completeness, we recall now some general facts about Z and A\; when L is the
generator of a positive semigroup. We also refer to [152, Sec. 1.b, Chap. VI] or [41, Chapter 12]
and the references therein for more details.

Lemma 2.2. When L is the generator of a positive semigroup S = S, then

(1) (H1) automatically holds with any k1 > w(S), so that A1 < w(S);

(ii) 2(L) N Ay, =0 and the representation formula (2.13) holds true for any z € Ay, ;
(iii) it may happen that A\; = —oo.

The important property (ii) is probably due to [189].

Proof of Lemma 2.2. The claim (i) is an immediate consequence of the representation formula
(2.13) for any k1 > w(S) and the positivity of S(t) for any ¢ > 0 (that is nothing but Lemma 2.1).

We prove (ii). Take A > A;. From the classical identity
St)e M —T=(L—-N) /Ot S(s)e*ds, Yt>0,
and the positivity property of S, we have
0<V(t):= /Ot S(s)e ™ ds = R(\) — R(\)S(t)e ™ < R(N),

for any t > 0. From that estimate, we get ||V (¢)|| < [|R(N)||. For any z € Ay, an integration by

part yields
t

t
/ e *8(s)ds = e TNV () + (2 — )\)/ e~ NV () ds.
0 0

The estimate on V' makes possible to pass to the limit ¢ — co in the above identity, and we deduce
U(z) = / e **S(s)ds = (z — )\)/ e~ TNV (s)ds € B(X).
0 0

In that situation, one classically knows that z € p(£) and (z — £)~! = U(z). We have thus
established X(£) N Ay = 0 and we conclude the proof of (ii) by observing that (2.13) is then
nothing but the above formula.

(iii) On LP(0,1), 1 < p < oo, the translation semigroup defined for ¢ > 0 by
St)f(zx) == f(x+at)lyyar<r, Vt>0,2¢€(0,1),

is strongly continuous and positive. Since S(t) = 0 for any ¢ > 1/a, we have w(S) = —oco, and thus
A1 = —oo because of (i). O

For further discussion, we give some probably classical results about the condition (H1) and some
equivalent definitions of the set Z.

Lemma 2.3. The operator L satisfies (H1) if and only if the operator L* satisfies (H1). Fur-
thermore, under condition (H1) for L (or L*), we have

(2.17) I=7T, VYi=234,

with
I, = {k€eR; X\— L is invertible for any X\ > K},
I3 = {k€R; \—L* is invertible, (\— L")t >0 for any \ >k},
Iy = {keR; \—L" is invertible for any X > k}.

Proof of Lemma 2.3. The equivalence of condition (H1) for the operators £ and £* is an immediate
consequence of the identity p(L£) = p(L*) (see for instance [229, Thm. I11.6.22]) and the fact that
A=L0)"1: X, = X4 iff (W—=L%)71 Y, — Y, as recalled in (2.8). As a consequence, we have
T= I3 and Ig = I4.
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We obviously have Zo C Z and let us show the reverse inclusion. We denote R = R,. On the one
hand, for any 29 € p(£) and any z € C, |2 — 2| < || R(20)|| ™!, we know that

o0

(2.18) R(z) = R(20) Z(ZO — 2)*R(20),

k=0

which gives a proof of the fact that resolvent set p(£) is open and that R is an holomorphic function
on p(£). Formula (2.18) also ensures that for Ao, A € R, the condition R(\g) > 0 implies that
R(A) > 0 provided that Ag — A > 0 is small enough and thus R(\) > 0 for any A in the non
upper bounded connected component of the set p(£) N R thanks to a continuation argument. In
particular, Z is an open set and Z = Zs. O

We next assume
(H2) J ko € R such that inf 7 > k.

We do not further consider in these notes the case when inf Z = —oco and moreover we will partic-
ularly focus on the possibility to exhibit constructive lower bound k.

We point out several conditions under which (H2) is satisfied.

Lemma 2.4. Condition (H2) holds under one of the four following conditions
(i) Fro € R, T € YL \{0} such that L*¢po > Koo, which means

VieDL)NXy, (¢o, (ko —L)f) <0;
(i) ko € R, I fo € X4 \{0} such that Lfy > ko fo, which means
Voe DLYNY,L, ((ko— L), fo) <O0;
(iii) L* is the generator of a positive semigroup S* = (S}) and
ko €R, F¢ € Y, \{0}, 3T >0 such that Sigg > ™7 py;
(iv) L is the generator of a positive semigroup S = (S¢) and
ko €R, Ifo € X, \{0}, 3T >0 such that Srfy > e f.

Proof of Lemma 2.4. In the three cases, we claim that ko ¢ Z and thus inf Z > ko. We argue by
contradiction, assuming \; < kg, so that kg € Z = Z; for any ¢ = 2, 3, 4.

We assume (i). For any g € X, we define f := (kg — £) 'g € X, and we compute

0 < (o, 9) = (¢, (ko — L) f) <O0.

That implies (¢, g) = 0 for any g > 0, so that ¢p = 0 and a contradiction.
We assume (ii). For any ¢ € Y., we define ¢ := (ko — L*) "' € Y, and we compute

0 S <’lr/)7f0> = <(K:0 - ‘C*)(bv f0> S 0.
That implies (¢, fo) = 0 for any ¢ > 0, so that fo = 0 and a contradiction.
We assume first that (iii) holds for any T > 0. For any f € D(£) N X1\{0}, we compute

(60, (50— £)f) =~ (60, 15,1) <.,

which is precisely (i). We assume now that (iii) holds. If kg € Z, for any g € X, we may define
f=(ko—L)"lg € X; ND(L) and from condition (iii), we have

0< (e ™ Surf — f,0) = <(/3 — Ko) /O"T e S, f dt7¢0>7

for any n € N. From the very definition of f, we also have

nT nT nT
(L - no)/ erotS, fdt = / e S (L — ko) f dt = —/ e rtS, gdt < 0.
0 0 0

The two pieces of information together imply

</nT eR0tS, g dt, ¢0> —0.
0
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Passing to the limit n — oo thanks to Lemma 2.2-(ii) and using (2.11)-(2.13), we obtain

0= ([ et Sigdt, ) = (f,00) = (g (50 — £7) o)

That implies (ko — £*) g9 = 0 since g is arbitrary, what is not possible since ¢g # 0. The proof
of (H2) under assumption (iv) is similar and thus skipped. O

Remark 2.5. (1) In practice, we may build fo or ¢o through an explicit computation or use a
barrier fonction and strong mazimum principle techniques. We refer to Lemma 4.12 for a possible
general result in that direction.

(2) When (ii) holds with fo € X4\{0} N D(L) and L is the generator of a positive semigroup S,
then (iv) holds for any T > 0. In that case, we may indeed compute

T
Sre™™T fo— fo = / Sre™ "L = ko) fods > 0.
0

Lemma 2.6. Under conditions (H1) and (H2), there hold

(2.19) A1 € [Ko, k1]
and
(2.20) I N AL 3fn €DL)N Xy, eni=Aafn— L >0, |full =1, |len] — 0.

Proof of Lemma 2.6. We obviously have A\; < k1 from assumption (H1) and A\; > ko by assumption
(H2), so that (2.19) is proved.

Consider now a sequence (A, ),>2 such that A, \, A1 as n — co. We eventually have [|R(\,)|| — oo
as n — oo, where we denote by R = R, the resolvent of £. On the contrary, we would have
IR(An)|| < M for some subsequence \,» \, A1 and some constant M > 0. Because of (2.18) this
implies that (A, — e, An/) C Z for any n’ and some € > 0, and this is in contradiction with the
definition of A;. The blow up ||R(A,)|| — oo means that

3fn € D(L), 3gn € X, R(An)gn = fn, [Ifall = 00, llgnll < 1.
By splitting g, = g — g,,, we get

with
gl <1 and  (|R(An)git|l = o0 or [|[R(An)gy || = 00).
Changing notations, we have thus
3fn 20,39, 20, RAn)gn = fn, Ifnll = 00, llgnll < 1.
We get (220) by deﬁning fn = fn/an” and g, = gn/”fn” U

We learn a very similar proof in [252], from which our own proof is adapted. The same type of
arguments can also be found in [41, proof of Theorem 12.15].
We finally assume that

(H3) for any sequence (f,) of X such that (2.20) holds, there exist f; € X, \{0} and a subse-
quence (f,/) such that f,, — f1 for the weak convergence or the weak * convergence.

We discuss several situations in which assumption (H3) holds. We start with a very classical
framework formalized for instance by Voigt [355], see also Karlin [228, Cor. 1] or Sasser [335] for
earlier similar situations and results, which is however somehow restrictive since it is based on a
strong compactness property assumed at the level of the associated semigroup of operators.

Lemma 2.7. We assume that L generates a positive semigroup S, that (H2) holds for a constant
ko € R and that there exists T > 0 such that the splitting

(2.21) St =Vr+ Kr,

holds with ||V ||z(x) < e, k < ko, and Kp € ¢ (X). Then condition (H3) holds for the primal
and the dual problems.
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Proof of Lemma 2.7. The condition (H1) holds because of Lemma 2.2-(i). Let us then consider
three sequences (\,,), (fn) and (g,) satisfying (2.20). Integrating along the rescaled flow, this yields

eianSTfAn - fn

T
/ e S (L — Ny fudt

0
T

= —/ e MtSe, dt =: &,
0

which also reads

an + Kfn - e)\ann = e)\nTén'
Since e*nT > efoT > e~T the operator e*»T — V7 is invertible with inverse Q(\,) := (e’ T — V)1
uniformly bounded and converging in Z(X) to Q(A1) = (eMT — Vr)~1. We thus have

fn =Wy + Vp, Wy = Q(/\n)KTfna Up = _Q()\n)e)\nT5n;

with |lun||lx — 0 and (w,,) relatively compact in X. There exist thus a subsequence (f,,) and
g € X such that Krf,, — ¢ and next

Wn,, — QMg = (Q(Any) — QK7 fr, + QA1) (K7, — g) — 0.

We deduce that fnk — f1 strongly in X. Because of the positivity and normalized properties of
fn, we get f1 € X1, || f1llx = 1, and we conclude that (H3) holds for the primal problem

Observing that the dual semigroup S* satisfies S5 = Vi + K7 with [|V}] gvy) < e"! and K} €
H(Y), the same proof implies that (H3) holds for the dual problem. O

In the six next lemmas, we will assume that (H1)-(H2) holds associated to some constants x; € R,
ko < K1, and we always make the following splitting structure hypothesis

(HS1) there exists a splitting £ = A + B such that B — « is invertible for any « > k¢ and
N—1
(2.22) V(a) := Z (Rp(@)A) ' Rp(a), Wl(a):= (Rs(a)A)N,
i=0
are bounded in Z(X) uniformly with respect to a > k¢ and for some N > 1, where we recall that
Rp(a) := (o — B)~! is the resolvent of B.

We first present a result also based on a strong compactness property which is assumed to hold
however at the level of the resolvent operator. We will be able to use that result in most of the
applications.

Lemma 2.8. (1) We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
(2.23) W(a) is strongly compact locally uniformly on o > ko,

in the sense that if o, — o, oy, > Ko, and (gn) is a bounded sequence in X, then there exist f € X
and a subsequence (gn,) such that W(ap, )gn, — f strongly in X. Then condition (H3) holds.

(2) We assume (H1)-(H2) and (HS1) where Rg(a) is bounded uniformly in o > ko, A € B(X)
and W(a) € H(X) for any fized o > ko and some N > 1. Then condition (H3) holds both for

the primal and the dual problems.

Remark 2.9. (1) The property (2.23) holds if we assume W(«) : X — Xy is bounded uniformly
mn a > Kk and Xy C X with strong compact embedding.

(2) The property (2.23) holds if we assume (H1)-(H2)-(HS1) together with the facts that Rp()
and Rp(a)A are bounded uniformly in o > ko and W(a) € # (X) for any fizred o > kg. Consider
indeed oy, — «, > Ko, and (gn) a bounded sequence in X. On the one hand, there exist f € X
and a subsequence (gn,) such that W(a)gn, — [ strongly in X, because W(a) € # (X). On the
other hand, using the resolvent identity Re(\) — Rp(p) = (u — NRe(AN)Ri(p), we have

N
W(a) = W(an) = (an —a) Y (Rs(@) AN 7 Rp(a)(Ri(an)A4) — 0,

j=1
so that W(om,,)gn,, — f strongly in X, and (2.23) holds true.
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Proof of Lemma 2.8. We first assume (1). Taking advantage of the splitting structure (HS1), we
write equation (2.20) as

(2.24) O = B)fn = Afy +€n,
or equivalently

o =Re(An)Afn + Re(An)en-
Iterating that last identity and using the notations (2.22), we get

(2.25) fo=wn +vn, wp = WA = V(n)en.

We observe that (w,) is strongly relatively compact from (2.23) and || f,,||x = 1, so that there exist
a subsequence (wy, ) and f1 € X such that w,, — fi1 strongly in X. Since v,, — 0 strongly in X,
we deduce that f,, — f1 strongly in X. We conclude that condition (H3) holds as in the proof of
Lemma 2.7.

We next assume (2). As observed in Remark 2.9-(2), the property (2.23) holds and thus also the
condition (H3) for the primal problem. We claim that the same locally uniform strong compactness
property (2.23) holds for the dual problem at order N + 1 and thus condition (H3) holds for the
dual problem. We may indeed use Remark 2.9-(2) since then Rp~(a) and A*Rp-(«) are bounded
uniformly in a > kg and

(A*Rp- ()N = AW(a)* Rp-(a) € Z(Y), Ya> ko,
as a product of two bounded operator with a compact operator. O

Remark 2.10. Instead of (HS1) in Lemma 2.8, one can assume that there exists a splitting
L=A+B and N > 1 such that B — « is invertible for any a > ko and

N—-1
Rs(a) = (a = B)"', V(o)=Y (ARg(a))’, W(a):= (ARp(a)N
i=0
are respectively bounded in B(X) uniformly with respect to a > ko and strongly compact locally

uniformly on o > ko. Starting indeed again from (2.24) and defining hy, = (A, — B)fn, we may
write

By = ARB(An) P + 0.

Observing that ||hn|lx > ||R5()\n)||ggl(x) > ¢ > 0 by assumption, we deduce that hy, = hy,/||hn | x
satisfies

B = W + O, Wn = W) hny  On = V(An)én,

with ||hy|| = 1 and &, := e, /||ha||x — 0. Similarly as in the proof of Lemma 2.8, we conclude to
the existence of subsequence (hy, ) and hy € X1\ {0} such that h,, — hy strongly in X. Defining
f1:=Rp(M\)h1/||Re(A1)hi1]], we have again f,, — f1 strongly in X and next that condition (H3)
holds.

As we see now, strong compactness is not really necessary.

Lemma 2.11. We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
W(a): X — X1 C X is positive and uniformly bounded in o« > kg

and, denoting Xy := X, we assume that for any Ry > Ry > 0 the set

(2.26) C=Cro.r, :={9€ Xy; llgllxe = Ro, llgllx, < Ba}

is relatively sequentially compact for the weak topology o(X,Y) and 0 ¢ C, where the closure is
taken in the sense of the weak topology o(X,Y). Then condition (H3) holds.

Remark 2.12. When X1 C Xy with strongly compact embedding the above set C clearly satisfies
the required conditions. In particular, Lemma 2.11 generalizes the result stated in Remark 2.9-(1).
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Proof of Lemma 2.11. We go back to the proof of Lemma 2.8 and we start with (2.25). We

recall that || f,||x, = 1 and ||v,||x, — 0 from (2.20) and that w, > 0 because W(A,) is a positive
operator. We also observe that

[wnllx, < Cwllfallxy = Cw
and

lwnllag =1 = [lonllx, > 1/2
for any n > n., with n, > 1 large enough, so that w, € C := 61/27CW for any n > n,. By the
compactness properties of C, there exist a subsequence (wy, ) and fi; € X;+\{0} such that w,, — f1
weakly o(X,Y). Since v, — 0 strongly in X, we deduce that f,, — f; weakly o(X,Y) and that
ends the proof of (H3). O
We present a typical concrete application of the preceding result.

Lemma 2.13. We assume X = LP(E, &, 1), p € [1,00), (H1)-(H2)-(HS1) with A > 0, Rp(a) >
0 for a > kg, and there exists N > 1 such that

(2.27) W(a): X — X1 is uniformly bounded in o > Ko,

for a subspace Xy C X such that {gP; g >0, ||gllx, < R1} is a weakly compact subset of L*(E)
for any Rq > 0. Then condition (H3) holds.

Remark 2.14. (1) A typical example in the above statement is Xy := LYN LE, for some exponent
q > p and some weight function m : E — [1,00) such that m(x) — 0o as © — oo.

(2) The same result holds under the condition that if (u,) is a nonnegative and bounded sequence
in LP then the nonnegative sequence wy, = W(\,)u, is such that w® is weakly compact in L'.

Proof of Lemma 2.13. For 0 < Ry < Ry, we define C by (2.26) with X := LP. From the weak
compactness property made on X7, we observe that

a(R) :==sup ||g1E;||Lr — 0, as R — oo,
gecC
and
ﬁ(M) = SupHglgzMﬂLp — 0, as M — oc.
geC

For g € C, we may then write

Ro <||gllzr < [lgAM1gg|oe + l91ee e + lg1g>nm| e
and thus
Mg = g A M1ggl|Le > Ro— a(R) = (M) > Ro/2.
for some R, M > 0 large enough. On the one hand, from the reflexivity of LP or the Dunford-Pettis
theorem, the set C is relatively sequentially compact for the weak topology o(L?, L”/). On the other
hand, because 1g,, € L*" the last estimate implies that any element ¢g* € C, where the closure is
taken in the sense of the weak topology o(LP, L”/), satisfies

(9, 1ps) = 9" LEgllr > M'P(Ro/2)P > 0,
and in particular 0 ¢ C. We deduce that (H3) holds as a consequence of Lemma 2.11. O
We present a second kind of result where some weak compactness is involved.
Lemma 2.15. We assume (H1)-(H2)-(HS1) and there exists N > 1 such that
(2.28) W(a): Xp — X C Xy s uniformly bounded in o > kg

and, denoting Xy := X, the set C defined by (2.26) satisfies the same properties as the ones stated
in Lemma 2.11. Then condition (H3) holds.

Remark 2.16. If we replace the norm || - ||x, by a seminorm || flx, := {|f], o), vo € Yy, and we
define C accordingly by (2.26), and if we assume that X =Y’ with Y separable, then C satisfies
the same compactness properties as required in the statement of Lemma 2.11. If we further assume
that (2.28) holds where Xy is endowed with the above seminorm, we may repeat the proof below in
order to obtain that (H3) holds in that situation (see also Lemma 2.19 and its proof for a slightly
generalized situation).
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Proof of Lemma 2.15. We start here again with (2.25). We have

1=l full < Cwllfallao + lonll 2,
and thus
[ fallxo > Ct (1 = llonllx,) > (20w) 7
for any n > n,, with n, > 1 large enough, so that fn € C := Cioy)-1,1, for n > n,. By the
compactness properties of C, there exist a subsequence (fy, ) and fi; € X;\{0} such that f,, — f1
weakly o(X,Y). O

We present a variant of Lemma 2.13 which is also a concrete consequence of Lemma 2.11 and
Lemma 2.15.

Corollary 2.17. We assume (H1)-(H2)-(HS1) in X = L29 | 1 < py < oo, together with the facts
that R () is positive and bounded in B(LE) ) and B(LE} ) uniformly in o > kg, 0 < A € B(LL9 )
and (Rg(a)A)N is bounded in PB(LES , L} ) uniformly in a > ko for some N > 1, with p1 > po

and my such that mo/my € LV, 1/9 := 1/po—1/p1. Then condition (H3) holds for both the primal
and the dual problems.

Proof of Corollary 2.17. On the one hand, we have
Ri(a) + -+ (Rp(@)A)N"'Rp() is bounded in (X ) uniformly in o > ko,
W(a) := (Rp(a)A)" is bounded in Z(X, &) uniformly in a > ko,
with Xy := L2 C X and thus {(gmo)P; g >0, ||g|lx, < R1} is a weakly compact subset of L*(E)

for any Ry > 0. Condition (H3) holds for the direct problem thanks to Lemma 2.13.

On the other hand, we set Y := X' = L0, qo := pj, vo := mal, and we first observe that

R~ (a) + -+ (Rp-(a)A")N "' Rp- () is bounded in Z(Y) uniformly in o > k.
We next observe that
(A*Rp- ()T = A*W(a)*Rp-(a) is bounded in #(Yy,Y") uniformly in a > ko,

with Vo := LI}, q1 = p, v1 = mfl. Because {(g11)?; g >0, ||g]ly < R1} is a weakly compact
subset of L1(E) for any R; > 0, we have from the proof of Lemma 2.13 that the set C defined by
(2.26) for the norms of )y and Y := Y satisfies the weak compactness property required in the
statement of Lemma 2.11. We may thus apply Lemma 2.15 and we deduce that condition (H3)
holds for the dual problem. |

Another concrete consequence of Lemma 2.11 and Lemma 2.15 is the following.

Lemma 2.18. We assume X = M,}l (E) for a continuous weight functionm; on E, i =0 ori =1,
(H1)-(H2)-(HS1) and there exists N > 1 such that (Rg(e)A)N : M}, (E) — M}, (E) uniformly
in a > kKo for another continuous weight function mi_; on E such that mi(x)/mo(z) — oo as
x — oco. We additionally assume that A > 0 and Rp(a) > 0 for a > ko when i = 0. Then
condition (H3) holds.

Proof of Lemma 2.18. We define X; := M, (E) and we consider the set C defined by (2.26) which
is clearly compact for the weak * o(M}, ,Cp,, o) topology. When X = M,}m, the result follows

my)
from Lemma 2.11 while when X = M}nl, the result is a consequence of Lemma 2.15. U

We may slightly improve the preceding results by considering a more abstract framework and a
somehow more general boundedness condition.

Lemma 2.19. We assume X = Y', Y separable, (H1)-(H2)-(HS1) and there exist N > 1,
v €10,1) and ¢ € Y1 \ {0} such that for any o > ko, there holds

(2.29) W) fllx < vlIfllx +{fo)xy,
for all f € Xy, or there holds
(2.30) W) fllx <lIfllx + W) f, o) xv,

for all f € X1. Then condition (H3) holds true, and the limit f1 satisfies (f1,¢)x,y >1—~ > 0.
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The case X = M}, (F) in Lemma 2.18 corresponds here to the first situation where (2.29) holds
with X := M}, (E), v:=0,Y := Cpy,0(E) and ¢ := mg/m.

Proof of Lemma 2.19. Starting with (2.25) and using (2.29), we have

||fn||X < ||W(/\n)fn||X + IV An)enllx
< Afallx + (Fas0)xy + lonllx,
so that
(far@)xy =1 =7 = |lvnl|x-
By compactness, there are f; > 0 and a subsequence (fn/) such that f,, — f1 weak o(X,Y).
Passing to the limit as n’ — oo in the above estimate, we find
(2.31) (fuo)xy = nlgrloo<f""@>X’Y >1-7,

and in particular f; # 0.
Under the assumption (2.30), modifying slightly the previous argument, we have

1 Fallx < A allx + (wn, @) x,y + [lvallx,
which, together with
<fn7 90>X,Y = <wn7 90>X,Y + <Una 90>X7Y7
implies
(far0)xy = 1= = |lvnllx + (vn, P)x,v-
By compactness again, there are f; > 0 and a subsequence ( fn/) such that fn/ — f1 weak x
o(X,Y), and passing to the limit n” — oo in the above estimate, we conclude again to (2.31). O
Let us comment on Lemma 2.19 and in particular the condition (2.30).
In the case when X = L®(E, &, ) = (L'(E, &, 1)), we can relate condition (2.30) to the assump-
tion that there exist fo € X1 and ¢ € Yy \ {0} such that

(2.32) [Sc(®) follx < {Sc(t)fo, ), VE=0.

This last condition is reminiscent from conditions that appear in probabilistic inspired methods
for the ergodicity of semigroups, see the condition (1) in Theorem 1.7 but also Assumption (A2)
in [103], both in the vein of [131, Condition Z]. Assume indeed (2.32), let n > k1 — ko > 0 and
consider the trivial decomposition £ = A+ B =n+ (£ —n). Then set k5 := k1 — 1 < Ko, so that
for any a > kg, B—a = L — (n+ «) is invertible since n + « > n+ kp = k1. We thus have for any
o > KB

1mmy:nm—3r¢=n/‘e4wwwdﬂﬁ
0

and (2.32) then ensures that
W(a) follx < W(a)fo, ).
We recover (2.30) with v = 0 and the difference that fy is fixed here.

As a Corollary of Lemma 2.18 or Lemma 2.19 and anticipating on the material of part 3, we present
now a situation very classical in stochastic processes theory.

Corollary 2.20. We consider a positive semigroup S = S defined on a Radon space X = MT},(E)
for some positive weight functions ¥ on E, in particular (H1) holds. We also assume that (H2)
holds for some kg € R. We finally assume the Lyapunov condition

(2.33) LY < kpp+ M,
with kg < ko, M >0 and x € Cyo(E), 0 < x <. Then condition (H3) holds true.

Let us emphasize that we may assume some regularity on ¢ by considering ¢ € D(L*) so that
(2.33) makes sense in X or just understand (2.33) in the weak sense:

(Lf, ) < mB(fih) + M(f,x), VfeDKL)NXy.

Proof of Corollary 2.20. We introduce the splitting £ = A+ B where A is the bounded multiplicator
operator A := Myx/v. As a bounded perturbation of £, the operator B is the generator of a



ON THE KREIN-RUTMAN THEOREM AND BEYOND 27

semigroup Sg. Defining S; := Sy (t)e~Mt > 0 and A® := M(1 — x/1) > 0, we have the Duhamel
formula o
Sp=S5+SA°*Sp
and iterating infinitely many times, we deduce the Dyson-Philips formula
Sp = (SA°)H) « .
k=0
That implies that Sg > 0 as a combination of positive operators. Alternatively, from the very
definition of B, we have k — B < (M + k) — L for any k € R. Choosing k > max(w(S¢),w(Sg)) and
using the direct implication in Lemma 2.1, we have R (k) > Rz (M + x) > 0. Using the reciprocal
implication in Lemma 2.1, we obtain again that Sg > 0.
Now, for 0 < fo € D(B) and setting f; := Si(t) fo, we may compute

%<ft;¢> = (Bft, V) < kg{fe, ),

so that
1S5 follars, < e folls-

Using (2.13) we immediately and classically deduce

1
IRs(a)llz(n) < po—— Va> kg,
so that Rp(a) is bounded in #(M},) and Rp(a)A is bounded in ZB(My, M,j) uniformly for o > k.
We apply Lemma 2.18 or Lemma 2.19 ((2.29) with N =1, v =0 and ¢ = Msx) in order to

conclude. O

In the proof of Corollary 2.20, we may alternatively use the trivial splitting £ = A+B = n+(L—n)
for some n > k1 — Ko, so that a — B is invertible for any a > kg, and reformulate the Lyapunov
condition )
(a—B" w > (a+n—ﬁs)¢ M,

) =

for any a > kg. Observing that W( Rg(a) = n(a — B)~', we deduce

W (a)pp < ——

nta—ks | nta— kg

W*(a)x.

We equivalently have .

W) fllary <A F s + V(@) ),
uniformly for any o > kg, with v := m < 1 and ¢ :=
condition (2.30).

We finally come to the existence of a solution to the first eigenvalue problem and the first eigentriplet
problem.

Theorem 2.21. Under conditions (H1)-(H2)-(H3), the first eigenvalue problem (2.14) has a
solution (A1, f1) with A1 satisfying (2.19). When furthermore (H3) holds for the dual problem,
then the first eigentriplet problem (1.1)-(1.2) admits a solution (A1, f1,¢1) ERx X x Y.

7T —rg X> which is nothing but

Theorem 2.21 generalizes some known versions of the existence part of the Krein-Rutman Theorem
where either £ is assumed additionally to be the generator of a semigroup or to have strongly power
compact resolvent or even where some additional conditions are made on the positive cone X .
As mentioned in the introduction, some possible references for these previous results are Krein-
Rutman [238], Greiner in [187, Cor 1.2] and in [15, C-IV Thm. 2.1] and Webb [360, Prop. 2.5], see
also [75, Thm. 2], [278, Thm. 5.3], [252], [35, Thm. 2.1], the textbook [41, Thm. 12.15] and the
references therein.

Proof of Theorem 2.21. We first assume (H1)-(H2)-(H3). Because of Lemma 2.6, there exists
a sequence (f,,) of X such that (2.20) holds, and in particular

for any ¢ € D(L*). Because of condition (H3), we may pass to the limit n’ — oo in equation
(2.34) and we deduce that (A1, f1) satisfies (2.14) and (2.19).
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We now additionally assume that (H3) holds for the dual problem. As recalled during the proof
of Lemma 2.3 and by definition of A1, we have (A, 4+00) C p(L£) = p(L*) and A\; € (L) = X(L*).
Taking A, \; A1, we argue as in the proof of Lemma 2.6 and we get

Thanks to (H3) for the dual problem, we deduce that there exist a subsequence (q/zﬁ\nk) and ¢1 € X/,
l¢1]] = 1 such that ¢,, — ¢1. We thus conclude that ¢; is a solution to the dual problem (1.2)
(for the same eigenvalue \p). O

Let us conclude this section by some remarks.

Remark 2.22. (1) - As seen above, the condition (H1)-(H2) for the primal and the dual problems
are equivalent, and thus one only has to check (H1)-(H2)-(H3) for the primal problem and (H3)
for the dual problem in order to solve the first eigentriplet problem. It is worth emphasizing that
condition (H3) on the dual problem is not a consequence of the condition (H3) on the primal
problem. However, as presented in Lemma 2.7, Lemma 2.8 and Corollary 2.17, there exist several
natural situations where both conditions (H3) for the primal and the dual problems hold together.

(2) - Alternatively, one may also assume (H1)-(H2)-(H3) for the dual problem, and then use a
more classical fixed point theorem for proving the existence of a steady state for the rescaled semi-
group by using for instance the Markov—Kakutani fized point theorem [226] as in [231, Thm. 5.1],
the Tychonov fized point theorem as in [172] or [153, Thm. 1.2] or a Birkhoff-Von Neumann type
Theorem as in [81, Thm. 6.1]. For these last techniques, we also refer to Section 3, where such a
dynamical approach is adapted to the present context. One may also use the usual Doblin-Harris
theory, see for instance [198, 81] and the references therein, and Sections 8.6 and 12.2 for applica-
tions of this approach.

2.3. Discussion.
We discuss now the existence results presented in the preceding section.

For further references, let us first recall that when X is a Hilbert space and L is self-adjoint, the
first eigenvalue may be simply obtained thanks to the variational problem

(£f, f)
2.35 A = .
(2.35) 1= s TR

We now explain how Theorem 2.21 is a generalization of the classical Krein-Rutman theorem
stated in Theorem 1.2. We thus consider a Banach lattice X such that X, := intX; # () and
an operator £ such that, for k; € R and any x > k1, R := (k — £)7! : X — X is compact and
R : X \{0} — X;4, in particular (H1) holds true. As a first step, we recall the following very
classical technical lemma of the KR theory.

Lemma 2.23. Assume X, :=int X # 0. Forge X, and f € Xy, there exists C > 0 such
that g < Cf.

Proof of Lemma 2.23. We argue by contradiction. Otherwise, for any n > 1, we would have
f—g/ne XS C XS, and that last set is closed. Passing to the limit, we get f € X¢, which is
in contradiction with the assumption f € X, . O
For a given go € X \{0}, we set fo := Rgo € X4+. From Lemma 2.23, there exists Cy > 0 such
that (k — L) fo = go < Cpfo. That implies that Lemma 2.4-(ii) holds with x¢ := k — Cp, and thus
(H2) also holds. One may then define p1 := k — Ay, with

A =inf{A €R; (N — L)' € B(X), VN €[\ K]} > ko.
We recall that because of Lemma 2.6 (or its proof), there exist (A, ), (f,) and (£,,) such that (2.20)
holds, namely
A N fa 20, en = Mafa = L 20, [ fal =1, [leall — 0.

We may rewrite the equation as

fn= R[En + (/i - )\n)fn]a
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so that ( fn) belongs to a compact set of X because of the compactness assumption made on R, so
that (H3) holds true.

Because of Theorem 2.21, we deduce that there exists fi1 € X1 such that ||fi|| =1 and Lf1 = A\1.

That implies fi = p1Rf1, and thus that the existence part of Theorem 1.2 is a consequence of
Theorem 2.21 for an operator R which is the positive resolvent of an operator L.

We would like to emphasize on the fact that our definition of the first eigenvalue by (2.15)-(2.16)
bears some strong similarity with the definition of the first eigenvalue for elliptic operators in non
divergence form as presented in [47]. Indeed, if A € Z, then

Ife X \{0}, Lf <Af.

Assuming now that X is a space of functions (defined on a set E) and that f(z) > 0 for any z € E,
we deduce that
Lf

A= Sup =,
and thus \; is characterized by
A1 = inf sup ﬁ,
f>0 E

which is nothing but [47, (1.13)] (with a change of sign because of a different sign convention).
We thus see that our formulation is a generalization at a more abstract level and for resolvent
positive operators of that classical min-max approach for elliptic operators. Some more or less
classical references on that subject are [142, 143], [302], [318], [48] and [46]. In particular in [48],
two generalized principal eigenvalues

1 :==sup{ro € R; 3go € Co Lgo > Kogo}

and

N =inf{r; €R; Jg1 €C1 Lg1 < K191}
are defined for appropriate cones C; C X \{0} for problems with lack of compactness. The links
between the three quantities A1, A} and A/ are discussed as well as the possible non existence
of a related principal eigenfunction f;. The non existence of associated principal eigenfunction
should not be a surprise since it is the case when one considers £ = A in X = L?(R?) where
Lg1 =Lg1 =Ny with0< ¢ =1¢ X = X" and \] = 0, but no associated principal eigenfunction
exists in X. We also refer to [252] where some examples of such a situation are discussed.

For its own interest and further discussions, we finally state and prove a slightly less general
variant of Theorem 1.8.

Theorem 2.24. Consider a Banach lattice with positive cone X1 and a linear and bounded oper-
ator R : X — X such that

(i) R: X+ — X4;

(i1) g2 € X1 \{0}, 3C3 > 0 such that Rga < Caga.

We define
Ky:={g€ Xy;3a>0,9<ag},
and next
A(g) :=1inf{a > 0; g < aga}, if g€ Ko,
as well as

J:={pn>0; 3h e Ky, h > Rh+ g2}.

We further assume

(i) py :=sup J < +o0.

(iv) Any upper bounded and increasing sequences (g") of X is convergent in the weak sense o(X,Y).
More precisely, if gn < gny1 < g € X for anyn > 1, there exists g € X, g < g, such that g, — g.

(v) Any sequence (g") of normalized almost first eigenvectors is relatively compact. More precisely,
for any sequence (g™) of Ko such that A(g"™) =1, g" = p"Rg™ + €™, u” 7 p1 and €™ — 0, there
exists g € Ko and a subsequence (¢g"™*) such that g™ — g and A(g) = 1.

Then there exists f1 € Xo such that f1 = p1Rf1 and A(f1) = 1.
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Proof of Theorem 2.24. We split the proof into three steps.
Step 1. We first establish that for any p € J, there exists § = g, € K2 such that

(2.36) G = uRy+ go.
We set go = 0, g1 = g2, and we define (§,,) recursively by gn+1 = uRgn + g2, for any n > 1. We
claim that

0<gn < Ggnt1 < h, forany n >0,
where h enters in the definition of € J. That is obviously true at order n = 0. Assuming that
last inequality is proved at order n — 1 for n > 1, we compute

Gn+1 = URGn + g2 = Rgn-1+ g2 = gn
and
Jnt1 = WRGn + g2 < pRh + g2 < h,
which proves the same inequality at order n, and thus for any n > 0. Using the convergence

property (iv) of upper bounded increasing sequences in X, we deduce that there exists § € X» such
that g, — ¢ and thus (2.36) holds.

Step 2. We obviously have 0 € J and J is an interval because if (u, h) satisfies the condition
p € J then so do (¢, h) for any p/ € [0, u]. We finally claim that J is open. Take indeed p € J
and g € K5 such that (2.36) holds, what is possible due to Step 1. By definition, there would exist
A > 0 such that § < Ags. Choosing 0 < ¢ <1/(2ACs) and M > 2, we compute

(Mg) = (n+e)R(Mg) = Mgy — MeRg
> Mgy — MeARgs > M(1 —cAC2)ga > ga,

so that u+e€ J.

Step 3.  We first establish by contradiction that A(g,) ,* oo when p 7 pq. If it was not the
case, there exists A € (0,00) and a sequence (u™) such that A(g,») < A as " 1. Choosing
0<e<1/(2AC3) and M > 2 as in Step 2, the same computation gives

(Mgun) — (1 +€)R(MGun) = g2,
so that pu" +¢ € J. That means that " +¢ < u1, and a contradiction with the fact u” * p1. We
next consider p” 7 pp and we define
~ o Jun g2 A N
ATL = A(g}t"), gn = ﬁ7 Ep 1= ﬁ) gn — 'LLTLTgn +€n

We observe that e, — 0 and A(§") = 1. Because of the compactness assumption (v), we deduce
that there exists fi € K5 and a subsequence (§™*) such that g™t — f; and A(f1) = 1. We conclude
by passing to the limit in the above almost first eigenvalue equations. O

We may compare Theorem 2.24 with the results presented in the previous section. When L
satisfies condition (H1), we may set R := R, (k1) so that R € #(X) and R satisfies (i). In that
case, Theorem 2.24 claims the existence of f; € Ky such that £f; = A\ f1, with Ay = k1 — p1.
The condition (i) on R translates as Lgo < (k1 — 1/C2)g2 which may be seen as an equivalent
of condition (H1) (when working in the space Xz := K3 — K with norm ||g|j2 := A(]g|) and
L generates a semigroup S. The hypothesis (iii) is nothing but (H2) and the hypothesis (iv) is
very natural: it holds in the space LP(E) and M!(E) without additional condition on R and it
holds in a space of continuous functions when some additional uniform continuity assumption is
made on the range of R. Assumption (v) has to be compared with condition (H3). It is worth
emphasizing that when X C LP(E) and g2 > 0 a.e., we simply have A(g) = ||g/gz2||L= for any
g € X4. As a conclusion, although Theorem 2.21 and Theorem 2.24 bear some similarities none
seems to be a consequence of the other. We believe that Theorem 2.21 is more flexible since it
does not impose to work with the normalization associated to the seminorm g — A(|g|) of L°°-
type. It is also worth emphasizing the very similarity between Step 3 in the proof of Theorem 2.24
and the proof of Lemma 2.6 and, on the other hand, that Theorem 1.2 is a particular case of
Theorem 2.24 by essentially exploiting the fundamental Lemma 2.23 as shown in [252]. We finally
point out that when Y = X', the condition (iv) is equivalent to a property of Banach lattices
known as order continuous norm, see for instance [264, Definition 2.4.1], as a consequence of [264,
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Thm. 2.4.2 (iii)] along with the fact that weakly convergent increasing sequences in Banach lattices
are automatically norm convergent, see e.g. [264, Prop. 1.4.1].

3. EXISTENCE THROUGH A DYNAMICAL APPROACH

In this part, we develop a dynamical approach for proving the existence part of the Krein-Rutman
Theorem. We thus always consider a positive semigroup S = S, on a Banach lattice X. We
recover Theorem 2.21 under slightly reinforced assumptions. Above all, we are able to extend the
existence part of the Krein-Rutman Theorem to a more general framework, namely to the case
when £ only enjoys a suitable weakly dissipative condition.

3.1. About dissipativity.
Let us start by recalling some classical definitions and results. We say that an operator £ defined
in a Banach space X is dissipative if there is some number x € R such that

VfeD(L), 3f €Jp, Re(f*.Lf) < w|fI?
where we define the associated dual set J; C X’ of f by
(3.1) Jr={p e X’ (o, f) = Ifll = lelx}.

In that situation and in order to be more precise, we should say that £ — k is dissipative. It is worth
emphasizing that J; # () thanks to the corollary (2.2) of the Hahn-Banach dominated extension
theorem. We say that an operator L is hypodissipative in a Banach space X if there exist an

equivalent norm || - ||| in X and a number s € R such that

(3.2) VfeD(L), 3 €T Relf L) < wlIFIP,
where

(3.3) Tpnn = {e € X5 (o, f) = IFI1* = llell% }-

The only difference between the two definitions (3.1) and (3.3) comes from the norms in which the
normalization is performed. When L is the generator of a semigroup S, one can show that the
growth bound w = w(S,) defined in (2.9) also satisfies

w = inf{x € R, (3.2) holds for some equivalent norm || - |||},
and S, is a semigroup of contraction when L is dissipative with k = 0. At least formally, denoting

fr:=8@)f, for f € D(L), we deduce from (3.2) that

1d
§£|||ft|||2 = Re((f1)*, L) < &l fell,
and together with the Gronwall lemma, we deduce

IS@ I < el ve>o,

which is nothing but (2.10). That last estimate is actually equivalent to the hypodissipativity
estimate (3.2). Quite similarly, when

(3.4) I e YL\{0}, Ik e R, £LY < k),
we may compute
d *
ia<ftﬂ/)> = 2(Lfe,¥) = £(fe, L) < K{fi, ),
and together with the Gronwall lemma, we get

(3.5) £(Suf, ) <+ fL ), V>0

Two important more accurate versions of the previous ones are presented now. They will be of
main importance in the sequel. On the one hand, we may assume that £ satisfies a Lyapunov type
condition, namely there exists ¥; € Y} and k € R such that

(3.6) L5y < Kby + o,
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with 19 > 0 and 9o/12 — 0 at infinity. For f; = Sc(¢)f, f € D(L) N X4, a similar computation
as above gives

D o) = o £709) < sfur o) + (o).

Denoting [f]; := (| f],v:) and using the Grénwall lemma, we classically deduce

(3.7) [S()f]> < ™ [f]o + / e<t=9[S(s) flods, V1> 0.

The Lyapunov condition (3.6) is particularly relevant and useful in a Radon measures space frame-
work X = M, (E) for some weight function ¢, on E.

On the other hand, we may generalize the above Lyapunov condition by assuming the structure
condition

(HS2) there exist a splitting £ = A+ B and k3 € R such that A is B-bounded, that means
3C=0,VfeX, [Afl<CAIfII+IIBLID,
the operator B generates a semigroup Sz and
(3.8) 1(S5A) D Sp(t) || zx) = O(e™), Vit >0,
for any ¢ > 0 and o > Kkpg.

Here and below, for two functions U : Ry — ZB(Xp, X1) and V : Ry — (X, Xs), we define the
convolution function

(V«U)(t) ::/0 V(t—s)U(s)ds,

when the integral is well-defined. For U : Ry — %(X), we also recursively define U9 = [ and
UG+1) — gD « U, Using this convolution notation, the Duhamel formula writes

Se =S8+ SpAx S,
and iterating this formula, for any N > 1, we get the following iterated Duhamel formula
(3.9) Sp=8g+--+ (SBA)*(N—l) % Sp + (SBA)(*N) %S

When S, is well defined in another space Xy D X and the last iterated convolution term enjoys
the regularity property [|(Sg.A) ™) (t)]| s (x,,x) = O(e??) for all t > 0 and a > kg, we deduce from
the above iterated Duhamel formula, the estimate

t

(3.10) IS@FII < Coe™[I£Il + Cl/ S () fllods, V>0, a>np, VfEX,
0

for some constants C; > 1 and where || - ||o stands for the norm in X,. We may observe that the
estimate (3.7) in the case of a Lyapunov condition is a particular case of (3.10) corresponding to
the norms || - || = []2 and || - |lo = [-]o. More specifically, in a Radon measures space framework, the
splitting condition (HS2) is obtained by introducing the bounded operator Af := fiy and the
generator B := L — A. Because of (3.6), we have B*1s < k1), and arguing as for establishing (3.7),
we have [Sg(t)f]2 < e"[f]2 for any ¢t > 0 and f € X. That last growth condition is equivalent to
assuming that B — x is dissipative for the norm [-]2, so that we have established that £ enjoys the
splitting condition (HS2).

3.2. Existence in the dissipative case.

In this section, we give an existence result for a positive semigroup Sz on a Banach lattice X
satisfying a kind of regularity/compactness assumption in the spirit of the structure condition
(HS2) discussed above.

Theorem 3.1. On a Banach lattice X =Y, with Y separable Banach lattice, consider a positive
semigroup S = Sp satisfying the growth bound (2.10), and set k1 = w’ + logM for some w' >
W(SL).
We assume

(1) F¢o € YL\{0}, Tro € R such that [S(t)flo > e™*[flo for any t >0 and f € X,
where we denote [flo :== {|f], do);
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(2) there exist k,Cy,C1 € R with k < kg, Cy > 1 and C1 > 0, such that
t
(3.11) IS fIl < Coe™|| || + 01/ "t =9)[S(s) flods, Vt>0,VfeX.
0

Then there exist \1 € [ko, k1] and f1 € X1 \{0} such that Lf1 = A1 f1.

Let us mention that this result shares similarities with [260, Cor. 2.7] and [111, Thm. 4.2], see also
[259, 94] for earlier works in that direction.

Remark 3.2. (1) Assumption (2) in the statement of Theorem 3.1 holds when there exist V,W
such that

(3.12) S=V+WxS, W2>0,
and there exist k,Cy,Cw € R, k < kg, Cy > 1, Cw > 0 such that
(3.13) IV()llax) < Cve™,  [[W(E)|lmxx) < Cwe™.

(2) Under the structural condition (HS2) together with some regularization effect on the semigroup
of the type
H(SBA)(*N) (t)”@(?(mX) = O(eﬂt)v Vi > 0) K€ (K/Bv’%o)v

we recover the above condition (3.12)-(3.13) with
(3.14) Vi=Sg+--+ (SpA) NV Sp, W= (SpA)N),

because of the iterated Duhamel formula (3.9). In that case, the representation formula (2.13) holds
true for any z > A1 from Lemma 2.2-(ii) and we easily compute

Rir(z) =V(z) + W(2)Rr(z), Vz> A,
with - -
V(z) ::/ e MV (H)dt, W(z) ::/ e MW (t)dt, Vz> k.
0 0
We observe that W satisfies (2.28) in Lemma 2.15 if W satisfies (3.13) and the set C defined by
(2.26) satisfies the same compactness properties as required in the statement of Lemma 2.11. We

may thus apply Lemma 2.15 (see also Remark 2.16) and deduce that (H3) holds for the primal
problem. We finally obtain the same conclusion as in Theorem 3.1 thanks to Theorem 2.21.

(8) Under the same structural condition (HS2) as above, but assuming now that
||W(t)||33(X7X1) = O(el{t)) vt > 07 K€ (K:Ba K:O)a

with W = (SBA)(*N) and Xy C X with strongly compact embedding, we observe that S does
not necessary satisfies the assumptions of Theorem 3.1, but it rather satisfies the assumptions of
Lemma 2.7 with Ky := (W % S)(T) and T > 0 large enough. In that situation, we also obtain the
same conclusion as in Theorem 3.1 thanks to Lemma 2.7 and Theorem 2.21.

Proof of Theorem 3.1. We split the proof into two steps.
Step 1. We define the set
C:={feXy, [flo=1 [IfIl <R},

for a convenient constant R > 0 to be fixed later. For any fixed ¢ > 0, we next define the nonlinear
weakly o(X,Y) continuous mapping

Sif
P, :C— X, .
t T &
Thanks to assumption (1), we may observe that it is well defined because
(3.15) [Seflo > e"™'[f]o = e > 0.

For any f € C, we thus immediately have ®;f > 0 and [®:f]p = 1. On the other hand, from
assumption (1) again and the semigroup property, we have

(3.16) [S(8)flo = €™ [S(s) fo.
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For f € C and t > 0, we next compute
t

[®:f] < Coeiat”f”_kcl/ e—o(t=5) qs
0

C
< CoeiatR + —1,
[0

where we have set o := kg — kg > 0. Fixing Ty such that Coe= 70 < 1/2 and next R > 2C}/a,
we have thus @7, : C — C. Thanks to the Tykonov fixed point Theorem, there exists fr, € C such
that @7, fr, = fr,. In other words, we have established the existence of f7;, € X such that

(3.17) fry 20, [fnlo=1, Spfr,=e""fr,
with )\1 = (1/T0) log[STofTo]o S [Fao, /il].
Step 2. Rewriting equation (3.17) as

To
0=e M8 fr, — fr, = (L — )\1)/ e MES, frydt
0
and defining
To
f1 Z:/ e_AltSthOdt,
0

we get that f1 € X \{0} satisfies Lf1 = A1 f1. O

We present now a second proof based on a large times dynamical argument which is classical in
the mean ergodicity theory of Von Neumann and Birkhoff introduced in [356, 60] and which will
be adaped in the weak dissipativity case in Section 3.5 below.

Alternative Step 2. We define gt = Sye Mt 5o that fr, becomes a periodic state for §t from
(3.17), namely

gthO = §t—kTofT07 k= [t/Tg], Vit > 0.

Using (3.15) and the above relation, we have

[Sefrlo = [Si-wtofrlo
> e(nof)\l)(tfkTQ)[fTD]O 2 e(ﬁo*)\l)To = ,r,* > O7

for any ¢ > 0. On the other hand, thanks to the growth bound (2.10), we have

1Sefroll = ISe-rm fro
< Me(K—Al)(t—kTo)HfToH < Me=2T R —: R* < o0,

for any ¢t > 0. We finally define
17
ur = TA St fr, dt.

From the previous estimates, both sequences (S fr,) and (ur) are bounded in
Ke={feX; f>0, [flo>r [[fl| <R}

By compactness, there exists a subsequence (ur, ) and f; € K such that ugp, — f1 in a weak sense
as k — oo. For any fixed ¢ > 0, we observe that

T T

- . 1 - 1 -
Sifi—fi = lim {T_k SiSufrds — 7 |8, fTOds}
o 0 0

) 1 Tk+t~ 1 t~
— klirﬂo{T_k/T SSfTDds—T—k/O SSfTOds}:O,

where we have used that (§S fr,) is uniformly bounded in the last line. As a consequence, f;
is a stationary state for the rescaled semigroup S, and thus an eigenfunction associated to the
eigenvalue \; for the operator L. ]
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3.3. About weak dissipativity.

In this section, we recall some definitions and results about the weak dissipativity. We say that the
generator B of a semigroup Sp is weakly dissipative in a Banach space X; if there exist a second
Banach space X;_1 D X; and some numbers x € R and ¢ > 0 such that

Ve D(B\Xi)v If e Jf7X'i7 <f*7Bf> < KHfH?X, - GHfH_in,lﬂ
where we define the associated dual set Jf x, C X; of f (for the norm || - ||x,) by

(3.18) Jrx. = {p € Xi; (0, ) = Ifllx, = lellk,}-

By translation, we may assume that k = 0, an hypothesis we will always make in the sequel of
this section. We will furthermore assume the splitting structure £ = A + B with A a B-bounded
operator and B weakly dissipative generator.

More precisely, we assume that there exists one more Banach lattice Xo D X7 D X5 := X, with

norm denoted by || - || := || - ||x,, such that B generates a semigroup and is weakly dissipative in
each Xy: for any k = 1,2
(319) vaD(B\Xk)a E!f* EJf,Xk, <f*78f>X,;7Xk S_O'HfH%—l'

This classically implies (or we can take the next inequality as a definition of the weak dissipativity
condition) that

d
(3.20) —1S5(0)fllx + o S5(B)flle—r SO, VE=0, Vf € Xy, V=12

We assume that X}, is dense into X;_1 for £ = 1,2 and that X; is an interpolated space between
Xo and X in the sense that there exists a continuous and strictly decreasing function 7 : (0,1] —
[0,00), n(e) — oo when € — 0, n(1) = 0, such that

(3.21) £l < ellfllz+n@)lfllo, Vee(0,1], Ve Xy
From (3.20) with k& = 2, we deduce
(3.22) 1S5() fllz < [Ifll2, Vt=0, VfeXo

Next, for k = 1, gathering the weak dissipativity condition (3.20), the interpolation condition
(3.21) and the non expansion property (3.22) in the space Xs, we get

d o oe
— t — t < — t
G5O+ 75 IS0 < S ISs
o€
= N f )
77(5) || ”2
for any t >0, e € (0,1) and f € X5. We deduce
d _o ¢ oc g _¢
el @) < ©
7 (18507 1:e77) < e 1,
and thanks to the Gronwall lemma, we obtain
(3.23) 1S5(t) fllr < ©@)|| fll2;
for any t > 0 and f € X5, with
(3.24) Ot):= inf (e 79" 4¢) =0 as t — +oo.
€€(0,1)

On the other hand, using the representation formula
Rp(z)f = /OOO e_ZtSB(t)f dt, Vze€ Ay, Vfe X,
together with (3.20), we get
oIRa ()l < [ allSa(01sdt < £l
for any z € Ag and f € X,. We next assume that

(3.25) @(t)_ll\Ast(t)meL/O [AS5(t) fllndt S 1| fl1,
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that there exist a > 1, N > 1, C' > 1 such that

C
(3.26) sup  JARE™ (x +iy) ... ARG (2 + i) flla < —= I fl2,
z+iyEAo <y>
for any ¢ € {0,1}", 61 +---+ex < 1, and that
(3.27) sup [(Re(2)A)N flla, < I,
FASYANG)

with X} compactly imbedded in X;. The necessity to add (g;) in (3.26) is probably purely technical
and not restrictive for applications. In examples, we can take N = 2N’, when

(3.28) sup (ARs)Y (& + i) lls < o | £1l2
z+iy€Ng <y>

for some convenient space X3 such that A: X; — X3 and sup,ca, [R5(2)|2(xs,x,) < 00. At the
level of the semigroup, (3.28) is typically a consequence of

||(ASB)(*NN)(t)||e@(x2,xf§) € L'(Ry),

with ¢ > 0, where X§ = {f € X3, L°f € X3} stands for the (possibly fractional) domain for the
operator defined in X3. However, (3.26) is a bit more general than that last estimate. We refer
to [278, 273, 280, 277] for precise definition, examples and discussion. For further references, we
observe that (3.23) and (3.25) together imply

1 T 1 T rt
7 [ Nsseasa@slide < o [ [ Ss - 9ASs(s) ] dsde
0 0 0
1 T pT
< 7 [ [ 18stlac | ASs() 1 duds
0 0

1 T
S 7 el

Arguing in a similar way for any ¢ > 1, we establish
e e
(3.29) 7 [ ISs < (Ase) Ot S 7 [ ©dulfla—0 as T oc.
0 0

For synthesizing and for further references, let us now bring out some possible general framework
for semigroup enjoying weak dissipativity. We introduce the following structure condition on a
semigroup S, and its generator £ by assuming

(HS3) there exist a splitting £ = A + B, some Banach lattices X5 C X7, an integer N > 1 and
some decaying functions ©; : Ry — R, with ©1(t) — 0 as t — oo, Oy € L(R,) such that A is
positive, B generates a positive semigroup Sz and the following estimates hold

(3.30) 1(SA) ) % Sp|l z(x,x0) = OO1), YLe{0,....,N—1},
(3.31) 1(S8A) "N z0x, x5) = O(O2).

We now particularize our discussion to a Radon measures framework. We assume that there exist
some weight functions ¥; on E, g < 1 < g, with ¢o(x)/1h1(z) — o0 as x — oo so that
Mijz cC Mi}l (compact imbedding for the weak convergence), a function x € C.(E), 0 < x < 1,
and a constant M > 0 such that

(1) L1 < —tho + Mx;

(il) L*g < My;

(iil) 1 < eo + n(e)h for any € > 0,
for a function 7 : (0,1] — (0, 00) such that n(1) =0, n(¢) — oo when € — 0, and
(3.32) t—O(t):= inf (e 7 +¢) € L'(0,00).

e€(0,1)

It is worth emphasizing that from the very definition, we have automatically that © is positive and
decreasing, ©(0) = 1 and O(t) — 0 as t — oco. Arguing similarly as we did during the proof of
Corollary 2.20 and the end of Section 3.1, we introduce the splitting

A:=Myx, B:=L-A,
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and we establish that Sz is a positive semigroup on X = MT}& (E). More precisely, for 0 < fo € D(B)
in the domain of S and denoting f; := Si(t) fo, we may compute

%/ft% S/ft3*1/)2 <0

G [for< [rBv<- [nn

Integrating both differential inequalities, we deduce Sg € L$° (%(MT}})), 1=1,2 and

and similarly

| 18s@4allay, dt < oo, . ¥ fo € M,
0 0 1

We may make a slight (but important) improvement of the previous estimate by proceeding sim-
ilarly as we did for proving (3.23). Using the same notations as in the above computation, we

indeed have J )
£ £
%/fﬂbl-F@/fﬂblS@/ft%ﬁ@/fo%,

where we have used (i) and (iii) in the first inequality and the previous Lg°(#(My,)) bound in the
second inequality. Integrating in time, we deduce

1S5, < OO fllars, . ¥t >0.
Taking X, := M, and N =1, we see that £ then satisfies (HS3) with ©; = ©.

3.4. First existence result in the weakly dissipative case. We first come back to the proof
of Theorem 2.21 and explain what goes wrong when we try to adapt it to a weak dissipativity
context. More precisely, we assume that S, is a positive semigroup (so that (H1) holds) satisfying
L*¢g > 0 for some ¢g € X'\{0} (so that (H2) holds) and the splitting structure (HS3) for some
bounded operator A and some weakly dissipative operator B, in the sense that (3.19) holds. In
such a situation, we may define

Ari=inf{A eR; Re(k) € B(X), V> A} >0,
and there exist sequences (\,) of R and (f,,) of X, such that
A NeA >0, [[full =1, eni=Afn—Lfn —0in X,

thanks to Lemma 2.6. In the simplest situation, we may further assume that Rg(x) : X3 — X is
uniformly bounded in x > A\; and A : Xg — X7 with X = X; C X(. The issue is that even in that
case, we may write

fn = RB()\n)Afn + RB()\n)gna
but it is not clear how to conclude that ( fn) belongs to a compact set in X because it is not clear
that Rg(An)en, — 0in X.
The next result aim precisely to establish that last convergence under suitable quite strong (al-
though natural and true in some examples) assumptions on the operator £. The proof is adapted
from [231, Sec. 6.3] and mixes some dynamical argument together with the stationary approach
developed in Section 2.2.

Theorem 3.3. Consider a positive semigroup S, in a Banach lattice X = Xo C X1 C Xy such
that its generator L satisfies

(1) there exists oo € D(L*), ¢po >0, ¢pg # 0, such that L*¢o > 0;

(2) £ =A+ B with A and B satisfying (3.23), (3.25), (3.26) and (3.27).

Then, there exist A\ > 0 and fi1 € X1 such that

(3.33) [fillx, =1, f1=20, Lfi=Xf1.

Proof of Theorem 3.3. We split the proof into four steps.

Step 1. 'We know from Lemma 2.2 and Lemma 2.4-(i) that (H1) and (H2) hold. We may then
define A; > 0 with the help of (2.16). If Ay > 0, we see that V(«) defined in (2.22) is bounded in
B(X) uniformly on a > ko := A1/2 because of (3.23) and (3.25), and that W(«) also defined in
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(2.22) satisfies (2.23) because of (3.25) and Remark 2.9-(1). Using Lemma 2.8, we get that (H3)
holds, and we conclude thanks to Theorem 2.21 in that case.
In the sequel, we always assume A\; = 0.
Step 2. Let us fix fo € D(L) such that fo > 0 and Cy := (fo, ¢o) > 0, which exists by definition
of ¢o. Denoting f(t) := S, (¢)fo, we have

d *
which in turns implies

(f(t), o) > Co, Vt>0.

Step 3. We claim that |[R.(0)[|s(x,,x,) = +0oo. That in particular implies ||R.(0)|zx) = 400
and thus 0 € X(£). We assume by contradiction that Ko := [[Rz(0)||%(x,,x,) < +oo. First,
because S, is positive, we have

Re(I< [ e ™Se(0)lf]dt = [Re(ez)] ).

from which we deduce

IRe(2)|ax2,x1) < IRc(Re2)l|z(x,,x1), V2 € Ao.

As a consequence, we have

(3.34) sup |R . (iy)| (xs,x,) < Ka,1-
yeR

We write the representation formulas (taken from [278, (2.21)])
Sc@)f =To(t) + lm Tim(t)
M — o0

with
N—
To(t) = > Sp* (ASs) O (t)f

=

—

and

. a+iM

i

Toan®)i= o [ e Re(:) (ARs(2) " dz,
T Ja—iM

for any f € D(L), ¢ > 0 and a > 0. On the one hand, from (3.29), we have the Cesaro mean

convergence

1 T
(3.35) T/ To(t)dt — 0 in X1, as T — oc.
0

On the other hand, we estimate the contribution of 77 ;. Integrating by part, we have
14 a+iM

Tin(t) = o LR (2) (AR5 ()N f d.

- ;% a—iM dz
with

4 [Re(2) (ARs(2)N] = Y. Re(2)'TARE ™ (2) ... ARG (2).

dz eeNN+1 |g|=1
Together with condition (3.26) and estimate (3.34), we get

d
| [Re(z) (ARs ()M
< (Kou +K3,)N  sup JARE™ () ... ARG (2) f|2

eeNN [g]<1

o
< <y>a ||f||2)

uniformly for any z = x + iy € Ag, for some constant C; > 0. We deduce

. 11 Ch
. <-— [ == —
(3.36) I fim Toartlh < 33= [ 2 dulfla o
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as t — o0o. Gathering (3.35) and (3.36), we conclude in particular that

1 T
T/ S/;(t)f()dt—)o in Xy, as T — oo,
0

which is in contradiction with the estimate of Step 2.

Step 4. Conclusion. Taking advantage of the convenient blow up of R, (\) as A N\, 0 established
in the previous Step 3, we may now argue similarly as in the proof of Theorem 2.21. From Step 2,
there exists a sequence (\,) such that A\, — 0 and

[Re(An)ll(xz,x1) — 00
That means that there exist (f,,) and (g,) such that

I fnllx, =00, lgnllxs =1, fo=TRec(An) gns

or equivalently that there exist (f,) and (g,) (by defining fn := fot /|| fot |l x1s €n i = gns /|| fozllx,)
satisfying

(3'37) ||anX1 =1, fn207 ”f':nHXz — 0, gn:()‘n_‘c)fn'
As in the proof of Lemma 2.8, we deduce that (2.25) holds, that is
N-1
(3.38) o= (Re(Ma)A) Re(An)en + (Re() AN f.
=0

Using the uniform boundedness
(Re(M)A)R(\) € B(X2, X1), (Rs(M)AYN € B(X1, X)), &1 cC X,

we deduce that ( fn) belongs to a compact set of X1, or in other words, that there exist a subsequence

of (fn) (not relabeled) and f; € X5 such that fn — f1 in X7. We may pass to the limit in (3.37),
and we get (3.33). O

3.5. Second existence result in the weakly dissipative case. Using a pure dynamical ap-
proach adapted from the second proof of Theorem 3.1 and from [81, Thm. 6.1], we establish a
second existence result which is less demanding in terms of conditions on the semigroup S¢.

Theorem 3.4. Consider a positive semigroup S = Sy on a Banach lattice X =Y’ for a separable
Banach lattice Y. We assume

(1) there exists ¢o € YL \{0} such that [Si¢flo > [flo for any f € X4 and f — [flo := (||, ¢o)
is a norm on X. We then denotes X the vector space X endowed with this norm [-]o;

(ii) there exist v € L (R4 ; B(X)) and 0 < w € L' (R4 ; B(X, X)) such that
(3.39) S=v4+wxS,
and we set

(3.40) M := i‘;g”v(tm@(x) <oo, O(t) = w(t)|mwx,x) € L' (R+).

Then there exists a pair (A1, f1) € Ry x X \{0} such that Lf1 = M fi1.

Remark 3.5. (1) When S satisfies (HS3) then (3.39) holds with

N—1
(3.41) vi= Y Spx (ASE)™D,  w = (SpA)N.

£=0
(2) By definition of the norm [-]o of X, we see that X is a weighted L' space or a weighted Radon
measures space. In many applications, when both X and X are Radon measures spaces, one can
choose N = 1. On the other hand, when X is for instance a (possibly weighted) LP space with
p > 1, one must take N > 2 in most of the applications. In condition (i), the first bound is
not really demanding and almost automatic in view of the estimates exhibited in Section 3.3. The

second bound is a kind of reqularity estimate reminiscent of the enlarging and shrinkage technique
developed in [294, 190, 274].
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Proof of Theorem 3.4. We split the proof into three steps.
Step 1. We define
R := max(2[|©] 21, [|g0]),

for some gy € X such that [go]o = 1, and next the nonempty convex and compact (in the weak
x0(X,Y) sense) set
C:={feXyflo=1, I/l <R},

as well as the increasing function

At) = if[S(0)lo. ¥t >0,

We have the alternative
o (1) sup A > 2M,
e (2) sup A < 2M.

Step 2. We assume that the first term (1) of the alternative holds true, or in other words, there
exists Ty > 0 such that

(3.42) Vfec, [Spflo>2M.

We define as before Sr. f
T
Oy f = o,
o (ST, flo
By construction, for any f € C, we have @7, f > 0 and [®g, f]o = 1. On the other hand, using the
splitting structure (3.39) and the estimates (3.40), we have

Vfec.

1S £l < M| ]| + / Ot — 5)[S(5) flo ds.

From hypothesis (i) and the semigroup property, we also have
[Siflo > [Ssflo, VE>s2>0.

The two above estimates together imply

M| f]] o [Ss flo

+ O(Ty—s

[STof]O 0 ( 0 )[STof]O

1
< SIS+ I8l < R,

[zl ds

IN

for any f € C. We have thus proved @7, : C — C. Thanks to the Tykonov fixed point Theorem,
there exists fr, € C such that ®r,fr, = fr,. In other words, we have built a pair of “almost
eigenvalue and eigenfunction”

fro =0, [fnlo=1, St fr, =" fr,

with eMTo =[Sz, flo and thus A\; € [0,k1]. We conclude to the existence of f; € C such that
Lf1 = A1 f1 really similarly as in Step 2 of the Second proof of Theorem 3.1.

Step 3. We assume that the second term (2) of the alternative holds true. In that case, for any
n > 1, there exists f, € C such that [S(n)f,]o < 2M. By compactness, there exists fo € C and a
subsequence (fp,) such that f,, — fo € C and

V>0, Vk(ng >t), [SE)fndo <[Sg)fr.o < 2M,
so that
(3.43) Yt >0, [S(t)folo <2M.

Using this particular initial datum, we argue similarly as in [81, proof of Theorem 6.1], and we
conclude to the existence of a stationary state. More precisely, we come back to the splitting
structure (3.39) of the semigroup S and we introduce the associated Cesaro means

T T T
(3.44) Up = %/ S(ydt, Vi = %/ () dt, Ko = %/ (w + S)(t) dt,
0 0 0
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for any 7" > 0. We obviously have

1 T
Wellao < 7 [ Io(®llace) i < 0.

On the other hand, we have

/OT(U) xS)(t)dt = /OT /STw(t —5)dtS(s)ds < /OT w(T)dr /OT S(s)ds,

thanks to the Fubini theorem and the positivity of the two operators involved in this integral

formula. We deduce
T 1 (T
H/O w(T)dTT/O S(s)fodsH

[eS) 1 T
/o ||w(7)||ga(x7x)d7 [T/o S(s)fo ds}o = [©l[ [Ur folo,

1K foll

IN

IN

thanks to assumption (ii), so that Krfy is uniformly bounded in X thanks to (3.43) and the
elementary estimate [Ur folo < [STfo]o. We then deduce that Ur = Vr + Kr satisfies

Uz foll < M| foll +2M|[©]|»  and 1 <[Srfolo < 2M,

for any T > 0. By compactness, there exists T, — 400 and f1 € X such that U, f — f1 weakly
*x in X. Thanks to the second inequality, we have [fi]o > 1. We then argue thanks to the usual
mean ergodic theorem trick. For any fixed s > 0, we observe that

T T

S(s)fi—f1 = klin;O{Tik i S(s)S(ﬂfodt—Tik ; S(t) o dt
Tr+s s
-l [ s [ sono)

weakly * in X. By the lower semicontinuous property of the norm [-]g, we deduce

Tk+s s
S@h— o < tmint{g [T s nlat+ 7 [ 5@l <o

o0 k JTy

so that f; is a stationary solution, and thus f; is an eigenfunction associated to the eigenvalue
A =0. O

4. TRREDUCIBILITY AND GEOMETRY OF THE FIRST EIGENVALUE

In this section, we are concerned with the geometric part of the Krein-Rutman theorem for an
unbounded operator £ on a Banach lattice X. We assume that the conclusions of the existence
part are achieved, namely

(C1) the first primal and dual eigenvalue problem has a solution (A1, f1, ¢1): there exist A; € R,
f1 € Xy N D(L\{0}, ¢1 € YL N D(L*)\{0} such that
(41) ,Cfl = )\1f1 and ,C*(bl = )\1¢1.

By construction, we also have X(£) C {z € C, Re(z) < A\ }.
Assuming that S is positive as for the existence part and an additional strong maximum principle
property, we analyze the first eigenvalue problem.
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4.1. More about positivity. For further references, we introduce several notions which are
strongly related to the positivity property for semigroups.

The signum operator sign. In a real Banach lattice X, we say that sign f € B(X,X") is a
signum operator for f € X, if it satisfies the following properties

(4.2) (sign f) f = |f],
(4.3) (signf)g <lg|, VgeX.

In the sequel, we will always assume that such an operator exists. We refer to [15, Sec. C.I &
C.I]] for a general introduction to the topic. In practice, we will only need a weak formulation of
the sign operator (see below) which may be defined only in some subspace X C X. We always
additionally assume that the signum operator satisfies

(sign(—f)) (—g) = (sign f)g, Vge X,

(Slgnf)g:ga VgEX, iffEX+,
We also define )

sign, f := 5 (I + signf).

e When X is a space of functions, the sign operator sign f associated to f € X corresponds to
the multiplication by the function sign f := 1550 — 1y<o. When X := LP(E), we obviously see
that sign f € Z(LP(E)) for any f € LP(E). On the other hand, when X := Cy(E), we only have
sign f € B(Co(E); M*™(E)), where M*>°(E) denotes the space of uniformly bounded measurable
functions, so that M>(E) C (Co(E))”. In a space of bounded measures X = M*(E), we may
define the sign operator by means of the Radon-Nikodym theorem. For a given f € M(E),
using Hahn decomposition, there exists indeed a measurable function « : E — {—1,1} such that
f = a|f|, and we then define (sign f)g = ag for any g € M*(E).

e When X is o-order complete, in the sense that any increasing and upper bounded sequence has
a supremum (a common least upper bound), the operator sign exists and is more regular, namely
sign f € A(X) for any f € X, see [296] and also [15, Sec. C.I1.8]. We recover in particular that
sign f € B(LP(F)) for any f € LP(E).

Weak principle maximum and Kato’s inequality. We introduce now two definitions formu-
lated on an operator £ which are almost equivalent to the positivity property of the semigroup S
when L is the generator of S.

e We say that the operator L satisfies the weak mazimum principle when

(4.4) keR, feD(L)and (k—L)f >0 imply f>0;

e We say that the operator L satisfies Kato’s inequality when

(4.5) VfeD(L), L|f]=(signf)Lf.

Since |f| does not necessarily belong to D(L), the correct way to understand Kato’s inequality is
(4.6) VfeD(L), Ve DL)NY,, (f,L7%) = ((sign f)LS, ).

We immediately see from the definitions that (4.5) is equivalent to assume

(4.7) VieD(L), Lfi> (sign, fILS.

Remark 4.1. We complement Lemma 2.1, by claiming that for a semigroup S = S, on a Banach
lattice X, there is equivalence between the fact that S is positive and k — L satisfies the weak
mazximum principle for any k > w(L), what is straightforward using that these properties are
equivalent to the fact that Re(k) > 0 for any k > w(L). These properties also imply that Kato’s
inequality holds true, see [296, 12], [13, Prop. 1.1], [11, Rk. 3.10] and the textbook [15, Thms C.I1.2.4,
C.I1.2.6 and Rk. C-11.3.12]. When for instance f,|f| € D(L), we may indeed compute

Sef - f Selfl = 1f]
t t

(sign f)Lf = (sign /) lim = 2If),

where we have used the very definition of the generator L and the properties (4.2)-(4.3) of sign f
in the inequality.

< lim
t—0
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We end this section by introducing other notions of positivity which strengthen the previously
defined positivity condition.

Strict order. We may define a first stronger order > (or <) on X by writing for f € X
f>0 if fe X \{0}

and similarly a stronger order > (or <) on X’ by writing for ¢ € X’
¢>0 if ¢e X, \{0}.

We may next define the strict (and stronger) order > (or <) on X by writing for f € X

(4.8) f>00r feXiy iff VyeX\{0}, (¥,f)>0,
and similarly the strict order > (or <) on X' by writing for ¢ € X’
(4.9) o>00rpeX,, iff Vge X \{0}, (¢,g)>0.

On the two Banach lattices X and Y, we thus have three positivity notions with > (associated to
X4+ and Yy ) stronger than > (associated to X;\{0} and Y} \{0}) which itself is stronger than
> (associated to X4 and Y, ).

Let us comment on the notion of strict positivity.

Remark 4.2. When X =Y’ for instance, there are two possible strict positivity notions on X given
by (4.8) for the space X (namely ¢ € X is stricly positive when (§,v) > 0 for any £ € X/ \{0}) and
by (4.9) for the space Y (namely ¢ € X is stricly positive when (1, g) > 0 for any g € Y, \{0}).
They clearly coincide when X is reflexive, but in general the first one is stronger than the second
one. In that situation, we will always consider that X is endowed with the weakest “dual” strict

order (4.9).

Examples 4.3. In the space Co(E), the strict order is defined by f > 0 iff f(x) > 0 for any
x € E. In a space LP(E, &, 1), 1 < p < oo, the strict order is defined by f > 0 iff f(x) > 0 for
p-a.e. © € E. In the space MY (E) = Co(E)’, the strict order is defined by duality by f > 0 iff
(f:¢) >0 for any ¢ € Co(E), ¢ 20, ¢ #0.

Remark 4.4. In a Banach lattice X such that int X # (0, the common definition of the strict
order is X4y = int X4. In particular, in the case when E is compact and X = Cy(E) = C(E), we
have int Xy # 0 and the definition of X introduced in Examples 4.3 coincides with int X;. In
all the other examples considered, we have int X = (), and thus our definition of the strict order
does not coincide with the one defined through the set int X .

Remark 4.5. Another notion of strict order can be defined through the notions of ideals and quasi-
interior points as briefly explained now, see [15] or [41, Chap. 10] and the references therein for
details. Defining the segment [g1, g2] and the set Iy for gi,92 € X and f € X \{0} by

[91792] = {g S X? g1 S g S 92}7 If = U [_kfa kf] = Spa'n[07f]7
k>0

one shows that Iy is an ideal in the sense that g € Iy implies |g| € Iy and 0 < g < f implies
g € Iy. We say that f is an order unit if Iy = X. When int X4 # 0, we find that f is an order
unit iff f € int X1 from Lemma 2.23, so that we recover the motion of strict positivity defined
above. On the other hand, we say that f is a quasi-interior point if I; = X. It can be shown that
f is a quasi-interior point iff [ is strictly positive in the sense of the direct strict order (4.8), see
for instance [337, Thm. 11.6.3]. These two notions of strict positivity and quasi interior point thus
coincide when X is reflexive or when X = LP(E, &, 1), 1 < p < 0o, see also [41, Examples 10.16]
when p is a o-finite diffuse (or atomless) measure. On the other hand, it is important to point out
again that the “dual” strict order (4.9) considered here is a weaker notion than the quasi-interior
point notion. For instance, in X = Co(E) = MY(E), there is no quasi-interior point but X ; # ().

We finally point out the following result. For a semigroup S = S, in a Banach lattice, under the
mild assumption that there exists a strictly positive subeigenvector for the dual problem, namely

doe X\, JbeR, L¢<bg,
then Kato’s inequality (4.5) implies that S is positive, see [13, Thm. 1.6].
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4.2. Irreducibility and strong maximum principle. We present some other material involving
the strict positivity. When satisfied by £ € X or Y, we will in particular make use of the property

(4.10) & >0 implies £>0 (or equivalently {_ = 0).
For further references, we introduce some general framework for the couple of Banach lattices we

will use in the sequel:

(X1) (i) Xi4 #0,Y,4 # 0 and the signum operator is well define in both X and Y

(ii) the property (4.10) holds in both spaces X and Y.

While (X1)-(i) is always satisfied in the applications, it is not the case for (X1)-(ii).
Lemma 4.6. The property (4.10) holds true in a space X endowed with the direct strict order (4.8),
in particular in X = LP, p € [1,00), and X = Cy, and also in the space L°° = (L) endowed with
the dual strict order (4.9).
Proof of Lemma 4.6. We start recalling the proof of (4.10) in a general space X endowed with the
strict order (4.8). Consider an element f of the Banach lattice X and assume that fi > 0. The

vectors f1 and f_ are disjoint, i.e. fi A f— = 0, see for instance [264, Thm. 1.1.1 iv)]. On the one
hand, since fi > 0, we have that

(fe) N f-— [-
with respect to the norm as n — oo, see [337, Thm. I1.6.3]. On the other hand, we have
0< (nfe)Af- < (nfp)A(nf-)=n(fr N f-)=0,
for every integer n > 1, where the last equality follows from the fact that f and f_ are disjoint.
We deduce by passing to the limit n — oo that f_ = 0. Thus, f = fy > 0.

We now establish (4.10) when X = L* (notice that exactly the same arguments may be used
when X = LP and X = Cj, what provides an elementary proof in these cases too). Take f € L™
such that fi > 0. From the definition of the strict order made explicit in Examples 4.3, we have
f1(x) = max(f(x),0) > 0 a.e., so that f(x) > 0 a.e. and finally f_(z) =0 a.e.. O

We give now a counter-example in the Radon measures space case.

Example 4.7. Consider M*([0,1]) = C([0,1])" endowed with the dual strict order (4.9). Let (g»)
be an enumeration of the rational numbers in [0,1] and let r be an irrational number in [0,1]. The
functional ¢ given by (¢, f) = > o> 1/2" f(gn) — f(r) satisfies ¢ > 0, but ¢ itself is not positive.
For an operator A € #(X), we have yet formalized a positivity condition in section 2.1, by

(P1) A>0if A: X, — X,

Other possible definition of positivity may be

(P2) A X\ {0} — X, \{0};

(P3) A : X++ — X++.

We now define a stronger notion of positivity, named as strong positivity condition, by

We list without proof some elementary properties about these different notions and also refer to
Section 6.2 for further discussion. We have (P2) = (P1), (P3) = (P1) as well as (P4) = ((P3),
(P2)) We also have A : X+ — X+ iff A* . Y+ — Y+, A X++ — X++ iff A* : Y++ — Y++;
A : X+\{O} — X++ 1ff A* : Y+\{O} — Y++.

We say that \ — £ satisfies the strong maximum principle if

(4.11) fexX,nDKL), A=L)f>0 imply f>O0or f=0.

It is worth emphasizing that if A — £ satisfies the strong maximum principle for some A € R then
N — L satisfies the strong maximum principle for any \ < \.

We say that a positive semigroup S is irreducible if

(4.12) Ve X \{0},Vée v \{0}, 3r>0 (S,f 6)>0.

A semigroup S is classically said to be irreducible and aperiodic if the above positivity condition
holds for all sufficiently large times, namely

(4.13) VieX \{0}LVoeY \{0}, IT>0,Yr>T (S.f ¢)>0.
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Other notions of strong positivity for the semigroup S are

(414) a7 > 0, ST : X+\{O} — X++,
T
(4.15) 37 >0, / S(H)dt : X\{0} — X
0

We summarize some possible implications between the previous positivity notions.

Lemma 4.8. For a positive semigroup S, the following hold:

(1) The pointwise strong positivity condition (4.14) implies the condition (4.15);

(2) The integral strong positivity condition (4.15) implies the irreducibility condition (4.12), but the
reverse implication is false. Similarly, the irreducibility and aperiodicity condition (4.13) implies
the irreducibility condition (4.12), but the reverse implication is false;

(3) The irreducibility condition (4.12) is equivalent to the fact that Re(N) : X4 \{0} = X4+, for
any A > A1, as well as to the fact that A — L satisfies the strong mazimum principle (4.11) for any
AeR.

The result is very classic, at least for strongly positive semigroup, see e.g. [15, Definition C.3.1] or
[41, Prop. 14.10]. For the sake of completeness, we however present a short proof.

Proof of Lemma 4.8. We prove (1). We assume (4.14) and we fix g € X1 \{0}, ¢ € Y;\{0}, so
that (S(T)g, ¢) > 0. Observing that the function ¢ — (S(t)g, ¢) is continuous, there exists € > 0
such that (S(t)g,#) > 0 for any ¢t € [T — €, T}, so that

</OT S(t)dtg,¢>> = /OT<S(t)g,¢>dt > 0.

Because ¢ € Y, \{0} may be chosen arbitrary, we deduce (4.15).
We prove (2). We assume now (4.15) and we fix g € X3 \{0}, ¢ € Y;\{0}, so that

[ (st ={ [ sy.0) >0

by assumption. We get (4.12) by observing that the function ¢ — (S(t)g, $) must be positive
somewhere on [0,7]. For the reverse implication we refer to [50, 169], where is studied an exam-
ple of growth-fragmentation operator associated to mitosis satisfying the irreducibility condition
(4.12) but not the integral strong positivity condition (4.15) nor the irreducibility and aperiodicity
condition (4.13), see also Section 9.

We prove (3). We finally assume (4.12). From the above continuity argument, for any g € X \{0},
¢ € Yi\{0} there exist 7 > ¢ > 0 such that (S(t)g,¢) > 0 for any ¢t € [t —¢,7+¢]. As a
consequence and thanks to the representation formula (2.13) for any fixed A > Ay which holds
thanks to Lemma 2.2-(ii), we have

ReWg.0) = { [ e s(0itg,0) >0

Because ¢ € Y;\{0} is arbitrary, we have established that Rz (A)g € X4 for any g € X;\{0}.
In other words, when A > A; and f € X N D(L) satisfy g := (A — £)f > 0, we deduce that
f=Rc(N)g € Xi4, what is the strong maximum principle. This one is obviously equivalent to
the strong positivity property R (A) : X1 \{0} — X.;. On the other way round, writing the
above identity as

/0 T e S(t)g, 8t = (Re(N)g, &),

we see that the strong maximum principle implies that the RHS term is positive for any g € X \{0},
¢ € Yi\{0}. As a consequence, the LHS term is positive and there exists 7 > 0 such that
(S(1)g,¢) > 0, which is nothing but the irreducibility condition (4.12).

O

We present two other elementary results about the strong maximum principle.
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Lemma 4.9. Consider L satisfying (H1) and A € R. Then the following assertions are equivalent
(1) A — L satisfies the strong mazimum principle for any f € D(L) N X4;

(2) X\ — L satisfies the strong maximum principle for any f € D(LF) N X, for some k > 1;

(8) A — L* satisfies the strong mazimum principle for any ¢ € D(L*) NY,;

(4) X — L satisfies the strong mazimum principle for any ¢ € D((L*)*) NY, for some £ > 1.

Proof of Lemma 4.9. Assume that A — L satisfies the strong maximum principle for some A € R
and k£ > 1 and consider ¢ € D(L*) N Y \{0} such that (A — L*)¢ > 0. For any £ > max(\, A1)
and g € D(£*1) N X \{0}, thanks to (H1) and the strong maximum principle, there exists
f € D(LF)N X, such that (k — £)f = g. As a consequence, we have

(0,9) = (& (k—L)f)
= (k=L f)> (k=N (9, f) >0.

Since g € D(L*"1) N X, is arbitrary and D(£¥~) N X, is dense in X, we deduce that ¢ > 0.
We have proved that A — £* satisfies the strong maximum principle. The other implications can
be proved similarly. O

Remark 4.10. (1) In many applications, we start proving the strong mazimum principle on smooth
enough functions (belonging to the iterated domain) for which pointwise arguments may be used.
(2) We may replace the condition (1) by assuming that A— L satisfies the strong mazimum principle
for f € CN X,y for a subspace C C D(L) such that (A — L)~ € B(C) and C is dense in X.

The strong maximum principle can be seen as a consequence of the weak maximum principle
together with the existence of a family of strictly positive barrier functions. We give now a typical
result which can be applied (or modified in order to be applied) in many situations.

Lemma 4.11. We assume that

(i) the operator A — L satisfies the weak mazimum principle and Kato’s inequalities;

(ii) there exists a subset 4 C X4+ N{g € D(L); (L—N)g >0} such thatV f € D(L) N X \{0},
dg € 4 such that (g — f)+ € D(L).

Then A — L satisfies the strong mazimum principle.

Proof of Lemma 4.11. We consider f € D(£) N X \{0} such that (A —£)f > 0 and choose g € ¢
such that h:= (g — f)4+ € D(L). We remark that from Kato’s inequality (4.7), we have

(L —XNh >sign, (g — f)(L—N)(g—f)>0.

As a consequence of the weak maximum principle, we have h < 0. That implies h = 0, so that
g— f <0 and finally f > 0. a

The above barrier functions technique is also useful for obtaining the condition (H2) (possibly in
a constructive way).

Lemma 4.12. For an operator L, we assume that
(1) the condition (H1) holds with a constant k1 € R;
(ii) the hypothesis (ii) in Lemma 4.11 holds with X\ = k1;
(1) there exists hg € X \{0} such that for any g € 4 there exists € > 0 such that g > €hy.

Then the property (H2) holds true.

Proof of Lemma 4.12.  Thanks to assumption (i), we may define fo € D(£) N X;\{0} as the
solution to the equation (k1 — L) fo = hg. From the proof of Lemma 4.11 and condition (iii), there
exists g € ¢ and next € > 0 such that fo > g > €hg. Coming back to the equation, we have

Lfo=k1fo—ho > (k1 —e ) fo,

so that condition (H2) holds true with g := k1 — ¢~ ! thanks to Lemma 2.4-(ii). O
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4.3. The geometry of the first eigenvalue problem. We come back on and state a result
about the geometry of the first eigenvalue.

We consider an operator £ on X which satisfies the conclusion (C1) about the existence of a
solution (A1, f1,®1) to the first eigentriplet problem. We next assume

(H1’) the weak maximum principle

(4.16) A> A, fe€DL), A—=L)f>0 imply f>0
and its Kato’s inequalities counterpart

(4.17) (signf)Lf < LIf[,  (sign f)Lf < Lf,

as well as

(H4) the strong maximum principle
(4.18) AeR, feXinNnDL), A=L)f>0 imply f>0or f=0.
We also assume the same properties for the adjoint operator L£*.

We may then state our main result in this section, where we recall that N(A) denotes the null
space associated to the operator A.

Theorem 4.13. We assume that X and Y are Banach lattices satisfying (X1). We consider an
unbounded operator L on X which satisfies the conclusion (C1) about the existence of a solution
(A1, f1,41) to the first eigentriplet eigenvalue problem. We also assume that £ and L* both satisfy
the weak mazimum principle and Kato’s inequalities (H1') as well as the strong mazimum principle
(H4).

Then the following hold

i) f1 >0, ¢1 > 0 and A\ is the unique eigenvalue associated to a positive eigenvector. We next
make the normalization choice

(4.19) el =1, {¢1,f1) =1

it) A\ 1s algebraically simple:

(4.20) N((£ = M)*) =Span(f1), Vk>1,
(4.21) N((L* = A)F) = Span(¢1), Yk >1.

In particular fi (resp. ¢1) is the unique positive and normalized eigenvector of L (resp. of L*)
associated to 1. Finally, the projection on the first eigenspace (associated to \1) is given by

I f = (f,é1)f1-

Remark 4.14. (1) It is worth emphasizing again that (4.16) and (4.17) for both L and L* are
true when L is the generator of a positive semigroup (see Lemma 2.1 and Remark 4.1) and that
(4.18) is true when S¢ enjoys additional strong positivity (or irreducibility) condition as formulated
in (4.12), (4.13), (4.14) or (4.15). As a consequence, the conclusion of Theorem 4.13 holds true
when L is the generator of a positive semigroup which satisfies the hypotheses of the existence part
of the Krein-Rutman Theorem 2.21 and one of the additional above strict positivity conditions.

(2) Theorem 4.13 has to be compared with the seminal Krein and Rutman Theorem 1.2 ([238]), to
the many results gathered in [15, Part C-III] (see in particular [15, Prop. C.3.5], [15, Thm. C.3.8]
and the original paper [185]) and to the more recent contributions [278, Thm. 5.3], [41, Thm. 14.15]
and [231, Thm. 5.1]. Probably many of the conclusions of Theorem 4.13 are very similar (or even
included) in the material of [15, Part C-III]. However, our assumptions slightly different since we do
no make explicit reference to a positive semigroup but rather refer to the weak and strong mazimum
principles.

(8) Our proof is quite direct and elementary and uses similar arguments as those used during the
proof of [278, Thm. 4.3] and [231, Thm. 5.1]. We learnt this kind of technique in the (less abstract
and general) proof of the uniqueness part of [313, Lem. 2.1].

(4) From i), we deduce that L decomposes according to X = Xo ® X7 with X7 := Span f1 and
Xo := (Span¢y)* = {f € X; (f,¢1) = 0} in the sense of [229, §111.5.6]. More precisely, X =
Xo ® X1 is a topological direct sum, L: Xo N D(L) = Xo and L£: X1 — X;.
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(5) One can observe from the proof below that the conclusion (i) in Theorem 4.13 holds under the
sole assumptions (X1)-(i) for X andY’, (C1) and (H4) for L and L*. The conclusion (4.20) holds
when assuming furthermore that (4.10) holds in X and L satisfies (H1'). The similar conclusion
(4.21) holds when assuming furthermore that (4.10) holds in' Y and L* satisfies (H1').

(6) We finally recall that under condition (H1), the strong maximum principle (H4) for L is
equivalent to the strong mazimum principle (H4) for L* (see Lemma 4.9). When furthermore
condition (H2) holds and A1 in (C1) is defined by (2.16), the weak mazimum principle (4.16) for
L is equivalent to the weak maximum principle (4.16) for L* (see the proof of Lemma 2.3).

The proof of Theorem 4.13 is split into the following Lemma 4.15, Lemma 4.17, Lemma 4.18 and
Lemma 4.20.

Lemma 4.15. Under assumptions (X1)-(i), (C1) and (H4) for both L and L*, the solution
(M1, f1, 1) to the first eigentriplet problem satisfies

(4.22) fi>0 and ¢1>0.

Proof of Lemma 4.15. We just apply the strong maximum principle to the two eigenfunctions
f1 S X\{O} and (;51 S Y\{O} O

Remark 4.16. It is worth emphasizing that the same conclusion clearly holds when instead of
(C1) we only assume that f1 € X4 \{0} and ¢1 € Y:\{0} satisfy

(4.23) Lfi=XMf1, L¢1= A1
In that case, we deduce that A\ = A1 by writing

A(f1,¢1) = (Lf1,01) = (f1, £7¢1) = A (f1, 01),
and observing that (f1,$1) # 0.

Lemma 4.17. Under assumptions (X1)-(i), (C1) and (H4) for L* (resp. L), A1 is the unique
eigenvalue associated to a positive eigenvector for L (resp. for L*).

Proof of Lemma 4.17. Consider A € C and f € X;\{0} such that £Lf = Af and observe that from
the proof of Lemma 4.15, we have ¢; > 0. We compute

0= <()\ - E)f7 ¢1> = <f7 ()\ - ‘C*)¢1> = (A - )\1)<f7 ¢1>7
and thus A = A1 since (f, ¢1) > 0. The same proof applies to the dual problem. O
Lemma 4.18. We assume again (X1)-(i), (C1) and (H4) for both L and L*. Under the ad-
ditional condition (H1') for £ and (4.10) in X (resp. (H1') for £L* and (4.10) in Y ), we have
N(L — A1) = Span(fi1) (resp. N(L* — A1) = Span(¢1)). In particular, f1 (resp. ¢1) is unique
(because of the positivity and the normalization conditions).

Proof of Lemma 4.18. Consider a eigenfunction f € X\ {0} associated to the eigenvalue \;. First,
we observe from Kato’s inequality that

M f = Ausign(f) f = sign(f)Lf < LIf].
That inequality is in fact an equality, otherwise we would have

AMAIfL d1) # (LIfI, d1) = (I f], £701) = Mi([ ], d1),
and a contradiction. As a consequence, |f]| is a solution to the eigenvalue problem A;|f| = L] f], so
that
AMfr = Lf+,

by writing f1 = (|f| £ f)/2. The strong maximum principle assumption implies f4 > 0 or f1 =0,
and thus f1 > 0 or f_ > 0 since f # 0. Without loss of generality we may assume f; > 0. From
(4.10), we then deduce f > 0. We introduce the normalized eigenfunctions f :=rf and fi = r1 1
with

(4.24) (f, 1) = (f1.¢1) = 1.

Now, thanks to Kato’s inequality again, we write

M(f = fi)g =sign, (f — A)L(f — 1) < L(F = f)+,
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and for the same reason as above that last inequality is in fact an inequality. The strong maximum
principle implies that either (f—f1)+ = 0, which also reads f < fl, or (f— f1)+ > 0, which implies
that f >> fi by using again (4.10). Because of the identity (4.24) and the fact that ¢; € X’ \{0},
the second case in the above alternative is not possible. Repeating the same argument with ( fi—f )+
we get that fl < f and we conclude with f = fl. The same proof applies to the dual problem. [

Remark 4.19. Under the same hypotheses as in Lemma 4.18, we have v € span(¢1) if ¥ € Y,
satisfies L*1) > Ay and g € span(f1) if g € X4 satisfies Lg > A\1g. In the second case, we indeed
cannot have L*g — Mg € X1 \{0}, since this would implies

<Lg - )\197¢1> > 07

and this would be in contradiction with the fact that

(Lg— Mg, d1) = (9, L7 b1 — A1) = 0.
We thus must have Lg — A\1g = 0 and we conclude thanks to Lemma 4.18. The same proof applies
to the dual problem.

Lemma 4.20. Under the same assumptions as in Lemma 4.18, A\ is algebraically simple for L
(resp. for L*).

Proof of Lemma 4.20. We use an induction argument. We have already proved that N((£ —
A)*) = Span(f;) for k = 1. Assume then the result proved for any ¢, 1 < ¢ < k, and consider
f € N((£L—X1)F1). That means that (£ — A1) f € N((£ — \1)¥), and thus (£ — A1) f = rf1, with
r € R, thanks to the induction hypothesis. If r = 0, then f € N(£ — A1) = Span(f1). Otherwise,
r # 0, and then

)‘1<f7 ¢1> = <f7 £*¢1> = <‘Cf7 ¢1> = <)‘1f + Tfla ¢1>7

which in turn implies r{f1,¢1) = 0 and a contradiction. That concludes the proof. O

4.4. Mean ergodicity. We deduce from the above analysis a first classical and general but rough
information about the long-time behaviour of the trajectories associated to a semigroup.

More precisely, assuming the existence and uniqueness of the first eigentriplet (A1, f1,¢1) for the
generator £ of a semigroup S and introducing the rescaled semigroup Sy i=e Mt g (t), we wish to
establish the following mean ergodic property

(E1) for any f € X, there holds

1 [T
(1.25) [ Bt (renn as T oo,
0

in a sense to be specified.

We start with a general result, taken from [152, Thm. V.4.5], which states that, under the conclu-
sions of Theorem 4.13, (E1) holds for the strong topology if the semigroup (.S;) is bounded.

Theorem 4.21. Consider a positive semigroup S on a Banach lattice X and assume that its
generator L satisfies the conclusions of Theorem 4.15 about the existence and uniqueness of the

first eigentriplet (A1, f1,¢1). Assume furthermore that (St)e>o is bounded. Then, the above mean
ergodic property (E1) holds for the strong topology.

Proof of Theorem 4.21. Following the proof of [152, Thm. V.4.5], we consider the subspace
Xy := Span f; @ Span{f — g(t)f : feX, t>0}

of X and we take ¢ € Y which vanishes on Xy. Since ¢ vanishes on each element of the form
f—S(t)f, this implies that S*(t)¢ = ¢ for all t > 0. We deduce that £*¢ = A\ ¢, and consequently
¢ € Span ¢ due to the point 4) in Theorem 4.13. Since we also have (¢, f1) = 0, we deduce that
¢ = 0 and therefore Xy = X. We observe now

(/OT §(s)ds) (I-S@t) = (I-S(T)) /Ot S(s)ds

for all £,7 > 0, which is an immediate consequence of the semigroup property. The above relation
and the boundedness assumption on (St)r>o imply that the convergence (4.25) holds for f =
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g — S(t)g with g € X, ¢ > 0, and thus for any f € X,. Finally, since Xy is dense in X and

using again the fact that (S¢)¢>0 is bounded, we can readily extend the validity of (4.25) to any
fex. O

We will now give weaker versions of Theorem 4.21 with proofs which are based on compactness
arguments. The motivation for providing such alternative proofs that require stronger assumptions
is that, unlike the proof of Theorem 4.21, the methods can be adapted to derive stronger ergodicity
results, namely without averaging in time, see Section 5.5.

Theorem 4.22. Consider a positive semigroup S on a Banach lattice X and assume that its
generator L satisfies the conclusions of Theorem 4.13 about the existence and uniqueness of the
first eigentriplet (A1, f1,¢1). With the above notations, we assume furthermore that

(1) (S;) is bounded;

(2) Bx is weakly compact for a topology which makes f — (f,¢1) continuous.

Then, the above mean ergodic property (E1) holds for the topology introduced in (2).

Proof of Theorem 4.22. Fix f € X and define

IR
ur = fA Stf dt.
From (1), we have
P
Jurll < 7 [ 18t <MY VT >0,

We also compute

1 (T
wroon) = 7 [ Gifonde= .00, VT >0,

Thanks to assumption (2), we deduce that there exists f* € X and a sequence (T}) such that
ur, = f* and  (f*, ¢1) = (f, ¢1).

Because (gt f) is bounded, we may use the usual ergodicity trick as in the second proof of Theo-
rem 3.1 and for any ¢ > 0, we have

. 1 T+t . t .
Suf* — f* = lim —{/ szds—/ S.fds} =o0.
k—o00 Tk Ty 0
We have established (£ — A1) f* =0, so that f* € Span(f;) and more precisely f* = (f, ¢1)f1. By
uniqueness of the limit, it is the whole family (up) which converges to f*. O

We present a variant of the previous result in which we see that in a very general framework
(including all the applications we present in the second part of this work) the above hypotheses
(1) and (2) are not needed (or more precisely are automatically satisfied).

Theorem 4.23. (1) Consider a Banach lattice X C L (E,& p) and Y C L (E,&,u) (so

loc
that in particular ¢ € L, and Lél is well-defined) and a positive semigroup S on X such that its

generator L satisfies the conclusions of Theorem 4.13 about the existence, positivity and uniqueness
of the first eigentriplet (A1, f1,¢1). Then the mean ergodic convergence (E1) holds for the weak
topology of L}, .

(2) Assuming additionally that S is strongly continuous and that
(4.26) XF = (D(LF), || - ||xx) C LL, with strong compact embedding for some k > 1,
where
1l = 1 Fly, +- -+ IE Flloy . ¥ f € D(CY),
then the mean ergodic convergence (E1) holds for the strong topology of Lll,

Proof of Theorem 4.23. Step 1. We first recall a very classical result about conservative semigroups.
Denoting S; := e~*1* (), we observe that this rescaled semigroup satisfies

(i) S >0;
(ii) Sif1 = f1 for any ¢ > 0;
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(iii) (Sig, 1) = (g,¢1) for any g € X and ¢ > 0.
We denote [f]; := (|f],$1) which is a norm on X (we use here that ¢; > 0) and S; is obviously a
contraction for this one. Indeed, for any f € X, there holds
|Sef] = 18efs = Sef-| < Sefs + Sef— = Silf),

using (i) in the inequality, and next

(4.27) [gtf]l = <|§tf|a¢1> < <§t|f|a¢1> = [fh,

using (iii) in the last equality. Abusing notations, we also denote by X the completion of X for the
L}, norm (so that we may identify X to a closed subspace of L, ). We may then extend Sy to X
by uniform continuity and this extension still satisfies the properties (i)-(ii)-(iii) on X. Consider
now f € X such that H(f/f1)f1 € X for some convex function H : R — R, where we use here that
X C Lt _, and thus in particular f; > 0 a.e. on E, in order to give a sense to the term H(f/f1)f1.

loc»
From (ii), we have

0(Sef)) filfr = Sele(f/ 12) fa,

for any real affine function ¢. Next from (i) and (2.7), we have

H{(Sef)/ Ailfr < SLH(f/ f) ),

because of H = sup, g ¢ and the supremum can be taken on a numerable set of affine functions.
Thanks to (iii), we conclude that

(4.28) (H[(Sef)/ fil 1, d1) < (HIf/filfr, 61), V> 0.

Step 2. We normalize (f1,¢1) = 1. For f € X C Lél so that f¢1 = (f/f1)fi¢1 € L', the de
la Vallée Poussin theorem tells us that there exists an even and convex function H : R — R,
such that H(s)/s — +oo as s — oo and H(f/f1)fi¢1 € L'. Using the notations of the proof of
Theorem 4.22, the Jensen inequality and the above estimate (4.28), we deduce

[ Hur/fnond <1/T/H[<§f>/f]f¢>ddt</H<f/f>f¢d
. Tlll/lffTOE t 111M7E 1)J1¢1ap,

for any T' > 0. Now, for any A € & and T, K > 0, we have

ur ur
urlapid —15. 1 d +/ —15 1 d
/E rlagrdp T Tk Afidrdp Ty Mtk afidrdp

< % /E Hur/f2) frérdp + K /E Lafidrdu

< % /E H/f) frbudp + K /E Lafrdrdp,

from what we immediately deduce that (ur) belongs to a weak compact set of Lé,l. We conclude
that (4.25) holds for the weak convergence in Lél as in the proof of Theorem 4.22.

Step 3. We now additionally assume that (4.26) holds with strong compact embedding for some
k > 1. Taking f € D(L"), we compute

(L7 (Sef)], b1) = (1S (L7 f)], d1) < (I£7 f|, 1),

for any 7 < k and any ¢ > 0, and thus the same bound holds for (ur). From (4.26), we deduce
that up to the extraction of a subsequence, (ur) converges a.e. on E. Together with the weak
convergence in Lél yet established, we classically deduce that the whole family (ur) converges for

the strong topology in Lél. We conclude that the same holds for any f € X by taking advantage
of the fact that D(L") is dense in X for the strong topology of X, and thus for the strong topology
of X, and of the estimate of contraction (4.27). O

Remark 4.24. (1) A similar conclusion holds as in Theorem 4.23 when we assume X C M.,

D(LF) c Li. and D(L**) C L} for some k > 1 instead of X,Y C Li .. For f € D(L*) C L}

loc loc loc* loc?
we may indeed repeat the proof of Theorem 4.23 and we obtain the same conclusion. We next

define X as the closure of D(LF) for the norm []1. We conclude that (4.25) holds weakly in Ly,
for any f € X by a density argument.
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(2) The proof of Theorem 4.23 is based on so-called General Relative Entropy (GRE) techniques
as developed for instance in [258], [269] and [49]. These ones are known to be useful for some
classes of PDEs and for stochastic semigroups in order to establish uniform in time estimates and
longtime convergence results.

The main interest of the two previous results is that they do not ask any new information on the
semigroup but they are just based on the eigentriplet stationary problem. The shortcoming is that
they are formulated in terms of the norm [-]; instead of the norm of X. We present a second
variant of Theorem 4.22 which is well adapted to the splitting framework developed in Sections 2
and 3 and is precisely formulated in a weak or strong topology of a space Xy O X.

Theorem 4.25. Consider a positive semigroup S = Sp such that L satisfies the conclusions of
Theorem 4.13 about the existence and uniqueness of the first eigentriplet (A1, f1,¢1). Assume
furthermore that S satisfies the splitting structure introduced in (HS2) in section 3.2 or (HS3) in
Section 3.2, or more precisely, there exist two families of operators (V(t)) and (W (t)) such that

S=V+WxS,
a real number k < A1 and some decaying functions ©; : Ry — Ry with ©1(t) — 0 as t — oo,
O € LY(Ry) such that the following estimates hold
(4.29) V(e " lax) = O1), [[V(E)e ™|z x,) = O(O1),
(4.30) W (t)e™™ || z(x0,21) = O(O2),
with X1 C Xo C Xy, where Xy is the space X endowed with the norm [g]1 := {|g], ¢1).

(1) Assume furthermore that X1 C Xo with compact embedding for the weak or the strong topology
in Xo and this topology makes f — (f,¢1) continuous. Then the mean ergodic convergence (E1)
holds true for the above strong or weak topology.

(2) Assume furthermore that X C Li ., S is strongly continuous, and that the space X* defined by
(4.26) is strongly compact embedded in Ll . for some k > 1. Then the mean ergodic convergence

loc

(E1) holds true for the strong topology of X.
Proof of Theorem 4.25. We define
V(t) = V(e ™M, W(t)=W(t)e M,

so that .
S=V4+WxS,
and
(4.31) M = Sup ||‘7(t)||33(X) < 00, ||‘7||33(X,X0) <01 € Co(Ry),

Oa(t) := [W(t) |l zxo.0) € L' (Ry).

Step 1. We furthermore assume (1) and that the weak topology of X makes f — (f, ¢1) continuous.
We denote by 7 the weak or the strong topology Xy (depending of the assumption made on the
embedding X; C Xj). For fp € X, we split

F(8) = Sefo=v(t) +k(t), v(t) :=V(t)fo, k()= (W *S)(t)fo,

and we observe that |[v(t)||x, — 0 as ¢ — oo from the second estimate in (4.31). On the other
hand, we have

sup [[k()[la, < [[W][z2sup |Sefollx, < W lall foll xo
t>0 >0

from (4.27). In particular, k(t) belongs to a compact set of .7, so that (f(t)):>0 also belongs to
a compact set for the same topology 7. The same argument used on the Cesaro function (ur)
defined during the proof of Theorem 4.22 implies that there exist f* € X and a sequence (T}) such
that

ur, — f* in the sense of 7 and  (f*,¢1) = (f, é1),

the last identity following from the assumption that f — (f, #1) continuous for 7. We may then
conclude as in the proof of Theorem 4.22.
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Step 2. We furthermore assume (2), and by linearity we may assume fy € X, (fo,¢1) = 0. We
recall that (4.25) holds for the strong topology of Lél from Theorem 4.23 and that ||v(¢)||x, — 0
as t — oo from Step 1. Arguing as in Step 3 of the proof of Theorem 3.4, we have

T N T T—s _
K(T):= %/0 (W« S)(t)dt = %/ W(s)/o S(u) duds

0
T T— s~
_ /OW(S) 20— s)ds,

where Uy := Upe=™7T | U, is defined by (3.44), so that up = Ur fo and [ur]; — 0 as T — oo from
Theorem 4.23. As a consequence, we have

T/2 B T B
IK(T)folla, < O2(s)[U(T — s)]o ds + O(s)[U(T — s)]ods
0 T/2
< |2zt sup [U(®)]o + O4(s)ds sup[U(t)]o — 0,
t>T/2 T/2 t>0
as T — oo. All together, we have established that ||ur||x, — 0 as T — . O

5. THE GEOMETRY OF THE BOUNDARY POINT SPECTRUM

We summarize the results established up to now by assuming that the main conclusions in the
previous sections are achieved, namely

(C2) the first eigentriplet problem (4.1) has a unique solution (A1, f1,¢1), and furthermore,
f1> 0 and ¢1 > 0. In that situation, we make the usual normalization (4.19).

In this section, we aim to describe one step further the geometry of the spectrum and more precisely
to get some some information on the boundary point spectrum
YE(L) :=2p(L)NAy, =Zp(L)NEL(L).
That will be possible by introducing first a suitable and usual complexification framework and
next by assuming a stronger positivity property on £ or on the associated semigroup. Here and
for further references below, we recall that we define the sets
Ed(ﬁ) - EP(E) - E(E),

where the point spectrum set X p(L) is the set of eigenvalues, namely A € Xp(L) if N(L—X\) # {0},
and the discret spectrum set X4(L) is the set of eigenvalues which are isolated and have finite
algebraic multiplicity.

5.1. Complexification and the sign operator.
We present some materials, most of them being very classical, about the sign operator in a complex
Banach lattice and we refer to [337, 15] for more details.

Complexification. The complexification space X¢ associated to a real Banach lattice X is defined
by X¢ := X +4X so that f € Xc if f = g+ ¢h, g,h € X. In general, we just write X without
mentioning the field, although when we need to specify it, we write X¢ or Xr. We extend on X¢
the order defined on Xy by writing

f=g+ih >0 if g>0and h=0.

The conjugate f of a complex vector f = g+ ih is classically defined by f = g —ih. We then define
the modulus

(5.1) |f| == sup (gcosf+ hsind),
0€[0,27]

which indeed exists for such a family of vectors. One checks the usual modulus properties:
120, |fl=0 i f=0, [\fl=[AIfl, |f+gl <IfI+]gl,
for any f,g € X and A € C. We finally define the norm on X¢ by
LI = Nllg + iRl xe,
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and we observe that X¢ has a complex Banach lattice structure. We extend the definition of
A € B(Xgr) to X¢ by setting

A(g +ih) = Ag+iAh, Vg+ih e Xc.

The operator sign. We classically extend the sign operator defined in Section 4.1 to the present
complex Banach lattice framework. Instead of dealing with the most general case, we will use
some regularity assumption on the Banach lattice X which is suitable for our purpose and that we
present below. Similarly as in Remark 4.5, for f € X, we define

Xr =g e X; lgl <nlfl},

and next, similarly as in Theorem 2.24, we define
Aflg] == nf{C > 0; [g| < C|f[}, VgeE Xy

We summarize the regularity conditions we need on the Banach lattice X by assuming :
(X2) For any f € X such that |f| € X, there exists a sign operator sign f € Z(X), with the
following properties
(5.2) sign fosign f = I, (sign f)f = |fl,
(5.3) (sign f) g = (sign (uf)) (ug), |(signf)g| <lgl, Vge X, VueSh
and furthermore

(X3) for any f € X such that |f| € X, the inclusion X; C X is dense for the strong, the
weak, or the weak-* topology, and for all f € X and g € X

(5.4) (g€ Xrand |g| <C|f]) & Aflg—ir|f]] < VC? +72,VreR.
For a space of functions, the sign operator is defined as the multiplication by (abusing notations)
(55) SingI: f/|f|7 erX, |f|€X++'

Lemma 5.1. With (5.5), the properties (X2) and (X8) hold when X = LP(E,&,p) or X =
Co(E).

Proof of Lemma 5.1. For f € X, |f| € X1+, we just indicate the proof of X; = X, the other
algebraic properties being clear from the definition (5.5). When f € L? such that |f| > 0 p-a.e.
and 0 < g € LP, we set g, := g A (n|f|). We have 0 < g, < g and g,, — g strongly L? if p < oo and
weakly-x L if p = co. The general case g € LP is dealt in the usual way by introducing positive
and negative parts and next real and imaginary part. That concludes the proof of X ; = LP. The
proof of X y = Cy(FE) is similar. O

A sign operator satisfying (X2) and (X3) can actually be built by using Kakutani’s theorem in
general Banach lattices whenever |f]| is a quasi-interior point, see for instance [41, Chapter 14.3].
In X = L*°(E, &, n), being a quasi-interior point is more demanding than belonging to X, and
our framework is thus more general in that case. In X = M'(FE), the situation is even worst
since there is no quasi-interior point, so the approach via Kakutani’s theorem does not provide
any sign operator. However, we can associate to f € M!(E) such that |f| > 0 a sign operator
by means of the Radon-Nikodym theorem. Denoting o : E — S' the measurable function such
that f = «|f], the multiplication by @/|«| defines a sign operator sign f € B(X), or in other words
(abusing notations)

(5.6) sign f :=a/|al, Vf=alfle M', |fle M},.
Lemma 5.2. With the definition (5.6), X = M'(E) enjoys the properties (X2) and (X3).

Proof of Lemma 5.2. As for Lemma 5.1, we only sketch the proof of the density property X ; = X,
which holds here for the weak-* topology, the other algebraic properties being clear from the
definition (5.6). Without loss of generality, we may take f € X, meaning that f(O) > 0 for any
open set O C E. For € > 0 and ¢ € Cy(E), we can find a partition Eq, ..., E, of E and some
elements 1, ..., 2, of E such that for any ¢ € {1,--- ,n}:

f(E:) >0, z;€E; and sup |p(r) — ¢(x;)] <e.
rEE;
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For g € X and ¢ > 0, defining g. by

we have

<l [ lete) ol ) < elalx,

as well as

‘<97<P> =Y elai)g(E:)| < Z/ lp(x) — (x| |g](dz) < ellgllx-
i=1 i=1 7 Ei

We have established that [{(ge — g, p)| < 2¢]|g]| for any € > 0, from what we deduce that g belongs
to the weak-* closure of Xj. O

Lemma 5.3. Assume (X2)-(X3), and f € X14. Consider a linear operator Q : Xy — Xy such
that Qf = f and Ay(Qg) < Ay(g) for any g € Xy. Then Q > 0.
Proof of Lemma 5.3. Take 0 < g € Xy such that g <2Cf, C' > 0, and observe that
—-Cf<g—-Cf<Cf.
For any r € R, we compute
Afl(Qg) = Cf —irfl = Af[Qg—Cf —irf)]
< Aflg—Cf —irf]
A /02 + ’I"Q,

by using the non expansion property of Q and the claim (5.4). Using again (5.4), we deduce
—Cf <(Qg)—Cf <Cf and the conclusion. a

We generalize Kato’s inequality (4.5) to the present complex framework by saying that an operator
L on X satisfies (the complex) Kato’s inequality if

(5.7) VfeD(L), Re(signf)Lf < LIf],
possibly in a dual sense as in (4.6). As for the real Kato’s inequality, when £ is the generator of

a semigroup, Kato’s inequality (5.7) is a consequence of the positivity of the semigroup, and we
refer to Remark 4.1 for references about this claim.

IN

5.2. On the subgroup and discrete structure of the boundary point spectrum.
In this section, we establish that the boundary point spectrum enjoys a subgroup structure under
the same kind of hypotheses as considered in the previous sections.

Lemma 5.4. Under assumptions (C2), (X2) and the complex Kato’s inequality (5.7), for any
A € X5(L)\{0} the associated normalized eigenfunction f satisfies |f| = fi.

Proof of Lemma 5.4. By definition £f = Af and f € D(£). By linearity of the operator sign and
thanks to (5.2) and Kato’s inequality (5.7), we have

M f = Re[A(signf) f] = Re(signf)(Af) = Re(signf)Lf < LIf].
By the duality argument introduced during the proof of Lemma 4.18, we must have A |f| = L|f|
O

and the conclusion.

Theorem 5.5. Assume (C2), (X2), (X3) and that the complex Kato’s inequality (5.7) holds true.
Denoting L = L — Ay, the set S := X p(L) NiR is an additive subgroup and dimN (L —ia)* =1 for
any i €S and k > 1.

Theorem 5.5 is similar but more general than [15, C-III, Cor. 2.12] and [41, Prop. 14.15]. Our
proof is also very similar to the proof of [41, Prop. 14.15]. However, it is more direct and avoid
the use of the C'(K) algebra and Kakutani’s Theorem [227] (see also [264, Thm. 2.1.3]).

Proof of Theorem 5.5. We split the proof into three steps.
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Step 1. We consider f associated to an eigenvalue i € L p(L£)\{0}, and we define

T(t) := (sign f)e**S(t)(sign f).
Observing that S(¢)f = ¢ f. we have

T(1)|f| = (sign fle™"*'S(1)f = (sign f).f = |f] = S()I/].
On the other hand, we have
IT(t)g] < |S(t)(sign f)g| < S(B)lgl, Vg€ X,
which, by positivity of S(t), yields

T(t)gl < Ar(9)SOIf| = Ar(9)lf, Vge Xy
Because |f| = f1 > 0 from Lemma 5.4, we can apply Lemma 5.3 to |f| and Q := T'(t). We deduce
that T'(t) > 0 on X|;) = Xy, and then on X = X . As a consequence, 0 < T(t)g = |T(t)g| < S(t)g
for any g > 0. In other words, we have 0 < S(t) — T'(t) and then 0 < S(£)* — T'(t)*. We must have
S(t)* —T(t)* = 0. Otherwise, there would exist ¢ € Y, \{0} such that (S(¢)* —T(t)*)y € Y3 \{0},
and we find a contradiction by computing

0 < ((S() =T (®) ), f1) = (&, (S(t) = T(1) fr) = 0.
We have thus established that S(t) = T(t).
Step 2. Consider o, 8 € R and f,g € X\{0} such that Lf = iaf and ,/;g = if3g, and suppose

first that (sign f) : D(£) — D(L). From Step 1 and the fact that (sign f) o sign f = I, for any
h € D(L), we may compute

Lh = lim 1(S(t)h —h)

t—0 t
= (sign f) lim (¢~ S(0)(sign f)h — (sign [)1)
= (signf)(L — ia)(sign f)h,

or in other words £ — icv = (sign f)L(sign f). We have similarly £ — i3 = (sign §)L(sign g). Both
equations together imply

L —i(a+ B) = (sign f)(sign g)L(sign g)(sign f).

Defining h := (sign f)(sign g) f1, so that (sign g)(sign f)h = f1, we get £h = i(c + 8)h, and finally
i(a+ B) € S, so that the additive subgroup structure is established.

When the condition (sign f) : D(£) — D(L) is not granted, we modify the above argument by
using a resolvent approach. For some A > 0, we compute thanks to (2.13)

(A= D)! = /OOO eMG(1) dt

= (sign f)/ e~ AHLS(1) dt (sign f)
0
= (sign f)(\ + ia — £) " (sign f).
Repeating the argument, we obtain

(A +i(a+ B) = L) = (sign [)(sign ) (A — £) " (sign g) (sign f).

Applying that last identity to the vector h = (sign f)(sign g) fi and using that (A\—L£)~" fi = A7! fi,

we deduce (A +i(a + B) — £)"th = A~'h. In other words, we have again Lh = i(a + B)h, and we
conclude as above.

Step 3. From the fact that (sign f) is an invertible operator and the equation
(£ —ic)* = (sign f)~"(£)"(sign [),

we see from Theorem 4.13-(ii) that N(£ — ia)* = (sign f)"'N(L)* = (sign f)~'Spanf; for any
k > 1, so that its dimension is one. O
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Making an additional splitting structure hypothesis as yet introduced in Section 2.2, we may
significantly improve the conclusion. We first recall a classical result on the spectrum of an operator
which holds under some power compactness assumption on the resolvent.

Theorem 5.6. We assume that L satisfies the splitting structure (HS1) introduced in Section 2.2
with W(z) € #(X) for some N > 1 and any z € Ay,,. Then X(L) N A, C Xgq(L).

Theorem 5.6 is a consequence of [355, Cor. 1.1]. We also refer to [278, proof of Thm. 3.1] for a
possible elementary proof.

A sketch of the proof of Theorem 5.6. Iterating the formula R, = Rp + R AR, we deduce
J(2)Re(z) = V(2)

with J := I — (ARp)N and V := Rp + -+ Rg(ARp)V L. Because J is holomorphic on A,,, it
is a compact perturbation of the identity and J(z) — I when Rez — oo, one may use the theory
of degenerate-meromorphic functions of Ribari¢ and Vidav [331] (also established independently
by Steinberg, see in particular [341, Cor. 1]), and conclude that J(z) is invertible outside of a
discrete set D of A,,. That implies that 3(L£) N A,, = D is a discrete set of A,,. On the other
hand, thanks to the Fredholm alternative [164], one deduces that the eigenspace associated to each
spectral value A € D is non zero and finite dimensional, so that A € ¥4(L). See also [342, 357] for
pioneering works in the subject. O

We end this section by a result which gives a more accurate description of the geometry of the
boundary spectrum, and is a variant of the classical results [15, C-III, Thm. 3.12], [152, Thm.
VI.1.12], [41, Thm. 14.17].

Theorem 5.7. Assume (C2), (X2), (X3), that the complex Kato’s inequality (5.7) holds true
and additionally that the splitting structure (HS1) holds with W(z) € J(X) for some N > 1
and any z € Ay,. Then the set EP(E) NiR is a discrete additive subgroup of iR and any of its
elements is an algebraically simple eigenvalue. More precisely,

- either Xp(L) NiR = {0} and the projection on the first eigenspace (associated to A1) writes
ILf = (f,¢1) f1;

- or Xp(L) NiR = iaZ for some a > 0 and there exists a sequence (gr, ¥r)rez such that Lgy =
(M +ika)gr, L%k = (M1 + ika)yr, and (g, Pe) = Oke.

Proof of Theorem 5.7. Combining Theorem 5.5 and Theorem 5.6, we immediately get that the
subgroup S := X p(L) NiR satisfies S C ¥4(L), it is thus discrete and made of algebraically simple

eigenvalues. The first case X p(L£) NiR = {0} falls yet in the conclusions of Theorem 4.13. O

In the second case, where the boundary spectrum is not trivial, the existence of a projection on the
boundary eigenspace Span(gi)rez is ensured by the Jacobs—de Leeuw—Glicksberg theorem provided
that £ is the generator of a relatively compact semigroup, see for instance [41, Thm. A.39 and
Prop. A.40] and the references therein. We also refer to [229, paragraphs I11.6.4 and I11.6.5] for
very classical results on the projector on the direct sum of eigenspaces associated to eigenvalues
belonging to a subset of the spectrum. We can even give an explicit expression of this projection
in terms of (gx) and (¢x) under the form of a Fejér type sum, see Theorem 5.25.

5.3. Stronger positivity.

In order to go one step further and establish the triviality of the boundary point spectrum, we
need to reinforce the positivity of the semigroup or its generator. One possible condition is based
on the following notion.

The reverse strong positivity condition
For A > 0, we recall that from (2.6), we have

(5-8) |AfI < Alfl, VfeX,

and we observe that the above inequality is an equality when Af = uA|f]| for some u € S'. We
focus now on the case of equality in (5.8).
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Definition 5.8. We say that A satisfies the “reverse strong positivity condition” for a subclass of
vectors C C X if for any f € C

(5.9) |Af| = A|f| implies JueS', Af =uAlf|.

We start observing that A > 0 (as defined in Section 4.2) implies the strict positivity for non-signed
vectors in Xg.

Lemma 5.9. Consider an operator A > 0 and assume X is reflexive. For f € Xgr such that
+f ¢ X4, there holds

|Af] < Alf].
Proof of Lemma 5.9. Let us consider f € Xg such that fi # 0. We claim that |Af| < A|f].
Observing that
AfL =Af+Af_- > Af,
we deduce Afy > (Af)+, and similarly Af_ > (Af)_. We first consider the case (Af)+ > 0. For
¢ > 0, we have

0 <((Af)+,¢) = sup (Af,9) = (Af,¥") = (f, A""),

0<yp<¢
for some 0 < 9* < ¢, where we have used the very definition of X, the definition of (Af)+ as
an element of X" and that Bx- is compact for the weakly % topology (X', X). We deduce in
particular that ¢¥* # 0, so that ¢* > 0 and finally A*¢* > 0 because A* > 0 (as an elementary
consequence of the fact that A > 0 listed in Section 4.2). We deduce
<(Af)+7¢> = <f7 A*¢*> < <f+7A*¢*> = <Af+7¢*> S <Af+7¢>

where for the strict inequality we have first used the assumption f_ # 0 and next elementary
arguments. We thus have (Af); < Afy. Similarly, we establish (Af)_ < Af_ when (Af)_ > 0.
As a conclusion, in the three cases Af =0, (Af)y+ # 0 and (Af)_ # 0, we have

Af = (Af)+ + (Af)= < Afy + Af- = Alf],
which is the desired strict inequality. |

We believe that a similar result also holds true for complex vectors in a general Banach lattice
framework. We do not try to prove such a statement but we rather establish the corresponding
complex version for our examples of concrete Banach spaces in which the definition of the absolute
value | f] of a vector f € X is more tractable.

Lemma 5.10. Consider an operator A > 0 on X C Li (E) for some locally and o-compact metric
space E. For f € X such that |f| > 0, we have

|Af| = Alf| implies FueS', f=u|f|,
and thus (5.9) holds.

Proof of Lemma 5.10. We assume by contradiction that Vo € S, |f| > Re(vf), in particular
writing f = g+ ih, g,h € Xg, we have g, h € X\{0}. On the one hand, because of A > 0 and A is
linear, for any v = e € S, we have

Alf| > ARe(e™f)) = cosa (Ag) — sina (Ah).

On the other hand, in the Banach lattice we consider here, there exists 5 : E — R measurable such
that |Af| = e’ Af and thus

Alf] = |Af| = Re|Af| = cos 3 (Ag) — sin 3 (Ah),

and a contradiction. We have established that there exists v € S! such that |f| = Re(fv). Now,
we have

V(Re(fv))? + (Sm(fv))? = [ fo] = || = Re(fv),
which in turn implies Sm(fv) = 0, since Re(fv) > 0. That is here that we use the assumption
[f] > 0 and not only f € X;\{0}. We conclude that |f| = fv and thus that f = u|f|, with
u:=v"1eSh g
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A similar result also holds in the Radon space of measures. For a measurable space (E, &), we call
transition kernel, a mapping @ : E x & — [0, oo] such that

(1) VBeé&, v Q(z,B) is measurable;

(19) Ve e E, B Q(z,B) is a measure.
We recall the classical Markov-Riesz representation theorem which claims that for any linear and
positive operator B : Cy(E) — Co(E) there holds

(Bo)s) = [ s@Qady). o€ ColE),
E
for a transition kernel @ such that in the condition (i) above the mapping is furthermore continuous.

Lemma 5.11. Consider an operator A >0 in X = M! = MY(E, &), for some Borel space (E, &)
where E is a locally and o-compact metric set. For f € X such that |f| > 0, we have (5.9).

Proof of Lemma 5.11. By definition, the operator A is the dual of a positive operator on Cy(E).
Using the representation formula recalled above for that adjoint operator, we get

(Af)(dy) = /E Q(x,dy) f(dx), Vfe M,

for a transition kernel ). We deduce that

(Af, ) = /E _6(0)Qr.dy) (),

for any bounded Borel function ¢ : £ — C. In particular, the strict positivity A > 0 translates
as Q(z,-) > 0 in M! for any z € E. We fix now ¢ € Co(E) such that ¢ > 0 and f € M such
that |f] > 0, and we observe that from the Radon-Nikodym theorem, there exist two measurable
functions «, 3 : E — [0,27) such that f = e'®|f| and Af = e¢'?|Af|. We next compute

(Alf|— [Afl.6) = Re{(AIf].6) — (Af.e ")}
- /E {1 = IO o) Q) ()

= [ {1~ coslata) - B)}o0)Qe. )| fI(da).
EXE

In the case of equality A|f| = |Af|, we must have 1 — cos(a(y) — B(x)) = 0 for p-a.e. € F and
|fl-a.e. y € supp f = E. We deduce that § is a constant function, so that Af = e"?|Af| = uAlf],
for the constant u = e*# € S*. O

The reverse Kato’s inequality condition
We recall that it has been stated in section 4.1 that the generator £ of a positive semigroup S(t)
satisfies Kato’s inequality (4.5) which in a complex framework writes
(5.10) VfieX, Re(signf)Lf <L|f]
We also observe that if f = u|f| for some u € St, we have
Re(sign f)Lf = sign(u™ f)Lu™'f) = L|f],
which is the case of equality in Kato’s inequality.

Definition 5.12. We say that L satisfies a “reverse Kato’s inequality condition” for a class of
vectors C C D(L) if for any f € C the case of equality in Kato’s inequality

L|f| = Re(signf)Lf
implies
JueC, f=ulf]

In some situation, we may prove directly that the “reverse Kato’s inequality condition” holds by
reasoning at the level of the operator £, see for instance [231, Proof of Theorem 5.1]. That is also
a consequence of the strong positivity of the semigroup as we see below.
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Lemma 5.13. Consider a semigroup S and its generator L. On the set C of vectors f € X\{0}
such that

(5.11) INEC, Lf=Xf, LIf]=®ReN)|f],

there is equivalence between:
(i) S(t) satisfies the “reverse strong positwity condition” for some (and thus any) t > 0;
(ii) L satisfies the “reverse Kato’s inequality condition”.

Remark 5.14. When X C Li ., the “reverse Kato’s inequality condition” (i) implies the “reverse

strong positivity condition” (i) on the class C of vectors such that f € D(L), 0 < |f| € D(L).
Assume indeed that L satisfies (i) and consider f € C such that |S; f| = S¢|f| for any t > 0. By
differentiating, we get

(5.12) (sign /)Lf = L]|f].

From the “reverse Kato’s inequality condition”, we deduce that f = u|f| for some u € S, so that

(i) holds.
Proof of Lemma 5.13. In what follows, we fix f € X\{0} such that (5.11) holds, and we compute

(5.13) Re(sign f)Lf = Re(sign f)(Af) = (ReA)|f| = L[ f].
For any t > 0, we also have S; f = e M f, S;|f| = e®¢*|f], and thus
(5.14) S f| = St| fl.

Assuming the “reverse Kato’s inequality condition”, we deduce from (5.13) that f = u|f| for some
u € S, thus S; f = uS;|f| for some u € St, which is the conclusion of the “reverse strong positivity
condition” when (5.14) holds.

On the other way round, assuming the “reverse strong positivity condition” for some T' > 0, we
deduce from (5.14) for T > 0 that there exists v € S' such that

AT f = Srf =vSp|f| = ve®AT|f].

That implies that f = u|f| with u = ve”*S™NT | which is nothing but the conclusion of the
“reverse Kato’s inequality condition” when (5.13) holds. O

We summarize the material developed above in the following main result of the section.

Theorem 5.15. Assume that S is a positive semigroup on X with X C Ll (E) or X = MY (E) for
some locally and o-compact metric space E and denote by (Ey) a sequence of increasing compact
sets such that E = lim Ey. We furthermore assume that for any k > 1 there exists T > 0 such that

St is strictly positive on Ey, in the sense that

(5.15) Vfe X \{0}, fig, #0, Vo € X' \{0}, suppop C Ex, (Srf,¢) > 0.

Then L satisfies the “reverse Kato’s inequality condition” on the set C of eigenvectors introduced
in Lemma 5.13.

Proof of Theorem 5.15. Let us consider f € X\{0} such that (5.11) holds, so that S;|f| = e(®eN?|f|
for any ¢t > 0. On the one hand, we may fix k > 1 such that |f| £ 0 on Ej. Then for any ¢ > k,
there exists T; > 0 such that (5.15) holds, so that

eReNTe(| 11 ) = (Sp,|f],4) > 0,

for any ¢ € Y;\{0}, supp¢ C E,. That implies {|f],#) > 0 on for any ¢ € Y;\{0}, and thus
|f] > 0. Next, as in the proof of Lemma 5.13, we observe that

|St, f| = St,|fl, V{>k.

Repeating the proof of Lemma 5.10 and Lemma 5.11, we deduce that there exists u, € S' such
that St, f = ueSt,|f| on Ey, or equivalently there exists v, € S! such that f = v,|f| on E,, with
vg = upe MVt Because Ey D Fj, we have established that f = v;|f| on E which is the
conclusion of the “reverse Kato’s inequality condition” when (5.11) holds. g
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5.4. On the triviality of the boundary spectrum. As in section 4.3, we still assume the
existence (C1) of a solution (A1, f1,¢1) € R X X4 x Y, to the first eigenvalue problem (4.1) and
that £ enjoys the weak maximum principle (4.16) and Kato’s inequalities (4.17) as formulated in
condition (H1') as well as the strong maximum principle (H4). Because we deal with complex
eigenvalue, we also assume that the complex Kato’s inequality variant (5.10) holds.

We introduce a first additional assumption:

(H5) the“reverse Kato’s inequality condition” (as defined in Definition 5.12) holds true for the
class C defined in Lemma 5.13: for f € X\{0} such that
(5.16) IXeC, Lf=X, LIfl=ReA)|f| =Re(signf)L,
we have

JueC, f=ulf]

On the other hand, we do not need the structure assumption (X3).
We are then able to make a more accurate analyse of the geometry of the spectrum.
Theorem 5.16. Consider an unbounded operator L on a Banach lattice X which satisfy (C2),

(H4), (4.17) and (H5). Then the conclusion (S32) about the uniqueness of A1 as the eigenvalue
with largest real part holds: 5(L) = {\1}.

Remark 5.17. (1) It is worth emphasizing again that (4.17) is true when L is the generator
of a positive semigroup and that (H5) is true when Sp(T) satisfies the “reverse strong positivity
condition” for some T > 0 as a consequence of Lemma 5.13, see also Theorem 5.15.

(2) During the proof we use similar arguments as in [231, Thm. 5.1].
(3) Condition (H5) is reminiscent of PDE arguments as we may find for instance in [231, Proof of

Thm. 5.1] or in the discussion in [252, 4th course] about an uniqueness argument due to L. Tartar.

Proof of Theorem 5.16. Consider an eigenvalue A € C with normalized eigenvector f € X\{0},
and more precisely (|f|,¢1) =1 and Lf = Af. Thanks to the complex Kato’s inequality (4.17), we
have

(ReA)|f| = Resign(f)(Af) = Resign(f)(Lf) < L|f].

We consider two cases:

When the above inequality is not an equality, we have

(ReA)(| f1, 1) < (L|f, P1) = (| f], L7d1) = M| f], ¢1),
and thus el < Aq.

When on the contrary the above inequality is an equality, then |f| is a positive eigenvector as-
sociated to the eigenvalue Re). Because of (H4), we have |f| € X, and repeating the proof
of Lemma 4.17, we get ReA = A;. The condition (C2) implies |f| = fi. On the other hand, f
satisfies (5.16) and thus f € Span(f1) from assumption (H5), in particular A = A;. O

When L is the generator of a positive and irreducible semigroup S, we may introduce the alternative
assumption:

(H5') the semigroup S is aperiodic as defined in (4.13), namely
Ve X \{0},VoeY\{0}, AT >0,Vvr>T (S.f,¢)>0.

Theorem 5.18. Let X be Banach lattice in which the property (4.10) holds true. Consider a
positive and irreducible semigroup S on X which satisfies the aperiodicity condition (H5') and
such that its generator L satisfies (C2). Then the conclusion (S32) holds: X5 (L) = {\1}.

Remark 5.19. [t is worth pointing out that since (H5') is stronger than (H4), see the points (2)
and (3) in Lemma 4.8, we can use Theorem 4.13 and replace in Theorem 5.18 the assumption that
(C2) is satisfied by the assumption that (C1) and (H1') for both L and L* are satisfied, together
with the structure assumption (X1) on X and Y.
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Proof of of Theorem 5.18. We introduce the notations Sy i= Sie=™t and £ := £ — A;. Assume
that f =g+ ih € X, g,h € X, is an eigenfunction associated to the eigenvalue A = \; + i € C,
a > 0, so that

(g +ih),

~ 211
0

L(g+ih) =ia(g+ih) = ;
for some tg > 0. On the one hand, because « # 0, we must have g # 0 and h # 0, and because of

alg, 1) = (Lh,d1) = (h,L*¢1) = 0,

and ¢ > 0, we have g4 # 0 and g_ # 0. As a consequence, and because of (4.10), there exists
¥ € Y4 \{0} such that (g4+,%) = 0. On the other hand, we compute

Sto(g +ih) = €% (g + ih) = g + ih,

from what we deduce §t0 g = g, because S; is real. On the other hand, because S; is positive, we
have

9+ = (St,9)+ < Sto9+,
and next

(61,9+) < (61, 8094) = (S5, 01, 94) = (D1, 94),
so that the inequalities are equalities (remind again that ¢; > 0), and thus

§t09+ = 9+
We conclude that
(Sktog1,¥) = (g4, 9) =0, Yk >0,
what is in contradiction with (H5’). We have established that X5 (£) = {\1}. O

We end this section with a third situation where the triviality of the boundary spectrum is an
immediate consequence of Theorem 5.5 and Theorem 5.6.

Theorem 5.20. (1) We make the same assumptions as in Theorem 5.5 and also that there exists
M > 0 large enough such that \ — L is invertible in B(X) for any A € C, ReX = Ay, [N\ > M.
Then A1 is the unique eigenvalue with largest real part as formulated in (S32).

(2) We furthermore assume that the hypothesis of Theorem 5.6 are met and that A — L is invertible
in B(X) for any for any X € C, ReX > X\ — ¢, |\| = M. Then a (non constructive) spectral gap
(S33) holds.

We summarize the main results established in this section as follows.

(C3) the first eigentriplet problem (4.1) has a solution (A1, f1,¢1), furthermore this one is
unique, f1 >0, ¢1 > 0, \; is algebraically simples (for both £ and £*) and ¥5(£) = {\1}.

5.5. Ergodicity. Thanks to the above analyze, we are able to formulate some convergence results
on the trajectories associated to a semigroup. More precisely, assuming the existence and unique-
ness of the first eigentriplet (A1, f1,¢1) for the generator £ of a semigroup S and still denoting
the rescaled semigroup §t := e~ Mt S(t), we wish in particular to establish the following ergodic
property

(E2) for any f € X, there holds

(5.17) Sef = (f,¢1)f1, as t— oo,
in a sense to be specified.

We start with a simple result which take advantage of some dissipativity property of the semigroup
formulated by a ”reverse positivity condition”. We next present some more involved results which
use directly the spectral information. It is worth emphasizing that our results in this section do not
use any spectral gap property what contrasts with the results we will present in the next section.
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Theorem 5.21. Consider a positive semigroup S on a Banach lattice X such that its generator
L enjoys the conclusions (C2) of existence, uniqueness and strict positivity of the first eigentriplet
(M, f1,61) and let us set §t = e MtS,. We denote X the space X endowed with the norm [-], with
[f]:= (| f], b1). Assume furthermore that

(1) for any f € X, the trajectory (gtf)tzo is continuous in X and belongs to a compact set of a
normed space Xy, with X1 C X;

(2) (St) satisfies the reverse positivity condition for semigroups

(5.18) |S.f] = Si|f|, Yt >0, implies 3T >0, Jup € S', Srf = urSr|f|.
Then, the ergodicity property (E2) holds in the sense of the norm of X;.

Let us comment on hypotheses made in the statement of Theorem 5.21. Hypothesis (1) can
be obtained as a consequence of a Lyapunov (or growth) condition reminiscent of the structure
condition (HS3) introduced in Section 3.3 and an irreducibility condition. Typically, we assume
first

IS@)f1 < M| fI| + K sup [S(7) fo;

<r<t
with [g]o := (|g], ¥o), %o € Y:\{0}, what can be established under the very general condition (ii)
of Theorem 3.4. Next we need to be able to prove that ¥y < r¢; for some r > 0. In concrete
situations, we may take vy with compact support and then the above inequality is a consequence
of the standard strong maximum principle. We deduce

ISl < MIfl+Kr sup (|S(r)f],é1)
0<r<t

IN

M| fl+ Kr sup (S(7)|f];¢1)
0<r<t

M| fII+ Kr{[f], ¢1),

so that (S;) is bounded. The hypothesis (1) is in fact a bit more demanding, but also quite natural.
Assume that S, enjoys the splitting structure introduced in section 3.1 and section 3.3, so that

(5.19) S=V+K,
with

Vi=8g+-+ (SgA) NV s 8g K :=(SgA)NM xS, Sg(t) :=e MS5(1).
In some applications, we typically have
V@& foll <O@Ifoll: 1S54 [l zx 2,y < ©
with © € LY(Ry) N Cy(R,), X1 C X compact. In that situation, we deduce (1).

Proof of Theorem 5.21. We fix f € X and without loss of generality, we may assume that (f, ¢1) =
0. We observe that

(5.20) (ISef1, 61) = (ISe-sSef1, 61) < (Si-slSsfl 1) = (|1, 01),
for any ¢t > s. We deduce that (§t) is a dynamical system with compact trajectoires in A}
and H(f) := (|f],¢1) is a Lyapunov functional. As a consequence, from the La Salle invariance
principle, we have
(5.21) inf (|S,f —gl,¢1) = 0 as t— oo,
gEWH
with
(5.22) wi = 1{g € X; (g.¢1) =0, Vt €R, H(Shg) = inf H(5.f)}.

We next characterize wy. Picking up g € wy, we observe that

(ISegl, #1) = (gl @1) = (g, 57 61) = (Silgl.én), V>0,
so that B B
<St|g|_|Stg|,(b1>:0, VL‘ZO

In particular, using that |Syg| < S¢|g|, we have
(5.23) Silgl = |Segl, Vt=>o.
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Because of the reverse positivity condition for semigroups (5.18), there exist 7' > 0 and ur € S!
such that _ _

STg = uTST|g|.
As a consequence, by definition of the set wy, we have

0= (g,61) = (Srg, 1) = ur(Srlgl, 1) = ur(gl, é1).
Because ur # 0, we conclude that ¢ = 0. In other words, we have established that wy, = {0} and
together with (5.21), we obtain (5.17). O

We present a more concrete situation where the previous result can be invoked. Although the
hypotheses are somehow restrictive, it is yet useful in many applications and its proof is very
simple.

Corollary 5.22. Consider a strongly continuous and positive semigroup S on a Banach lattice X
such that its generator L enjoys the conclusions (C2) of existence, uniqueness and strict positivity
of the first eigentriplet (A1, f1,¢1). Assume further that the reverse Kato’s inequality condition (as
defined in Definition 5.12) holds true for the (large) class
C:={f e D(L); LIf| = Re(signf)Lf},

that X C LL (E, &, u) and that the space X* defined in (4.26) satisfies X* C Li . with strongly
compact embedding for some k > 1. Then the ergodicity property (E2) holds in the sense of strong
topology of Lén'

Proof of Corollary 5.22. Because of Step 3 in the proof Theorem 4.23, we see that condition (1)
in Theorem 5.21 holds with X; := X*. On the other hand, because of Remark 5.14 and the
reverse Kato’s inequality condition in C, we see that condition (2) also holds, so that we may apply
Theorem 5.21 and conclude. O

We present now a variant of the previous result which provides a convergence for various topologies,
and relies on the (very general) assumption that the boundary spectrum is trivial rather than on
the reverse positivity condition.

Theorem 5.23. Consider a positive semigroup S on a Banach lattice X such that its generator L
engjoys the conclusions (C3) on the existence, uniqueness and strict positivity of the first eigentriplet
problem (A1, f1, d1) and triviality of the boundary point spectrum. Setting S, = e~ MtS,, we assume
that we are in one of the following situations:

(1) S is strongly continuous and the trajectories (gtf)tZO are relatively compact for all f € X, and
we denote by T the strong topology of X ; B

(2) X =Y', Y separable, and the trajectories (St f)i>0 are bounded for all f € X, and we denote
by T the weak x o (Y'Y topology;

(3) X C LL (E,&, ), and we denote by 7 the weak topology of Lén ;

loc
(4) X C L., S is strongly continuous, and for some k > 1 the space X* defined in (4.26) satisfies
X* c Ll with strongly compact embedding, and we denote by 7 the strong topology of Lén'

loc

Then the ergodicity property (E2) holds in the sense of the topology .

Remark 5.24. The case (4) of Theorem 5.23 enjoys some strong similarities with the main con-
sequences of the General Relative Entropy technique developed in [269], see in particular [269,
Thm. 3.2], 269, Thm. 4.3] and [269, Thm. 5.2]. In particular, the aperiodicity condition that the
boundary point spectrum is trivial may be compared with the fact that the first eigenvector fy is the
unique (normalized and nonnegative) vector f € X with vanishing dissipation of entropy D(f) =0
as defined in [269] or more generally that Span(fi) is the unique invariant space on which the
functional D vanishes. The present formulation is more abstract and probably more general. The
drawback is the condition X* C L _ with strongly compact embedding which can be avoided in
[269], by using some weak compactness argument and the lower semicontinuity property of D. That
is explained by the fact that our proof uses rather the La Salle invariance principle (similarly as in
the proof of [153, Thm. 3.2]) instead of a entropy dissipation argument.

In the case when the boundary point spectrum is not trivial but a discrete set, the same method
of proof as for Theorem 5.22 allows us to accurately describe the periodic long time behaviour of
the semigroup.
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Theorem 5.25. Consider a positive semigroup S on a Banach lattice X such that its generator
L enjoys the conclusions (C2) on the existence and uniqueness of the first eigentriplet problem
(M, f1,$1), and satisfies the complex Kato’s inequality (5.7). Suppose furthermore that X and
Y both enjoy the structure conditions (X2) and (X3), that A1 is an isolated eigenvalue and that
the boundary spectrum is not trivial, i.e. Z; # {M\}. Setting §t = e M!S, we assume that we
are in one of the situations (1), (2), (3) or (4) listed in statement of Theorem 5.23. Then ¥ =
{M+ika, k € Z} for some a > 0, there exists a sequence (gi, Yr)kez such that Lgr, = (A1 +ika)g,
LAY = (M + ika)y, and (gr,¥i) = 1, and for all f € X, in the sense of the topology 7, the
projection

n 4
. 1
IIf = lim —> " > (f,¢)g
[y y—;
is well defined and

§tf—§tﬂf—>0 as t — +oo.

Remark 5.26. In Theorem 5.25, the assumptions that \1 is isolated and ZJIS # {1} might seem
difficult to check in practice. We indicate here some ways to verify them.

(i) The condition that \1 is an isolated eigenvalue is for instance guaranteed under the assumptions
of Theorem 5.6 or Theorem 6.5.

(ii) The condition that ¥} is not restricted to {\1} can be guaranteed by verifying that (E2) does
not hold. Indeed, if ¥} = {\1}, then Theorem 5.23 imposes (E2) to hold.

The result in Theorem 5.25 can be compared for instance to [41, Thm. 14.19], although our hy-
potheses are slightly more general. Our proof is also more direct than in [41] and it additionally
provides an explicit expression of the projection on the boundary eigenspace Span(gy)rez. The
proof of Theorems 5.23 and 5.25 relies on the theory of almost periodic functions which dates back
to H. Bohr. There is a large literature on the subject and we refer for instance to the book of Cor-
duneanu [113] for a comprehensive introduction. There are several equivalent definitions of almost
periodic functions and we will use the following one. A function f € Cy(R, X), i.e. a bounded
continuous function from R to X, is said to be almost periodic if the set {f(- + 7), 7 € R} is
relatively compact in Cy(R, X). The set of almost periodic functions is a sub-algebra of Cp(R, X),
and also the closure of the space of periodic functions in Cp(R, X). We start with the proof of
Theorem 5.23 and Theorem 5.25 in the case when S satisfies the condition (7). Then we deduce
the cases (2), (3) and (4) from the case (1).

Proof of Theorems 5.23 and 5.25 in the case (1). Step 1. Let f € X. Since the trajectory (gtf)tzo
is relatively compact, we infer from [201, Thm. 8] (with U(r,t) = S; and thus no periodicity con-
dition on U) the existence of an almost periodic eternal solution g of the rescaled semigroup S , i.e.
a function ¢ : R — X such that g(t +7) = S,g(t) for all t € R and 7 > 0, such that

m 1S/ — g)l = 0.

li
t—4o0
The end of the proof consists in characterizing the function g in the situations of Theorems 5.23
and 5.25. For A € R, we define the Bohr transformation of the almost-periodic function g by

1t
calg) = lim /O e~"Mg(t) dt,

which is known to exists, see [113, Thm. 3.4], since e ~**g(¢) is also almost periodic. Since e~ g(t)

is besides an eternal solution of the semigroup e~ S, with infinitesimal generator Ly = L—X1 —i),
we have that

T
L / =M () dt = g(T) — g(0).

Dividing by T' the above expression, passing to the limit 77 — +o0o and using that £y is a closed
operator, we get

ﬁ)\CA(g) =0.

In other words, we have established

Lex(g) = (M +iX)ea(g)
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and A1 + X is an eigenvalue of L if ¢x(g) # 0.

Step 2. We deduce that if the boundary spectrum is trivial, as in Theorem 5.23, then necessarily
ex(g) = 0 for all A # 0. By the uniqueness theorem, see for instance [113, Thm. 4.7], we get that g
is constant. Due to the conservation law (S;f, ¢1) = (f, ¢1) and the simplicity of the eigenvalue 0,
we get that g = (f, ¢1) f1 and the result of the case (1) in Theorem 5.23 is proved.

Step 3. In the case of Theorem 5.25, the boundary spectrum is not trivial and we know from
Theorem 5.5 that EJIS(Z) is an additive subgroup of iR, made of algebraically simple eigenvalues.
Due to the assumption that A is isolated, this subgroup must be discrete and EJIS (L) is thus given
by {\ +iak, k € Z} for some o > 0. As a consequence, any A such that ¢y(g) # 0 is necessarily
of the form A = ak for some k € Z. By the uniqueness theorem, ¢ is then a a-periodic function
which is given, due to Fejér’s theorem, by

. 1 S : iakt
g(t) = nlgrolo - Z Z Cak(g)e ™.
£=0 k=—"
Consider (gg, ) two positive direct and dual eigenvectors of £ associated to the eigenvalue ik
such that (gr,®r) = 1. From the conservation laws (S;f, 1) = (f,¥r)e’®** and the algebraic
simplicity of the eigenvalues iak, we get that cax(g) = (f, dr) gk, and the result is proved. O

Proof of Theorems 5.23 and 5.25 in the case (2). Since Y is separable, we can find a sequence
(pn)n>1 C Y which satisfies ||¢,| = 1 and span(yy,) is dense in Y. We can then define on X
the norm || - ||« by setting

(5.24) 1l =~ 27" [{F n)l.
n=1

On bounded subsets of X, the topology of this norm is the same as the weak-* topology, or more
explicitly it is worth emphasizing

fo=f xo(YY) & (sup|lfull <oo and ||fn— fll+ —0).

Since by assumption the trajectory (Sif) is bounded, it is weakly-* relatively compact, and so
relatively compact in (X, | - |«). It is also clear that the semigroup S is continuous for the weak
norm || - |[«. The normed space (X, || - ||«) is not a Banach space, but the proof of Theorem 5.25
actually only requires, for applying [201, Thm. 8], that the closed balls of X are complete metric
spaces, which is the case for the distance induced by || - ||.. Applying the case (1) of Theorems 5.23
and 5.25 then yields the result. O

Proof of Theorems 5.23 and 5.25 in the case (3). We consider f € X and, repeating the proof of
Step 2 in Theorem 4.23, we get that (S¢f)+>0 belongs to a weak compact set G of L;Lbl' We define
the norm ||- ||« by (5.24) for a sequence (¢n)n>1 C Co(E) which satisfies ||¢n ||~ = 1 and span(e,)
is dense in Cy(F). This norm induces a metric on G which is topologically equivalent to the weak
convergence on Lj . The trajectory (S4f) is then relatively compact in (G, ||-||,) and the semigroup
S is continuous for the weak norm || - ||.. We conclude as in the proof of the case (2). O

Proof of Theorems 5.23 and 5.25 in the case (4). From the step 3 of the proof of Theorem 4.23,
we know that for any f € X* the trajectory (S;f) is compact for the strong topology of Lél. We
may then conclude similarly as in the case (1), using that X'* is dense in X for the norm of Ly,. O

5.6. A word about spectral analysis argument. The aim of this section is to recall some
more or less classical results which makes possible to slightly improve the conclusions of the results
presented in the previous section by additionally assume some spectral gap at the level of the
operator or the semigroup. More precisely, we are interested by some accurate versions of a partial,
but principal spectral mapping theorem which asserts that

(5.25) S(ef) N BY(0, e"t) = !BENA g >,

for some k < A1, and even more precisely, we wish to establish the following geometric (or expo-
nential) asymptotic stability
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(E31) there exist some constants £ < A\; and C' > 1 such that for any f € X, there holds

(5.26) IS f = (o0l OIS = (f,é0)fall, V120, ¥f€X,
with the decay rate function O(t) := C e(r=2)t,

In order to discuss the several results we present, we recall the splitting framework
(5.27) S=V+WxS,  [V@)laco + WO lsx) S e,

for the same k € R as above. We start by recalling the spectral mapping theorem for the point
spectrum, and its proof, which is instructive.

Lemma 5.27 (Spectral mapping theorem for point spectrum). For a semigroup (Si)i>0 with
infinitesimal generator L we have

Sp(S) \ {0} = e, vt > 0.

Proof of Lemma 5.27. The inclusion e?*7(£) C $p(S;) \ {0} is clear. Now let & € ¥p(S;) \ {0},
that is € € C\ {0} such that S, f = ¢f for some f € Xc¢ \ {0}, and let A € C such that ¢ = e* and
¢ € X’ such that (¢, f) # 0. For any k € Z we have ¢ = e*T2*™ and so

. t
0= OIS o = (Lo a B [ Ot s

t 0
If the last integral is non-zero for some k € Z, we deduce that \ + % is an eigenvalue of £
and the result is proved. Assume by contradiction that fot e~ HHE)sG fds = 0 for all k € Z.
This means that the continuous and periodic complex-valued function s — e~**(¢, S, f) has all its

Fourier coefficients equal to zero, which is not possible since this function is not equally zero (its
value at s = 0 is not zero). O

We next present a very classical result about the exponential stability of f; which is based on the
quasi-compact semigroup framework of Voigt [355] (see also [15, B-IV-2] and [152, Sec. V.3]) and
which is a more accurate version of Lemma 2.7 and Theorem 5.7.

Theorem 5.28. Let (S)i>0 be a positive irreducible semigroup on a Banach lattice X satisfying
the hypotheses of Lemma 2.7 and Theorem 5.7, in particular (H2) holds for a constant kg € R
and there exists T' > 0 such that the splitting

(5.28) Sp =V + Kr,

holds with |Vr|lzx) < €7, K < ko, and Kp € # (X). Then there exists a unique solution
(M1, f1,$1) to the eigentriplet and the exponential stability (E31) holds (without constructive esti-
mate).

Remark 5.29. In the splitting framework (5.27) the critical hypothesis Kr € #(X) may be
obtained by assuming that

W)l x,) S e VE>0, X CX compact.

In fact, in many applications, we are also able to establish Xy C D(L?), for some 3 > 0, without
too much more work.

Theorem 5.28 is in fact nothing but [41, Thm. 14.18] (see also [360, Sec. 2], [152, Thm. V.3.7] or
[15, C-IV, Thm. 2.1 & Rk. 2.2]). We give however a short proof of Theorem 5.28 since it is simpler
and more direct than the ones we usual find in the literature and in particular does not refer to
subtil results about the spectrum and its essential part.

Proof of Theorem 5.28. First step. From Lemma 2.7, we already know that (H1), (H2) and (H3)
hold. Together with the irreducibility which is nothing but (H4) from Lemma 4.8, we may apply
Theorem 4.13 and conclude to the existence, uniqueness and strict positivity result about the
eigentriplet solution (A1, f1, ¢1).

Second step. We claim that X(L£) N {z € C, Re(z) > Ko} is also made of a finite number of
isolated eigenvalues with finite geometric multiplicity. We indeed set By := e"°7. Since for any
A€ B = {z €C, |z] > By} the operator A — Vr is invertible, we see that A € Bf is in the
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spectrum of Sz if and only if 0 is in the spectrum of I — (A — Vz) "' Kr, or in the spectrum of
I — Kr(\ = Vr)~'. Indeed, solving (A — S7)f = g is equivalent to, on the one hand,
(I=A=Vr)'Kr)f = (A= Vr) "y,
and in the other hand,
(I-Kr(A=Vr) " H(A=Vp)f =g

So if A € %(S7) N B§, then 1 € X((A — V) 'Kr). Since (A — V7)™ ' K7 is a compact operator,
the classical Fredholm alternative (see for instance [71, Thm. 6.6]) asserts that its spectrum is
made of eigenvalues with finite geometric multiplicity, and then so does for 3(St) N B§,. We can
also prove, by adapting the proof of [71, Lem. 6.2], that these eigenvalues are isolated, and thus
S(Sr)n B, is made of a finite number of isolated eigenvalues with finite geometric multiplicity.

Since eT>() € ¥(Sr), we deduce that X(£) N{z € C, Re(z) > Ko} is also made of a finite number
of isolated eigenvalues with finite geometric multiplicity.

Third step. We prove the existence of a spectral gap and we conclude.

Since X(L£)N{z € C, Re(z) > Ko} is finite, A; is simple, and the boundary spectrum of £ is a group,
we deduce the existence of € > 0 such that (L) N {z € C, Re(z) > A\; — e} = {A\1}. The spectral
mapping theorem in Lemma 5.27 then ensures that X(S7) N {z € C, |z| > eM=aT} = {eMT}
and that eM7 is simple with eigenspace spanned by f1. The restriction S7 of St to the invariant
subspace X, := {f € X, (¢1,f) = 0} thus has a spectral radius smaller than eM=aT  The
spectral radius formula (see [334, Thm. 10.13] for instance) then ensures that

lim S]]/ = r(S4) < 197
n—oo

This guarantees, for any n € (0,¢), the existence of a constant C,, > 0 such that for all f € X |
and all¢t >0

le™ S f || < Coe™™ |11,
and the proof is complete. O

Let us now present a variant of another classical result known as the Gearhart-Priiss Theorem
in [175, 326], see also the contributions of Herbst [211] and Greiner [15, A-IIL.7] as well as the
more constructive proof [152, Thm. V.1.11] and recently [206] based on techniques developed in or
related to [364, 61].

Theorem 5.30. Consider a positive semigroup S on a Banach lattice X such that its generator L
satisfies the conclusions (C2) about the existence, positivity and uniqueness of the first eigentriplet
(M, f1,01). We assume furthermore that X is an Hilbert space and that there exist k < A1 and
R > 0 such that

(i) sup.ea,\ By IRc(2)]l2(x) < o0;
(i) Z(L)N A, C X4(L) N Bg.
Then the exponential stability (E31) holds (without constructive estimate).

Proof of Theorem 5.30. The spectral information (C2) and (ii) together imply (C3) (because of
Theorem 5.5) and that there exists k* € (k, A1), such that X(£) N Ag« = {A1}. The operator £
on X := (vect{f1})* thus satisfies sup,c o . [|Rz(2)]lz(x,) < 00, and we conclude thanks to [152,
Thm. V.1.11]. The lack of constructively here only comes from the fact that our assumptions do
not provide any information on the spectral gap Ay — k > 0. g

Remark 5.31. Except of the Hilbert space framework, the assumptions made in Theorem 5.30
are slightly weaker than those of Theorem 5.28, and are indeed established during the proof of
Theorem 5.28: such an information at the level of the resolvent is a bit easier to establish than a
similar estimate at the level of the semigroup. In the splitting framework (5.27) and its resolvent
counterpart (2.22), we typically only have to show

(5.29) sup  [[V(2)]|zx) < oo, lim sup IW(2)l|lx) =0,

r<Rez<k1 T2 k<Rez<ky, |Smz|>r

for some k < A1, and W(z) € #(X) for any z € A,. That last claim is classical (see for instance
[190]) and we only briefly sketch the proof. On the one hand, from the first and the last estimates,
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we deduce that (L) N A, C Xq(L) thanks to Theorem 5.6. As in the proof of Theorem 5.6 and
with the usual notations, we also have

(I —W(E)Re(2) =V(2), VzeA,,

where I —W(z) is invertible and ||(I — W(2)) ™ |gx) < 2 for any z € C such that k < Rez < k1,
|Smz| > R and R is large enough. We immediately deduce that the condition (i) in Theorem 5.30
holds.

We end this section by a more recent result which is similar to the Gearhart-Priiss Theorem but
is not restricted to an Hilbert space.

Theorem 5.32. Consider a positive semigroup S on a Banach lattice X such that its generator L
satisfies the conclusions (C2) about the existence, positivity and uniqueness of the first eigentriplet
(A1, f1,01). We further assume that L = A+ B with 0 < A € #(X), Sg > 0 and the associ-
ated operators V. and W defined by (3.14) satisfy (5.27) for some k < A1 and that the resolvent
counterpart W defined by (2.22) satisfies (5.29) and more precisely

sup  [[(2)"W(2)]|z(x) < oo,
r<Rez<k1

with o > 1. Then the exponential stability (E31) holds (without constructive estimate).

The proof of Theorem 5.32 is a mere adaptation of [278, Thm. 3.1] (see also [273]) and it is thus
skipped. The needed estimates are a bit stronger than those of Remark 5.31, but in the applications,
they are not really more demanding. They also hold at the level of the resolvent instead of what
is assumed in the statement of Theorem 5.28.

We conclude by emphasizing again on the fact that all the above results are not constructive. We
propose in the next part an alternative approach which is constructive.

6. QUANTITATIVE STABILITY

In this section we establish some quantitative stability results in the spirit of the Doblin, Harris,
Meyn-Tweedie theory for Markov semigroup.

6.1. About quantified positivity conditions. We briefly discuss some positivity conditions
related to the strong maximum principle and barriers techniques. The issue is about how quantify
the strong maximum principle

feX\{0}, (ki —L)f>0 imply f>0or f>0

or the related strong positivity of the associated semigroup. A possible way can be achieved
with the help of a barrier functions family G C X4 and a second weaker (semi)norm [-] used for
normalization. Let us then introduce the two conditions

(6.1) VR>0,3g; €6, Vfe Xy, [[]=1 If] <R,
we have

(i) Stf > g1 (for some T' > 0)

or

(i) f > g2 if (51 — £)f > 0.
Point (ii) is a quantified version of the strong maximum principle when G C X, and it is always
a consequence of the positivity condition (i). Assume indeed that (i) holds (for some T' > 0) and
that f satisfies the requirements (6.1) and (k1 — £)f > 0. We then write

d —K —K
(e ETp) = TR L — ) f <,
so that
f Z e(,C—f-q)Tf — e—fclTSTf Z e—KngQ = g1,
with go given by condition (i). The reciprocal implication is not clear, see however Lemma 4.8-(3).

Let us now make a list of possible quantified positivity conditions of Doblin-Harris type for a linear
(and continuous) operator A : X — X:
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(P1") 3g0 € X1 \{0}, 9o € X3 \{0}, V f € Xy, Af > go(f,0);
(P2') 3go € X \{0}, 3o € X\ |, Vfe Xy, Af > go(f,1o);
(P3) 3go € X1y, Ipo € X\\{0},Vfe Xy, Af > go(f,o);
(P4") 3go € Xyq, Ioho € Xy, Vf € Xp, Af > go(f, Yo)-

We summarize some elementary relations between these conditions and those listed in Section 4.2.
Lemma 6.1. We have (P2 ) = (P2) = (P1), (P%) = (P3) = (P1), (P{) = ((P4), (P%),
(P?)) as well as (P4) = ((P3), (P2)).

We also have: A satisfies (P2') iff A* satisfies (P3); A satisfies (P3) iff A* satisfies (P2 ); A
satisfies (P4') iff A* satisfies (P4').

We finally have: A satisfies (P2 ) implies g0 € X1 \{0}, I >0, Ago > Kkgo

Proof of Lemma 6.1. We assume Af > go(f, 1) for any f € X, and some go € X, ¥g € X.. For
any ¢ € X'\{0} and f € X, we have

<A*¢a f> = <¢7 Af> > <¢,90<fa ¢0>>;

which implies A*¢ > 1o(®, go). We thus deduce that A satisfies (P2’) (resp. (P3’), (P4)) implies
that A* satisfies (P3’) (resp. (P2'), (P4)). The other implications can be established in a similar
or even simpler way. O

We conclude this introductory section by emphasizing on the fact (as already mentioned above)
that S satisfies (Pi') implies R () satisfies (Pi’) for any A > A\ and i =1,...,4.

6.2. Asymptotic stability under Doblin condition. We start with a simple situation. We
assume the Doblin condition, namely

(6.2) 3T >0, 3¢ >0, 3go >0, V[ =0, Sf > gol¥o, f),
together with the companion positivity condition

(6.3) 3ro >0, (¢1,90) = 0,

as well as the strong additional boundedness assumption

(6.4) dRo >0, ¢1 < Rovo.

When ¢ :=1 € X’ C L, the condition in (6.4) is automatically satisfied with Rg := ||¢1]] = 1.
Let us first emphasize that (6.3) is a natural condition when S} enjoys a splitting structure similar
to (5.19). More precisely, when

I15*(®)ell < 6 )|¢| +/O Ot — 5)[S(5)¢]go ds,

with © € L} (R4) N Cy(R4), we deduce that

- t
1= [lnll = [S*®)enll < Ot) + / Ot — 5)[rly ds, Wt > 0.

Passing to the limit ¢ — oo, we get (6.3) with o = ||@||le Also (6.4) can be deduced from a

splitting structure condition on the dual problem. More precisely, we assume that D(L>) C L]

and the splitting property £ = A+ B with A € #(X), Rg(\) € B(X) N AB(X;) for any A > k&,
with K < kg < A1, and the additional regularity condition

(6.5) (Re= (M AN LY — L3y, YA> k.

Since the dual eigenvector ¢; satisfies
()\1 — B*)¢1 = .A*(bl, AL > K,
and then ¢; = (Rp~(\1)A*)N @1, we may use estimate (6.5) and we get that (6.3)-(6.4) holds with

the normalization condition ry :=1 and Ry := ||(Rp~ (A)A*)NH'@(LIO’LOO -
g iy

We are then able to formulate a first quantified stability result.
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Theorem 6.2. Consider a semigroup S on a Banach lattice X such that its generator L enjoys
the conclusion (C1) on the existence of the first eigentriplet (A1, f1,61). We assume furthermore
the Doblin condition (6.2)—(6.4)-(6.3). Then the exponential stability (E31) in the norm [|y, holds
true, with constructive constants.

The proof closely follows the usual contraction argument in the Doblin result, see for instance [268],
[168, Thm. 11] or [81, Thm. 2.1]. We do not explicitly assume the irreducibility of the semigroup,
but the Doblin condition (6.2)-(6.4)-(6.3) is in many aspects a strong positivity condition. In
particular, our result implies the uniqueness of the first eigentriplet (A1, f1,¢1) and the triviality
of the boundary spectrum.

Proof of Theorem 6.2. The two conditions (6.2) and (6.4) together imply the modified Doblin
condition

3T>07 3gl>07 VfZO, STfZgl<¢1af>7
with g1 := go/Rg. Take f such that {(¢1, f) =0, so that {¢1, f+) =r = (¢1,]|f])/2 > 0 and thus

Srfe > g1{o1, fx) =101
We write
|Stf| <|Stfy —rgi| + ST f- —rgi| = Sr|f| — 2rg:1.
We deduce
(@1,157f1) < (S5n,1F1) — 21, 91) = (M = (61, 91) ) (61, £])

In other words, setting S, := e~*1%S,, we have

(St fler < [flors

with v < 1 which depends explicitly of rg, Ry, T and the estimates on A;. We then classically
deduce the exponential convergence in the [-];, norm. Now, the dual condition associated to the
Doblin hypothesis (6.2) is

V¢€Xia S:?¢2¢0<¢790>
In particular, the first dual eigenvector ¢, satisfies

(6.6) ¢1 = e TS5 > e M g (e, 90) = e M roto.
Together with condition in (6.4), we see that [-], and [-]y, are equivalent norm, and we immediately
obtain the exponential convergence in the [-], norm (with constructive constants). |

6.3. Asymptotic stability under Harris condition. The Doblin condition (6.2)—(6.4)-(6.3) is
too much demanding for many applications. In this section, we make the following somehow more
general Harris type condition complemented with a Lyapunov condition. More precisely, we assume
that there exists T' > 0 such that Sy := Spe~™M7 first satisfies the Lyapunov condition

(6.7) ISTfI < ALllfll + K flo,

with vz € (0,1), K > 0. We next assume that Sp satisfies the Harris condition

(6.8) JA> K/(1—+L5), 3ga > 0 such that
' V>0, |fll <A[fls, there holds Stf > galf]e,-

We finally replace the positivity condition (6.3) by
(69) 3TA > 07 <¢179A> > TA-

As we have seen several times, condition (6.7) is some kind of regularity hypothesis which is natural
under a splitting structure on the semigroup S;. We emphasize that conditions (6.7)-(6.8)-(6.9)
slightly generalize the usual set of hypothesizes for the Harris theorem, see for instance [81, Sect. 3].
We also point out that there is a connection between the condition (6.8) and the notion of partial
integral or partial kernel operators, see for instance [178, Cor. 5.3]. The long term convergence of
semigroups that contain a partially integral operator was studied in particular in [317, 177, 180].
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Theorem 6.3. Consider a semigroup S on a Banach lattice X such that its generator L enjoys the
conclusions (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore the
Harris condition (6.8) together with the Lyapunov condition (6.7) and the positivity condition (6.9).
Then the exponential stability (E31) in the norm of X holds true, with constructive constants.

Of course, in order that Theorem 6.3 really gives a constructive convergence result, we have to
establish (6.8), (6.7) and (6.9) in a constructive way.

Proof of Theorem 6.3. On the one hand, we have

(6.10) [Srf16, < (Srlfl,é1) = (111, 571) = [fler-
On the other hand, we wish to establish the coupling property
(6.11) [Srflor <vmlfloy i ] < A'fls, and (f.61) =0,

for some vy € (0,1) and with A" := A/2. We thus consider f € X, such that (f,¢1) = 0 and
I fIl < A'[f]e,, so that

£l < IfIF < A'[flpy = Alfzls, -
Using the Harris condition (6.8), we deduce
Srfe >9ga, 0:=3e M [fl,.
Similarly as in the proof of Theorem 6.2, we next compute
|S7f1 <187+ = Ogal + 157~ — dgal < Srlf| — 299
and then
(Sr|f| - 2094, 1)

(If], Spdr) — 20(ga, ¢1)
= (1= ga, 1)) [for

K

[§Tf]¢1

IN

which in turn implies (6.11) with vz := 1 — e~ %L 4.

Now, the two estimates (6.10) and (6.11) together give

(612) 31 flor <l flon + — 2151

From (6.12) and the Lyapunov condition (6.7), we deduce that
Untt = MU"

with

wo_ [ ISEFIN _ f 1Sar Sl _ ( VL K)
ur .= | 'L = 'C nd M := . .
<[S§Z“f]¢1> <[San]¢>1> * 1% YH

The eigenvalues of M are

pr = = (T £ /T2 —4D),

N =

with
T:=ttM =~ +~vu, D:=detM =~pyg—(1— "/H)§~
We observe that
yeve > D > vy — (L—yu)(1 =) =T -1,

so that

(yar — )2 =T = dypyy < T?> —4D < T? —4(T — 1) = (T — 2)?
and finally

o = max(lp |yl |) < max(yar, 1z, 1T~ 1],1) = 1.

We conclude that ||M"|| < o”, from what we immediately conclude. O
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Remark 6.4. It is useful to emphasize that the existence of fi1 is mot required in the proof of
Theorem 6.3 for proving that |M™|| < o, and this estimate can actually be used to derive the
ezistence of f1. In ordet to prove that last claim, we first observe that Theorem 6.3 ensures that
(ISnr foll),, is a Cauchy sequence for any fo € X. Indeed, for any p € N, f = fo — Sprfo verifies

(f, 1) = (fo, 1) — (fo. Sirdn) = (fo, d1) — {fo,$1) = 0,

and we then have

1Sur fo = Stntpyr foll + [Surfo — Snapyrfoler S " (Ilfo = Spr foll + [fo — Sprfole: )-

Choosing fo € Xy such that [fole, = 1, we deduce that (Snrf) converges to a fived point fi of St,
which is not zero because

[f1lg, = lim[Spr fols, = [fols, =1,

and f1 is the unique fized point with normalization [fi]e, = 1. Besides, f1 € X because of the
positivity of S and fy. This ensures that

[Stfilen = (Sefi, 1) = (f1,57¢1) = (f1,61) = 1,
for any t > 0. Since on the other hand
SrSifi = Seprfi = SiSrfi = Sifu,
we deduce from the uniqueness of the fized point that gtfl = f1, which yields that f1 € D(L) and
Lfi=Mf1.
6.4. Quantified isolation of the first eigenvalue. In terms of the geometry of the spectrum,
an immediate consequence of Theorem 6.3 is that the conditions (6.8), (6.7) and (6.9) ensure the
existence of a spectral gap, namely the existence of € > 0 such that
E(,C) N A)Q,E = {)\1}.
We still assume that the Lyapunov condition (6.7) holds for some T > 0, vz € (0,1) and K > 0,
but we relax (6.8) into the time-averaged condition
JA> K/(1 —~5), Fga > 0 such that

(6.13) T
VF>0, [[f]l < Alfls, there holds / Sufdt > galfl,.
0

It is worth emphasizing that (6.13) does not imply anymore the existence of a spectral gap, and
there can be a non-trivial boundary spectrum, see Section 9.2 for an example. However, it is strong
enough for guaranteeing that \; is isolated from the rest of the spectrum, in the sense that

(6.14) (L) N B(A1,e) = {\i},

for some € > 0. In particular, if not trivial, the boundary spectrum must be discrete from Theo-
rem 5.5 (under the additional assumptions listed in the statement of this last result).

Theorem 6.5. Consider a semigroup S on a Banach lattice X such that its generator L enjoys the
conclusions (C1) on the existence of the first eigentriplet (A1, f1,¢1). We assume furthermore the
time-averaged Harris condition (6.13) together with the Lyapunov condition (6.7) and the positivity
condition (6.9). Then (6.14) holds true for some constructive constant € > 0.

Proof. First, we readily deduce from (6.13) and the inversion formula (2.13) that

{EIA > K/(1—~1), 3ga > 0 such that

(6:15) V>0, £l < Alfler there holds RIS > Galflons YA > Au,

where R(A) := (A—A1)Rz(A) and §a := (A—A1)e 2T ga. It is worth emphasizing that R(\) f1 = f1

and 1 € ¥(R(\) € B(0,1). Next, we claim that the Lyapunov condition (6.7) ensures the existence
of A > A1 such that

(6.16) IR < ALIF I+ K [flss
for all f € X and some 7 < 1 and K’ > 0. Indeed, by iteration of (6.7), we have

- . K
1Sur Il < AL NI+ 7= [flor
YL
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for all integer n, from which we deduce

CK
T—1¢

1S £1 < ey ™11 + [flons

for all t > 0 and where C' = supg<;<r ||S¢]|. We finally infer from the inversion formula (2.13) that

~ Ci(A— A1) Cy
R(A < + ,
RO < 525 e W+ = e
for all A > A; and some C7,C5 > 0. Then we only need to choose A close enough to A; so that
% < 1 and we obtain (6.16).

L ~
We have proved that R(\) satisfies (6.16) and (6.15). Together with the positivity condition (6.9),
we can thus repeat the proof of Theorem 6.3 for the operator R instead of S and we obtain the
existence of constructive constants a € (0,1) and C' > 1 such that

IRVl < Ca™(If]l, Yn=>1,
for any f € X, (f,¢1) = 0. By the spectral radius formula, we deduce

S(RN) n{z€C, |z| > a} ={1}.
The spectral mapping theorem for the resolvent, which ensures that
~ A=)
S(R(A =——
(ROD A0} = 75

then yields (6.14) with ¢ = (a=! — 1)(A — \y). O

6.5. The weak dissipativity case. In this section, we consider a weak dissipative semigroup
(St) as considered in Section 3.3 and in a sense we make precise now. We consider four Banach
lattices X35 C Xo C X7 C Xp = X. We first make the same kind of Harris type condition as in the
previous section, namely

Hypothesis (H) (Doblin-Harris) condition (6.8) holds for the same time 7" > 0 and for both
norms || - || = ||x, and || - || = || - || x, as well as the companion positivity condition (6.9) holds.

Instead of the strong Lyapunov condition (6.7), we assume
Hypothesis (L) (weak Lyapunov) there exist a constant K > 0 such that

ISF+1SFllo < NI+ K[flos, V€ Xy,
ISFlls +1SFll2 < NIflls + K[flor V€ X,

A

with S = Spe~MT,
Hypothesis (I) (interpolation) there exists an increasing function £ : Ry — Ry, A — &y, such
that

Alfll < M fllo + Exllflls, YA >0, /A =0 as A — 0.

Theorem 6.6. Consider a semigroup S on a Banach lattice X such that its generator L enjoys
the conclusions (C1) on the existence of the first eigentriplet (A1, f1,$1). We assume furthermore
the three above conditions of weak confinement (L), Doblin-Harris strong irreducibility (H) and
interpolation (I). Then, there exist some constructive decay rate functions © and © such that

(6.17) 15" fllx, SO fllx,s Yn>1,
and
(6.18) 15" £l SO fllxg, Yn>1,

for any f € X3, {f,d1) =0. More precisely, the decay rate functions © and O are defined by
(6.19) O(t) := inf O (1), o(t) :=t~'e([t/2)),
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for a constructive constant ( € (0,1), the infimum being taken over all the decreasing function
ARy = Ry, t— A, and Oy is defined by

(6.20) O(t) i~ )i\r;%(e‘”’ + %).

The proof follows closely the proof of [81, Thm. 4.8]. We start with the following key argument of
non expansive mapping result on a well chosen norm.

Proposition 6.7. Consider a positive semigroup (Si) which satisfies both above conditions of weak
confinement (L) and Doblin-Harris strong irreducibility (H). There exist some equivalent norms

-l to |l -1l and || - |3 to || - ||s such that Si is a non expansive mapping for the two new norms
-1l and ||| - lls- More precisely, there exists « > 0 such that

(6.21) ISFI +alSflo < Wfllh, Y f € X, (f,é1) =0,

(6.22) ISFlls +allSflle < llflls, Ve Xs, (f,é1) = 0.

Proof of Proposition 6.7. We define

(6.23) £l == [Flgs + 811Fllo + BILf 1,

with 8 > & > 0 conveniently chosen. We take 8 := (1 —vyg)/K, § := (1 —vg)/A. We define || - |3
in the same way. In what follows, we then only establish (6.21), the proof of (6.22) being exactly
the same.

We fix f € X5, (f,¢1) =0, and we recall

(6.24) 15161 < [Flor-

We also recall that from (6.11), for any A > 0, there exists yg = vu(A) € (0,1) such that the
following coupling property holds

(6.25) [Sfl6r < valflon 1 [ fllo < Alf]s,-
We fix A > K and we observe that the following alternative holds
(6.26) [fllo < Alfls,

or

(6.27) [£llo > Alflg,-

Case 1. Under condition (6.26), we use (6.25) and the first estimate in (L), and we deduce

ISFU = (851, + 8115 llo + BISS Il )
< yalflos + Bl + BEflg, = (8= 815 o

From our choice of § > 0 we have vy + SK = 1, and we conclude that (6.21) holds with « :=
B—49>0.

Case 2. Under condition (6.27), the first Lyapunov condition in (L) implies

~ ~ K
1S £l + 15 Fllo < Wfllx + — 1 Fllo-
Together with the non expansivity estimate (6.24), we get
[5f1, + BIS Sl + BISF o < [flsr + Bl Il + 6] llo,
and we conclude to (6.21) again. O

The subgeometric convergence result is a straightforward consequence of Proposition 6.7 and an
interpolation argument.

Proposition 6.8. Assume that S satisfies the hypotheses of Theorem 6.6. Then (6.17) and (6.18)
hold true with the same decay rate functions © and © given by (6.19) (up to a modification of the
constant ().
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Proof of Proposition 6.8.  We recall that we have already proven (6.21) and (6.22). From (6.21)
and the interpolation condition (I), we deduce

IS £l + AallSFll < Il + ExallS s

We observe next that from the very definition of the || - |1 norm
~ a ~ ~
ISFl + S 1SFlle = ZaS Sl Zx=1+rA e (1,2],
for some x > 0 and any A € (0, o), Ao > 0, and that from the very definition of the || - ||3 norm

abrllSflls < BEISS s,
for some B > 0. The three above estimates together imply

ZISF 1 < Il + BENISS -

Using the second estimate (6.22) and repeating the same proof, we have

Z>\n+1 |||§n+1f|”1 < |||§nf|”1 + Bg)\n+1|||f|||37

for any n > 0 and for any A,4+1 > 0. The discrete Gronwall lemma implies

(6.28) 157 £l < Anllfll + Y Arnén Bl flls, V=0,
k=1

where we have defined
Ap= [ ar, Axn=An/Ax = [ @, a:=23"
k=1 i=k+1
Observing that

~

t
Apm < e " Eiuh < R AM-A0) wigh  A(8) ::/ A, ds,
0

and s := \; if s € (i — 1,14], we immediately conclude that the first estimate (6.17) holds true. We
come back to the first inequality in (6.21) that we iterate and sum up in order to obtain

n

IS™fll +e > 15F Fllo < IS™/2 £l

k=[n/2]+1
for any n > 1. Together with the non expansion inequality
15" flos < [S*flgy SNS¥fllo, ¥n >k,
and the first estimate (6.17), we deduce
(n—[n/2] = 1)alS™ flg, < O(n/2)IlIf1ls,
which is nothing but (6.18). O

7. PARABOLIC EQUATIONS
In this part, we consider a general elliptic operator in divergence form
(7.1) Lf = 0i(ai;0;f) + bi0if + 0i(Bif) +cf, [ € Hy (),

where Q C R? is a bounded domain (i.e. an open and connected set) or Q2 = RY and we always
assume d > 3 (in order to simplify the discussions when using the Sobolev inequality). We also
always assume at least a boundedness and ellipticity condition on the (a;;) matrix, namely

(7.2) aij € L®(Q), I >0, V&€ € R a6 > v|E)?,

and some conditions on the coefficients b;, 8; and ¢ which will be described below.

We aim to establish the existence of (A1, f1,¢1) solution to the first eigentriplet problem
(7.3) MER, 0<fieH), Lfi=Mfi, 0<¢1€Hj, L1 =\,
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and the existence of some (constructive) rate function © such that the rescaled semigroup S

associated to the generator £ = £ — Ay satisfies

(7.4) IS(@)f = (f> 1) fill sy < OIS = (f, 1) full
for any t > 0 and any f € H, with H C Hy C L?.

7.1. Diffusion with rough coefficients in a bounded domain. In this section, we consider
the general elliptic operator in divergence form (7.1) in the case of a bounded and smooth enough
domain ¢ R? with general elliptic condition on ai; as formulated above. We further assume that

(7.5) bi,B; €L7(Q), ceL*Q), r>d

In that situation, the first eigentriplet problem (7.3) has been considered by Chicco in [106, 107]
and revisited in a slightly less general framework (all the coefficients belong to L) in [252], where
the conclusions (C2) are established. We explain with all details the existence proof by following
more or less the arguments presented in [252] stressing on the constructive way for obtaining
the estimates, and next we present a proof of the geometric part and the stability part by taking
advantage of the abstract material developed in the previous sections. It is worth emphasizing that
our proof of the uniqueness of the first eigenfunction significantly differs from the one presented in
[252] which is based on a dissipativity argument, probably related to the reverse Kato’s inequality
condition. The framework considered here is the usual generalized solutions or weak solutions
framework which goes back at least to Stampacchia [339, 340], but it is reminiscent of previous
contributions by Friedrichs [165, 166], Garding [173], De Giorgi [127], Nash [297], Morrey [289],
Moser [290, 291, 292], Ladyzhenskaya, Solonnikov, Ural’ceva [244, 242], Oleinik, Kruzhkov [303]
and many others. Lot of the functional arguments are picked up from the book of Gilbarg and
Trudinger, and more specifically from [179, Chapter 8], and also in recent notes by Kavian [230]
and Vasseur [349]. It is worth emphasizing that the present analysis does not apply directly to
elliptic operators in non divergence form, although this framework is considered in [252]. We expect
that all the results developed below can be generalized to a non divergence form framework, for
example the one developed in [47], but we do not follow this line of research in the present work.

The proof of (7.3) and (7.4) are straightforward consequences of the abstract results developed
in the previous sections once we have been able to check that the corresponding hypotheses are
fulfilled. In the sequel, we will then show how these hypotheses are met in the present context.

Condition (H1). We recall that a weak (or variational) solution to the elliptic equation
Lf=geH (), [eH)(Q),

is a function f € H} () such that

(7.6) De(f,w) = {g,w), Ywe Hy(9),

where the (negative) Dirichlet form D, is defined by
D/;(f, U)) = / (Clijajf + ﬁzf)azw + / (bzasz + wa),
Q Q
for any f,w € H}(Q). Most of the time, we will simply write

(7.7) (Lfw) = (g,w), Ywe Hy(9),

instead of (7.6). For the reader convenience, we repeat here some estimates picked up in [340]. For
A€ R and f € H}(Q), we start with

=050 = [asasor+ [(G-vosr+ [ 0-ar
> VR + VIV IR = 118 = bl IV Flle = Ve Iz + A1
1
> fVellie + IV IR = 518 = bFIEe = Ve I3 + MlFIIE-.
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using the Cauchy-Schwarz inequality and the Young inequality, and next

M
(A=DF8) = IfVelze+ IV + A= 3 = MY 113

v 1
+ZCQ||f||i2* - EHW = bl g_p>mfl3e — Iverle > fllie

v

v M
1 VEllze + ZIV AR + (= 5, = M) £

v 1
+(5Ca— 1B = WL szl — e Loy allzors) 112

using the Sobolev inequality (with associated constant Cq) and the Holder inequality. Choosing
M > 0 large enough in such a way that the last term is positive, and next x; > 0 large enough,
we deduce for instance that

(73) (A= D)1.0) 2 IS VE e + 5191 + 1132 A2 m.

Thanks to the Lax-Milgram theorem and the above coercivity estimate, we deduce that A — L is
invertible, and more precisely the mapping (A — £)~! : H=1 — H(Q) is well defined. We also
claim that A — £ enjoys a weak principle maximum, and more precisely

(7.9) feH;(Q), (A=L)f>0 imply f=>0.

Indeed, for such a function f € Hg (), we take w = f_ € H}(Q), as a test function, and elementary
Sobolev space calculus together with the previous estimate yields

< —l-vele = IVl = 1532 <o,

so that f_ =0 and f > 0. We thus deduce (A — £)~* : L2 — L2, and from J.-L. Lions theory
on parabolic equation (see for instance [251, Chapter 3]), we next deduce that £ is the generator
in L? of a positive semigroup S, so that (H1) holds. It is worth emphasizing at this point that
the semigroup S built thanks to Lions’s theory is defined by S(t)fo = f for any fy € L?, where
fe&:=0C(0,00); L) N LE ([0,00); HY) N HL ([0, 00); H~1) is the unique (variational) solution
to the equation

(7.10) (D). Tz = (o001 = | {09 )11, + DelF-)}s.

for any T"> 0 and g € £. Choosing g = f in the above equation, we classically compute

1 1 N
IO = 5503 = [ De(s.pas =0, vi>o,
which together with (7.8) implies

t . . . . ot
2 [ BV < (LU JOER LB [y s, vis o,

t Jo 2 b Jo

When fy € D(L), the RHS is bounded and there thus exists a sequence ¢, — 0 such that
|V f(tn)||z2 is bounded. That implies fo € H(2) and thus D(£) C H}(Q). Similarly, we may
consider the dual Dirichlet form D*(f,¢g) := D,(g, f) and build an associated positive semigroup
S* through Lions’s theory described above. More precisely S*(t)go = g for any ¢ > 0 and go € L?,
where g € £ is the unique (variational) solution to the equation

(9(t), f(t)) L2 = (90, F(0)) 2 = /0“{@]‘} 9 -1,y + D9, f)}ds,

for any ¢t > 0 and f € £. Now, we fix T > 0, gr € L? and we set g(t) := S*(T — t)gr, so that g is
a solution to the backward evolution equation
781‘(} - E*(L Q(T) =497,
with
L*g = 0j(ai;j0ig) — 0;(big) — Bi0ig + cg.



ON THE KREIN-RUTMAN THEOREM AND BEYOND 79

The variational formulation of this last problem is

(7.11) (97, f(T))r2 — (9(0), £(0)) 2 = /0 {(0cf: 9) 1.2 — D" (g, f)}ds,

for any f € £ Summing up (7.10) and (7.11) with f(t) := S(t)fo for fo € L* and g(t) :=
S*(T — t)gr for gr € L?, we deduce
(S(T)fo, g7)2 = (S™(T)gr: fo) L2

In other words, we have established that S* = (S,)*
semigroup S*.

Condition (H2). Let us consider a ball Br, R > 0, such that Bsg C Q and next the solution
(712) fo S H&(Q), (lil — ,C)fo = ]'BR7

which exists from the above discussion. We next recall some classical results. On the one hand,
from [339, Sec. 3 & Sec. 4] or [179, Thm. 8.15] (see also the original papers [127, 297, 290]), the
following global L*>° De Gorgi-Nash-Moser type estimate

and thus that L£* is the generator of the

(7.13) [ f+llL=) S If+lz2) + 9l L2
holds for any subsolution
feH (@), (\=L)f <gelL*Q).
The local estimate variant [179, Thm. 8.18] (or weak Harnack inequality)
(7.14) I fllLe(Bar) S lgi FHlgllorzy, Vpell,27/2),

also holds for a nonnegative supersolution
feEHYQ), f>0mBirCQ, (A-L)f>geL*),

from what one deduces that a strong maximum principle [179, Thm. 8.19] holds. More precisely,
under the additional one side pointwise bound

(7.15) c+divg <¢p or c—divb < ¢,
for some ¢ € R, we have that, for any f € H}(Q),
(7.16) Lf<0inQ, f>0inQ imply f=0or f>0a.e in .

When indeed f # 0, we may choose Byr C € such that ||f|/;1(,;) > 0 and thus infp, f > 0
from (7.14) (with g = 0) and because constants are supersolutions thanks to the first condition in
(7.15). In the case only the second condition holds in (7.15), the same argument implies that £*
satisfies the strong strong maximum principle and thus also £ thanks to Lemma 4.9. We conclude
that f is positive by a connexity argument. An alternative and less demanding proof is presented
in [106, Cor. 1] where (7.16) is established without the additionnal assumption (7.15).

On the other hand, the following Holder regularity estimate [339, Théoréme 7.1] and [179, Thm. 8.29]
(see also the original papers [127, 297, 290]) of De Gorgi-Nash-Moser type

(7.17) [fllce@) < CIA = L) fllL=

holds true for some o = a(a;;) € (0,1) and C > 0. These last two pieces of information together
and the fact that fy # 0 imply that there exists a constant # > 0 such that fo > 01p,,, and thus

Lfo> (k1 — 0" fo.
That is condition (i) in Lemma 2.4, so that condition (H2) holds thanks to Lemma 2.4. Presented
in that way, the above estimate is not really constructive, but the constant 6 := infz,, (k1 —L£) 115,

can also be considered as a geometric quantity associated to geometric properties of the operator
and the domain.

First constructive argument for (H2). In the case when L is self-adjoint, that corresponds to
the case a;; = a;; and b; + B; = 0, we classically know (that has been recalled in Section 2.3, see
(2.35)) that
L
SIS inf /{an-Vf+cf2},
o

1= n —_— = n:
fexi\{or |IfII2 reHd|Ifl2=1
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from what and the Sobolev imbedding, we get

A > inf vCo — lle—1e sarllpas)|| fl2ee — MY > —M,
fEHé7||f|\L2:l{( H = ”L 2)” HL2 }

by choosing M large enough. That gives an explicit lower bound on ;.

Second constructive argument for (H2). We give another constructive argument without
assuming any self-adjointness property. We rather assume

(718) (8sz — C)+ S Ml(Q), b; + Bi — 8ja¢j S Ml(Q)

We fix hg € CZ(2) such that co1p, < ho < colp,,,, with Bg, C Q and ||hol|r2 = 1. We next define
fo as the (positive) solution to

(7.19) fo€ Hy(Q), (k1 — L) fo = ho,
so that fo € C*(Q) from (7.13) and (7.17), and similarly
(7.20) fo € Hy(Bp), (k1 = L) o = ho,

so that fo € C%(Bs,) from (7.13) and (7.17). We observe that 0 < fo < fo thanks to the weak
maximum principle. We then compute

L=holl72 = | holwa—L)fo= [  folkr = £)ho < || folle=ll(r1 = £7)hollar
Bsp B2,
where the last term is finite because of the additional hypothesis (7.18). We conclude to a first
constructive lower bound || fol| L>=(Bs,) = €1 > 0. Because of the Holder continuity, we also have
||%|\L1(B2p) > ¢o with constructive constant ca = ca(c1, o, d) > 0. Thanks to (7.14) (with g = 0),

we obtain

fo > 1p,,, Biif/.QfO21B3p/2CwH||f0||L1(B3p/2)

> 1g,,,,CunllfollLr(s,,,.) = Cwrcacy  ho.

Because all the inequalities are constructive and proceeding as above, we deduce that condition (ii)
in Lemma 2.4 holds and thus also (H2) with constructive constant g := 1 — C,, ;¢35 ' co. Finally,
because of (k1 — L) fo = 0 on Q\ By, /5, we may apply the Harnack inequality [179, Cor. 8.21], and
we classically deduce there exist constructive constants C' > 0 and C, > 0 for any ¢ > 0 such that

(721) Cg]-wg < fO < Ca
with w, := {z € Q; §(z) > o} and 6(z) := d(x,IQ) is the distance to the boundary function.

We can also get a constructive argument for (H2) by asking that condition (i) in Lemma 2.4 holds.
We may for instance verify that the dual counterpart of the above constructive argument holds
when (c+ 9;3;)— € M* and b; + 3; + 0;aj; € M. More precisely, we establish in a similar way as
above that the solution to the problem

(7.22) do € HY(Q), (k1 — L*)po = ho,
satisfies
(7.23) Kopo < L%y < k1o,

for some constructive constants kg < k1. Similarly as above again, there exist constructive con-
stants C' > 0 and C, > 0 for any ¢ > 0 such that

(7.24) Cols, < ¢ < C.

Third constructive argument for (H2). We write
(7.25) Lf = ai;05f +bi0if +¢f,
with b; = b; +0;ja;;+ B; and ¢ := c+0;3;. We further assume Bi, ¢ € L°°. In that case, we may also

obtain an explicit lower bound on A; by proceeding in the following way. We define fo(x) := x(|z|)
with x € CHR1)NW>®(Ry), 19,175 < x < Ljo,1], X' < 0 0n [0,1], x(s) := n*(1—5)%/2 on [1,, 1],
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2

tn :=1—1/(2n), for some n > 1 to be chosen. As a consequence, X" = n? on [i,, 1], || < n on

[tn,1] and x > 1/2 on [0, t,]. Denoting s := |x|, we compute

Lo = aig {x"(5)sd; + X (5) =28} 1 ia) - (s) + ea)x (o).
For n large enough, we get
Lfy > n’v—m24—-nB—-C >0 on B:\B,,,
Lfo = —A{IX"ll= + X' (s)/sllz=} = BIXllL= — C = kox on B,,,

with A := ||a||pe(p,), B = ||B||Lm(31), C := ||é||L(B,) and ko € R_. As a conclusion, we have
again established condition (ii) in Lemma 2.4, so that condition (H2) holds.

Fourth constructive argument for (H2). We present a last situation when we are able to
prove a quantitative version of condition (H2). We assume that a € C°(Q), divB € L"/?, as
well as b; € L™ and ¢ € L™/? in the definition of (7.25). We define hy and fy as in the second
constructive argument for (H2), so that (7.18) holds. Choosing p € (1,2) defined by 1/p :=
1/r+1/2>2/r+ 1/2* we observe that

k1 fo — bi0ifo — éfo — holle < mallfollzz + 110ill- 1 foll L2 + 1€l Lrrall foll 2= + |l holl 2
S lhollze,

~

from equation (7.19) and the coercivity estimate (7.8). From the Calderon-Zygmond regularity
theory [85] or [179, Thm. 9.14], we also know that

(7.26) I follw2w @) S llaijdf; foll ooy
Writing a;; a}’j fo=r1fo— b;0; fo — ¢fo — ho and using the two above estimates, we deduce
(7.27) [ follwz1(0) < llhollL2@)-

On the other hand, from (7.7) and the Poincaré inequality, we have
1= [holl72 = {(51 — L) fo, ho) S IV follz2 ] Vo] 2.
Together with the estimate (7.27) and the Gagliardo-Niremberg inequality

1/2 ¢1/2

19 fle < 1D FIZE 1A,
we obtain a lower bound | fol[r~ > Cp > 0. We then conclude as in the second constructive
argument for (H2).
Condition (H3). Because of Rellich-Kondrachov theorem on the compact embedding Hi C L2,
the mapping (A — £)~! : L? — L? is compact for any A > k1. As a consequence, introducing the
splitting £ = A+ B with A := k1 — kg, kg € R arbitrary, the operator Rg(\) = (A +r1—rg—L) 7!
is bounded uniformly on A > kp and it is compact for any A > k. We deduce from Lemma 2.8-(2)
that (H3) holds for both the primal and the dual problems.

We may thus apply Theorem 2.21 and deduce the existence of a solution (A1, f1,¢1) to the first
eigentriplet problem

(7.28) MER, 0<fieHy, LA=Mf1, 0<¢1€HY, L = Ao,

where both equations must be understood in the variational sense as a consequence of the discussion
at the end of the proof of condition (H1).

Condition (H4). The strong maximum principle holds as already mentioned in the paragraph
dedicated to condition (H2). As a consequence and thanks to Theorem 4.13, we know that the
first eigentriplet problem (7.3) has a unique solution (A1, f1,¢1) which satisfies f1 > 0, ¢1 > 0,
N(L — X\1)* = Span(f;) and N(L* — \;)* = Span(¢y) for any k > 1.

Condition (H5). Consider f € D(£>) such that 0 < |f| € D(£*) and
L|f| = Re(signf)Lf,
so that multiplying both term of the equation by |f| and integrating, we have
Re(Lf, ) = (LIfL1F)-
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We next compute

Re(Lf,]) = - /Q ar Re(D; fOLF) + /Q (b — Be)Re(Fors) + /Q AfP,
and

LI = - /Q a3 F10ul ] + /Q (by — Br)Re(Fon ) + /Q fP.

where in the last equality, we have used that x| f| = ‘—}I?Re( fOrf). From the three above equations,

we deduce
/Q ax; (05111061 £ — Re(D; f0r F)] = 0.

Introducing the real and complex part decomposition f = u + iv, and similarly as in [231, Proof
of Theorem 5.1], we next compute

;| £ |0k f| — Re(9; fOx[)

= # [uv(Opud;v + pvdju) — u?0jvov — v26ju8ku}
= ﬁ(uajv — vju)(udRv — VoRU),

so that from the ellipticity condition on a, we have udyv — vdyu = 0 a.e. on . On the other
hand, from De Girogi-Nash-Moser regularity estimates (7.13) and (7.17), f has Holder regularity.
In particular both functions u and v are continuous. Because |f| # 0, one of the two function is not
identically vanishing, say for instance v # 0. There exists some points xy € €2 such that v(zg) # 0,
say for instance v(zg) > 0. Denoting by w the connected component of the set {x € Q; v(z) > 0}
containing xg, we have V(u/v) = 0 on w. Hence u = av on w for some a € R, which implies that
there exists o € S! such that f = o|f| on w. If w # Q, we would have |f| = 0 on dw N Q # 0,
which would be a contradiction with the fact that |f| > 0. We conclude that w = Q and thus that
f = o|f], which is nothing but the reverse Kato’s inequality condition (H5).

At this stage, we may use Theorem 5.16, in order to get the conclusion (C3) on the triviality of
the boundary punctual spectrum.

In order to go one step further and establish the asymptotic stability of f;, we may use the two
following approaches which are consequences respectively of Lemma 7.1 and Lemma 7.2.

Lemma 7.1. For any R > 0, the set
K:={feD(L);[f/I<R, [Lf]<R}

is strongly compact in Li (), where [g] := ||9HL§, .
1

Proof of Lemma 7.1. Consider f € K so that f € H}(Q2) and
0i(aij0; f) + b0 f + 0:(Bif) + cf = g € L*(Q).
From the renormalization theory of elliptic equations and the GRE trick (see for instance [269] and
the references therein) for any renormalizing function H € C?(R), there holds
H'"(u)fipraVu-Vu = div(agiV(H(u)f1)) — div(f1H(u)aVer)
+div((b+ B)H (u) frér) + gH' (u) frn,

with u := f/f1. Considering H € W2 the even (and convex) function such that H(0) = 0 and
H" := 1y, 5,41, s0 that in particular |[H'(s)| < 1, and integrating the previous equation, we deduce

v/ Vul2fin < /|g|f1¢1 < il o=R.
|ul€[n,n+1]

We proceed along the line of the proof of [62, Thm. 1]. For a fixed w CC Q, we define B,, := {z €
w; |u(z)| € [n,n+1]}. Using that f1 > 0 and ¢; > 0, there exists a constructive constant C,, g > 0
such that

/ |Vul> < C?, Vn>0.

n
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From the Cauchy-Schwarz inequality, we have

(7.29) / |Vu| < C,meas(B,)?, V¥n>0.

n

On the other hand, denoting by 1* := d/(d — 1) the Sobolev exponent, we have

/ |Vu|§Cw7R(n*1*/ lu 1*)1/2.

n

Summing up and using the Cauchy-Schwarz inequality again, we have

A\ 1/ A\ 1/
;/an < cw,R(gnl)”(;/Bnml)”
< Con(Xn ) 2
n>1

Together with (7.29) for n = 0, we deduce
IVullzr ) < CL (1 + VullL/2)).
Because 1*/2 < 3/4 < 1 (recall that d > 3), we can kill the last term, and we obtain the estimate
IV fllerwy <C", VfeK,

for some constant C" := C[] p > 0. We classically conclude thanks to the Rellich-Kondrachov
theorem. O

From the above lemma and Theorem 5.23, we deduce that S(t)f — (f, ¢1)f1 in the L<li>1 norm sense
as t — oo for any f € L?(Q). The alternative approach is based on the following result.

Lemma 7.2. Setting k := ko — 1, there exist A,a, R > 0 such that

(1) sup.ea, (NIR(2)||z(L2:m1) +5UP2en,\Br Re() 21201y < 00,
(ii) (L) N A, C Xy4(L) N Bg,
where B:= L — A and z = x + iy, z,y € R.

Proof of Lemma 7.2. Let us consider an a priori solution to the stationary problem
feHOla Z:m+iy€ARa (‘C+Z)f:g€L2

This one satisfies

- [@rvsp- i+ [b-vii+erar?|=| [ of
Using the elliptic condition, the Cauchy-Schwarz inequality and triangular inequalities, we get

|[od| = |[avsviserar+amlrP|=| [0-viF =1 VF+ o) s
v ly|
> SIVAL:+ (5 — o) I flZe = 10+ 18D SN2V £l 22 = V= fllZe

Using next similar arguments and those introduced in the paragraph dedicated to condition (H1)
and with similar definition for the constant M := M (b, 8, ¢) > 0, we deduce

[or] = o —aisie+ Z1vsize

Defining the sectorial set

IV

V

S={z=a+iyeC; |yl >2z_+ M},

we have established the a priori estimates
| -1/2
1l < (% =z = 2) " gllpe,

_ —1/4
Vol < 22U e ) g
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for any z € S. We classically and immediately deduce that p(£) D S and the resolvent estimate
IRe() (L2, m2) < (‘—g‘ —r_ — M)_l/2 + (‘—g‘ —r_ — M)_1/4 for any z € S, and in particular the
estimate (i) holds true.

On the other hand, because £ has compact resolvent as established just above or during the proof
of (H3) and using the Fredholm alternative, we have ¥(£) = X4(£) and X(£) N A, is finite for
any k € R, what is nothing but the property (ii). O

From the above lemma and Theorem 5.30 or Theorem 5.32, we deduce that S(t)f — (f,¢1)f1 in
the L? norm sense as t — oo for any f € L?(Q) with exponential rate.

We may summarize our analysis in the following result.

Theorem 7.3. Consider the elliptic operator (7.1) in a bounded domain and assume that the
coefficients satisfy (7.2), (7.5) and (7.18). Then the conclusions (C3) holds as well as (E2) in
Lél norm and (E31) in L? with non constructive rate.

It is however worth emphasizing again that the above approach is definitively not constructive. We
propose now an alternative approach which is constructive.

Quantitative estimate of stability.

Using the Doblin-Harris type approach presented in Section 6, we are able to establish a rate
of convergence to the principal dynamic, at least in a regular framework. We thus make some
regularity assumptions on €2 and additional regularity assumptions on the coefficients.

- For the domain, we assume that there exists a constant rq > 0 such that for any = € Q) there
is y € Q such that x € B(y,rq) C Q, in particular, for any = € 9Q there is y € Q such that
x € OB(y,rq), B(y,rq) C Q. We also assume that Q is C1L.

- For the coefficients, we assume a;; € C(Q), b, & € L®(Q2), where b; and ¢ are defined in (7.25).

Theorem 7.4. Consider the elliptic operator (7.1) in a bounded domain and assume that the
assumptions of Theorem 7.3 hold together with the above additional regularity assumptions on the
coefficients and the boundary. Then the conclusion (E31) holds with constructive exponential rate.

The proof of Theorem 7.4 follows from Theorem 6.3. We split the proof into several steps.

- Step 1. Regularity estimates. Thanks to De Giorgi-Nash-Moser regularity technique for
parabolic equations developed for instance in [243] (in Russian), [346, Thm. 1.3, Thm. 2.2] as well
as more recently in [230, Lem. 2.7] and [191, Thm. 1.1], there exists a = a(a;;) € (0,1) and for
any Ty > Tp > 0 and any ¢ € (0, 1), there exist constructive constants C; = C;(|| f||zer2, T, 7,7)
such that any solution f € L>°(0, 00; L2(f2)) to the parabolic equation d;f = Lf satisfies

(7.30) ILf Il oo (170, 10)x ) < Ch, ”f”CQ([TmTl]XwL,) < Oy,

with w, 1= {z € Q; d(z,9Q) > r}. More precisely, in order to establish the second estimate in (7.30)
with constructive constant, one may observe that the proof of [191, Prop. 2.4] may be repeated in
order to get that solutions to the parabolic equation considered in the present framework fall into
De Giorgi classes as defined in [191, Definition 2.3], and thus [191, Thm. 1.1] applies.

On the other hand, in this context and because of the regularity assumptions, we may establish
a more accurate regularity estimate. More precisely, by gathering the Sobolev inequality and the
Calderon-Zygmond estimate (7.26), we obtain the classical constructive regularity estimate

(7.31) llullcory S lullwzatiy S (k1 — L)ul|pariq),

see for instance Theorem 7.10, Theorem 7.25 and Lemma 9.17 in [179]. Iterating the same kind of
arguments, we get

(7.32) ullcoa oy < Cll(k1 — L£)*ul| L2,
with constructive constants C' and k.

- Step 2. Harnack estimate. We claim that for any 7" > ¢y > 0 and ¢ > 0, there exist a constant
Cp > 0 such that, for any fy € L2, the associated solution f := S, fy satisfies

(7.33) sup fi, < Cyinf fr.

w
We
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The proof mainly follows form Aronson-Serrin [25] (see also [292, 222, 224, 240, 223, 345, 346, 241]
for similar results). First, we know from [25, Thm. 3| that

7.34 max f < C'min f,
( ) Q* (P)f Qp )f

for any p > 0, t > 0 such that Q*(3p) C (0,00) x €, where Q(p) := [t — p*,t] x C(p), Q*(p) :=
[t —8p?,t —Tp?] x C(p) and C(p) is a cube with length p. To avoid technical issues we assume that
w, is convex. In other case, the geometrical condition given above implies that there is N € Z
such that any two points x,y € € can be connected by a polygonal path of at most N segments,
and we can argue as follows for any segment. We define D := sup, ,cq d(a,b) the diameter of Q
and we choose 1’ < ¢/7 such that

(L Sl )< T —to.

For any z,y € w,, we also define N, = L@J Since w, is convex, ' < p/7, we have that
the family of cubes {C(z;,2r")}i=0,n, of center z; and length 27’ for z; = = + w satisfy that
C(z;,6r") € Q and C(x4,2r") N C(xit1,2r") # O for any i = 0,..., N.. As a consequence, we can
apply Aronson-Serrin estimate (7.34) for each cube to obtain

max f;, < Cov min fi
C(z;,2r") ’ " C(zi,2r") i

with ¢; = to + 7i(2r")2. Taking y; € C(z;,2r") N C(xit1,2r"), we deduce

max C. min < Oy ft, ;) < Cov  max <2,
Claconn Jt; < Cop c(xi,zr')ft”l = Cop ft,+1(yz) = Cop C(ri+1,2r’)ft1+1 s Ggp c( o 2w)

ftz+2
By induction, we obtain

fro(x )<C(max T < G55 . mm ftNC <cys Jin. (W),

(z N,

with tny, = to + TN.r"? < T. Note that in any case the constant Cs,s is the same since it only
depends on the length 27’ and the coefficient of the equation. We have thus established (7.33) with

1
Crr = CLardt,
On the other hand, we state an improved version of the already mentioned stationary Harnack
inequality. Because of the interior ball condition the Hopf Lemma (see for instance the proof of

[179, Lem. 3.4]) claims that for any g € (0,7n/2] there exists a constructive constant o > 0 such
that if u € W2P(Q), p > d, is such that

u>1y,, (k1—L)u>0,
then u satisfies
(7.35) u>x(z) = e (20=8()* _ g=al20)* o We-

Let us give two applications of the above sharp regularity and positivity estimates. First, recalling
(7.24) and using (7.31) and (7.35), we deduce that there exist two constructive constants ¢; € (0, 00)
such that

(736) 605 S gf)o S 015 on (.

Consider now f; € H} () the positive first eigenfunction with normalization || fi||zz = 1. Using
the estimate of regularity (7.32) on the iterated equation (k1 — £)*f1 = (k1 — A\1)¥ f1, we have

I fillo=) < [Ifillcora) < Ci,

for some constructive constant C; € (0,00). Next using the elementary inequality

1=/fo§ |l il < Callfullons

we deduce
|Q|Sggpf1 > /w i =il —/wc fi
1Oy~ Cilut] > 1/(20),

vV
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by choosing ¢ € (0,7q/2) small enough. Then, from the Harnack inequality [179, Cor. 8.21], we
deduce

inf f1 > Crsup f1 > Cr(2C1]Q]) 1.

We wy
Finally, from the above Hopf lemma and the above Lipschitz continuity, we have established
(7.37) cod < fi <e1d on Q,

for two constructive constants ¢; € (0,00). The same arguments on the normalized and positive
first dual eigenfunction ¢, lead to the same estimate

(738) 605 < QZ51 < 015 on {.
In particular, for any such g € (0,rq/2), we have
(7.39) (91,10,) = 70,

with constructive constant r,, what is nothing but condition (6.9) in the Harris theorem that we
will use below.

- Step 3. Splitting of £. We introduce the splitting £ = A + B, with Af = .Z1.,f, # >0
large enough and p > 0 small enough that we fix just below. Using (7.8), we observe that

(Bf.fliz = (Lf.F)pe =M+t | f

IN

v C
= IV AL + (s = ) f |2 + AN N I < 0l £,

by choosing first .# > k1 — kg and next ¢ > 0 small enough in order to be able to throw away the
last term using the negative first term and the Sobolev inequality. We deduce
(7.40) Sp(t) : L? — L? with bound O(e°?).

On the other hand, denoting f; := S, (t)f for f € L?(Q) and recalling that ¢y defined by (7.22)
satisfies (7.23), we have

%/|ft|¢o S/£|ft|¢0 S/|ft|/3*¢0 Sfil/|ft|¢0,

so that

(7.41) 1400 < e [ It

Arguing in the same way for Sz and using (7.36), we have established
(7.42) Sc(t),Sp(t) : Ly — Ly with bound O(e"?).

For a solution to the evolution equation 0;f = Cf, C = L or C = B, we also classically compute

G [ro0 = 2 [enre
2 [(vf-avhen+ [ Fieon

Thanks to (7.23) again, we have

d
(7.43) G [ o< [IViPousm [ Fon,
from what we deduce
Se(t), Sa(t) : L*(6) — L?(6) with bound O(e"1*/?).
In the sequel, we will need the following version of Nash inequality.
Lemma 7.5 (weighted Nash inequality). There exists a constructive constant C such that
d+1
2

(7.44) 1z < ONIV Iy IFITE, V€ HYG).
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Proof of Lemma 7.5. For & > 0, we define
1

@)= [ i o) =B = [
e B(z,e) B(x,e)
and B(z,¢) := {y € ; |z —y| < e}. It is worth emphasizing that
(7.45) el <5 () <e?, Ve>0.
For f € H'(4), we compute

1
If = FellZz(s)

ol 8:(x)

/ (F(0) — () 6(y)dy| 5(x)dz
B(z,e)

< [ [ vl - £ £ s(0)dady

< & /01/2/9/9 |Vf((1—t)x+ty)|2(i((?’g)&x)dxdydt
te? /1 :2 /Q /Q V(1 = D)+ ty)|? i((@g)m)dxdydt

< v | [ 196 S = ar

v [ [ ] e B s

where for the last inequality we have used the first inequality in (7.45), the fact that §(z) < 26(z)
when 0 < ¢ < 1/2 and the fact that §(y) < 2§(z) when 1/2 < ¢t < 1. Using the second inequality
n (7.45), we straightforwardly obtain

1f = fell o) < CiellVFlTae, Ye>0,

for a constant C; > 0. On the other hand, we also observe that

Cy
[ fellLe < e (FAIFFS
Writing now

=i =)+ ffe

and using the above two estimates, we deduce
1£172 < Wfllez If = Felloe + IF oy I fellzee

||f||L2 Cret?|Vfllpz + Coe™ I fI7,

Ch -
< ||f||L2+ elIVIZz + Coe™HIFIIT,,

and we obtain the weighted Nash inequality (7.46) by choosing e := (|| f[|2 1/||Vf||2 )1/ “42) O
Defining

A

U :/|ft|¢0dxe—2nt’ v ::/ft2¢0dxe—2nt’

with k := k14, coming back to (7.43) and using (7.36), the Nash inequality (7.46) and the estimate
(7.41), we get

IN

V' (t) —2vcy / |V fe|26e =211

d+2

2 —2kt) d+1
o o dE2 (||ft||L2(a)e )
0N 1

ot AL
(17013 2+)

IN
[
N

IN
|
Q
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d+2
—25 T 1425 -
with C:=2vCy e, "4e;, ¥ and a:=1/(d + 1). Integrating in time, we deduce

Oél/a U(O)Q
U() < Cl/a tl/a”’

d+2 2

vt > 0.

We have thus established that there exist constructive constants X > 0 and x > 0 such that

Kt

e
(7.46) 1Sc(t) fllz2(po) < Kw“fnywo), V f e L' (¢o).

From that last result, the estimates (7.36) and the properties of .4, we deduce that for N > 1 large
enough

(7.47) (SgA)*N) L LY(6) — L2(5) with bound O(e").
We refer to [190, Prop. 3.9], [276, Prop. 2.5] and [231, Lem. 2.4] for details.
- Step 4. Lyapunov condition. We may next write

55 =V 4+ Wk g/;,
with
Vi=Sg+-+ (Sp AN V= (55A) N
On the one hand, using that A : L? — L? is bounded and (7.40), we deduce that
V:L?* — L? with bound O(e"),

for any x € (ko — k1,0). On the other hand, using that A : L2 — L? is bounded as well as (7.42)
for Sg, (7.47), (7.38), (7.36) and (7.40), we deduce that

W Sp Lél — L?, with bound (’)(e’”),

for any k' > K1 — ko. We may thus fix t = T large enough such that the following Lyapunov
inequality holds

= 1
(7.48) 1T fllz < 5l Fllee + Mr| fllzy

which is nothing but (6.7) in the hypothesis of the Harris theorem.
- Step 5. Harris condition Let A > 0 and consider 0 < fo € L? such that || fo|2 < A{fo, ¢o)-

We set f, := e MtS (1) fo. From the first inequality in (7.23), we have
d ~ ~ ~
£<fta¢0> = <ft7 (‘C - )\1)¢0> > _()\1 - ﬁ0)<ft7¢0>7
and then, thanks to Gronwall lemma again, we obtain,

(fer o) > e= Qim0 (£ o).

This estimate, together with the previous step, shows that

Fu@uds = [ Fu@yonds = [ Fy(@)onds

We

> e~ 7m0l fo o) — | fuolll ol olepl 2
> e (mmrolto( fo o) — e(F1 RO foll | ol ool w2
> (et — A gy el ) (fo, o).

Choosing ¢ > 0 small enough, we get

- 1
Jto(@)Podr > ~(fo, Po), ~v:= 56_(’\1_'{0)%-

As a consequence, there is x{g € w, such that
Fulel) = o [ F@de 2 i [ Ry @onds = ol (fo.00).
|w9| w, |Q|01Q we |Q|C]_Q
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On the other hand, from the Harnack inequality (7.33) established in Step 2, we know that for any
T > tg, there exits Cg such that

fio(al,) < sup fi, < Cprinf fr.
The two last estimates together with (7.38) and (7.36) imply the Harris type estimate
(749) fT - 5;(I‘l)f() Z gA<.f0;¢1>7

<oy
CulQcie

- Step 6. Conclusion. Because of the constructive estimates (7.39), (7.48) and (7.49), we may
apply the Harris type Theorem 6.3, and we conclude to the exponential stability (E3;) in the norm
of L?(£2) with constructive constants.

with g4 := 1,,,, which is nothing but (6.8) in Harris theorem.

7.2. Diffusion in R? with strong potential confinement. We consider in this section the
elliptic operator

(7.50) Lf:=Af+b-Vf+cf, feHY(RY,
with b € L (R?), ¢ € L2 (RY) and a confinement condition that we impose through the properties

loc loc
of the potential function ¢, which is roughly speaking ¢ — —oo as |z| — co. More precisely, we

assume
(7.51) oir € LY?, meas{o; > K} < 0o, YK <0,

with either o1 := ¢ + |b|?/k for some constant k € (0,4) or either oy := ¢ + divb/2. When we
assume that
c~—|z[" and b~ zlz/’"t as |z| = oo,

the condition (7.51) for o; is reached when v > max(0,25) or v = 28 > 0 and some conditions on
the constants involved in the behavior of the coefficients. In that context, the condition (7.51) for
o9 is more general since it is reached when v > max(0,3—1) or v = f—1 > 0 and some conditions
on the constants involved in the behavior of the coeflicients.

A similar framework is considered in [252] and for the reader convenance we just briefly check that
it falls in the framework developed before by slightly modifying the arguments presented in the
previous section. The integrability conditions on b and ¢ may be probably weaken. For the sake
of clarity we do not follow this line of research but rather focus on the new arguments which are

necessary in order to deal with the unbounded domain Q = R?.

Condition (H1). The definition of the operator is still made through the formula (7.7). Under
assumption (7.51) on o1, denoting 6; := 1 — k/4 and proceeding exactly as in the previous section
during the proof of (7.8), for any f € H'(R%) and A € R, we have

-orn = [ Ve [ revre [ o-or

0, /}R |Vf|2+/Rd()\_01)f27

by using successively the Cauchy-Schwarz inequality and the Young inequality. On the other hand,
under assumption (7.51) on o2, denoting 5 := 1, for any f € H*(R?) and \ € R, we write

C=0r0) = o[ 9+ [ 0=,

by performing one integration by part in the previous equation. In both cases, for and any M > 0,
proceeding again as in the previous section during the proof of (7.8), and denoting from now on
o =0;, 0 =0; we have

vV

0 0
(=80 = 21913+ IVafln + O = MIFIZe + (55— loozarll o) 112

by using the Sobolev inequality (with associated constant Cg) and the Holder inequality. Taking
M > 0 large enough, and next x; > 0 large enough, we finally obtain

(75) (= D)1,1) 2 SIVTIR + Vo=l + e YA 5.
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With the same arguments as in the previous section, we conclude that £ is the generator in L? of
a positive semigroup Sg, so that (H1) holds.

Condition (H2). We may for instance use the third constructive argument (which is local)
presented in section 7.1 and we establish

3 fo € H\{0}, fo =0, 3k €R,  Lfo 2 ofo.
That is condition (ii) in Lemma 2.4, so that condition (H2) holds.

Condition (H3). We introduce again the splitting £ = A+ B with A := k1 — ko + 1, so that
from (7.52), the operator A — B = (A — ko + 1) + (k1 — £) is invertible for any X\ > kp := ko — 1.
We claim that the operator (A—B)~! is compact for any A > kg. For that purpose, let us consider
a sequence (fy,) such that (A — B) f,, is bounded in L? and we have to prove that (f,) is relatively
strongly compact. When condition (7.51) holds and because of the estimate (7.52) and the very
definition of B, we have

0
(7.53) §|\an|\iz + Vo= fallZz + I fallZz < C,

for some constant C' € R;. Because of the Rellich-Kondrachov theorem, we just have to show that

lim sup f2=o.
R—oo p B

But that last convergence may be established using the assumption (7.51) in the following way.

We write
#- g 2
BS, Ben{o>K} Ben{o<K}

1fall -2 [meas(Bg N {o > K})]

v

A

1
+ = U-ffw
K|

for any K < 0, by using the Holder inequality. Using next the Sobolev inequality, the estimate
(7.53) and the assumption (7.51), we deduce

1
lim sup f2 < limsup Ii(n<f0{[meas(B§ N{oc > K})]% + m} =0,

R—oo B% R— o0

and the claim is proved. As a consequence, we may apply Lemma 2.8-(2) and we deduce that (H3)
holds for both the primal and the dual problems.

Condition (H4). Asin [231, Prop. 5.4], we establish the strong maximum principle by exhibiting
a barrier function and using Lemma 4.11. An alternative argument should be to adapt the proof
based on the Harnack inequality as presented in the previous section. Let us then consider f €
D(£F) N X \{0} such that (A — £)f > 0 with k large enough (k > d/2 must be suitable) and
A > A1 large enough but fixed (A > k; is suitable). Using a very classically bootstrap argument
based on iterated application of the Calderon-Zygmond elliptic regularity theorem and the Morrey
estimate, we have f € C(RY). By assumption, there thus exist zo € R¢, and two constants 7,7 > 0
such that f > 7 on B(z,r) and we take choose zp = 0 in order to simplify the notations. We next
fix R > r and we observe that the function

g(x) == m(g0(|z]) — 90(R)),  go(s) := exp(or?/2 — 05?/2),
satisfies
(T)" (A = L)g (A = ¢)(g0 = 9o(R)) + (do — bz — 0%r%) go
(Al + llell e (Bgr)) +o(d+1[b- || Lo (BR)) — o gy <0
on O := B(0, R)\B(0,r) for 0 > 0 large enough. We next fix 7* such that g = 7 on 9B(zo,r). We
also observe that from (7.52), A — £ is coercive on O, in the sense that
Vhe Hy(O) (A= L)hh)rz0) 2 [hllz20)-

In particular, A — L satisfies the weak maximum principle as explained in the proof of (7.9).
Arguing as in the proof of Lemma 4.11, we deduce that f > ¢g > 0 on O, what we also see directly
by observing that h := (g — f)+ € H}(O), (A — L)h < 0 and using that the weak maximum

IN
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principle implies h < 0, thus A~ = 0 and finally f > ¢g. Because R > r can be chosen arbitrarily
large, we conclude with f > 0 on R,

Condition (H5). The reverse Kato’s inequality condition is proved by using local arguments, so
that it holds for the same reasons as in the previous section. Similarly, because the argument are
local, the conclusion of Lemma 7.1 holds here.

As a consequence, using Theorem 2.21, Theorem 4.13, Theorem 5.16 and Theorem 5.23, we may
summarize our analysis in the following result.

Theorem 7.6. Consider the elliptic operator (7.50) in the whole space and assume that the coef-
ficients satisfy (7.51). Then the conclusions (C3) holds as well as (E2) in L} .

We do not present an exponential constructive estimate, which we believe is possible to prove, but
would require significantly more development.

7.3. Diffusion in R? with weak potential confinement. We consider in this section the same
elliptic operator (7.50) with now a weak confinement condition assuming that ¢ converges to a
constant. With no loss of generality, we may assume ¢ — 0. More precisely, we consider the elliptic
operator

(7.54) Lf:=Af+b-Vf+rcf,

with ¢ € Cp(RY), b € Cp(RY) and r € R, a parameter. When not necessary in the discussion we
will take r = 1. The associated first eigenvalue problem in such a situation has been studied in
[252, 8th and 9th courses] to which we refer for more details. We define

A=A\ (r) := inf{x € R; (A — L£)"! well defined and positive for any \ > «}.

Proceeding exactly as in the proof of (H1) in the preceding section, we see that the operator A — £
is invertible for any A > ||c4 ||z, and then its inverse is positive. Because the proof of (H2) in the
preceding section also applies here, we deduce that the infimum \; of the set Z of real resolvent
values is well defined with A\; € (ko, k1), for some constructive constants x; € R.
We split now the discussion into two cases.
Case 1. We start considering the case b = 0. In that case, £ is self-adjoint so that A; is also
characterized by
A= _sup &(f),
£l 2=1
with
o) = eh. gy =r [ et [ 1952,
We make the following elementary observations :
e We claim that \; > 0. Taking f,,(z) := n=%?u(x/n) for some function u € H*(R?), ||ulz> = 1,

we compute
J1vap = [ regi- [ vep?
Br B¢

R

1
s / IVul? + [[rel s / u + lrell gz,
n BR/

n

_E(fn)

for any R > 0, so that
-\ <limsup(—&(f,)) <O0.

e We claim that A\; = 0 when ¢ < 0. In that case, we have £(f) < 0 for any f € H'(R?), and we
deduce the reverse inequality A; < 0. In particular, as a function \; = A1 (r) of r > 0, we have
A1(0) = 0. We also claim that A (r) — oo as r — 0o when ¢, #Z 0. We may indeed fix f € H'(R?),
IfllLz = 1, supp f C supp ¢4, and we compute

E(f):r/DQdc+f2—/|Vf|2—>oo, as 1 — oo.

e We finally observe that A\; : Ry — Ry is convex since it is defined as the supremum of linear
functions r — E(f) for any fixed f € H*(R?). As a consequence, we have the following alternative:
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- )\1 = 0;
- 3rg €0, 00) such that A1 (r) =0 for r < rg and A1 (r) > 0 for r > rg.
Concerning the value of ro, it may happen that ro > 0, and that is the case when ¢ € L2 because
of the Sobolev inequality, or that ro = 0, and that is the case for instance when ¢ > 0, ¢(z) = ||™™
for x € Bf, m € (0,2), R > 0. To prove that last claim, we may take the same sequence (f,) as
above, and we compute
/s

E(fn)

v

Pl 2 / IV f P

c
R

1
n—m |x|7mu2 - ﬁ / |VU|2de > 0,

for n large enough (whatever is the value of r > 0).

About condition (H3). It is established in [252] that when A\ = 0, the condition (H3) is not
satisfied and there does not exist a first eigenfunction f; € L?(R?) to the operator £ defined by
(7.54). We refer to [252, 8th course] for a proof of that result. On the other hand, we claim that
the condition (H3) is satisfied when A; > 0. Consider indeed three sequences (A,) of R, (f,) of
HY(R?) and (e,,) of L2(RY) such that (A, — £)fn = €n, eny fn = 0, ||fallzz = 1, for any n > 1,
An — A1 and &, — 0in L? as n — oo. We then have

)\n _g(fn) = <()\n _E)fnafn> = <En7fn> — 07

as n — 0o. By definition of £ and boundedness of ¢, we see that (f,,) is bounded in H!. As a
consequence, up to the extraction of a subsequence, we have f,, — f1 > 0 in L2 _ and thus next
(A — L) f1 = 0 in the variational sense and

/ ef? / ef?. |V fillze < lminf [V, oz,

where we have used the dominated convergence theorem of Lebesgue and the fact that ¢ — 0 at
infinity in order to get the first convergence. We finally deduce

E(f1) = limsup E(fn) = A1 > 0,

so that f; # 0, and the condition (H3) is verified.

As a conclusion, for a self-adjoint operator, condition (H3) is automatically fulfilled by its adjoint
and the conditions (H4) and (H5) have been proved in a general situation, including the present
framework. The same conclusions of existence, uniqueness and asymptotic stability of the first
eigentriplet solution (A1, f1,¢1) as in section 7.2 hold true when A; > 0.

Case 2. We consider the general case b € Cy(R?).

e We claim that A\; > 0. Adapting the second constructive argument in the proof of (H2) in
Section 7.1, we consider x € C}(R4) N W°°(R,) such that 1o /9 < x < 1p,1), X' < 0 on [0,1],
x(8) := (1 —s)?/2 on [, 1] with n € (1/2,1) large enough in such a way that

(7.55) X"(s) +(d=1)xX'(s)/s 2 1/2, Vs€(n1),

and define fo(x) := x(|z—x0|/n) for |z¢| large enough to be chosen later. We have supp fo C By, (o)
for any n > 1 and we compute

L) = 2 X (0/m) + T /) + (e -5 (/) + (/)

where y = — x¢ and r = |y|. On By, (z0), we have

sup [0 =[x/l sup |c|.

IX'le  d=1yx'(r) X[ o
Lfol®) 2 - n2  n2? H r Hoo_ n

B (zo) B (z0)
On By, (z0) \ Byn(zo), thanks to (7.55), we have
L XM
> _— A= - .
Lfo(w) > 5oy~ U= qup [p] ~ xlloe sup I

By (o) Bn(z0)
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Let now fix € > 0 and choose first n large enough so that

//OO d—1 /
Wl A=)
n n T o]

2 (0.m)

Then, using that b, c € Cp(R?), we can take |xo| large enough so that

Wl o g
- sup [b] — [xlls sup [c] = —5 inf x
" Ba(xo) B (z0) 2 (0.m)
and /
1
X lloe sup [bf + sup |cf < -—.
" Bu(ao) By () 2n

Gathering the above inequalities, we obtain
ﬁfO 2 _8f07

and the condition (H2) is verified with k9 = —e. Because € > 0 can be choose arbitrarily small,
we conclude with Ay > 0.
e We claim that Ay = 0 when o2 < 0. Indeed, we have already seen that

wrpy==[ 19k [ o,

d 2
lisefIP =20cs.f) <o.

This ensures that (H1) is verified with k3 = 0 and so A\; < 0.

e We claim that A; > 0 when ¢y # 0 and r > 0 is large enough. For simplifying notations
and up to translation and dilatation, we may reduce to the case ¢ > colp(g,1) with cg > 0.
Adapting the second constructive argument in the proof of (H2) in Section 7.1, we consider
X € Cr(Ry) NW2(Ry), Lo,1/2) < X < Ljo,13, suppx = [0,1], x(1) = 1, ¥’ < 0 on [0,1] and we
set fo(z) := x(Jz|). We compute

Lfo=x"(lz[) +x'(|z[)((d = 1)/|z] + b~ &) + re(z)x(|2]).
On the one hand, we fix n € (1/2,1), 1 — 7 small enough, in such a way that

||XI||L°°(n,1)(2(d - 1) + ||b||L°°) < 1/47 1/2 < ||X”||L°°(n,1)7

from which we deduce that

and thus ) )
Lfo=7=7fo on B(0,n)°.

On the other hand, we fix » > 0, large enough, in such a way that
1 .
X"l + X [zoe (2(d = 1) + [[bll=) < 5(r) := Freo Inf X

and thus

Lfo > r(r) 2 k(r)fo on  B(0,n).
As a conclusion, we have established that condition (ii) in the statement Lemma 2.4 holds with
ko := min(1/4, k(r)), and that ends the constructive proof of condition (H2) by using Lemma 2.4.
That implies in particular the claim since then A\; > k¢ > 0.
e We finally claim that (H3) holds when A; > 0. To see that, we consider again three sequences
(An) of R, (f,) of H'(R?) and (e,,) of L2(R%) such that (A, — £)fn = €n, €ny fn >0, [ fullzz = 1,

for any n > 1, A\, \y A\; and €,, — 0 in L? as n — oco. As a consequence, we have
An + / |an|2 - /fnb “Vfn — /cfﬁ = (M = L) fn, fn) = (en, fu) = 0,

as n — 0o. Using the boundedness of ¢, b and \,, we see that (f,,) is bounded in H'. As a
consequence, up to the extraction of a subsequence, we have f,, — fi > 0 in L? . We assume by
contradiction that f; = 0. We deduce that

/Cfg—)O, /f71b'vf71_>07
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where we have used the dominated convergence theorem of Lebesgue and the fact that b,c — 0 at
infinity. We thus obtain

o<A1sxn+/|an|2:/fnb-an+/cf,3+<sn,fn>ﬁo,

and our contradiction. So that f; # 0, and the condition (H3) is verified.

For the dual problem, from the above analysis, we know that there exist two sequences (¢,) of
HY(R?), (g,) of L2(R?) such that (A, — L*)¢n = €n, €n,dn > 0 and ¢z = 1, for any n > 1,
and €, — 0 in L? as n — oco. But we face the same situation as previously, since again

An + / |V¢n|2 - /(bnb ' qu)n - /C(bi = ((/\n - L*)¢7u¢71) = (57u¢n) — 0,

and thus the same conclusion, namely ¢,, — ¢, with ¢; € H*(R?), ¢1 > 0, ¢ # 0.

Conclusion. The conditions (H4) and (H5) have been proved in a general situation, including
the present framework. The same conclusions as in section 7.2 hold true when r > 0 is large enough
(and thus \; > 0).

7.4. Diffusion in R? with drift confinement. We now consider the elliptic operator
Lf=Af4+b-Vf+cf,

with a drift confinement as it is the case for the Fokker-Planck operator. More precisely, and for
the sake of simplicity, we assume here

(7.56) b= VU, Ulz)= %@;w, v>0.

When v = 2 and ¢ = z, that operator corresponds to the classical harmonic Fokker-Planck operator
which is known to be related to the standard Poincaré inequality and to the standard log-Sobolev
inequality, see [29, 26, 343] or more recently [27, 231] and the references therein. When ¢ = divb,
the operator £ is on divergence form and £*1 = 0, so that (0,1) € R x L>(R%) is a solution
to the dual first eigenvalue problem. Existence of stationary solution f; (which is also the first
eigenfunction) and its stability have been widely studied. We refer for instance to [344, 332, 171, 28]
as well as to [231, 274, 190] which techniques will be adapted here.

In the present situation, we impose that the contribution of ¢ has lower influence at the infinity
that the drift term b and we assume

(7.57) ce LE (RY, 3Cy,Ry >0, Va e B, le(z)] = o(|x|2(771)).
We further assume that
(7.58) ¢>divb when ~ € (0,1].

The action of the drift term will be revealed through the choice of a convenient “confining space”.
More precisely, for a weight function m : R — [1, 00), we will work in a weighted Lebesgue space.
Our analysis is based on the following elementary computation which can be readily adapted from
(231, Lem. 2.1], [274, Lem. 3.8] and [190, Lem. 3.8].

Lemma 7.7. For anyp € [1,00), any weight function m and any smooth, rapidly decaying function
f, we have

(7.59) Jensipm = —w-1) [195P17 200+ [ 170000
with

(7.60) o1 = (p—1) |Vﬂ2’;|2 +A7m+ (c—%divb) s Vm_m

as well as

(7.61) Jensipm = —w-1) [I9GmPI e+ [1rpmee.
with

(7.62) oy = 2(1— %) 'VW’Z;"Q 4 (% - 1)%” n (c— %divb) iy %”.
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In order to simplify the discussion, we restrict ourself to the exponent p = 2 and to the exponential
weight function m = ¢*®)° s € (0,7], a > 0. We thus work in the Banach lattice X := L2,. We
observe that

vm _ sax(x)*™2 ~ salz|*!,

m

Am s—2 _ 2/, \s5—4 20,12 /,\25—4 21,.125—2
—— = sad(2)*"" + s(s — 2)alz[*(@)* 7" + (sa)[a[*(2) ™77 ~ (sa) 2],

divb = d(@)?™ + (v = 2)[a[*(@) ™" ~ (d + v = 2)|2[" 7,

\%
b- —rrTLn = sax(x)* % - 2(x)’ % ~ salz|TT2,

so that the contribution of (¢ — divb/2) is always negligible at infinity, and we get

(7.63) @i ~ (sa)?|z|*7% — sa|z|T2
We denote
a = sa>0 if se€(0,7),
d = ay—2(ay)?>0 if s=~andaec(0,1/(vV2y)).

We then face to three cases :

(i) v > 1 : taking s € ((2 —7)+,7), we have ¢; ~ —a'|z[*T772 — —oco with s +v —2 > 0;
!

(i) y=1: taking s =7, a < 1/(\/5’7), we have p; — —ad/;
(iii) v € (0,1) : taking s =7, a < 1/(v/27), we have ¢; ~ —a’|z|>7=% — 0 with 2y — 2 < 0.

Condition (H1). In any of the above cases, we have from (7.59)

(= L)f.f) = / IV fm? + / (A= 1) f2m?,

for A € R, with inf(A — ¢1) > 0 for A > k; and k1 > 0 large enough. We deduce that A — L is
coercive for A > k1. With the same arguments as in section 7.1, we conclude that £ is the generator
in L2, of a positive semigroup Sg, so that (H1) holds.

Condition (H2). When ~ > 1, the same arguments as in Section 7.2 imply that condition (H2)
holds for some ko € R. When v € (0,1], we have £*1 = ¢ — divb > 0 from (7.58) and (H2) holds
with kg = 0.

Conditions (H4) and (H5). The strong maximum principle holds here because for instance we
may apply the same barrier function argument as presented in Section 7.2. The reverse Kato’s
inequality condition is proved by using local arguments, so that it holds for the same reasons as in
the previous section.

Condition (H3). We define the multiplication operator A and the elliptic operator B by
A:=Myxgr, B:=L-A,
for M, R > 0 and xg(z) := x(z/R) with y € D(R?), 15, < x < 1p,. We fix kg < kg in case (i),

kB = —a’/4 in case (ii) and kg := 0 in case (iii), and we set o’ := a’/2. Choosing M, R > 0 large
enough, from Lemma 7.7 and the discussion which follows, we deduce that

(7.64) (B-a)f.f) < - / IV Pm? — a” / P(Lp, + L2+ 2)m?,

for any a > kg and any nice function f. We classically deduce that o — B is coercive and thus
invertible. We discuss the three different cases.

- In the first case v > 1, so that s + v — 2 > 0, we see that the operator Rg(«) is compact from
Rellich-Kondrachov theorem, so that also W(a) := Rp(a)A for any a > k. We may thus apply
Lemma 2.8-(2) and we deduce that (H3) holds for both the primal and the dual problems.

- In the case v = 1, so that 2y — 2 < 0, the operator Rg(a) is not compact anymore. However,
for any sequence (f,) which is bounded in L2,, we define the sequence (g,) by g := Af,, and
(9n) is bounded in L2 with /i := e®*)" G € (a,1/y/27). Using the dissipativity estimate (7.64) in
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L2 we see that B — « is dissipative in L2 for any a > kp, and more precisely the sequence (h,,)
defined by h,, := Rp(a)gn satisfies

/ Vo [2m? + @ / B2 (L, + 1|22 2)in? < / 2.

Using that |z[*=2m?/m? — oo as |z| — oo, that implies that (h,) is relatively compact in
LZ,. More precisely, the above estimates show that W(a) := Rp(a)A : L2, — H} N L2, with
m? := m'?m!/? and in particular we have established that W(a) := Rp(a)A is a compact
operator in L2, uniformly on o > k5 because of the Rellich-Kondrachov theorem and the fact that
m = o(m*). Since Rp(a) is bounded in %(L2,) uniformly for any o > kg, the operator £ satisfies
the splitting structure (HS1) and, applying Lemma 2.8-(2), we deduce that (H3) holds for both
the primal and the dual problems.

At this stage, when v > 1, we obtain a solution (A1, f1,$1) to the first eigentriplet problem (7.3)
by using Theorem 2.21.

Condition (HS3). In the case v € (0,1), the same as in the case v = 1 holds except that Rg(«) is
not uniformly bound in %(L2)) for a > kg because we are in the critical case k5 = ko. We do not
know how to adapt the stationary approach in that situation and we thus aim to use a dynamical
approach through the use of Theorem 3.4 with the above splitting £ = A+ B and N := [d/4] + 1.
We set X = X; := L2, and X; := L. The proof of condition (HS3) is an immediate consequence
of the following estimate.

Proposition 7.8. We define Oc(t) := e=t"" " For N := [d/4] + 1, there hold

(1) S € Li®(#A(X1));
(ii) SAO;" € L*(B(X,)) fori=0,1 and any ¢ € (0,¢%);
(iii) (SpA)NO ! € L (#B(Xo, X1)) for any ¢ € (0,(*/2).
The proof of Proposition 7.8 is similar to the proofs of [231, Lem. 2.1], [231, Lem. 2.2], [231,

Lem. 2.3] and [231, Lem. 2.4]. For the sake of completeness we however present the main lines of
the proof. We start with a technical result that we will use during the proof of Proposition 7.8.

Lemma 7.9. Consider two Banach spaces Xo, X1 and a function u : Ry — B(Xo) + B(X1)
which satisfies

(a) uO~t € L>=(0,00; B(Xo) N B(X1));
(b) ugp € L*>(0,00; B(Xo, X1));

for any exponentially decaying function © = O¢ = e~F, V¢ € (0,¢*), and for the power function
p:=1t"% with ¢* >0, ¢ € (0,1] and a > 0 fized. Then

(c) there exists N such that u*N)© e L>(0, 0o0; B(Xo, X1)),
for any © = O¢, ¢ e (0,¢7/2).
Proof of Lemma 7.9. A similar argument is developed in [190, Lem. 2.17], [274, Lem. 2.4], [276,
Prop. 2.5] and [231, Lem. 2.4].

Step 1. Consider two functions v and w which satisfy the estimate (a). For X = Xy or X = X7,
we compute

IN

lvxwt)|x-x

t
[ 10tt = yw(o)e-x ds
0
t
< / CLO(t — 5) CEO(s) ds < CLCE 1 O(L),
0

with obvious notation and where we have used that O(t — s) ©(s) < O(¢) for any 0 < s < t. Since
for any ¢’ € (0,(), there exists a constant C such that t©.(t) < C' O (t) for any t > 0, we see that
the function v * w satisfies the same estimate (a) for any © = ©¢, ¢ € (0,¢*).
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Step 2. Consider two functions v and w which satisfy the estimates (a) and (b) with o > 1. We
compute

t/2 t
[osw@lsox < [ ol 9wl ds+ [ ot = suls)]lx,x, ds
0 t/2
t/2 t
< Ci(t—s)"*CyO(s)ds + CYO(t —s)Cys “ds
0 t/2

1/2
=[OV O+ Cy Cyle(0) ot 1—7)"dr,
1 ~01 01 ~0 0

with obvious notation and we have used that © is a decaying function. As a consequence, the
function v * w satisfies estimate (b) with an exponent a — 1 instead of a.

Step 3. Consider two functions v and w which satisfy the estimates (a) and (b) with a € [0,1).
We compute

t/2 t
o s w®)llxgx, < / lo(t — $)w(s) | x0mxs ds + / lo(t — $)w(s) | xo—sx, ds
0 /2
t/2 t
< [Tevet-sycusds+ [ Ct—s) e Cros)ds
0 t/2
t/2 t
< Cng”l@(t/2)/ s""ds—f—CglCé”@(tﬂ)/ (t—s)~ds
0 t/2

11—«

v w v w t
= [¢f 001+00100]@(t/2)1_a,

with the same obvious notation and we have used again that © is a decaying function.

Step 4. Tterating n := [a] times steps 1 and 2, we get that u(*™) still satisfies estimate (a) and
satisfies the estimate (b) for the exponent o — [a] € (0,1). We then conclude that (c) holds with
N :=n+1 and any ¢ € (0,¢*/2) by using the third step. O
Proof of Proposition 7.8. We classically establish that B generates a positive semigroup Si in both

spaces X; and we thus concentrate on the announced estimates. On the one hand, proceeding as
for the proof of (7.64), we have

(7.65) /(Bf)(signf)m < —a”/|f|(1Bl + 1|2 2)m,

for any nice function f and any weight function m = m,, with m,(z) 1= e*®" a € (a1, az),
0 < ay < ay < 1/(v/27), where we define a”’ := a7y/2 — (ay)?. That exactly means that B is weakly
dissipative in Ll as defined in (3.19). From the discussion in Section 3.3, we deduce that Sz is
a semigroup of contractions and satisfies the associated decay estimate (3.23), (3.24), and more
precisely

(7.66) 18O flley,, < flley,, - I1SsO s, < OcONflLs, -
for any a,a’ € (a1,as), a < a’, ¢ € (0,6), G = (a/ — a) =20/~ (a/y(1 — a'v))/ =7, We refer

to [231, Lem. 2.1] for details. Using that A : L' — L} is bounded, that establishes (ii) in Xj.
Similarly, starting from (7.61) and proceeding as in the proof of (7.64), we get

(7.67) (Bf, f)rz, < —/|V(fm)|2 - a///fz(lBl + 1Bf|x|s+’y_2)m27

for any nice function f and any weight function m = m, as above. Throwing away the first term
at the RHS and arguing as we did in L} , we obtain that Sg satisfies

(7.68) 158() fllez,, < fllzz,, . 198 fllez,, < OcOIfllzz,

for any a,a’ € (a1,a2). Using that A: L2, — L2, is bounded, that establishes (i) and (ii) in X;.
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On the other hand, throwing away the second term at the RHS in (7.67), for any trajectory
ft = S5(t) fo, fo in the domain of B in L2, we have

1d 2. 2 2
_ < — .
5 Rdftmda:_ /Rd|V(ftm)| dx

Using Nash’s inequality which for some constant Cy € (0, 00) stipulates that

= =
/ g*dx < Cy (/ |Vg|2dx) (/ |g|dx) , Vg,
R4 R4 R4

with g := fym and the first estimate in (7.68), we deduce
(7.69) F'(t) < —2CK F(t)"Y4G(t)'T < =20y F(t)~ 1 G(0)+1,
with Cy = 0&172/ ¢ and where for brevity of notations we have set
F(t) == 1 fellZ2(m); G(t) = || fellLr(m)-

Integrate the differential inequality (7.69), we find

1S5(t) foll 72 < Y follpy,, V>0,
and using that A : L' — Ll | we next obtain
(7.70) Sp(t)AtY* € L0, 00; B(Xo, X1)).

Setting with u(t) := Sp(t).A, we see that u satisfies (a) in Lemma 7.9 thanks to (ii) in X, and X;.
Furthermore, u satisfies (b) in Lemma 7.9 thanks to (7.70). Using Lemma 7.9, we conclude that
condition (iii) holds. O

We come back to the proof of (HS3). Gathering (i) and (ii) in X; in Proposition 7.8, we get that
(SpA)Y) % S € L (B(X1)) for any £ € {0,..., N —1}, N := [d/4] + 1. Using that © € L'(0, c0)
and (iii) in Proposition 7.8, we deduce that (Sg.A)*N) € L(0, 00; B(Xo, X1)).

We may now handle the existence part of the first eigenvalue problem. On the one hand, recalling
(H2), we have L*¢g > 0 with ¢y = 1 so that the condition (i) in Theorem 3.4 holds. On the other
hand, the condition (ii) in Theorem 3.4 is an immediate consequence of (HS3) as emphasized in
Remark 3.5-(1). As a conclusion, the hypotheses of Theorem 3.4 are thus met, and we deduce
that there exists (A1, f1) € Ry x L2, . solution to the first eigenvalue problem. Because the strong
maximum principle (H4) holds, we have f; > 0 on R%.

In order to prove the existence of a first positive eigenfunction for the dual problem, we argue in
the following way. We start observing that we have the alternative: A\; =0 or A\; > 0.

- In the first case, we may argue as in Remark 4.19. We indeed have in the same time L£*¢9 > 0
and (L*¢g, f1) = (¢o, Lf1) = 0, so that L*¢y = 0 because f; > 0. The function ¢; := ¢¢ is thus a
solution to the first dual eigenvalue problem.

- In the second case A\; > 0, we may argue as in the case v = 1 above. On the one hand, the
operator Rp(a) is uniformly bounded in L2, for any o > kp := A\1/2 > 0 and on the other hand
the operator W(a) := Rp(a)A : L2, — H}! N L2, is uniformly bounded for any o > kg with
m = o(m?), so that H}, N L?, C L2 is compact. We may thus apply Theorem 2.21 and we
conclude to the existence of a solution (A}, f1, #}) to the eigentriplet problem.

The conditions (H4) and (H5) being true in a general situation as well as the conclusions of
Lemma 7.1, as an intermediate conclusion, we have established under the general condition v > 0
in (7.56) that yet the same conclusions as in section 7.2 hold true.

Quantitative stability. We now establish a quantitative stability estimate using the Doblin-
Harris approach presented in Section 6 and yet used in the case of a bounded domain in Section 7.1.
We first consider the more difficult case v € (0,1), so that Ay > ko = 0, and then explain the
modifications to be made in order to deal with the case v > 1. As explained just above, \; = 0
corresponds to the conservative case (A1, ¢1) = (0,1) which has been considered in [231]. We thus
focus on the case A\; > 0 for which an adapted version of Theorem 7.3 already imply the exponential
asymptotic stability (E31) in L?, with non constructive rate. We do not develop further this
argument but rather establish a a constructive sub-exponential asymptotic stability.
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1

Stepl - Lyapunov condition. We take m = e*l” with 0 < @ < 4~'. From Lemma 7.7 or a

direct computation, we have
L'm = Am+ (c—divb)m —b-Vm
< (C@) 7%+ e =20 ()" )m
< Colp,, —a" (x)272m,

for three positive constants C = C(d), Cy = Co(c,C,a,v), 00 = 0o(c,C,a,v) and with a* :=
(ay — (a7)?)/2 > 0. We now set m; := m and mgo = a*(2)27"2m. We fix T > 0 and for
0 < fo € L, we denote f; := Sz(t)fo. Recording that A\; > 0 and using the above pointwise
estimate, we deduce

(7.71) /mel +/OT/ftmodt < /fom1+c1 /OT/B Jedt.

Because the same kind of pointwise estimate holds for £*mg, we have

/meoS/ftmo-f—Cl/tT/Be fsds

and integrating in time, we get

/ Jrmo < / / femodt + Co / ' /B s

Coming back to the first estimate, we deduce

(7.72) [ trms e [ grma< [ fomn + €0+ com) /0 ' /B fudt.

Step 2 - Pointwise estimates on ¢;. We define B := £ — Cyx,, which is the generator of a
positive semigroup of contraction in L} because of the above discussion. For A > 0,0 < g € Ll
and 0 < f € L! the solution to (A — B)f = g, we compute

Jom=[s0=Bym= [ s0m +mo) = [ o,

from what we deduce
[R5 Fls, < Iflles. V1 eL,

Now, we consider two weight functions m; and ms with m; = e**l" 0 < a; < a3 < v~1, we
denote mg := a}(x)?>’"2m; and we compute
[ARs(Nfllzy, < CollRe(NSIlLy,, (Bauy)
<

CilIRsMN ey, < Cillf Iy,

By duality, we obtain

(7.73) [Ra+(MNollee_, < |[@llr=_, and [Rp- A" (N)llL~_ < Cif|llLe_
™y ™0 1 ms3

1 )
for any A > 0 and ¢ € L;’no_l. We also deduce from Proposition 7.8 the regularization estimate
0

(A*Rp-)N Lfn_l — L. Let us now consider 0 < ¢; € Lfn_l the first eigenvector for the dual

problem built in the preceding paragraph. From the eigenvalule equation

B g1 + A"p1 = L ¢1 = M,
we deduce that ¢ = (Rp+.A*)¢1, and iterating
¢1 = (Rp- A )N 61 = Rpg- (AR )V A% 1.

From the above regularization estimate and the first estimate in (7.73), we thus deduce that
¢1 € L°_,. Moreover, normalizing ¢; and using the second estimate in (7.73), we may obtain
1

(7.74) I¢ullzee , =1 and [|gllz>_, < Ci.
"
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We deduce
1 = max (sup 1] , sSup |¢1|)

By, ™3 Bc m3

( |¢1] ml)
max ( sup —, Cp,1 sup ,
B, M3 Bg, M3

IN

so that supp, ‘;ZJ 1 by choosing g2 := max(gg, 01) with Cre(@1=)el = 1. As a consequence,

there exists xp € Bg such that ¢1(zg) > 1. On the other hand, using standard regularity result
for elliptic equation in the ball Bag, we obtain that ¢; € C%(Bg) N W?2P(Bg) for any p € [1,00)
with constructive bound. Making use next of the Harnack inequality as at the end of Section 7.1
or using barrier functions as in in the proof of [231, Lem. 6.2], we classically deduce that

(775) (]51 > Zngg, Yo>0,
for a constructive constant z, > 0 (where we emphasize here and below the ¢; always denote the
normalized by (7.74) dual eigenvector).

Step 3 - Doblin-Harris estimate. We fix T' > 0 (for instance T := 1) and A > 0 arbitrary. For
0 < fo € L}, such that || fo| 2 < A||fo||L3> , we denote f; := S, (t) fo. On the one hand, we have
m 1

[ o= [ foor and [ fim<cr [ fam

for any t € [0,T], the second estimate being an immediate consequence of (7.71). On the other
hand, we define €(r) := supy,|>,(m(z)/¢1(z)) and we compute

/Bp fior = /ft¢1 / fidr = /ftqbl—a /ftm
a /fO(bl _CTg(p)/me2 1__5 /f0¢1 /fo<l517

for any t € (0,T), by choosing p := p(T, A) > 0 large enough. In particular, there exists zo(t) € B,
such that

V

ftaot) 2 9=t L / foor.

2o1llzrs,)
Next, arguing exactly as in Section 7.1 or as in the proof of [231, Lem. 6.2], we deduce
(7.76) Stfo > nr.alpfolry .

for some constructive constant ny 4 > 0.

8. TRANSPORT EQUATIONS

The main aim of this part is to analysis the long time asymptotic of the solutions to the transport
equation
(8.1) Of +divy(af)=A[f]—Kf in (0,00)x O,

on the function f = f(t,y), t >0,y € O, with O C RP, D > 1, a smooth open connected set. We
assume that @ = a(y), a : O — RP, K = K(y), K : O — R, and that the collision operator K is
linear and defined by

(3.2) (Hg)(y) = /O kg. dy.,

for some kernel k : O x O — R4 and for any (conveniently) bounded function g : @ — R. Here
and below, we use the common shorthands

Gx = 9(ys), K=k, ys), ke =k(yey).
When O # RP, the equation is complemented with a boundary condition which imposes the value
of the trace v_ f of f on the incoming subsets of the boundary and takes the form

(8'3) (A/ff)(ta y) = ‘%[f(tv ')77+f(t7 )](y) on (07 OO) X X_.
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Let us explain the meaning of the different terms involved in (8.3). We denote by ¥ := 0O the
boundary set, by do, the Lebesgue measure on ¥, by n : ¥ — SP~1! the normal outward vector
field, we write n = n, = n(y), and by X_ the incoming, ¥, the outgoing and ¥, the singular
subsets of the boundary defined by

Yy ={y € *a(y) ny >0}, Xo:={ye;aly) ny =0}

We denote vf = fl(0,00)xs the trace of f and v+ f 1= 1(0,c0)xx, [ the trace restrictions on the
incoming and outgoing sets. We then assume that the boundary operator Z splits into two pieces
X(g,h) = Zo(g) + Zx.(h), where

(5.4 Fon)w) = [ slwrol.du). (#sh)s) = [ hw)rs(y.dy.)

+
for a domain transition kernel rp : ¥_ x $Bo — [0,00], a boundary transition kernel ry : ¥_ x
PBs., — [0,00] and for any (conveniently) bounded functions g : O — R and h : ¥4 — R, where
P stands for the set of Borel subsets of E.

In the next sections we will first consider the trace problem for a general force field a and next the
well-posedness for the transport equation with given inflow at the boundary and with reflection
condition at the boundary. We will also revisit the characteristic method for general force field
a. We will next consider the Krein-Rutman problem still for a general force field a, but making
strong simplification assumptions on the kernel operators 2 and #. We will next explain how
the classical age structured equation falls into the present framework. We will come back to more
specific physical situations concerning the growth-fragmentation equation and the kinetic relaxation
equation with more general and physically relevant hypothesis on the kernel in parts 9 and 10.

8.1. The trace problem.
In this section, we are concerned with the trace problem associated to a (mainly stationary) trans-
port equation for a general vector field a : O — RP for which we only assume

(8.5) aeWhH0),

loc

where we recall that O c RP, D > 1, is a smooth open connected set. The regularity needed on
the domain is formulated in the following way: we assume that there exists n : O — RP |y — n(y)
a vector field belonging to W1°°(0) and which coincides with the previously defined unit outgoing
normal vector field on ¥ and satisfies ||n||L~ = 1. In that situation, it is well-known that the above
vector field is the restriction of a vector field a € VVI})(} (RP) (where we abuse notations denoting

the restriction and the extension in the same way). We also consider the associated differential
equation

dy
(8.6) e a(Y), Y(0) =y,
and then define the characteristic flow Y; = Y (¢,y), for any y € O, which is the solution to (8.6)
on a maximal time interval (t_(y),t+(y)) where t_(y) < 0 < t4(y) are defined by t_ := —tp and
t4 :=tg, the backward exit time is defined by
(8.7) te(y) :=sup{T > 0; Y_+(y) € O, Vt € [0, 7]} € (0, +00]
and the forward exit time is defined by
(8.8) te(y) :=sup{r > 0; Yi(y) € O, Vt € [0,7]} € (0, +o0].

The real number tp:(y) := tp(y) +t¢(y) € (0, 00] corresponds to the “life time” of the characteristic
flow in O going by y. The construction of the flow (Y;) is classical when a is a Lipschitz function
and we refer to [139, Thm. I1.3] for a more general situation which corresponds to the assumptions
we will make in the present work (see also Lemma 8.14 below).

For a solution g : O — R to the transport equation
(8.9) a-Vyg=G in O,

for a given source term G : O — R, we wish to define the trace vg of g on the boundary set X.
Similarly, for a solution g : (0,7) x O — R, T € (0, +o¢], to the transport equation

(8.10) Og+a-Vyg=G in (0,T)x0O,
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for a given source term G : (0,7) x O — R, we wish to define the trace g of g on the boundary set
(0,T) x ¥. It is worth emphasizing that the trace will be in fact only defined out of the singular
set Yo and thus only on the boundary set ¥\ 3.

We start by recalling several possible definitions of the trace of a function g satisfying (8.9) when

(8.11) ae W (0), gelIP (0), Gell

loc loc loc(@)ﬂ $,p,q € [1700]
Here and below, we denote by L(E) the Lebesgue space of measurable functions g : E — R :=
[—00, +00] with typically E = O or E C %, and by L°(E) = L°(E, u) C L(E) the subset of almost

everywhere finite measurable functions on a measurable space (F, A, u).

Definition 8.1. We say that a function g on O satisfying (8.9) and (8.11) admits a trace if one
of the following assertions holds true:
o Extension of the restriction on the boundary. There exists yg € L] (X\Xo), r €
[1,00], such that
In|x\Zo — g in LTOC(E\EO)
for any sequence (gn) satisfying

(8.12) gn € CHO), gn —g in LD

loc

(0), a(y)-Vygn = G in L}

loc

(0).
e Characteristics. There exists a measurable function vg on X\Xq such that for a.e. y € O
satisfying t_(y) > —oo, there holds

(8.13) o) =200V (1-()0) + | iy) G(Y (t,y)) dt.
and for a.e. y € O satisfying t4(y) < oo, there holds
(8.14) o) = 99(¥ (e ).0) — | " v )
e Green formula. There exists vg € L. (X\Xo), r € [1,00], such that
(8.15) /O(G ¢ +gdiv(ap)) dy = /E’ygw(y) -n(y) doy,

for any ¢ € CL(O\%y).
¢ Renormalized Green formula. There exists a measurable function vg on X\X¢ such
that

(3.16) L @6+ s@aivien) dy = [ oo pa- nds,

for any v € CH(O) and any B € C*(R) such that B’ € L>=(R).

Remark 8.2. (1) In order that the first definition makes sense, we implicitly assume that there
exists at least one sequence (gy) which satisfies (8.12). That last fact corresponds to the density
of CL(O) in the Sobolev space {g € LP(0O); a(y)-V,g € LI(O)}, which is true as we will see in
Lemma 8.5 below under the regularity assumptions made on a and O. It is worth emphasizing that
the last convergence in (8.12) may require additional integrability assumption, typically a € W1*(O)
with 1/r > 1/p+1/s. Such a definition has been introduced in [37) for a C' wvector field a. It is
also the point of view adopted dy Cessenat in [99, 100] in the case of the neutronic operator, see
also [126, chap. XXI] or Agoshkov [2, 3, 4].

(2) In order that the second definition makes sense, we implicitly assume that the set of points
y € O such that the characteristic Yi(y) hits the boundary on Yo has zero measure in O. It is
indeed the case thanks to the Sard theorem under enough regularity assumption on a and O, see
[37, Prop. 2.3]. It is worth emphasizing that what we really need in order to write (8.13) and (8.14)
is that t — G(Y (t,y)) € L*(t_(y),t+(y)) for a.e. y € O. We also mention that this characteristics
description leads to a layer cake formula linking the integral of a function on the domain to the
integral of its trace on the boundary. Such a definition has been widely used in kinetic theory for
constructing DiPerna-Lions renormalized solution, see [138, 199, 18] and the references therein.
For the classical kinetic operator this trace approach is developed by Arkeryd, Cercignani and co-
authors in [86, 96, 16, 17] while for more general (but still reqular) vector fields, the approach has
been developed in [37, 348, 43, 184] and more recently by Arlotti et al. in [20, 21, 22, 23, 24].



ON THE KREIN-RUTMAN THEOREM AND BEYOND 103

(3) In order that the third definition makes sense, we need that a-n~vyg € L (X) and p > §'.

loc
In some situation, this third definition is in some sense the weakest: it makes sense also when

vg € ML (E\Xo) for instance and can be relevant under the weak assumption a,diva € Lﬁ;c(@) as
it is the case in the early works on weak solution to the Vlasov-Poisson equation in [322,194, 1, 361].
It is also easier to handle than the two first definitions because of the way it connects the function

g and its trace.

(4) We will adopt the last definition which extends up to the boundary the renormalization technique
introduced in [139]. It is more general and adapted to the weak regularity assumption made on the
vector field a than the two first definitions and we recover the third definition by just letting 5(s) — s
when the conditions of integrability make the limit well defined. Such a kind of definition has been
introduced in [270, 272] for kinetic equations and in [70, 10] for transport equations.

We start with a trace result in a L framework. We denote by Cl  (R) the space of continuous
functions S : R — R with piecewise continuous derivative.

Theorem 8.3. Assume that g € L>®(0), a € WE(O) and G € L. _(O) satisfy the transport

loc loc
equation (8.9) in the distributional sense. Then, there exists a unique function

vg € L= (X\Xo; doy), |vgllze < lgllze,

which satisfies the renormalized Green formula
(8.17) L@@+ s diviap) dy = [ 500)0ands,
b

Jor any o € CH(O) and any § € CL(R). As a consequence, renormalization and trace operations
commute:

(8.18) vB(g9) = B(vg), VB EChR).

Remark 8.4. (1) Because of the very general assumption (8.5) made on the vector field a : O —
RP which is exactly the one made in the DiPerna-Lions theory for transport equation in the whole
space developed in [139], the above trace result slightly improves the similar trace result established
by Boyer in [70, Thm. 3.1], where an additional assumption a-n € L¢(00), ¢ > 1, is made.

(2) An alternative approach has been developed by Ambrosio and co-authors by assuming weaker
bound on Da but stronger bound on a. More precisely, denoting by My the set of vector fields
a € L*(0) such that diva € M*(0), it is established in [10, Prop. 3.2] that there ezists a linear and
bounded mapping Tr : Moo(O) — L>°(00) such that Tra = n - ajpo when a € C*(O). The proof
relies on Ambrosio’s extension to a BV framework in [8] of the famous Di Perna-Lions improvement
[139, Lem. I1.1] of Freidrichs’ type Lemma on the estimate of the commutator between directional
derivative and convolution (see Lemma 8.5 below). Moreover, it is also established in [10] (see in
particular [10, Thm. 4.2]) that
Tr(ag)

Tr(aBlg) = B(—gr ) Trla),  ¥5 € CL(R),

for any a € BV(O)NL>®(0) and g € L>®(0O) such that ag € My,. The above formula is then
nothing but (8.18) when a € WH1(O) N L>(0).

Before coming to the proof of Theorem 8.3, we state one technical but fundamental result. We
define the mollifier (p:):>0 by

(8.19) pe(2) = & p(z/e), 0<pe D(RY), suppp C By, /N p(z)dz =1,
R

and for any u € L _(O), v. € C.(RP), suppv. C B., we introduce the convolution-translation

function u *. v. defined by

(8.20) (u*cve)(y) i= /O u(z) ve(y — 2en(y) — z) dz.

Lemma 8.5. For g € L} (0), p € [1,00], a € WLp/(@) and G € L (O) satisfying (8.9) in the

loc loc loc
distributional sense, the sequence (ge) defined by g := g *< pe satisfies

ge € Wl’oo((’)), G.:=a-Vg. > a-Vg in Llloc(@),

loc
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as € — 0, and

g =g i LY, (0), ifp<oo,

ge — g in Llloc(@), (ge) bounded in Lis.(0), if p = oo.

We skip the proof of Lemma 8.5 since it follows by just repeating the proofs of [139, Lem. II.1],
[271, Lem. 1] or [70, Lem. 3.1].

Proof of Theorem 8.3. Let us fix x € D(O) such that 0 < y <1 and denote R > 0 a real number
such that suppy C Bg. We observe that ysign(a-n) € L'(X). From Gagliardo trace theorem
[170, Teor. 1.I1], there exists ¢ € W1(0O) such that v = ysign(a-n) and supp ) C Br. Denoting
T) : R — [—1,1] the truncation function which is odd and is defined by Ti(c) = o A 1 for any
o > 0, we see that T () = T1(y¥) = v, and thus we may assume 1 € L>°(QO) up to replacing
¥ by Ti(1)). As a consequence, there exists a sequence (i) of W1>°(0) such that 1 — 9 in
WLL(0), with (%) bounded in L>°(O), suppyx C Bg, and v, — xsign(a - n) in L1(X), with
(v¢r) bounded in L>®(X).

Let us then consider the sequences (g.) and (G¢) defined in Lemma 8.5. The classical Green
formula for Lipschitz functions writes

/Z(gs\z - gs’|2)2 la - n| X doy
= /Z(gs\z — gerx)? a - ny doy + /Z(gsm — ger2)? lla-n|x — a-nyyldo,
= [ 1200 = 9 (G = G by (g — g div(ai ) dy

+/E<gsm — o) [l nl X — a - nap] doy

< A YrlleellgllielGe = Gerllimr) + [[0kllwres / (laf + |dival)(ge — gor)* dy

Br
+2|gl7<ll(a- n)vr — xla - nlllLi(s),

for any € > 0 and k > 1. We deduce that (g.|s) is a Cauchy sequence in L?(|a - n| x do). From the
fact that (gc) is bounded in L*°(0O), we deduce that the sequence (yg.) is also bounded in L*°(%).
As a consequence, there exists a function vg € L>(3) such that yg. — vg in L?(|a-n| x do). Next,
we may write the Green formula

/O[Gsw+gsdiV(w)} dy:/Evgsw-nde,

for any test function ¢ € C}(0), and we may pass to the limit as ¢ — 0. We deduce that the
Green formula

(3.21) /O (G +gdiv(ap)) dy = / Y9 paly) - n(y) doy,

holds for any ¢ € C1(O). That clearly uniquely defines the trace function vg on X\ X.

Now, on the one hand, from the DiPerna-Lions renormalizing theory [139, proof of Corollary II.1],
we know that 5(g) € L>°(O) satisfies the transport equation

(8.22) a(y) - VyB(g) = B'(9)G in D'(0),

for any renormalizing function 8 € Lip(R) and any test function ¢ € C}(O). Using the already
established trace result, we know that there exists v8(g) € L (3\Xo) such that

(3.23) LIF@G e+ saivap] dy = [ 48(0) pa-nds,

for any test function ¢ € C}(O). On the other hand, from the classical Green formula for Lipschitz
functions and because 3(g:)|z = B(g-x), we have

/[5’(95)Gs<p+ﬁ(gs)diV(w)} dy:/ﬁ(gam)saa-nday,
(@) 2
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for any renormalizing function 8 € Lip(R) and any test function ¢ € C1(O). Using that

B'(9:)Ge = B'(9)G. Blge) = Blg),  Blgez) = B(vg)

respectively in L{ (O) and in L] (), and that the two last sequences are bounded in L>, we

may pass to the limit € — 0 in the last Green formula, and we thus get

/[ﬁ’(g)Gw+ﬁ(g)div(a<p)] dyz/ﬁ(’yg)gpa-nday.
O b

Together with (8.23) and by uniqueness of the trace function, we conclude to v5(g) = S(vg). O

Let us state several variants of the preceding trace result. For the transport evolution equation
(8.10) a first possible trace result writes as follows.

Theorem 8.6. Assume that g € L((0,T) x O), a € L*(0,T; W,21 (D)) and G € L. ([0,T] x O)

loc loc
satisfy the evolution transport equation (8.10) in the distributional sense. Then,

g€ C([0,T]; Li,c(0))
and there ezists a unique function
79 € L>((0,T) x X\Xo; dt ® doy),  [[vgllLe < llgllze~,

which satisfies the renormalized Green formula

(8.24) / 1 /O (8'(9) G o+ Blg) [Brp + div(ap)]) dydt

- [/Oﬁ(g(tr))@dy}:+/t:1/25(79)s0a-ndaydt,

Jor any o € CH([0,T] x O), any to,t1 € [0,T] and any 3 € C},(R). In particular renormalization
and trace operations commute: (8.18) holds.

We skip the proof of Theorem 8.6 which is very similar to the proof Theorem 8.3 using the slight
modifications that one can find in [271, Thm. 2] or [70, Thm. 3.1]. Under the slightly more regularity
assumption a € Wlicl( [0,T] x O), Theorem 8.6 is a direct corollary of Theorem 8.3 applied to the
for field (1, a(t,y)) on the open set (0,7T) x O.

For some additional function b : O — R, another possible variant is the following trace result for
the stationary transport equation

(8.25) a-Vyg+bg=G in O

in the renormalized framework as introduced by DiPerna and Lions in [139]. Assuming a €
WLH0), b,G € LL (0), we say that g € LL _(O) is a renormalized solution to the transport
equation (8.25) if

(8.26) a-Vyp(9) +b8'(9)g = B'(9)G,

in the distributional sense for any renormalizing function 8 € CL(R) the set of C*(R) functions
such that 8 admits some finite limits in +o00 and s — (s)5’(s) is bounded on R, in particular
CH(R) € CpR). We also denote by 8 € C}, .(R) the C! piecewise variant of C}(R). We will
repeatedly use the family of functions 85 € CL(R) defined by fBs(s) := s/(1 + 6s2)'/2 for any
§ € (0,1]. We observe that B5(s) = (1+ 0s%)73/2, so that s3'(s) — 0 as s — Fo0.

Let us start formulating some basic facts on renormalized solutions to equation (8.25).

Lemma 8.7. Assume a € VVlicl(@), b,G € L (0).
(1) If g € L (O) and a(g) satisfies equation (8.26) for one renormalizing function o : R — (—1,1)

loc

which is bijective and belongs to C$W7*(R) then B(g) satisfies equation (8.26) for any renormalizing
function 5 € CL, (R).
(2) If g1, 92 € L, .(O) are two renormalized solutions to the transport equations
a- Vygl + bgz = Gl S Llloc(@)a
then g := g1 + g2 is a renormalized solution to the transport equation (8.25) with G := G1 + Ga.
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(8) If g is a renormalized solution to the transport equation (8.25) and ®,c € L>*(O) satisfy
a-Vy®=c

P

in the distributional sense, then h := ge™® satisfies

(8.27) a-Vyh+ (b+c)h=Ge™®

in the renormalized sense.

Proof of Lemma 8.7.  We briefly sketch the proof and for more details we refer to [139], in
particular to [139, Lem. II.2]. It is worth mentioning that only the case b € L*>°(0O) is considered
in [139], but it readily extends to our framework. Assertion (1) is just a consequence of the chain
rule B'(s) = (B oa™1)(a(s))a’(s) for smooth enough solutions and thus for any solution thanks
to Lemma 8.5 (see the proof of [139, Cor. II.1]) and to a standard approximation procedure in
order to deal with piecewise C'! functions. In order to establish (2), we consider two renormalized
solutions g;, a renormalized function 8 € C}(R) and we write

a-VyB(Bs(g1) + Bs(g2)) = B (Bs(91) + Bs(92))[(G1 — bg1)B5(91) + (G2 — bga)B5(g2)],

where we have added the two renormalized formulations (8.26) associated to Ss5(g;) and renormal-
ized once more the resulting solution using (1). Letting § — 0, we immediately obtain

a-VyB(g1+92) = 8 (91 + 92)[G1 + G2 — b(g1 + g2)]

in the distributional sense. For proving (3), we introduce the mollified sequence (g.) and (®.)
defined as in the statement of Lemma 8.5 so that

a-Vge +bge =G, a-VO. =c.

with G, — G and ¢. — ¢ in L}

L (0) as € — 0. The smooth function h. := g.e~®< satisfies

a - vyha + (b + Ca)ha = G567¢5
and then
a- Vyﬁ(h&) + 5/(h6)(b + ca)ha = ﬁ/(ha)Gae_{)g

for any 8 € C!}(R). Passing to the limit ¢ — 0, we obtain the renormalized formulation of
(8.27). O

We now generalize the trace result to the framework of renormalized solutions.

Theorem 8.8. Assume that a € W, (O), b,G € L. (O) and that g € L. _(O) is a renormalized

loc loc loc
solution to the transport equation (8.25). Then there exists a unique function

vg € L(X\Xo; doy)

which satisfies the renormalized Green formula
(8.28) /O (8'(9) (G = bg) ¢ + B(g) div(ap)) dy = / B(vg) pa-ndoy,
b

Jor any ¢ € CL(O) and any 8 € CL, ,(R).

Proof of Theorem 8.8. We fix 3; : R — R defined by 1(s) := s(1 + s?)71/2, so that £, € C; (R)
and f; : R — (—1,1) is a bijection. Since then £;(g) € L>°(O) and 8'(g9)(G — bg) € L _(O), we

know from Theorem 8.3 that v8;1(g) is well defined in L (X\Xg) through the Green formula

/ [B1(9)(G — bg) ¢ + B1(g) div(ap)] dy = / vB1(g) wa - ndoy,
(@) >

for any test function ¢ € C1(O). We set vg := 87 (781(9)) € L(X\Xo; do,), with the convention
By H(£1) = +oo. For any 3 € C}, .(R), we then deduce

vB(g) =B o By (B1(9))] = Bo By (vB1(9)) = B(vg),

where we have used the renormalization result stated in Theorem 8.3 and the chain rule (1) stated
in Lemma 8.7 in the second equality and the very definition of vg in the third equality. In other
words, the renormalized Green formula (8.28) holds. O
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Remark 8.9. (1) We will see in Section 8.4 that under the same conditions as in Theorem 8.8
the information on g can be slightly improved, in particular vg € L°(X\Xo).
(2) Theorem 8.8 in particular holds when we assume a € Wﬁ)’cp (0), b e LT (0), G € L (0)

and g € LY (O) satisfy the transport equation (8.26) in the distributional sense. Indeed, in that

loc
situation one knows from the DiPerna-Lions renormalizing theory [139, Cor. I1.2] that g is also a

renormalized solution to the transport equation (8.26) (in the above sense).

(8) Assuming more interior integrability on the functions g, b, G and a, we may deduce more
accurate information on vg. A typical example, is that

/ gl (Ja- n| A 1)2da, < oo,
YNBgr

for some r € [1,00) and any R > 0, under the additional assumption

9" (Idiva| + |a - VTi(a-n)| +[b]) € L, (0),  |g]" G| € Li(O).
The proof follows by choosing ¢ := Ti(a-n)x, x € CHO), 0 < x <1, and Bi(s) = (|s| A k)" in
the associated Green formula (8.16), and then to pass to the limit k — oo.

(4) Even more integrability on v,g is available on one part of the boundary if additional integrability
assumption is made on g on the other part of the boundary. A typically evample, is that

/ gl la - nlda, < oo,
Y+NBRr

under the additional assumption
91" (|dival + |a] + [b]) € Lioe(O), 19" G| € Ligo(O),  |19l"a 0 € Lige(E5)-

The proof follows by choosing p € CHO), 0 < ¢ < 1, and Bi(s) = (|s| A k)" in the associated
Green formula (8.16), and then to pass to the limit k — oco.

(5) The results stated in Lemma 8.7, in Theorem 8.8 and in points (1), (2), (3) and (4) above may be
straightforwardly adapted to the evolution transport equation (8.10). We refer to [271, 270, 272, 70]
where such results are established in a slightly less general framework. Let us emphasize again that
when a € V[/I}N}([O, T] x O) (what it is the case in the time independent case when a satisfies (8.5))

this extension is directly implied by Theorem 8.8 applied to the vector field (1,a(t,y)) in the open
set (0,T) x O.

8.2. Well-posedness for the transport equation with given inflow at the boundary.

We deduce from the previous trace theorems and standard tools the well-posedness for the transport
equation with several boundary conditions. In this section, we deal with the transport equation
with given inflow at the boundary. We are first concerned with the stationary transport equation
(8.29) A+a-Vg+bg=G inO, ~_g=g onX_,

for a real number A € R large enough, a given source term G : O — R and a boundary term
g:X_ — R. As we will see, our analysis also apply to the associated dual equation

(8.30) Ap—a-Vo+ (b—diva)p=® in D'(0), vrp=1% onX,.
We will also consider the related evolution equation
9g

(8.31) 8t+a-Vg+bg=G on (0,7)x O,

Y-9 =9 on (O,T)XE,, g(Oa)Zgo o1 07

with given source term G : (0,7) x O — R, boundary term g : (0,7) x ¥_ — R and initial datum
go : O —R.

A possible simple framework consists in imposing the following conditions

(8.32) a € Wi (0), be Li,(0),
and
(8.33) b_,diva € L®(0), —2— e LY(O) + L¥(0).
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The first condition on a is useful for the renormalization trick and the definition of the trace, the
second condition is needed for the existence results in a LP framework when p # oo and the last
condition is used for proving the uniqueness result. In order to be able to apply our results to
more general (and realistic) situations, we rather consider the following situation. We assume that
a and b satisfy (8.32), and defining

(8.34) w=1wp, =b— ldiva—a- v—m,
D m

for some smooth enough weight function m : O — (0, 00) and some exponent p € [1, 00, we assume

(8.35) w_ € L®(0), b,diva € LY, ,-1(0), €Ly ,-1(0)+LY(0)

@
(y)
In the case p =1 and p = oo, we will additionnaly assume (wy)_ € L*> for any g € (1,00). It is
worth emphasizing that condition (8.35) automatically holds when m = 1 and a, b satisfy (8.33).
We also define the critical real number

(8.36) A5 = Ai(a,bym) = [l po,

and we may observe that

* : —1 *
(8.37) Ay (—a,b—diva,m™") = \j(a,b,m),

what links up the primal and the dual problems. In order to shorten notations, we introduce the
three weight functions

(8.38) mo =m{w )P, e =m{@) "V, my:=mla-n|P.
We start with a general discussion about a priori bounds, formal representation formulas and
general stability results.

A priori estimates. Consider a solution ¢ to the stationary equation (8.29). For any renormal-
izing function 8 : R — R, and any function ¢ : O — (0,0), we (at least) formally have

/O[(/\+b)gﬁ’(g)w—ﬁ(g)(dw(asﬂ))]+/ a-np(v+g9)e /B Gw+/ la-n|B(g)ep.

DS
Choosing 8(s) :=|s|P, 1 < p < oo, and ¢ := mP, we get in particular
1 1
839 [l w) s [ pglmran= [ Golg o [ lgrmlaal,
o pJs, o pJs_

For p=1 and any A > A\, we get

[lolmir=xi v+ [ pagims < [ (Glm+ [ lglms.
o i o s

For p € (1,00), we split G = G1 + G2 and using the Young inequality, we have

p— P p P~

for any e; > 0. For A > A5, we choose &1 := (A — )\p)/2 and g9 :=1/2, we get

1 1
3 [ latni + o [ bglme
o pJs,

9p—1 1 1
<O [ (Gt e [ (Gapi 4 [ lglmd
p(p)P/» P o p(p'/2)P/?" Jo © pls =
We thus deduce

c, c,
(8.40) lgllzs, < 5= X Gl Lz, + W(HQHL%E +lGellzz, )
and
Cp
(8.41) lgllze,, + lv+gllze,, m”GlHL” +Gpllgllzs,, +1G2llz, ),
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for some numerical constant C, € (0,00) and any p € (1,00) and also for p = 1 because of the
previous estimate. Finally, for A > A% and a € (0, A — A},), we may proceed exactly as above, but
throwing also away the contribution of w,, and we may thus first write

/

[0
(842) (A~ lw- ||Loo—p—)||g||Lp o < (||G/a||LW+||g|a-n|1/p||§m_))7

for any p € (1, 00) large enough in such a way that the coefficient in front of ||g||* , (0) 18 positive.
Taking the power 1/p in both sides and passing first to the limit p oo and next to the limit

a A= AL, we end with

(8.43) 190l Lse(0) < max()\

1
— 1G] 0y ol sy )-

Consider now a solution to the evolution equation (8.31). For any renormalizing function 3 : R —
R, and any test function ¢ : [0,00) x O — (0, 00), we (at least) formally have

(8.44) / / 9)Gy — B'(9)g0 + B(9)[0rp + div(ap)])dyds
[/5 9(s,v)) sydy} //ﬁ'yg@a ndoyds.
Choosing 8(s) :=|s|P, 1 < p < o0, and ¢(t,y) := mP(y), we get in particular

/Ig (t)[PmP + // a- nl'y+g|pm”+p//lg|pm”
DS
— [ looPm® 45 / | slal2Gmr + / [ tsPmrla-nl
(@] 0 (@] 0 >_

Using the Young inequality

_ P _~
p / glglP=2Gmr < 2 / lglPmt, + / lela
@) P Jo @)

and the Gronwall lemma, we then deduce
t
(8.45) ool + [ el + sl ) ds

t
<ty + [ NG, + ol )ds Vo

with x := ||(@_)| L. Passing to the limit p — oo, we also have

(8.46)  max([|g(t)llLes, Iv4g(t)|Lee) < e maX(HQOHL;”,‘iv?glg(HGSHL?,? + lgsllz)),

for any t > 0.

Representation formulas. In a smooth functions framework or still formally, one classically
knows that the solution g to the evolution transport equation (8.31) is given by
(8.47) g(t,y) = go(Yoy(y))e  JoPOimr@Ddon, o gt — th,yp)e™ Io® Pty Wdsq,
t{) ti_’fs
|Gl Yoy ())em b7 PO 00 du,

where we recall that the characteristics Y and the backward exit time ¢y, are defined in (8.6)-(8.7)
and we denote t}, := min(t, t). Similarly, the solution g to the stationary transport equation (8.29)
is given by

tp 123 s
(8.48) 9(y) = g(yi(y)))e fo” b= s / G(Y_(y))e o b= gy
0

Alternatively, we may define a semigroup S (say on L*>°(0)) by

folY—t(y)) exp(~ / b(Ye_o(y))dr), it € (0,1 (y)),

0 otherwise.

(8.49) (Sb(t) fo)(y) ==
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Given fy : O — R, the function f(¢,y) := (Ss(¢) fo)(y) is thus a solution to the evolution equation
Of+a-Vf+bf=0in (0,00) x O, ~_f=0o0n (0,00) x X_.
For G,g: O — R, we next define

(8.50) g:=§+/ e M8, ()G dt,
0

with G := G — \j + a - V4§ — bg. By construction, it is a solution to the stationary transport
equation (8.29).

Stability. We present some stability and continuity results. Generalizing slightly [272, Defini-
tions 2.6 and 3.1], we say that a sequence (g,) of L(E) converges in the renormalized sense to g,
we note g, — g, if for any 6 € A, A C (0,1], 0 € A, there exists §5 € L>°(E) such that

(8.51) Bs(gn) = Bs *o(L>, L") as n — oo and 1(Bs) = B1(9) Lioe(O) as § = 0.

We may observe that in particular g, — g weakly L*(E) or g, — g a.e. in E implies g, —g. We
refer to [272] and the references therein for more material about the subject.

Proposition 8.10. Let us consider four sequences (gx) of L (0), (ax) of VVlicl(@), (br) and
(Gg) of L, .(O) such that

ar - VB(gr) + b (gr)gr = B'(9r)Gr in D'(0),
for any k > 1 and any B € CL(R) and four functions g € LL (O), a € WhH(D), b,G € LL (0)

loc loc loc

such that ap, — a in VVI}N}(@) and by = b, G, = G in L. (O). Let us denote by X the boundary
singular subset associated to a.

(1) If g — g a.e. in O then g satisfies (8.26) for any B € CL(R) and, up to the extraction of a
subsequence, ygr — g a.e. on L\Xg.

(2) If gr — g weakly in Li _(O) then g satisfies (8.26) and, up to the extraction of a subsequence,

Y9k =g on ¥\Zo.

Remark 8.11. Because of Remark 8.9-(5) and the time independence made on a and b in (8.35),
exactly the same stability result holds for the evolution equation (8.31) as a consequence of Propo-
sition 8.10.

Proof of Proposition 8.10. We split the proof into two steps.

Step 1. We establish (1). We fix 8 as in the proof of Theorem 8.8 and we write the Green formula

/O[Bi(gk)Gw—ﬁi(gk)gkbw+ﬁl(gk)diV(aw)] dy = /Zﬁl(vgk)wk -ndoy,

for any test function ¢ € C1(O). There exists 81 € L>(X\Xo) and a subsequence (gn, ) such that
B1(vgn,) — B1 weakly o(L>°, L'). Passing to the limit in the above equation, we get

/ [81(9)G ¢ — B1(9)gbw + Bi(g) div(ap)] dy = / Bipa-ndo,.
(@] P

From Lemma 8.7 and Theorem 8.8, we deduce that 8; = Bi(vg), so that Bi(vgn) — Bi(vg)
weakly o(L*, L'). Fixing now £ := 87 € C}(R) and repeating the same argument, we get
Ba(vgn) — B2(vg) weakly o(L>°, L'). We then immediately deduce that

(B1(vgn) = Bi(7g))* — 0 weakly o(L>, L"),
so that B1(vgn) — B1(vg) in Li (X\Xo). We conclude by using that 3; is one-to-one.

Step 2. We establish (2). We fix 85 as defined just before the statement of Lemma 8.7 and we
write the Green formula

/ 1B5(91)Gr 0 + Bs(gi) div(ap)] dy = / Bs(vgk) p a - ndoy,
o S

for any test function ¢ € C(O). There exist B, 35,55 € L=(0), v8s € L®(X\%o) and a

subsequence (gn, ) such that 85(gn,) — B«Sa 9, B5(gni) = Bs Bs(gny) — Fé and B5(Vgn,) — 'Y_ﬁé
weakly o(L>, L'). Passing to the limit in the above equation, we get

a-VyBs + bBs = F5G in D'(O), ~Bs=7B; on I\



ON THE KREIN-RUTMAN THEOREM AND BEYOND 111

From the fact that (gx) is locally uniformly integrable, we classically deduce that
Bs:Bs =g in L, (0), BsG—G in L, (0),
as & — 0. More precisely, the two first convergences come from the elementary inequalities
VM >0, Jear >0, [s—Bs(s)| < |s — sB5(s)| < eard + || s>

for any s € R, 6§ € (0,1), and the last convergence comes from the convexity inequality 85 > B5(g)
and the elementary inequalities

VM >0, Jcp >0, Oﬁl—ﬁ(/g(s)ch(S—Fl‘st, VseR, V§e (0,1).

From Stgp 1, we deduce that g satisfies (8.26) and that, up to the extraction of a subsequence,
vBs = vBs — g a.e. on L\Xg. Using the Cantor diagonal process, we obtain that there exist two
sequences (0,,) and (g,, ) such that &,, N\, 0 and g, — g in the renormalized sense associated to
(Om)- 0

Existence. We establish two existence results of solutions to the transport equation (8.29).

Lemma 8.12 (Existence in L2°). We assume that a and b satisfy (8.35) with p = oo and some
weight function m : O — [1,00). For any A > X'y and any given functions G € L(O) and
g€ LX(X), there exists g € L2 (O) solution to (8.29) in the distributional sense. This solution
satisfies (8.29) in the renormalized sense, the weak mazimum principle, namely

(8.52) g>0im O if g>0onX_ and G >0 in O,
and the L$? estimate (8.43).

Proof of Lemma 8.12. The proof follows [270, Lem. 3] using [37, Thm. 2.3]; we only sketch it. Under
the stronger regularity assumption a,b € C}(0), G € C}(0), g := g»_ with § € C}(O), both
definitions (8.48) and (8.50) provide a classical (and thus also renormalized) solution g to (8.29). In
such a situation, we may justify the computations made in the above a priori estimates paragraph
and we conclude that g satisfies the L estimate (8.43). In the general case for a, b, g and G, we
introduce some sequences (a®), (b°), (g°) and (G¢) of regular and approximating functions so that
we may apply the first step above. In that way, we build a sequence (g°) of renormalized solutions
to the approximated problem which is uniformly bounded and thus converges (up to the extraction
of a subsequence) in the weakly xo(L>, L') sense to a function g € L°°(O) satisfying (8.46). We
then immediately conclude by passing to the limit € — 0 thanks to Proposition 8.10. g
We give a first version of an existence result in a LP framework with strong assumption on the
boundary condition.

Lemma 8.13 (Existence in LP). We assume that a and b satisfy (8.35) for some p € [1,00) and
some weight function m : O — [1,00). For any X > X, G € L% (0) and g € L, (3-), there
evists g € L%, (O) a renormalized solution to the transport equation (8.29). This one satisfies
(8.40), (8.52) and v,g € LY, (X4).

Proof of Lemma 8.13. We argue similarly as during the proof of Lemma 8.12. When g = g, with
J, a, b, G smooth and with compact support, the classical solution built above satisfies (8.40), and
thus

(8.53) Iz, c0) < NGz + llomll o 0l ey

For p > 1, and under the general conditions (8.35) on a and b, but still assuming g = g|»_ and
G, g € CHO), we may introduce two sequences (a.) and (b.) of smooth functions approximating a
and b. Since the resulting solution g. satisfies (8.53), so that the sequence (ge) is bounded in L%, |,
we may argue with the same (compactness) argument as in the proof of Lemma 8.12. We then
conclude to the existence of a (renormalized) solution g € LE, & to the transport equation (8.29)
satisfying (8.40). Still for p > 1, but assuming G € L%O and g € L _(X_), we may introduce
two sequences (G.) and (g°) of smooth functions approximating G and g. Thanks to (8.40), the
associated sequence of solutions (g.) is bounded (and better it is a Cauchy sequence) in L}, (O)
and we conclude again to the existence of a (renormalized) solution g € L}, (O) to the transport
equation (8.29) satisfying (8.40). Finally, in the case p = 1 and A > A}, we may find ¢ > 1 small
enough such that A > A7. For G,g € L' N L9, the last step imply the existence of a renormalized
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solution g € L{, (O) to the transport equation (8.29). Renormalizing the equation, we deduce
that g satisfies (8.40) for p = 1. When G, g € L', we introduce two sequences (G.) and (g) of
L'N LY functions approximating G' and g, and using (8.40) for p = 1, we deduce that the resulting
sequence (g.) is a Cauchy sequence in L}, o (0). We easily conclude again. Finally v,g € L}, (34)
from (8.41) (see also Remark 8.9-(4)). O

Uniqueness. We present now a uniqueness result.

Lemma 8.14 (Uniqueness). We assume that a and b satisfy (8.35) for some exponent p € [1,00]
and some weight function m : O — [1,00) as well as for p =1 and m = 1. We additionally assume

diva € L2 (O) (what is automatically true under assumption (8.33)). With obvious notations, for

any A > max(\;(m), Aj(1)), and any solution g € L}, (O) to the transport equation
(8.54) Ag+a-Vg+bg=0 in D'(O), v-g=0 on ¥_,
we have g = 0.

Proof of Lemma 8.14. ' We main follow the proof of [139, Cor. IL.1]. We fix 3 € W1*°(R), 8(0) = 0,
in such a way that 3(g) € LF, - N L> is a solution to

(A+b)gB'(9) +a-VB(g) =0 in D'(0), ~7-B(g)=0 on I_.

For any ¢ € C.(O) and any A > Ay, . we solve in L? , N L the dual problem

(wy)t/p
(8.55) Ap—a-Vo+ (b—diva)p =1 in D'(O), v19p=0 on X,

thanks to Lemma 8.12 and Lemma 8.13, where we observe that, because of (8.37), the necessary
condition on \ in these results is precisely the one made here. For y € C}(RP), 15, < x < 1p,,
and R > 0, we define xr(z) := x(x/R). Using the Green formula (8.21), we have

0= /O((A +b)p —¥)B(g)xr — /O(A +0)pgB' (9)xr + /O saﬁ(g)% (VX)r-

Because on the one hand ¢f8(g) € L}w” N L*> and on the other hand a/R - (Vx)r — 0 a.e. and

is bounded in LS°
()

bpg € L' thanks to (8.35), we may pass to the limit R — oo in the above equation and we get

0= /O (0 -+ B)p — )Blg) /O A+ b)pgB(g).

We take 3 := (5 and we observe that (b)|w||B5(g9) — gB5(g)| < (b)|¢g| € L}(O). We may then pass
to the limit § — 0 in the last equation, and we get

0= —/01/19, o € CL.(0),

from which we conclude that g = 0. g

_, + L' we deduce that the last term vanishes when R — oo. Using also that

We come to the time dependent transport equation by formulating a general continuity result.

Proposition 8.15. Assume thata € Wlicl (0),be LL (0), G € LL ([0, T)|x0O). Any renormalized

loc loc

solution g € LL ([0,T] x O) to the first equation in (8.31), meaning

loc

2 5(9) +a-VBle) + Blo)bg = F ()G in D(0,T) x O),

for any renormalizing function 8 € CL(R), satisfies g € C([0,T]; L°(O)), meaning that 5(g) €
C([0,T); LL .(O)) for any B € Cy(R).

loc

Proof of Proposition 8.15. The proof is a variant of the proof of [139, Thm. II.3] and we just
allude it. Because f(g) € L*>((0,T) x O) is a solution to the transport equation with source
term B'(9)G — B'(9)bg € L _([0,T] x O), we have B(g) € C([0,T];D'(0)) for any 8 € C}(R).

Fixing 8y € C}(R) strictly increasing, we deduce that 8(g), Bo(g9)* € C([0,T];D'(0)), so that
Bo(g) € C([0,T]; L% .(O)), and the conclusion. O

loc

We consider now the time dependent transport equation (8.31).
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Proposition 8.16 (Renormalized solutions). We assume (8.35) for some p € [1,00] and some
weight function m. For any go € L1, (0), G € L%, _((0,T) x O), g € L}, ((0,T) x X), there exists
a unique g € C([0,T); Li .(0)) satisfying the estimate (8.45) or (8.46) and being a solution to the
transport equation (8.31) in the renormalized sense, namely

(8.56) a%_(tm +a-VB(g)+ B'(9)bg = B(9)G on (0,T) x O,

v-Bg) = Bg) on (0,T)x%_, B(g)(0,-) = B(g0) on O,

Jor any B € C} Furthermore, g € C([0,T); LE,) when p € [1,00) and g > 0 if go,G,g > 0.

W,k

Remark 8.17. (1) The above result extends some previous results due to Bardos in [37, Chap. III],
Boyer in [70, Thm. 4.1] and Crippa et al in [120, Thm. 1.1] and [119, Thm. 1.1}, where the cases
p =2 orp= o0 are considered with always the additional assumption a € L> (in the last paper
however the present Wb bound on a is relazed into a BV condition) by adapting the Di Perna-
Lions theory developed in [139, Sec. II].

(2) We immediately deduce from the above result and Lemma 8.7-(2) a weak mazimum principle:
g1 < g2 if g; is renormalized solution to the transport equation (8.31) associated to the data go;,
Gi, gi such that go1 < goz, Go1 < Goz2, go1 < go2-

Proof of Proposition 8.16. We proceed similarly as during the proof of Lemma 8.12.

Step 1. Characteristics. We assume first a € C*(RP), go € C.(0), b € C,(0), g € C.((0,T) x o),
G € CL((0,T) x O). We use the characteristics representation (8.47). We may verify that g both
satisfies the transport equation in the renormalized sense and the boundary conditions in (8.56)
and we may justify the computations leading to the a priori estimates (8.45) and (8.46).

Step 2. Existence. In the general case, we define some regularized sequence (ac), (go.e), (be)
(g¢), (G¢) and thanks to the first step we deduce the existence of an associated function g. €
C([0,T]; L)) satisfies both the equation (8.56) in the renormalized sense and the a priori estimates
(8.45) or (8.46). When p > 1, the sequence (g.) is bounded in L*°(0,T;L%) and (up to the
extraction of a subsequence) we may pass to the limit ¢ — 0 using Proposition 8.10-(2) and
Remark 8.11. We have established the existence of a renormalized solution to the transport equation
which satisfies the estimate (8.45) or (8.46). When p = 1, we may for instance proceed in the
following way by first assuming 0 < go € L},,0 < G € L., ((0,T)x0),0 < g e L} _((0,T)xX). We
may thus consider some nonnegative approximating sequences (go,c) in L?, N L}, G- € L2 o N L.
g- € Lh, _NLY,  such that go. / go, Ge /* G and ge / g. The same construction as above implies
the existence of 0 < g. € L*°(0,T;L., N L) renormalized solution to the transport equation
associated to these data and such that (g.) is increasing and uniformly bounded in L°°(0,T; L))
thanks to the a priori L}, estimate (8.45). There thus exists 0 < g € L*°(0,T;L},) such that
ge /" g, and we get that ¢ is a renormalized solution to the transport equation by using again
Proposition 8.10-(2) and Remark 8.11. We remove the nonnegative condition on go, G and g by
introducing the positive and negative parts of each function, using the preceding step in order to
prove the existence of two solutions 0 < g+ € L>(0,T; L. ) associated respectively to (go+, G+, g+)
and (go—, G_,g-), and finally defining g := g+ —¢_ which is a renormalized solution to the transport
equation thanks to Lemma 8.7 and Remark 8.9-(5).

Step 3. Continuity. From Proposition 8.15, we already know that g € C([0,T]; L°(0)). Together
with the a priori estimate (8.45) or (8.46), we also have g € C([0,77]; L1, .(O)) when p > 1. When
p € [1,00), we may improve the above continuity properties by arguing in the following way. We

define g := gm and we observe that it is a solution to the transport equation
Og+a-Vi+bg=GCG, 15=8 §(0)=go,

with b:=b—a- Vm/m, G = Gm, g := gm and g := gom. We write the associated renormalized
equation (8.44) for the renormalizing function B (s) := (|s| A M)P, M > 0, and the test function
¢ 1= YR, with y € CL(R?), 15, < x < 1p, and xr(y) := x(y/R). Observing in particular that

t
//ﬁM(@a-VXR%OasR%oo,
0o Jo
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because of (8.45) and (8.35) by arguing as in the proof of Lemma 8.14, we may pass to the limit
in the associated renormalized equation as R — oo, and we obtain

[Lm&mﬁ=ﬂé%@@mﬁféwmmmww

t t
+ // By (9) 1g>mdiva dyds — // B (9) 1g<mwdyds.
0Jo 0Jo

Using again (8.45) and (8.35), we may next pass to the limit as M — oo in the above equation,
and we get

d [ _ N o _
—/ Igl”:—p/ Igl”w+/ pGglg| 2+/ IvglPa-n € L*(0,T).
dt Jo o o )

We deduce that t — [|g(t)|| 2, = [|g(t)||z» is continuous. Consider then t € [0,T] and ¢, — ¢, so
that in particular ||gs, ||zz — [|g¢ e, as k — co. On the other hand, we have yet established that
1B0(gt,.) — Bo(ge)lLr(onBR) — 0 as k — oo for any R > 0. There exists thus a subsequence (g,,)
such that g¢,, — g¢ a.e. on O. Thanks to Brézis-Lieb theorem [72], we deduce that g;,, — g; in L?,
and it is the whole sequence which converges by uniqueness of the limit. We have thus established
g € C([0,T]; LE,) when p € [1,00).

Step 4. Uniqueness. Because of Lemma 8.7 and Remark 8.9-(5), we just have to prove that
g =0 if g is a renormalized solution associated to vanishing data go =0, G =0 and g = 0. When
p € [1,00), the previous step implies that

d
G Lo = [ ormrw e pto.1), [ la)rme <o
tJo o o

and together with the Gronwall lemma, we deduce that g = 0. The case p = oo may be tackled
thanks to a duality argument exactly as in the proof of Lemma 8.14. g

Corollary 8.18. The semigroup Sy defined by (8.49) extends to a positive semigroup of contrac-
tions in LP .

Proof of Corollary 8.18. We just apply Proposition 8.16 with G = g = 0. When p € [1,00), we
define in that way a mapping LP?, — C(Ry; L)), go — g, where g denotes the unique renormalized
solution. Defining then S(t)go := g(t) we have built a strongly continuous semigroup in L2,. The
case p = oo is identical, except the fact that the semigroup is only weak xo (L2, L}n,l) continuous.
The positivity has been established in Proposition 8.16 and the contraction property comes from
the estimates (8.45) and (8.46). O

Remark 8.19. It is worth emphasizing that in Bardos [37] the semigroup is defined by its rep-
resentation formula for smooth data and by Hille- Yosida theory for L? data. Here we proceed in
another way, by rather following [139, 271, 261].

8.3. Optimal weighted trace theorem and transport equation with reflection at the
boundary. We define the functions 7% as the solutions to

(8.57) METa- Vit =1 in D'(0), ~27T =0 on X,

with Ag := 1+ ||dival/pe.

Lemma 8.20. Each of the two equations (8.57) has a unique solution 7+ € L>=(0) and
0< 7t <1 ae in O, 0 <’yi7’i <1 ae on Xz.

Proof of Lemma 8.20. We follow a similar proof as in [70, Prop. 5.1] (see also [271, Sec. 5]). We
only deals with 7~ since the case of 7+ can be handled in the same way. The existence of 7= € L™,
its non negativity and the upperbound are consequences of Lemma 8.12 while the uniqueness is

ensured by Lemma 8.14. In order to prove the strict positivity we argue as follows. We first fix
A€ O, |A| €(0,00) and we solve

Moy —div(ap) =14 in D'(0), 19 =0 on X,
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for which there exists a unique solution ¢ € L!(O) thanks to Lemma 8.12 and Lemma 8.14, which
furthermore satisfies ¢ > 0 and ¢ # 0. We observe that 7= € L'(O) satisfies

diviar"p)=p—71la in O, ~(t7¢)=0 on X\X.

Thanks to the Green formula, first written for 55(7~¢) and next passing to the limit § — 0, we

deduce
Oz/’y(r_cp)a-ndcry:/ div(aT_go)dy:/ @—/T_dy,
b o o A

so that the last integral does not vanish. This being true for any A C O, we get 7~ > 0 a.e. on O.
For A C ¥4 such that

0< / (a-n)ido, < oo,
A
we solve
Moy —div(ap) =0 in D'(0), w1 =14 on X,

thanks to Lemma 8.12 and Lemma 8.14, and we get a unique solution 0 < ¢ € L*(O) such that
@ # 0. The Green formula again implies

/ 7= (- 1) 4doy, = / div(ar—)dy = / o
A (@) (@)

so that the first integral does not vanish. This being true for any A C X, we conclude that
Y47~ >0 a.e. on X . g

Lemma 8.21 (Optimal weight). We assume that a satisfies (8.33) as well as a € Wk (O) for

loc

some 1 <p < oo. For any g € LP(O) satisfying (8.9) in the distributional sense with G € L?(O),
the associated trace function vg defined in Theorem 8.8 satisfies

vg € LP (S, |n-a|rdo).

Proof of Lemma 8.21.  One fixes Bap(z) = (|z| A M)P. From the DiPerna-Lions renormalizing
theory, we have

a-V(Bu(g) ™) = Bu(9) GT" + Bu(g)(r" —1) in D'(O).
Because By (g:) 77 € LY (O) N L>(0) and a/(y) € L' + L>°, we may use the Green formula (8.21)
with ¢ = 1, and we get

[ sutg)rineaio = [ {(diva)duto)r - Biylo) 67 + Bur(g)(r* - 1)}
- o

-1
lgll7s" {llgllze + IGllze}-

Passing to the limit M — co, we obtain 7_ g € LP(X_,|n - a|7do). In a very same way, we prove
Y49 € LP(34,|n - a| 7do). O

A

We give now a second version of an existence result in a LP framework with optimal assumption
on the boundary condition in the sense that it is reverse with respect to Lemma 8.21. That also
a posteriori justifies that Lemma 8.21 provides the optimal trace result in term of weight function
on the boundary.

Lemma 8.22 (Existence in LP - optimal assumption). We make the same assumption on a, b
and p as in Lemma 8.18. For any X > Agpp + 1/p and any given functions G € LP(O) and
g€ LP(X_,7la-n|do), there exists g € LP(O) solution to (8.29).

Proof of Lemma 8.22. 'We only sketch the proof in the case of equation (8.29), arguing along the
lines of Lemma 8.12. We start with an a priori estimate. Observing that
div(ar™|g?) = (diva)T*g” + (rF —1)g” + pr™(GglglP~* — blg” — Alg|?),

we have

/|g|p{l+p7+@+b_ldiv“—l}=/ I%gl”Tla-nldaJr/ GglglP—>7+.
o p p 5 o
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Using the condition on A, the property 0 < 77 < 1 and the Young inequality, we deduce

1 1
—/mes/ w4wﬂamua+—/WGw
pJo > P Jo

We conclude in a similar way as in the proof of Lemma 8.13. g
We consider now the time dependent transport equation with positive abstract kernels

dg _
(8.58) o Fa-Vgt+bg=Algl+G on (0,7)x0,

v-9=Z[g,v+9] +g on (0,T)xX_, g¢(0,-)=go on O,

with notations introduced at the beginning of the Section. We will work in a weighted Lebesgue
space LP with the same conditions on p, m, a and b as introduced at the beginning of Section 8.2.
On the other hand, we assume

(8.59) H L, (O) = LE (O) linear and positive,
(8.60) X LE (0)x LE (¥y)— LP (¥_) linear and positive in each variable,

where we recall that the weight functions me, me and my have been defined in (8.38). More
precisely, recalling that Z = Zo + Xy, with Zo and X, defined by (8.4), we assume

(8.61) 1190 zs < e llgllzy, | + Mcllgllzy,

(8.62) 1Zol9lllzs, < aallgllis,  +Mallglliy . Zlhlllzy < bBa
with o, o, 8, €10,1], M,,, M, > 0 and

(8.63) Yo:=(1-a, —a,)/2>0, ds:=1-4,>0.

Let us emphasize that when p = 1, the assumption (8.61) is equivalent to the Lyapunov type
condition

h”ig’nzv

A m) < a,wym+ M, m.

Proposition 8.23. We assume that a, b, & and % satisfy the conditions (8.35), (8.59), (8.60),
(8.61), (8.62), and (8.63) for some weight function m : O — [1,00) and some exponent p € [1,00).
We consider some data go € L}, (0), G € L ((0,T) x O) and g € L}, _((0,T) x ¥y) with either

(1) 8, € [0, 1);
or B, = 1. In the latter case, we assume that g = 0 and we make one of the following additional
structural assumption

(2) there exist an exponent py € [1,p] and a weight function mg such that X and X satisfy (8.59)
in LYo and (8.60) in Lbo (O) x Lbo (X4 ), with obvious definitions for the weight functions moo
and mox, and with LY, C Lk Lb, ~C Lo . LE C Lk . where ins :=m(t"a- n)?/v;

(3) p=1 and Xx is diffusive, namely %[t ms] > cxms, a.e. on X4 with cx; > 0.
In the above three cases, there exists a unique solution g € L*°(0,T; L%, (O)) N C([0,TT; LEe (O))
satisfying the transport equation (8.58) in the renormalized sense as well as g € LP°(0,T; LPo (O))

moo
and vg € LPo(0,T; LP0 (X)), with po = p and mg = m in the first and the third cases.

moo

Remark 8.24. (1) The above result extends some previous results initiated by Bardos in [37, Chap.
1] and Beals et al in [43, Thm. 1&7], where however only the kinetic case were considered. We
refer to Section 10 for a discussion about that important model.

(2) When B, = 1, the existence part of the above result still holds (without any additional structural
assumption).

(8) Similarly as observed in Remark 8.17, a weak maximum principle holds: g1 < g2 if g1 and g2
are the renormalized solutions to two transport equations (8.58) such that (with obvious notations)
by > by, 1 < o, T < Ho, g1 < go2, Gor < Goz and go1 < go2. That is an immediate
consequence of the way we build the solutions g; thanks to the iterative scheme we present in Step
2 of the proof of Proposition 8.23.

(4) Another immediate consequence of the iterative way of building the solution, together with the
fact that the characteristics representation (8.47) is the very first step of the construction, is the

validity of the Duhamel formula
Sr =85+ SgA xS,
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if we denote by Sr the semigroup generated by the transport equation (8.58) with G =g = 0, by
Sp the semigroup when additionally # =0, and Af = H[f].

Proof of Proposition 8.23. We split the proof into five steps.

Step 1. A priori estimates. For a positive solution, we formally compute

1d

(8.64) o

1 1
/ g'mP = — / (Z19,7+9) + 9)fm5do, — ~ / (v+9)Pmy,do,

pPJs_ pPJs,

+ [l +.6) - g,
o
Using the Young inequality and (8.61), we have
1 1 /
/gp*l%/[g]m” < —,/ gp<m>mp+—/ H[g)P ()PP mP
o P Jo pPJjo
1

« M
(_/ + _9() / gp<w+>mp 4 _%/ gPmP.
p p o P Jo

e When g = 0, using also (8.62) and once more the Young inequality, we then have
1d 1 M M
—— [ ¢PmP < _/8(1_1/ vi+g)PmPa - n + —Z 4 4 )| e /ngP
o P [ no (S + 22+ lls) [

o, 1 o €
+(?"+]7+7’“+Z7—1)/ gP(wy)ym? +
O

e

»/p’ ,
/ GPmP <W+>*p/p
p o

for any ¢ > 0. Making the choice ¢ := Yop’/p, we deduce

d
Sill9llee, +dollglzy,  +Isllveglis, < prllgliy, + Coll Gl

with
M M /
o= 22 (@) o, Co = (Dor /).

Using the Gronwall lemma, we then obtain

(8.65) lg()I17s + /0 t ) Wollgallyy,  +Isllvegalyy, ) ds
<l +Co [ DG, s vizo

e When g # 0 and thus 9y > 0, we control the ingoing boundary term by

/ (R0, 7+.9) + 0)Pml < (1+ 1)

%[gry+g]pm§+051/ gPmb,, Ve >0,
_ >_ _

and a very similar computation as above leads to the a priori estimate
t

(8.66) lg®lz, + / P D lgslly  + Ollvrgal, ) ds
0

t
< aollfy + [ CNColGull, + Culally ) ds
0 mo
for any ¢ > 0, with

bim 1= 4a), Poiml-a,(l+e)—a, —cb

7

M, M y
wi= 1)+ = ), Co=c?/? Oni=C,

and where we have chosen ¢,e; > 0 small enough in such a way that 9§ > 0 and 9¢, > 0.
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e When ¥y, = 0 and thus g = 0, we further multiply the equation by mP? 7%, where 7% is defined
n (8.57), and integrating, we deduce

T 0
/ / %a - n(vg)PmP dodt = [/ gPmP Ti:|
pIEs T

P
/ / pgP~ 1 gl + G)mP T+ —|—/ / 7dlv(am ) +1— N7t — pKmPr )

mP

Together with (8.65) and 7 € L°>°(0O), we obtain

(867 [ ] worrnt < cr(loolty 168 01,0n.)
+
and
T
(3.68) | [ @stgrermg < (ool + 161 .01,

for some constant Cr € (0,00). In particular, when p = 1 and %y is diffusive, we have

CE// (V49 m2<// (v+9) %% (T mx) // R (V+9)T ms,
N N

and together with (8.68), we deduce the additional estimate
(3.69) @//me%@“M%HWMM%J
P28

Step 2. Existence. As a consequence of these a priori estimates, we may classically build a solution
through an iterative scheme. For the sake of brevity, we only consider the (more interesting and
more difficult) case by, = 1 (so that 9y = 0 and g = 0) and G = 0. For a given 0 < g9 € L?, (0),
we define a sequence of solution (h,,) starting from hg = 0 thanks to the recursive definition

ahgﬂ +a:Vhnp + Khppy = by on (0,7) x O,

Y_hnt1 = Zlhn,y+hn] on (0,T) x E_, hp41(0,-) =go on O.

From Proposition 8.16, there exists a unique renormalized solution h,4+1 € C([0,T); LE,(O)) to the
above equation satisfying the estimate (8.45) with g := hp41, G := A [hy] and g := Z[hn, y1hn] €
Ly, .. We observe that 0 < h,, < hy, 41 thanks to the weak maximum principle (see Remark 8.17)
and that h,, satisfies the estimates (8.65) and (8.68) where ¢ is replaced by h,. Thanks to the
monotonous convergence theorem of Beppo Levi, there exists g satisfying estimates (8.65) and
hp — g in LY, ((0,T) x O). We may pass to the limit in the equation satisfied by (h,) and we
deduce that g is a renormalized solution to

gt—i—a Vg+bg=.%g] on (0,T)x O.

From Theorem 8.8 and Remark 8.9-(5), the function g admits a trace yg and thanks to Propo-
sition 8.10, we have ~vh, — ~vg a.e. on X\Xy. Because of (8.4) and the Beppo Levi theo-
rem again we deduce that Z[h,,v+hn] = Z[g,v+g] a.e. on X_. Together with the fact that
~v_h, — v—g a.e. on ¥_, we have established that the boundary condition in (8.58) holds true.
It is worth emphasizing here that v, g € L*(Xy;drs(y,-)) for a.e. y € ¥_ because of (8.68). For
go € LP (O), we separate the positive and the negative parts go = go+ — go— and we obtain two
renormalized solutions g* € L>(0,T; LP,) associated to go+ respectively. By linearity, the func-
tion g := gt — g~ € L®(0,T;LP,) is a renormalized solution to the transport equation and the
boundary condition is

Y9 = 79" =79 =Rolg"] - Rolg" ]+ Rs[v+g"] — Rslv+97]
= Rolg] +Rsly+9],

where the last term is indeed well defined a.e. from the fact that vy g* € LY(Xy;drs(y,)) for a.e.
y € ¥_ and thus v, g = y1 97—~ g~ belongs to the same spaces. From Proposition 8.15, we already
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know that g € C([0,T]; L°(0)) and thus using an interpolation argument g € C([0,T]; LE} (O))
for any p; € [1,p) and any weight function m; such that m; /m € LPP1/(P=P1) when p > 1.

Step 3. When (8, < 1 and p € [1,00), we have (8.66), and we may just repeat the proof of
Proposition 8.16 in order to get g € C([0,T]; LE,(O)) and the uniqueness of the solution.

Step 4. We assume 3, = 1 and the structural assumption (2). From the estimate (8.64) on a
solution g and the renormalized formulation of the equation, we deduce that

lg|PomPe = — 9, v+ gllPomgs — — |7+g|”“m
p dt

/ o=+ G o),

with a RHS term in L'(0,T). As above, we thus deduce g € C([0,T]; Lt (O)) and next the
uniqueness of the solution.

Step 5. We assume (3, = 1 and the structural assumption (3). In that case, we have p = 1,
Y49 € L}, ((0,T) x ) from (8.69) and then y_g € L}, ((0,T) x ¥_) from (8.62). We may thus
justify the same computation as in Step 4 with py = 1, and we deduce g € C([0,77]; LL,(0)) and
next the uniqueness of the solution. O

As an immediate consequence of the above analysis, we may associate to the transport equation
(8.58) a semigroup.

Corollary 8.25. Under the assumptions of Proposition 8.23, there exists a positive semigroup
S on L%, such that for any go € L%, (O), the function t — g(t) := S(t)go € C(Ry; L (O)) N
LS (Ry; L2 (O)) is the unique renormalized solution to the transport equation (8.58) associated to
the nitial datum go (and with G = g =0). Furthermore the growth bound satisfies w(S) < k.

We end this section by formulating the counterpart of the above result for the associated stationary
problem

Ag+a-Vg+bg=H|g]+G on O,
(570) {g g+byg [g]

V-9 =#[g,v+9] +9 on X_.

Proposition 8.26. We make exactly the same assumptions as in Proposition 8.23 on a, b, K
and Z for some weight function m : O — [1,00) and some exponent p € [1,00) as well as either
B, <1 holds or B, =1 holds with g = 0 and one of the additional structure assumptions (1) or
(2). There exists \** € R such that for any A > \**, G € L} (O) and g € L}, _(Xy), there exists
a unique solution g € Lb, (O) satisfying the transport equation (8.70) in the renormalized sense
and some additional a priori estimates listed during the proof.

Proof of Proposition 8.26. We just explain the main steps. We first establish an a priori estimate.
We observe that any solution g to the stationary problem (8.70) (at least formally) satisfies

1 _ 1
(8.71) / lglPm? (At ) + 2 / ,glPme, = / (A g)+C)glgl?2mP + 1 / %19, v49] +glPmE,.
o pJs, o pJs

We then only consider the case g = 0. Repeating the same computations as in Step 1 of the proof
of Proposition 8.23 and with the same notations, we get

(8.72) pA=R)lglLs +dolglis +Islvrglll, < ColGlIE, .
m me my m

For A > A** := max(k,\;) and G > 0, we next consider the sequence (hy) in L, =~ defined
iteratively as the solution given by Lemma 8.13 to

My +a-Vhe + bhy = e/"?f/[hk_l] 4+ G on O,
Y_hr = Rlhr—1,v4he-1] on X_,

for k > 1 and starting from hg = 0. We observe that (h) is increasing and satisfies the estimate
(8.72) where g is replaced by hi. We may pass to the limit in the above equation and estimate
and we obtain a renormalized solution g € L}, | to the transport equation (8.70) and satisfying the
estimate (8.72). By linearity, the same holds without sign condition on G. Finally, considering the
three different cases as in Steps 3, 4 and 5 in Proposition 8.23, we similarly show that g € LP?

moo
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and yyg € LPo  for suitable exponent pg € [1,p] and weight function mg. For two such solutions
gi to (8.70), the function g := g2 — ¢1 is also a renormalized solution to (8.70) for which we may
justify the identity (8.71) with p = pg, m = mo, G = 0. We thus deduce that (8.72) holds with
p = po, m =myg, G =0, and we conclude that g = 0, what ends the proof of the uniqueness. [

8.4. Characteristics.

In this section we come back to the characteristics method for the evolution and the stationary
transport equation. Our aim is in particular to discuss the representation formula (8.47).

We consider a vector field a : @ — RP which extends to R” and, denoting by the same letter a its
extension, we at least assume

(8.73) a€ W (RP),  divae L®RP), a/ly) € L*(RP) + L=(RD).

After DiPerna and Lions [139, 255] (see also [204, Def. 1] or [203, Def. 1]), we introduce the following
notion of flow.

Definition 8.27. We name almost everywhere flow associated to (8.6) a measurable function
Y :RxRP = RP (t,y) — Yi(y), such that
(i) for a.e. y € RP, the map t — Y(y) is continuous and

Yi(y) = a(Ye(y)) in D'(R),  Yoly) = y;
(ii) for a.e. y € RP and for any s,t € R, there holds Ys1+(y) = Ys(Yi(y));
(i) there exists C > 0 such that
(8.74) ViteR, e “TA<Y(t, )4\ <eT),
where (Y (t,)s\)(A) = A(Y (—t, A)), A C RP, is the pushforward of the Lebesque measure \.

From [139, Thm. IIL.1], [9, Thm. 31 & Remark 32] and [204, Sec. 3] (see also Theorem 8.33
below), we know the existence and uniqueness of such an a.e. flow for a satisfying (8.73). In the
incompressible case (diva = 0), this one furthermore satisfies:

(8.75) / (Y (y))ehs v =i g, / o(y)dy,
RDP RD

for any t € R and any ¢ € LX(RP), the space of L* functions with compact support. In
the compressible case (diva # 0) and when a only satisfies (8.73), it seems not clear that [139,
Thm. II1.2] or [9, Thm. 31 & Remark 32] provides an a.e. flow such that (8.75) holds. In that
general case, the volume identity (8.75) must be replaced by the volume two sides estimate (or
nearly-incompressible condition):
e‘t”d”“”“’/ so(y)dyé/ w(Yt(y))dySet”d”“””/ (y)dy,
RD RD R

D

for any 0 < ¢ € L(RP) and ¢ € R, what is nothing but (8.74) with C := ||dival|s. It is however
quite straightforward to prove from [139, 9] that the a.e. flows Y satisfies (8.75) when a additionally
satisfies diva € C(RP). One possible way to construct the a.e. flow Y is to define Y = Y;(y) as
the unique renormalized solution in C(R; L) to the transport equation

(Y —a-V,Y =0 on RxRP, Yy(y)=y on R”,

or more explicitly
%5(1/) —a(Y)-VB(Y)=0 on RxRP B(Yy)=p(y) on R,

in the distributional sense for any 8 € C'(RP,R) such that 8 and |V3(2)|(1 + |z|) are uniformly
bounded on R¥. In particular, for any go € C*'(R”) and next for any gy € L°(RP) the function
g*(t,y) := go(Y_¢(y)) is the unique renormalized solution to the transport equation

dg*+a-Vg* =0 on RxRP, ¢%0,-)=go on RP.

We introduce some notations. We denote y € Y if (i) and (ii) hold. In particular, J is a measurable
subset of R and |[RP\Y| = 0. Because of (i), for y € V := O N Y, we may define the backward
exit time

to(y) :==sup{7T > 0| Y_4(y) € O, Vs € [0,7]} € (0, +00],
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the subset Vy := {y € V; tp(y) < +o0} and the associated entering position

Ub(Y) = Y_4,(y)(y) when y € Vp.
We observe that the function ¢y : V — (0, +00] is measurable, M, is a mesurable subset of O and

(876) tb(Ys(y)) = tb(y) + s, yb(Ys(y)) = yb(y)a Vy€EVp, Vs€E [Oatb(y))'
(8.77) meas({y € O; tp(y) =t}) =0, Vt>0.

The properties (8.76) are straightforward while (8.77) is a consequence of the fact that {y €
V; th(y) =t} C () and of the nearly-incompressible condition (8.74).

We now introduce the following first regularity assumption on a at the boundary

(8.78) Vyo € %, y > a(y) - n(yo) is continuous on O.

Let us present two examples.

- It may happen that V}, = (). For instance, choosing O := {y € R?; |y| < 1} the unit disk of the
plane and a(y) := |y|y+ € CO1(R?;R?), y* := (y2, —y1), we have diva = 0 and a(y)-n(y) = y* -y =
0 for any y € R2, so that the flows do not encounter the boundary set ¥ = {y € R?; |y| = 1}. In
that situation ¥V = O and Vp = 0.

- In the kinetic case, namely y = (z,v) € O := Q xR%, Q C R? an open set with smooth boundary
with unit normal outward v, so that n(y) = (v4,0), and a(y) = (v, F(z,v)), we have diva = div, F’
and div,F = 0 when F' = E(z) + v A B(x), and we have a(y) - n(yo) = v - vz, which is a smooth
function on O x ¥,

Lemma 8.28. Under the condition (8.78), the mapping yp : Vb — X_ U Xq is measurable.

Proof of Lemma 8.28. From the very definitions and composition rules, we have yp : Vp — XNY is
mesurable. Take y € Vy, denote yo := yp(y) and consider a sequence t;, \, 0 so that ¥, (yo) = yo
and Yz, (yo) € O for any k > 1. From (8.78), we deduce

k— o0 ty k—0 tg
which means that yp € X_ U . O

0> limsup 28D Y0 oy gy L / " a(Ya(w0)) - nw0) ds = alyo) - n(yo),

For further references, we introduce the following second additional mild regularity assumption on
a in the domain

(8.79) a € L (0), (aly)-y)+ < W)

This one may in fact replace the last boundedness condition on a in (8.73). We establish a technical
result which will be useful in the sequel.

Lemma 8.29. Under assumptions (8.78) and (8.79), the following hold:
(1) For any Ry, T > 0, there exists Ry, Lt > 0 such that for any y € Bg, there hold

(8.80) [Sup} Yi(y)| < Rr and |Yi,(y) — Ye, (y)| < Lrlta —ta],  Viti,te € [T, T
-T,T

(2) For a sequence (y:) of V such that ye — yo € X_ NY, we have ty(y:) — 0 and yu(y:) — Yo-
Proof of Lemma 8.29. Proof of (1). Take y € V N Bg,. On the one hand, from (8.79), we have

(Vi) = (v)* = 2/0 a(Ys(y)) - Ya(y))ds < C/O (Ya(y))*ds,

and we conclude to Y;(y) € Br,. thanks to the Gronwall lemma. As a consequence, we have
Y2, (y) = Yo ()| < lt2 = talllall Lo (Bryy, Vi € [=T,T).

Proof of (2). Assume by contradiction that limsuptp(y:) > 7 > 0 and set T := 7+ 1. By
assumption, there exists Ry > 0 such that y. € B, and thus by step 1, (8.80) holds uniformly in
e € (0,1]. Thanks to the Ascoli Theorem and the contradiction hypothesis, there exists e, — 0
such that tn(ye,) > 7 and a there exists Y € C([-T,T]) such that Ys(ys,) — Yo in C([-T,T)).
Next, passing to the limit in the conditions

t
Yor(ye) €O and Yoo(ys) —yen = / a(Y_a(ye,)) ds,
0
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for any k > 1 and any t € [0, 7], we get
t
Y., €0 and Y_,—1yo= —/ a(Y_s)ds.
0
We deduce

Yo, — 1/t
0 > limsup t= W, n(yo) = lim ——/ a(Y_s) -n(yo)ds = —a(yo) - n(yo),
t—0 t t—=0 t Jo

which is in contradiction with the hypothesis yg € ¥_. Now, we may estimate

tb(ys)
b (ye) — 90| < |y€—yo|+/ la(Ya(y2))lds — 0,
0

as € — 0, as a consequence of the convergence tp(y.) — 0, the first estimate in (8.80) and the first
condition in (8.79). O

We reformulate some “space continuity” of solution to the transport equation results picked up in
[70, Sec. 7]. Defining

Of i ={ye0;d(y) >alt, Xu:={ye0;iy) =a}=00,,
we know from [70, Sec. 2], that there exists ap > 0 such that for any « € (0, «p), the mapping
On: 2 = a8, 04(2):=2z—an(z)

is an isomorphim with associated jacobian function J, and

(8.81) /E h(=')dow(2') = /E ho 0a(2)Ja(2)dos,
(8.82) /O\O g(y)aly:/Ooi/Ego9a/(Z)Jo/(z)dazdo/7

for any h € L'(3,) and g € L'(O\O,), where do,, denotes the Lebesgue measure on ¥, and where
the jacobian function J, satisfies 1/2 < J, < 3/2 as well as J, — I as a — 0.

Lemma 8.30. For any g € L°°(0) satisying a - Vg € L*(O), we have

(8.83) g="g ae. on I \{a-n=0} forae acl0,anl,

where we denote by v,g the trace of g on %, and

(8.84) Yag © b0 — Y9 as a« — 0, a.e. on X\Xo.

Proof of Lemma 8.30. For ¢ € C.(O) NWH(O) and B € C'(R), the renormalized Green formula
(8.24) writes

/ oBl1g) a-ndo = / oB(vag) a - ndon + / [div(ag)B(g) + 0B (g)a - Vgl dy,
>

@ O\Oa
and thus
(8.85) / vB(vg) a-ndo = lim / ©B(Vag) a - ndoy.
) a—0 bl
Denoting ¢ := (1 — (0(x) — a)/s)y, a + s € (a,ap), observing that 5, = 1, recalling that
n = —VJ§ and using ¢ as a test function, we similarly have
1 .
/ PB(Vag)a-ndoa = E/ ©B(g)a-ndy +/ [div(ap)B(g) + B (g)a - Vgl dy,
Sa Ou\Oarts Ou\Oats
so that
o1
/ 0B8(Yag) a-ndo, = lim — vB(g)a-ndy.
Ea s—0 8 OQ\OQ+5

We immediately deduce

d
/ wﬁ(vag)a'nd0a=£/% ©B(g)a-ndy

o
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and next

/ / PB(Varg) a - ndogda’ = / pB(g)a-ndy.
0 o O\O,
Together with (8.82) and (8.81), we have established

/O ) /E [pB(Varg) a-n] o bor(2) o (2)dozda’ = /O : /E [0B(g) a-n] o 0u(2)Jo (z)dodd,

so that
B(yarg)a-n=P8(g)a-n ae. on X, for ae. o € (0,a),
from what (8.83) follows. On the other hand, using (8.81) and (8.85) together, we have

/ ¢B(vg) a-ndo = lim / [pB(Vag) a - n] o baJo doa,
) a—0 /s
which implies
(8.86) [B(vag)a-n]obada = Byg)a-n  *o(Lis,(X), Le(X)).
Repeating the same argument with g := a - n and using that J, — I uniformly, we get
Bla-n)a-njobo—fla-nya-n *o(LZ(E), L)),
for any 8 € CY(R). Choosing 3(s) = 1 and 3(s) = s, we classically deduce that [a-n]of, — a-n
a.e. on X. We finally conclude to (8.84) by gathering that last information with (8.86) written for
B(s) = s and B(s) = 5. O
Remark 8.31. During the proof, we have in fact established that
[0,a0] = LY(Y); aw [yaga-n]ob,
18 continuous.

Lemma 8.32. We make the additional assumptions (8.78) and (8.79). IfY is an almost ev-
erywhere flow associated to (8.6), then the function tn, € L(O) is a renormalized solution to the
equation

(8.87) a-Vib=1 in O, ~_tpb, =0 on X_NJ.

Proof of Lemma 8.32. Step 1. We fix 8 € C}(R) and we recall that B(tp(Ys(y))) = B(tp(y) + s)
for any s € R for a.e. y € O. For any ¢ € C}(O), we may compute

[ 5t + sretw)dy = 5 [ (tulu) + s)otw) dy
R4 S JRrd
d

=7 |, Bts(Ys(y)ely) dy
S JRrd

d

— 2 Bltn(y)p(Y_y(y))e J°sdva(=dr g,
dS Rd

= | Bltuw))[—a- Vo — (diva)g](Y_(y))e™ I (00700 gy
Rd
Taking s = 0, we conclude to

[ 8 tnedy= [ stm)[-a- Ve~ @ivayeldy,
Rd Rd
which is nothing but the distributional formulation of the equation

a-VB(ty) = ﬁ/(tb).
That last family of equations is the renormalized formulation of equation (8.87) in the domain.
Step 2. Using lemma 8.30 with ¢ := ((t), we have

YaB(tp) 000 — B(ytp) a.e. on X.
Using Lemma 8.29, we also have
YaB(tp) 00s — 0 a.e. on X_NY.
Both together, we find y_t, =0 on X_ N ). g
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We establish the main result of this section.

Theorem 8.33 (characteristics method). Assume that' Y is an almost everywhere flow associated
to (8.6) with a satisfying (8.73). For any go € L>(0), g € L>®((0,T) x X_), T >0, b € L*(0),
the function

(8.88) g(t.y) = go(Yoi(y))e JotOr—elwDdry, 0
Fat — to(y), yp(y))e™ h° " W @Ay

is the unique solution in C([0,T]; L (0)) N L>®((0,T) x O) to the evolution transport equation

loc

9
(8.89) at
v—g=9g on (0,T)x%X_, ¢(0,)=go on O.

+a-Vg+bg=0 on (0,T)x 0O,

First proof of Theorem 8.33. We additionally assume that (8.75), (8.78) and (8.79) hold, that

g€ C((0,T)x X_), suppg C (0,7) x (X_NY) and b € C(O), and we mostly repeat the proof of
[255, Prop. 1]. From the above definition, for a.e. y € O and any t € (0, 00), we have
(8.90) gt + 5, Yi(y))elo bO-WDIT — Gt 4y Vs > 1.

Let us then fix ¢ € D((0,7) x O) and let us extend g and ¢ by 0 outside of O. We compute

d T
0 = o // 9(t,y)e(t,y) dydt
S 0 Rd

T
- c% / / Gt + 5, Ys(y))eds bOTNAT ot o dydt
0 JRd

d [T S '
= d_ / / g(ta y)@(t — S, st(y))efg (b—dlva)(YT (y))ds dydt

S Jo Jra

T d s b d. Y d

= [3 [}gd g(t; y)%[@(t — S, Y_s(y))efo (b—diva) (Y~ (y)) S] dydt

T
= /0 /Rd g(t,y) [0 — a- Vo + (b—diva)p|(t — s, Y_s(y)) dydt,

where we have used the relation (8.90) in the second line and the change of variables property
(8.75) in the third line. Taking s = 0, we get

T
0= / / 3t 9)[—0ep — a- Vo + (b — diva)g](t, y) dydt,
0 Rd

which exactly means that g is a solution to equation (8.89) in the distributional sense. Now,
because tp(y) > 0 for any y € Y, we have g(0,y) = go(y). Take t > 0, and for « € (0, ap), let us
denote A, :={y € Z_NY; tp 00,(y) < t}, so that

th o (¥)
_ — [P b(Yr_t, (4 (0a dr
3(t,00(1)) = 8t — th.a(y), ya(y))e o PO mam GaDdr o g

where we use the shorthands tp o := tp 00 and yp o = yb © 0y. From 0,/ (y) — y as o/ — 0 when
y € ¥ and Lemma 8.29, we deduce
G(t, 00/ (-)) = g(t,") asa’ =0,

on A, for any fixed a@ > 0. Because U,s9A, = X_ N, the same convergence holds on %_ N ).
On the other hand, we have v,g 0 6, — 7§ as & — 0 a.e. on X\Xg, from Lemma 8.30. We deduce
that yg =gon X_NJY.

Second proof of Theorem 8.33. We do not make any additional assumption and we mainly re-
peat the proof presented in [204, Sec. 3]. Consider the unique solution g € C([0,77]; LL .(O)) N
L>°((0,T) x O) to the transport equation (8.89). Regularizing by convolution

Je ‘= g *t,z,e Pe,
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for a time and space dependent mollifier sequence p. similarly as in (8.20), we have g. € C*([0, T] x

O) and

0
ag: +a-Vg:+bg. =R on (0,T)x O,
with the usual commutator R, := [a - Vg + bg, p:]. We know from a classical time and space

variant of Lemma 8.5 (see also [139, Lem. IL.1], [271, Lem. 1], [70, Lem. 3.1] and the proof in [204,
Sec. 3]) that R. — 0 in L'. Because g. is smooth and Y is an almost everywhere flow, we may set
H(s,y) == H(t+ s,Ys(y)), B(s,y) :== [; b(Y-(y))dr and compute

d
T2 l(g2e®)(s,9)] = (Rie®)(s.0).
from what we get

Ge(t,y) == ge(t,y) — 9e(0, Yy (1))e® T Ly () — ge(t — tu (), yn ()P TP,y
t t
— [ st + [ (B s0)dsL i
0 t—tn(y)

for a.e. y € O and any ¢ > 0 and where we use (8.77) for getting rid of the set {y € O;tp(y) = t}.
For T, o > 0 and setting Uz, := (0,T) x (O N B,), we deduce

/ Glty)ldydt < T / |(REe™) (5, )| dyds
Z/{T,Q Ur

1@

< Te(CHIT / IRe(s.)|dyds,
Z/{T,Q

from the near-incompressibility condition (8.74) of the flow. From Proposition 8.10 and Re-
mark 8.11, we know that

ge(t,") = g(t,-) in LL.(O) as € —0, forany t€[0,T];
Jelz_. —-g=g in LIIOC(E,) as € — 0.
Passing to the limit, we get

/M lg(t.y) — go(Y_e(y))e® 81, o ) — 8t — to(y), yb (y)eB T 91, ldtdy = 0,
T

'@

for any T, o > 0, what is nothing but (8.88). O

Corollary 8.34 (Representation formula). Under the assumptions of Lemma 8.14 in a smooth
domain O # RP | for any X > A\app, G € LP(O), the unique solution g € LP(O) to the stationary
transport equation (8.29) (with g = 0) satisfies

(8.91) s = [ T NSO )t for ae ye O,

with Sy, is defined by (8.49) in which formula Y and ty stand for the characteristics and backward
exit time defined just as above.

Proof of Corollary 8.34. That is nothing but (2.13). O

Adapting the second proof of Theorem 8.33, we obtain a more accurate characterization of the
backward exit time ¢}, with more general assumptions on the vector field.

Lemma 8.35. Assume that Y is an almost everywhere flow associated to (8.6) with a satisfying
(8.73). The backward exit time ty, is the unique renormalized solution in L(Q) to the backward exit
time problem

(8.92) a-Vr=11im O, ~v.7=0 on X_.
We also have
(8.93) fy = / So(t)1dt,

0

where 1 stands for the unit function in O and Sy is defined by (8.49) with b = 0 and in which
formula Y and ty stand for the characteristics and backward exit time defined just as above.
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*

5o =0, there exists a

Proof of Lemma 8.35. Step 1. Existence. From Lemma 8.12, for any A > A
(unique) solution 7y € L*°(O) to the truncated backward exit time problem

Ay+a-Vry=1in O, -7, =0 on X_.
From the weak maximum principle, we have 7, > 0. As a consequence, for 0 < A < ), we have
)\(T)\—T)\/-l-a'V(T)\—T)\/Z()\/—)\)T)\/20 in O, ’)L(T)\—T)\/):O on X_.

From the weak maximum principle again, we deduce that 7o — 7y > 0, and (7, ) is an increasing
sequence when A, N\, 0. We set 7 := lim,,_,o 7y, , s0 that 7 € L(O) is a nonnegative renormalized
solution to the backward exit time problem.

Step 2. Characterization. By definition, for any 8 € C}(R), 8(0) = 0, the function 7 satisfies
a-VB(r)=p'(r) in O, ~v_B(1)=0 on X_.
With the notations of (8.20), we define b, := 3(7)*c pe, Be := '(7) *c pe, and thanks to Lemma 8.5,
we have thus
a-Vb. = B. +r. in D'(0),
with
be = B(1), Be— ﬁ/(T)a re = 0,
respectively in LY (O), L}, (0) and L} _(O) for any p € [1,00). Because then

loc loc

%bs oY, = (a- Vb)(Ya) = (B: +12)(Ya),

and defining

B-(Ys(y)) d8}1t<tb<y>

0

Hobd @) + [ B dsf s

—tb(y)

we have
0

be(y) _gt7€(y) =Ry = /

—t

0
re(Ya(y)) dsocoy ) + / ) AT
—tu(y

Arguing similarly as in the second proof of Theorem 8.33, we have Fl;tyg — 5,5 and Ry, — 0 in
LY (U, r) as e — 0, with

0

0
i) = {80 + [ AW s}l + [ B VG s .

—tp(y)
We deduce that
B(r(y)) = by(y), forae. t>0yeO.

Choosing a sequence (/3,) of renormalizing function in C}(R) such that 0 < B,(s) s and
0 < 8/.(s) /1 locally uniformly, writing the above equation for 8 = f3,, and passing to the limit
n — 00, we obtain

() = {1 () + L) + () Lty

and in particular 7 = ¢, a.e. on 0. That implies that t}, is the unique renormalized solution to
the backward exit time problem (8.92). From Corollary 8.34, for any A > 0, we have

7')\:/ e MSy(t)1dt a.eon O,
0

and we deduce (8.93) by passing to the limit A N\, 0 in that identity. a
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8.5. On the Krein-Rutman theorem for the transport equation with kernel terms.

In this section we carry on our analysis of the transport equation with kernel term (8.1)-(8.3)
for which we establish a Krein-Rutman result under strong positivity assumption on the kernel
acting on the domain. As in section 8.3, we assume that a, b, & and Z satisfy the conditions
(8.35), (8.59), (8.60), (8.61), (8.62) and (8.63) for some weight function m : O — [1,00) and some
exponent p € [1,00).

On the kernel J#°, we make the additional strong positivity hypothesis: for any x € O, there exist
T4, 7z > 0 such that

(394) V20 ye B, XKWz [ fd.
and

(8.95) Jxo, a,be€ L¥(B(xo,70)), 70 := Tz,

as well as one of the two following regularity assumptions

(8.96) H e K(LY,(0)) or o : LY (0) — LP*(O)N L, (O),

with p; > p and m1/m — oo when y — oo.
We thus consider the operator

(8.97) Lf=—a-Vf-bf+X|[f]=—-div(af)— Kf+ A[f]
with K := b — diva > 0, which is complemented with the boundary condition
(8.98) v f = Rolf) + Zsl.f] onT_.

More precisely, we define £ in the Banach space L?,(O) with domain
D) C {f € LNO); a-Vf € LL(0), v = R|f, 7+ 11}
Notice that because of Section 8.1 the trace function is well defined.
Example. The nonlocal operator with a drift
(8.99) Of=—a0pf —b+H[f] nO, ~_f=0 onX_,
with @ C R a bounded interval, a € W21 (0), o’ € L>(0), b € L>®(0), and thus the boundary

loc
kernel is Z = 0. Motivated by some non-local reaction-diffusion models, this problem was recently

investigated in [109, 118, 249]. Tt is also used in the study of selection-mutation models in changing
environment, see the even newer works [162, 207].

We start by checking that with the above assumptions, the conditions (H1)-(H5) presented in
the abstract part hold true.

Condition (H1). From Proposition 8.26, we know that for any A > A\** the stationary problem
A=L)g=Gin0O, ~v.g=R[g,v+g9]onX_,

has a unique solution. More precisely, the associated inverse operator denoted by R, (without
reference to the boundary operator %) satisfies Rz : L, — LP, and R.G > 0 if G > 0.

Condition (H2). We first consider the case when #Zo = 0 and we denote by Ly the associated
generator. We fix fo € C2?(0), such that fBo fody =1, fo > 0 on By, suppfo = By, as well as

||f(;1||L°°(B€) = 8727 ||Vf0||LOO(BO\B€) =g, Vee€ (0, 1/2),

where we denote B. := B(xo, (1 —¢)rg). We also define Cy := || fol| Lo (5,) and C1 := ||V fol| oo (8,)
both may be bounded by a constant which only depends on ¢ and d. Because of (8.94), we have

A [fol(y) > mols, > g—(;fo-
We observe that fo € D(Ly) and we compute
(8.100) Lofo > —llallLe(5,)C118, = [|bllL(8,)ColB, + 1M018, > Ko fo,
if Ko :=10/Co — |all Lo (8,)C1/Co — [|bl| oo (13,) = 0. More generally, we have
(8.101) Lo fo > —llal p8,)C11s. — ||lal|L=elpps. — [|bllL=(8y)fo + m0ls, > Kofo,
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with kg := —||a| oo (8y)C1e 2 — ||bl|L=(5,) € R when ||lal|p~e < 9. Depending on how 79 > 0 is
large, we obtain in that way two constructive lower bounds of Z thanks to Lemma 2.4-(ii) and we
have thus established that Ly satisfies (H2). Because fo € D(Ly), we have S¢,(t)fo > e fo for
any t > 0, from Remark 2.5-(2). On the other hand, we observe that S (t) > Sg,(t) for any ¢ > 0,
from the weak maximum principle mentioned in Remark 8.24-(3). These two last observations
together imply S, (t)fo > et fo, for any ¢ > 0. We deduce from Lemma 2.4-(iv) that (H2) holds.

Condition (H3). We introduce the semigroup Sp associated to the transport equation

0
8_§f]+a-Vg+bg:0, Y-g = Zy+9],

which is well defined thanks to Corollary 8.25 and satisfies ||S5(t)go| Lz, < €"5%||gol| 1z, for any t >0
and go € L, with kg := |[{w_)||z= + M, /p because of the a priori estimate (8.65) particularized
to the present case (in particular where we can take £1 = 0 because the influx function is g = 0
here). We formulate the first hypothesis

(8.102) no > [[{@-)l|z=Co + M,Co/p + |lallLe(5,)C1 — [1b]l Lo (5,)Co;

with the same definitions as above for By, Cy and C1, so that kg > kp because of (8.100). In a
second case, we assume

(8.103) % =0, O is bounded and there exists Tp such that t,(y) < Tp for a.e. y € O.

In that case, the semigroup Sg is explicitly given by

JolY- (1)) exp(— / K(Y,_(y))dr), ift € (0,tn(y))

0 otherwise,

(SB(t)fo)(y) =

and in particular Sg(t)f = 0 for any f and any ¢t > Tp. We immediately deduce kg = —oo and thus
Ko > kB because we have established that ko € R. We next define Af := J#[f]. Using Lemma 2.8
and Remark 2.9-(2) or Lemma 2.13 and Remark 2.14-(1) depending on the assumption (8.96) made
on %, we deduce that the condition (H3) holds in both cases discussed above. Under the first

condition in (8.96), we conclude to the existence of eigenvalue triplet (A1, f1,¢1) € R x LE, x Lfr;,l.

Under the second condition in (8.96), we may also get the same conclusion by by using [337, Cor. 1
of Thm. I1.9.9] when p = 1 or by observing that the dual problem is similar to the primal problem
when p > 1 and thus we may apply the same arguments for the dual problem as those explained
above for the primal problem.

Condition (H4). Let us consider A > \** and 0 < f € L?, (O) a (renormalized) solution to
AM+a - Vit+bf-X[fl=F in O, yf=2Z[ff] on I,

with 0 < F € LP (O). If f # 0, there exists x; € O such that fB(wl ., )f(z) dz > 0. From (8.94),
Ty
we deduce

Ji/[f](y)z/ k(y,2)f(2)dz >0, VYye€ B(x1,r1)-

B(zy,r1)
Now, we argue similarly as during the proof of Lemma 8.14 and in particular we use the same
notations. For A C B(x1,r1), we define the solution 0 < ¢ € Lfn_l N L®° to the equation

Ap —div(ap) +bp =14 in O, 49 =0 on X,

thanks to Lemma 8.12 and Lemma 8.13, and we observe that ¢ # 0 on B(z1,7) if |4| > 0. For
the renormalizing function S5 and a truncation function y g, we compute

0 > /E a-nBs(vf)vexr
= [IBE + AU = Aol Lalxn

+ / (Bs(F) — FBY(F)(A + boxm + / B - (V)r.
O O

e
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Passing first to the limit R — oo and next to the limit § — 0, we deduce

0> /O (F+ #[f])e - f1a],

so that in particular

/A fdy> /B L exl >0

This being true for any A C B(x1,71), we deduce f > 0 a.e. on B(z1,r1). By a classical continuity
argument, we conclude that f > 0 a.e. on O. We have thus established (H4) for A > \** from
what we immediately and classically deduce the general case A € R.

Condition (H5). Assume that (), f) € C x D(L) satisfies
LIfl = ReNIf] in O, Z[fl,nlfl] =y-[f] on X,

and
LIf| = Re(signf)Lf in O, Z[f],|fl] = Re(signy- )Z[f,~.f] on %_.
From (H4) and the first identity, we know that |f| > 0 a.e. on O. Using the second identity, we
get
H (| f]] = Re(signf). A [f]-
Writing f = €| f|, we deduce

/ Elf«|(1 — cos(a — ax))dy. =0 a.e. on O.
o

Using (8.94), we deduce
[ 10 = costa - an)dy. <o,
B(y,ro)

and thus a = a, a.e. on O x O. That means f = u|f|, for a constant u = S!, that completes the
proof of the fact that £ satisfies the reverse Kato’s inequality condition (HS5).

We summarize our analysis in the following result which is a straightforward consequence of the
above checked conditions together with Theorem 2.21, Theorem 4.13, Theorem 5.16 and Theo-
rem 5.23. We state the available result in that situation.

Theorem 8.36. We assume that a, b, £ and % satisfy the conditions (8.35), (8.59), (8.60),
(8.61), (8.62) and (8.63) for some weight function m : O — [1,00) and some exponent p € [1,00).
Consider the semigroup Sr associated to the transport equation (8.1)-(8.3) through Corollary 8.25.
We assume further that J€ satisfies the strong positiwity conditions (8.94) together with (8.95)
and the first compactness property formulated in (8.96). We finally assume that (8.102) holds or
(8.103) holds. In both cases, the conclusion (C3) holds as well as the ergodicity (E2) in Lél.

We are not aware of any similar result for such a general transport equation, see however the next
sections where more specific transport like equations are discussed. We do not try to improve the
convergence result in the general case, but rather we aim to make one step further in the following
particular situation where Doblin approach may be used.

Doblin condition. We suppose here that O is bounded, K € L*(0), R$1 = Ryl =1, and
k(y,y«) > ko > 0. We aim at establishing the Doblin condition

( )fO > K;<f07 >7
which is (6.2) with 1o = 1 and go = x1. From (8.64) we have

dt/fdy_/dey>—HK||oo/fdy
/fty Ydy > e” nxnmt/fo

Now we define, for ¢y € CL(O), ¢o > 0, [ o =1, the solution ¢ to the equation
{ Orp + div(ap) = 0,
Y = RE[y-¢l-

and so
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We have

— [ »=0, and so /w(t,y)dy=/<po(y)dy=1,
dt Jo o o

%/Ofgp:/oﬁf[f]w—/oKfSOZko/@f—||K|oo/Of%0-

We deduce from Gronwall’s inequality that, for any fixed T > 0,

and

T
/O (T, y)poly) dy > 1K=t /O Jo@)eo(w) dy + ko / T /O F(ty) dydt
> koTeTIKI / foly) dy =: 5(fo, 1),
O

This is nothing but the Doblin condition (6.2) since ¢y is any non-negative function in C}(O) with
Jpo=1.

In order to verify (6.3) in a quantitative way, we suppose that the conditions (8.35), (8.59), (8.60),
(8.61), (8.62) and (8.63) are verified with the weight function m = 1 and the exponent p = 1. Note
that in this case we have w = K > 0. The first condition in (8.35) then imposes that K € L*°(0),
and (8.102) reads

no > [(K)|[LeCo + M, Co + ||a| L= (5,)C1 — [|bl| > (8,) Co-

We also assume that

(8.104) RE1 =Ryl =1,
and
(8.105) Vy,y« € 0, ko < k(y,y.) < ki

for some k1 > ko > 0,

Theorem 8.37. We assume that O is bounded and that the conditions (8.35), (8.59), (8.60),
(8.61), (8.62) and (8.63) are satisfied by a, b, H and X for the weight function m = 1 and
the exponent p = 1. We assume further that J satisfies the strong positivity conditions (8.94)
together with (8.95) and the first compactness property formulated in (8.96). We finally assume
that (8.102), (8.104) and (8.105) are satisfied. Then the exponential convergence in (E31) holds
in L' with constructive constants C and w.

Proof of Theorem 8.37. We work in X = L'(0) and we normalize ¢1 by ||¢1]/z~ = 1. We have
proved above that (6.2) holds true with 19 = 1 and gg = k1 for some explicit k£ > 0, recalling that
the assumption that K € L is nothing but the first condition in (8.35) when m = 1 and p = 1 since
b = K +diva. Due to the normalization ||¢1| L= = 1, the condition (6.4) holds with Ry = 1. It only
remains to check the validity of (6.3) in order to be able to apply Theorem 6.2. Since we assume that
the conditions (8.35), (8.59), (8.60), (8.61), (8.62) and (8.63) are satisfied for the weight function
m = 1 and the exponent p = 1, we have that Rg(A1) : L' — L' with [|Rg(A1)||lr) < ﬁ
This yields by duality that Rj(A1) : L= — L™ with [[Rg(M)l|z@e=) < NOEHB. Since k is bounded
by the constant k1, we have on the other hand that A* = J#* : L' — L™ with || A*|| g1, 1) < k1.
We thus get

k

1
L= {lgrl[r~ < o1l
— kB

Ko

which yields (6.3) with rq = k(ko — ki) /k1, and the proof is complete. O
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8.6. A word about the renewal equation. We look at the case O = (0,400) and a(y) = 1,
which corresponds to the equation

(8.106) Of+0,f+Kf=0

with the boundary condition

(8.107) (=N0) = [ o)t y.)dy.
0

This renewal age structured model is standard in structured population dynamics, and the Krein-
Rutman theorem is well-known for it, see for instance [34, 158, 187, 196, 338, 358]. The existence
and uniqueness of (A1, f1,¢1) can even be obtained by explicit computations. However, it is not
covered by the cases considered in Section 8.5 because £ = 0 here.

The singularity of this transport equation lies in the fact that (H2) is only guaranteed by the
boundary condition. To fall into our splitting framework, we may replace the boundary condition
by a singular source term Af = (R f)(0)dp, where g is the Dirac mass at the origin, and write
L = A+ B with B the generator of the free transport equation with zero flux boundary condition.
This forces working in a space of measures, as in [277, 280]. We briefly present an alternative
approach, which is more in the spirit of [34, 168] and which consists in working in the Lebesgue
space L', first to solve the dual problem in L = (L')’ and next to use for instance Doblin’s
contraction to solve the primal problem.

We assume here that

(8.108) 0< K,ro € L{3.(0,0), (ro—aK); € L™,
(8.109) Ulggo K(y) = +o0, lyl§£.1£ ro(y) >0,

for some « € (0, 1), and we verify the usual conditions for the direct or the dual problem.

Condition (H1). Under assumption (8.108), the age structured equation (8.106)-(8.107) is well-
posed in L' thanks to Proposition 8.23 and we may associate to it a positive semigroup Sy in L!
with growth bound w(Sz) < k1 := ||(ro — K)4|/L~ thanks to Corollary 8.25. We deduce that
(H1) holds for the primal problem and thus also for the dual problem thanks to Lemma 2.2 and
Lemma 2.3.

Condition (H2). The generator of the dual problem is
L= 0y¢ - K(y)¢ + ¢(0)ro(y)

with domain D(L*) C Wli’c‘x’((’)). From the second hypothesis in (8.109), there exist yg, 70 € (0, 00)
such that ro(y) > no for any y > yo. We then define

G0(y) = Lio,.y0) +M0(W1 — Y)jyo,p1)> Y1 := Yo + 1/n0,

and we compute

L% = roly) =K = —[[K =rollL=@0y) on (0,90),
L' = 7ro(y) —no — Koo > —||K|| Lo (ye,y1)®0 0N (Y0, Y1),
Lo = 0 on (y1,00),
so that in the three case L*¢g > koo with ko := — max(|[K — ro| =(0,y0), [ K || L>(yo,y1))- Using

Lemma 2.4-(i), we have thus established that £ satisfies (H2) with constructive constant rg.

Condition (H3) on the dual problem. We define the splitting £* = A* + B* with A*¢ :=
(RH9)(y) = ¢(0)ro(y). From the first hypothesis in (8.109), for any . < 0 there exists y, € [0, c0)
such that K(y) > —k. for any y > y.. Defining m, := "Y1, )+ ™Y1, ), we compute

B*m, = kee™ 1) — Kmy < K.

Together with Proposition 8.23 and Corollary 8.25, we deduce that the operator B — k., with
domain D(B) := {f € LY(0); 9,f + Kf € L'(0), f(0) = 0}, generates a contraction semigroup
in L}, (0), and thus a bounded semigroup in L*(O) because m.,m; ! € L>(0). In other words,
we have established that w(Sg) = —co. Now, we see that Rp-(\) : L — D(B*) € W,2°([0, 00))

loc

is bounded for any A € R and thus A*Rpg-(\) : L — L* is compact for any A € R. We deduce
from Lemma 2.8 and Remark 2.10, that £* satisfies (H3).
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Using Lemma 2.8-(1), we conclude to the existence of (A1, ¢1) solution to the dual eigenvalue
problem. Now we turn to the existence, uniqueness, and exponential stability of f; € L!, by
verifying that Doblin’s condition (6.2) is satisfied.

Doblin condition. Denoting S; := S, (t), we have from the characteristics method
Sif(y) = fly—t)e” Jo K(yfs)dley +N(t—y)e” I K(S)d51t>y

with N(t) = fooo 70(yx)St f(y«)dy.. Iterating this formula and using the positivity of S; we get
that for any f >0

t—y
Sif(y) > </ ro(y )Nt —y —y)e Ji" K(S)dsdy*) e I K($)ds 14y ot
0

=y t—y—T
> </ ro(t —y—71)N(1r)e” o™ K(S)dsdr> e Jo K(S)d510<y<t.
0

Choosing tg > 2y so that ro(y) > no > 0 for all y > ty/2, we obtain

. t0/4 v
Stof(y) > "o e fOD e < / N(T)dT) ¢ fO K(S)d510<y<to/4-
0

From the expression of N(t) we get by duality, using that 7o > 701 (y,,), that

to o0 t0/4
(8.110) Sy f(y) > e e KW( / f(w)( / S:1<yo7oo><y*>df)dy*)lo<y<to/4-

Applying Sy, to this inequality we deduce that for any t; > 0

to [e%e] t0/4
Siornr f(y) > 208 K““S( / f(y*)( / S:1<yo,oo>(y*>dr)dy*)stllo@m/zx

‘ ‘ [e'e] t0/4
Y K( / f(y*)< / S::l(yom)(y*)czf) dy*)1t1<y<to/4+t1.

On the other hand, replacing f by S, f in (8.110) we obtain

+ [e'e] to/4
(8.111)  Spyqe, f(y) > n2e? Jo° K(S)d5</0 f(y*)</0 Si+t11(y07oo)(y*)d7') dy*) Locy<io/a-

The fact that S7o(y) > ¢(t + y)e~ Jo Kw+s)ds engures that for t; > yo
S; Liyooo) > € SUPye(0,y0] Jo K(y+s)d81[071/0].

All together, we have proved that for any tg > 4t; > 4yo we have

0o to/4
Sto+t, [(y) = Co(/o f(y*)</0 Sil(y*)dT) dy*) 1t <y<to/a

for some explicit constant ¢g and all f > 0. This is Doeblin’s condition (6.2) with T' = ¢y + ¢1,
and the functions 1y = Oto/ 4

following result.

Syldr and go = col, 4o/4)- We are now in position to prove the

Theorem 8.38. Under the assumptions (8.108) and (8.109), the renewal equation (8.106)-(8.107)
enjoys the conclusions (C3) and (E31) with quantitative rate in L*.

Despite the numerous results about the renewal age-structured model, we are not aware of any
previous result with a constructive rate of convergence under such general assumptions.

Proof of Theorem 8.58. The conditions (H1), (H2) and (H3) for £* ensure the existence of
A1 > ko and ¢ € L™, ¢ > 0, that we normalize by ||¢1]r« = 1. If we can prove that the
conditions (6.2), (6.3) and (6.4) are verified, then the conclusions (C1) and (E3;) follow by apply-
ing Theorem 6.2. Indeed, the contraction argument in the proof of Theorem 6.2 does not require
the existence of f; and it can even be used for deriving the existence and uniqueness of fi, see Re-
mark 6.4. We have already proved (6.2) with the functions ¥y = 50/4 Syldr and go = col(s, 10/4)-

For proving (6.3), we start by recalling that ¢; = R(\)A*¢1 € W2 due to the informations

loc
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derived on R} in (H3). Consequently, there exists y; > 0 such that ¢1(y1) > 1/2, and we deduce
from ¢} < (A1 + K)¢1 that

b1(y) > %e, S +K)

for all y € (0,y1). Choosing in the proof of the Doblin condition ¢y such that y; < tg/4, we obtain

that
1
(b1, 90) > C_O/ e~ L OuHE) g
2 y1/2

Y

which gives (6.3). For (6.4), we use that
1= e M7 < e MTSFL
for any 7 > 0 to deduce that

delMlto

to

4 [t
b1 = %/ e MTS*prdr < 0.
0

Finally, we check that the condition (H5') is verified, so that (C3) is valid by virtue of The-
orem 5.18 and Remark 5.19. The condition (H5’) is actually a direct consequence of the fact
that (8.111) is verified for any tg > 2yo and ¢; > 0 together with the estimate

S*+t11(yo7oo)(y) >e” Jo! K(y+s)ds >0

T

for any t1 > yo and 7 > 0, and all y > 0. a

9. THE GROWTH-FRAGMENTATION EQUATION

In this section, we are interested in the growth-fragmentation equation with equal mitosis kernel
(9.1) O f(t,2) + 0u(a(z) f(t,2)) + K (2)f(t, x) = 4K (22) f(t, 22)

and to its variant with an additional “growth speed” variable

2
(9.2) O f(t,z,v) +v0,(alz)f(t,z,v)) + K(z)f(t,z,v) = 4/1 K(2z)p(v,vs) f(t, 22, vi)dux,

with > 0 and v € [1,2]. For both equations, we assume that the total fragmentation rate K is a
continuous function defined on R such that

(9.3) Jxg >0, K =0on(0,220] and K >0 on (2z,00).

This condition ensures that no particle of size less than zy can be produced by division, and we
thus consider the equations posed on the size space (xg,00) with zero flux boundary condition
f(t,x0) =0 or f(t,zg,v) = 0. The growth rate a is supposed to be positive and globally Lipschitz
on [zg,00), and we assume that

4 li = .
(9 ) zggo a(x) oo

For quantifying the positivity of the first eigenvalue, we also make the technical assumption that

(9.5) 3k >0, lim eka(x) = +o0.

Tr—r00
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9.1. The mitosis equation with mixing growth rate. We are interested here in the growth-
fragmentation equation (9.1) in the case where

(9.6) Jz1 >z, a(2x1) # 2a(xq).

As we will see below, this condition ensures some mixing property for the trajectories that guar-
antees the triviality of the boundary point spectrum.
We work in the space X = Ll with a weight m that can be

*K
(9.7) either m(z) =", r>1, or m(x) = exp (77/ E), 0<n<l.

Zo

Note that due to assumption (9.4), the weight exp (77 f;o K/ a) is always stronger than .

Theorem 9.1. Suppose that (9.3), (9.4), (9.5) and (9.6) are satisfied. The first eigentriplet problem
admits a unique solution (A1, f1, ¢1) € Rx Xy x X! with the normalization ||¢1]| = (¢1, f1) =1, and
this triplet additionally satisfies Ay > 0, f1 > 0 and ¢1 > 0. Besides, there are some constructive
constants C > 1, w > 0 such that

le™ S () f = {¢1, /) fillx < Cem | = (o1, HAllx
forany f € X and t > 0.

This result is contained in the recent paper [354]. The novelty here is that all the constants are
obtained constructively, which is not clear in [354]. We also provide what seems to us to be a more
direct and comprehensive proof. We also refer to [35, 52, 80, 278] where the same result is obtained
under stronger assumptions.

Before starting the proof of Theorem 9.1, let us briefly justify the relevance of the chosen weight
functions m in (9.7). The dual operator associated to equation (9.1) is given by

LX(x) = a(z)d () — K(x)p(x) + 2K (2)d(x/2).

For m(z) = 2", r > 1, we can compute
(9.8) L'm(x) = [r% —(1- 21_T)K(x)]m(x),

and for m(z) = exp (n [, K/a), 0 <7 <1,

K
(9.9) L'm(x) = [2 exp (— 77/ E) —(1- 77)] K(x)m(x).
z/2
Assumption (9.3) then ensures that L*m ~ —(Km as @ — 400, with € =1 —217" > 0 in the first
case and £ =1 —n > 0 in the second case. In both cases, we deduce that

(9.10) L'm < km+ M1, gym

for any k > 0, by choosing M > 0 and R > xg large enough, and this type of Lyapunov inequality
is pivotal in our analysis.

Condition (H1). Equation (9.1) is a particular case of equation (8.58) with G =g =% = 0,
b = K + diva and J[g](z) = 4K (2z)g(2xz). We may then use Proposition 8.23-(1) to infer the
well-posedness of equation (9.1) in X = L} (x¢, o), provided that the conditions (8.35) and (8.61)
are met, with 0 < a,, < 1, which is nothing but (8.63) when #Z = 0. To do so, we define the

function
!
m
w=K—-—a—,
m

which corresponds to w; in (8.34). When m(z) = " with r > 1, we have

w(z) = K(z) — r@,

and for m(z) = exp (n [ K/a) with 0 <7 < 1, we have
@(z) = (1 —n)K(z).
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In both cases, the fact that a € Lip ensures that w, := w+ (1 —1/¢)a’ enjoys (wy)— € L for any
q € [1,00). On the other hand, (9.4) guarantees that K < (w4 ) and a/z < (w4 ), and finally (8.35)
is verified. The condition (8.61) is equivalent to the Lyapunov type condition

(9.11) A m) < (o, wg + M, )m,
where 2 *[m|(x) = 2K (x)m(x/2). For m(x) = 2" with r > 1, we compute
H*[m]/m =2'""K,
and for m(z) = exp (1 [, K/a) with 0 <7 < 1,
X7 Iml() = 2exp (—n/gE E)K(aj)
z/2 @

Using (9.4), we obtain that (9.11) is satisfied, for any o, € (217", 1) in the first case, and for any
a,, € (0,1) in the second case, by choosing M, large enough.

We can then apply Proposition 8.23-(1) for associating to equation (9.1) a strongly continuous
semigroup S in X = L} (zg,0), and (H1) then follows from Lemma 2.2-(i). Moreover, we readily
have that k1 < k + M for any couple (s, M) such that (9.10) is verified.

Condition (H2). We aim at verifying (H2) for some kg > 0. Recalling assumption (9.5), we
pick up ¢ > k and we consider the function

go(z) = we /"

with n large enough to be chosen later. We compute

Lfpo(z)  a(x) ( l, 1-27¢ ¢
7:—1——x)+Kxe T —1).
oo () T n ( )( )
Choosing R > x such that 2K (z)/a(z) > %= and K(z) > e~ for all z > R, we get that
£*¢0(x) a(x 1—2=t o 1—27¢ Y
SR8 1 15
do(x) — = + K@) (e m
gk, 1=27¢ 0 1-27¢ ¢ 127t ¢ ok, 1-27¢ pe
Ze (e n — e 2n )>e 2n (e n _1)
on [R,00). Choosing then n > £ R, we have

on (xo, R). Gathering the two above estimates, we deduce the existence of an explicit ko > 0 such
that L*¢g > kogo. We conclude by invoking Lemma 2.4-(i).

Condition (H3). We consider the weight function m(z) = 2" for some r > 1 or m(z) =
exp (n f;o K/a) with 0 < n < 1 and we define the stronger weight function m1(z) = exp (m f;o K/a)
for some n; € (n,1). We fix kg € [0,k9), M > 0, and R > z such that (9.10) is verified by my
with & = xpg. Using the splitting £ = A+ B with Af = M1(,, g)f, the inequality (9.10) for m;
reads B*my < kpmq and this ensures (see the proof of Corollary 2.20) that x — B is invertible in
LY , for any k > kg, with positive inverse, and

1
-B)! < .
s~ B iy S e
The operator A maps Ly, into L;, with
m1(R)
A < .
I Allssces, e, < M

Besides, due to the derivative part d,(a-) in the operator B, we also have that Rz (k) maps L}m
into W,;!. Finally, we have Rp(k)A : L}, — LL N WL}, and thus Rg(k)A € #(LL), for any
K > ko > kB. We deduce from Lemma 2.8-(2) that the condition (H3) holds for both the primal
and the dual problems.
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Proof of the existence part of Theorem 9.1. We deduce from Theorem 2.21 that the conclusion
(C1) about the existence of a solution (A1, f1,¢1) € R x X4 x X/, to the first eigentriplet problem
holds true. g

Moreover, we have Ay > ko > 0 and f; € W,;' NLY, with m(z) = exp (n [, K/a) for any n € (0,1).
For deriving similar additional estimates on ¢1, we can check directly that the condition (H3) holds
for the dual operator L£*.

Condition (H3) for £*. We consider the weight function m(x) = 2" for some r > 1 or m(x) =
exp (n f;o K/a) with 0 < n < 1 and we define the weaker weight function mg(z) = 2™ for some
ro € (1,7). We fix kp € [0,k0), M > 0, and R > z¢ such that (9.10) is verified by mg. Using again
the splitting £ = A+ B with Af = M1, r)f, (9.10) means that B*mg < kgmg and this ensures
that for any x > kg the operator k — B* is invertible in LS° | with positive inverse, and

mo’
(s = B) Hlzw>_,) <

1
mat T K — KB
Because of the derivative part of B*, we also have that Rp« (k) : L;’jo,l — W22, Besides, the
operator A* = A maps L;°_, into Lfnogl with
m(R)
mo (x()) .

*
A s rze_me 1) <
Finally we have that Rp-(k)A : LY, — Lyan WL, Consequently ¢ € Lyan W% and

m(R) M
mo(Zo) ko — KB

(9.12) [ @rllze = [1(A = B*)_lA*%HL:_l < l¢1lles_, -

We also easily deduce quantitative estimates of ¢; in Wlt)’coo from the identity
1

¢1(x) = CL(J?)

(M1 (@) + K ()1 (2) — 2K (2)¢1(x/2)].

Condition (H4). The operator £ satisfies the strong maximum principle. Let A € R and
feXinD(L)\ {0} such that (A —L)f >0, i.e.

A (@) + (af) (2) + K(2)f(2) > 4K (20) f(2) Ve > a.

Denoting by Ay a function such that A} (z) = H%I()w), we get that

(9.13) o) f(z) > 4 / M W=ANE K(29) F(2y) dy.

Zo
Since K (2y) > 0 for all y > xo, f € X+ \ {0}, and a(x) > 0 for all z > xy, we deduce from (9.13)
that the set {x > z¢, f(x) > 0} is an interval of the form (z, +00). Using again (9.13) we remark
that we must have = max(zg,2/2), which enforces = xy and finally f > 0.

Proof of the uniqueness and positivity part of Theorem 9.1. We deduce from Theorem 4.13 the va-
lidity of the conclusion (C2) about existence, uniqueness and positivity of a solution (A, f1, ¢1)
to the first eigentriplet problem. O

For deriving the exponential stability, we start by verifying a quantified irreducibility and aperi-
odicity condition on S, given in the next lemma, which then allows us to prove that the Harris
condition (6.8) is met.

Lemma 9.2. Assume that (9.6) is satisfied. Then for all e > 0, Ry > xg, and Ry > o + €, there
exists T > 0 such that for any T > Ty, there exists cp > 0 such that
Ra
S7¢ > c11(4y,Ry) ¢pdx, V¢ =>0.

10-‘1—5
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Proof of Lemma 9.2. Throughout the proof we denote by c¢; any positive constant that depend
only on ¢. It is proved in [354, Prop. 5] the existence of (z2,z3) C (20, c0) such that for all Ry > xg
there exists Ty > 0 such that for any 7" > Ty and any ¢ > 0

T3
(9.14) St > CTl(zo,Ph)/ o(z)dx.

T2
We may now extend the integral to [zo + ¢, R]. The Duhamel formula

Sz = Sp, +Sp, Ao * Sz
for the splitting £* = Aj§ + B with Aj¢ = £ *[¢] and Bie = b¢ — K¢, also reads

t
(015) 576(0) = 90X (a)e K42 R (K )26 2 KO0 g,
0
where X;(z) is the solution to the characteristic equation

(9.16) Xi(z) = a(Xi(z)) with Xo(z) =z

Applying (9.14) to S} ¢, that we bound from below by the first in Duhamel’s formula (9.15), we
obtain

z3 . Xe(x3)
Ste6 > erl(zg.r,) / S(Xi(@))e™ o KO dy > ered gy p) /X oy Wy
T2 t(T2
Choosing ¢y such that Xy, (z2) = z3, we get that for all T > Ty + ¢
Xto (x3)
S1¢ > cr1(4y,Ry) / o(x)dx.
T2

Iterating this argument and using the strict positivity of a we get for any Ry > x2 the existence of
a time t; such that for all T' > Ty + t1

R2
(9.17) S7¢ > erl(zg,Ry) ¢(z)dw.

T2
For decreasing the lower bound of the integral from x5 to z¢ + ¢, we iterate once Duhamel’s
formula (9.15) to get

t
S:(ZS(CE) > 2/ K(ths(x))(b(Xs (ths(x)/2))€_ fot—s K(XS’(I))dS’_fg K(XS/(m))dS/ds
0

and then, using (9.17),

t Ro
S 16> cerlin ) / / K (Xt o(@)9(Xa (X (2)/2))da ds.

We can assume that zo > 2x¢ and Ry > 2x5. The fact that xo > 2x( ensures, due to assump-
tion (9.3), that K is bounded from below by a positive constant on [z2, X¢(R2)]. We thus deduce,
by using of a change of variables, that for any ¢t > 0

R2/2

Sk > CtCTl(a:le)/ o(y)dy.
Xt (Xt (r2)/2)

Since X¢(z) — x when ¢t — 0, we deduce for all ¢ > 0 the existence of ¢ > 0 such that

R2/2

Sk > CtCTl(a:D,Rl)/ P(y)dy.
z2/24¢

Since Ry > 2x5, we deduce by combining the above inequality with (9.17) that for all T > Tp+t1 +¢

R2
S1¢ > c11(4y,Ry) / o(x)dx.
12/2+<
Let us take ¢ = x¢. Since the sequence (u,) defined by ugp = z2 and wu,41 = u,/2 + ¢ converges
to 2xg, we obtain by an iteration argument the existence of a time ¢, such that for all T > Ty + ¢,
Ro

S7¢ > erl(zy,Ry) / d(x)dz.

210-‘1—5
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Using a last time the argument with ¢ = ¢/2 yields the desired result. O

We now prove another positivity result which allows making the time 7' independent of R; in
Lemma 9.2.

Lemma 9.3. Let Ry > 2xg. Then there exists tg > 0 such that for any R > R, we have
5:01(9007131) 2 CR]‘(JCO,R)
for some cg > 0.

Proof of Lemma 9.3. Since a is Lipschitz continuous, we can find ¢y > 0 small enough so that
X, (z) < ax for all > xg, with a > 1 to be determined later. Then for any ¢ € (0, to] and any
x € (z9, £1), we have by using the first term in (9.15)

St 1(10,R1)(x) 2 ctol(zo,Rﬂ(Xt(x)) = ¢, > 0.

Iterating once (9.15) and keeping only the second term, we get that for any ¢ € (0,to] and any
x € (220, 252)

t
1 o) &) 2 €ty [ Loy (X (Xima(2)/2)) s = it
0

Choosing « > 1 such that % > 2xg and 20% > Ry, we deduce that for any ¢t € (0, %] there exists
¢¢ > 0 such that
S:]‘(M),Rl) Z Ctl(zo,?a*ZRl)'
Dividing [0, ¢o] into n sub-intervals [£¢,, £t1¢,], 0 < k < n — 1, and iterating the above inequality
with ¢ = ¢o/n, we deduce for all integer n > 1 the existence of ¢, > 0 such that
StoL(@o.R1) = €nl(ag,(20-2)m Ry)

and the proof is complete since 202 > 1. O
With Lemmas 9.2 and 9.3, we are now in position to prove the convergence result in Theorem 9.1.

Proof of the exponential stability part of Theorem 9.1. We apply Theorem 6.3. We start by prov-
ing that (6.9) is verified, in a quantitative way, for the function go = 13,4 r,) With a suitable
choice of Ry and e. Choosing r¢ € (1,7) if m(x) = &” or any ro > 1is m(z) = exp (n fng K/a) and
defining mo(z) = 2" we have from (9.12), because of the normalization ||¢1||sz =1,

-1
[¢1llz>=_, < Co
TnO

for some explicit constant Cy > 0. Defining

Ry :=inf{R > 0; mo(x)/m(z) < 1/2Cy, Yz > R},

we have 5 5
1=|l¢1)lL= , = sup — = sup —
m (w0,00) T (wo,R2) T
because
1
sup 2} < sup 91 mo <Cyh— <1
(Ra,00) T (Rg,00) 0 T 2Co

Together with the fact that ¢} € Lf;,, with a quantitative estimate on ||} oo (z,,r,), We see that
¢1 has some quantifiable mass on (zg + ¢, Rz) for € > 0 small enough, which exactly means that
(g0, ¢1) is quantified from below.
Now we prove that the Harris condition (6.8) is verified. Choosing Ry > 2x¢ and combining
Lemma 9.2 and Lemma 9.3, we have for any € > 0 and Ry > x¢ + € the existence of T' > 0 such
that for any R > R;

Ro
(9.18) S1¢ > crl(zy,R) ¢pdr, V¢ >0.

xo+e

Defining go = 1(44¢,R,), We deduce by duality that for all f >0,
STf > cR<f7 (zo,R)>gO-
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Let us now consider A > 0 and f € X4 such that ||f|| < A[f]s,. Since mo(z)/m(z) — 0 as
x — +oo and ||¢1/mo|lec < Co, we have

Mo = /Rf + [T g

mo
< (i 1(o,m) sup m+|[|f[|Co sup —
(z0,R) (R,00) T

< U o r) m(B) + 5[ flon,

by choosing R large enough. We deduce that Spf > #Igm[ fl#:90, which is equivalent to (6.8)
where we recall the definition S; := S;e~*1t.

Finally, we prove the Lyapunov condition (6.7). On the one hand, we get from (9.10) that
d Ok Ok * O* %
%St m = S (LY = A)m < (kg — A1)Sym + MS{ (150, rym).

On the other hand, arguing as in (6.6), we infer from (9.18) that

61 = e MTS701 > cre ™ (g0, 61)1(ag,)-
Combining both we deduce that

%S’?m < (kB — A1)Sfm + My

with M = c(f) (;0 1¢1> and Gronwall’s inequality then yields

§fm < elrB= Aty 4 Mte(“B_)‘l)tgbl.

This guarantees that (6.7) is verified with v, = e"58=*)T ¢ (0,1) and K = MT.
We have proved that the conditions (6.13), (6.7) and (6.9) are verified. The conclusion of the proof
then follows from Theorem 6.3. g

9.2. The mitosis equation with non-mixing growth rate. In this section, we investigate the
case when the mixing condition (9.6) is not verified. In other words, we place ourselves under the
singular condition that

(9.19) Va > xg, a(2x) = 2a(x).

In this case, we still have the existence of a unique eigen-triplet (A1, f1, ¢1) but the boundary point
spectrum is not reduced to A;. As a consequence, the long time behavior of the semigroup does
not stabilizes along fi; but it exhibits periodic oscillations.

Theorem 9.4. Suppose that (9.3), (9.4), (9.5) and (9.19) are satisfied. The first eigentriplet
problem admits a unique solution (A1, fi1,¢1) € R x X x X with the normalization ||| =
(¢1, f1) = 1, and this triplet additionally satisfies A\ > 0, f1 >0 and ¢1 > 0.
Besides, Y }(£) = {\ +ika, k € Z} for some quantifiable a > 0, there exists a family (g, Vr)rez
of corresponding primal and dual eigenvectors that verifies ({y, ge) = dke, and for all f € Lll, we
have the convergence

He”‘ltSE(t)(f—Hf)HLél -0 as t — +00,

' 1 n 14
where Tf = Tim ~% > (. f)g
£=0 k=—2¢
This new result complements the scarce literature on the long time behavior of equation (9.1) in the
singular case (9.19) which, to the best of our knowledge, is limited to the references [50, 169, 188].
We will actually prove that the convergence in Theorem 9.4 also holds in other spaces, and this
will be the occasion to compare our method and results to the three above mentioned papers.

The proof of the conclusion (C2) in Section 9.1 does not use the mixing assumption (9.6). It
thus also proves the existence, uniqueness and strict positivity of eigentriplet (A1, f1, ¢1) under the
assumptions of Theorem 9.4, as well as the fact that equation (9.1) is associated with a semigroup
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S in X. For proving the long time convergence result, we start by verifying that this semigroup
extends to other relevant Banach spaces.

Well-posedness in entropic L? and M' spaces. The dual eigenfunction ¢, satisfies by defini-
tion L*¢1 = A\1¢1 and the rescaled semigroup S, = Spe~Mt is thus a contraction for the norm of
Lj,. In particular S; is a bounded operator for this norm and, since L;, is dense in Lj , we can
uniquely extend the semigroup S into a strongly continuous semigroup in qubl' Similarly, due to
the weak-* density of Lén into M¢1>1’ this semigroup extends uniquely into a weakly-* continuous
semigroup in M ;1. We still denote by S these extensions.

The General Relative Entropy principle, see [269, 49], ensures that the weighted L? sub-spaces of
Lél defined by

X, = L’; (xg,00) forpe[l,o0) and Xy := L;j’_l(mo,oo)

1-p

1 ¢1
are invariant under the semigroup S and the restriction to these spaces is a contraction. Besides,
Jensen’s inequality yields that it is a decreasing sequence for the inclusion

p>q = X,DX,

Since X C X, is dense, we can infer the strong continuity of S in X, from the strong continuity
in X, by writing for any f € X

IS f — fli%, < ISef — FISISEf = Fllx, < 22 A IS = fllx, — 0,
ast — 0.

Long-time convergence in M, ¢1>1' We start by giving some useful properties of the dual semigroup
S*in X' = LP°_,. Splitting £* as L* = Af + Bj with Aj¢ = 2 *[¢], so that B¢ = ad’ — K¢, the
Duhamel formula
Sr = Sg, + Sp, A0 xSz
ensures that ¢(t, z) := S;¢(z) is a fixed point of the operator I' defined by
(9:20) Te(t,z) := S, (t)o(x) + [Sg, Ao * o[- 2)] (t)
t
= S(Xu(w)e KO 19 [ R (X (@)l X (o) 2)e I8 1O g,
0

where we recall that X;(z) is the solution to the characteristic equation (9.16). It turns out that
I' has a unique fixed point in L2 ([0, 00) x (x0,00)), and that this fixed point also lies in any
closed subset of L2 ([0, 00) X (x¢, 00)) which is left invariant by I'. This property is proved in [169]
or in [35, Sec. 6.3], by building @ thanks to the Banach-Picard fixed point theorem. It has very
useful consequences, as for instance the fact that if ¢ € C(zg,00), then ¢ € C([0,00) X (g, 0)).
In particular, this implies that C(xg,00) N L°_, is invariant under the semigroup S*. Since
C(z0,00) N LX_, is a dense subspace of Cg 4, (20, 00), this ensures that Cp 4, is invariant under S*
and that the duality relation

(Scf,d) = (f,5{9)

is valid for any f € M ¢1>1 and ¢ € Cp 4,. The proof of the next result crucially relies on another
application of the fact that the fixed point of I' belongs to any closed invariant subset.

Proposition 9.5. Suppose that (9.3), (9.4), (9.5) and (9.19) are satisfied. Then S5(L) = {\ +
ika, k € Z} for some a > 0, there exists a family (gx, Vi )rez of corresponding primal and dual
eigenvectors that verifies (g, g¢) = Ore, and for all f € 1\4(11,1 we have the convergence

n 14
(9.21) Sif —SIIf =0, as t— o0, IIf := lim %Z > (ks £)gn,
=0 k=—¢

both convergences having to be understood in the sense of the weak-x topology.

Note that we did not specify the space in which we define the boundary point spectrum EJ}S(E) in
Proposition 9.5. It is because this set is the same in all the Banach lattices we consider. Indeed,
any g € M(zl,1 such that Lg = Ag for some A € C with Re(\) = \; satisfies |g| € Span(f), so that
g € X = L} for any weight m as in (9.7).
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Proof of Proposition 9.5. Step 1. The rescaled semigroup S is a contraction semigroup in M, %1 =

(Co,4,)". This ensures in particular that for all f € J\J(zl,1 the trajectory (§tf)t20 is bounded in
M ;1. We can thus use Theorem 5.23-(2) to infer the non-triviality of the boundary spectrum, by
proving that the conclusion cannot hold, see Remark 5.26-(%). We start from the fact that for
any ¢ € Co ¢, (T0,0), the solution S*¢ to the dual mitosis equation is the unique fixed point of
I' defined in (9.20), and that it belongs to any closed invariant subset of C/([0,00) x (zg,c0)). For
y > xo we define the set

&, = {x > xo, x = 2Fy for some k € Z}

and we consider a function ¢ such that ¢(z) =0if z € £, and ¢(x) > 0if v & £,. Then, since (9.19)
ensures that X;(2x) = 2X(z) for all t > 0, the set

{v € C([0,00) x (z0,00)), @(t,x) =0if X¢(x) € &, and p(t,x) > 0 if X¢(z) € &}

is invariant under I'. Consequently, the unique fixed point S} ¢ belongs to this set, and we deduce
that S;¢(x) = 0 if and only if X;(x) € &,. In other words, by duality, supp(S:dz) C &, if and only
if X¢(x) € &, and in particular supp(S¢d.) C Ex,(y) for all z > xp and ¢ > 0. This prevents the
convergence of 5,8, toward (3,,$1)f1 and we infer from (the negation of) Theorem 5.23-(2) that
the boundary point spectrum cannot be trivial.

Step 2. We next formulate the following simple but fundamental observation. If (A, f) is a solution
to the eigenvalue problem in X = M}, then f € D(L) C BViec C L{. and it is a solution
to the eigenvalue problem in X = Ll . Symmetrically, if (\,¢) is a solution to the eigenvalue
problem in Y = L;o;l’ then ¢ € D(L*) C Lipj,, N L;):El’ ma(z)/me(z) — 0 as x — oo, and it
is a solution to the eigenvalue problem in ¥ = Cp,,,. In other words, the point spectrum and
the associated eigenelements are the same in the two frameworks (L}, L ) and (M}, Co ).
Now, as a consequence of this observation and Step 1, we know that the boundary point spectrum
Y5(L) is not trivial. Because we have proved that (k — B)71A is compact in L}, k < A1, we
may apply Theorem 5.7 and we obtain that X5(£) = {\} + iaZ for some a > 0, and each
eigenvalue is algebraically simple. Using finally Theorem 5.25 in the situation (2), we get the
weak-* convergence (9.21). O

This result is proved by means of entropy techniques in [169] for a linear growth rate a(z) = «z,
by taking advantage of the explicit formulation of the eigenvectors g and vy in terms of f; and
¢1 in that case. Here we extend it to any a satisfying a(2z) = 2a(x). Note that arguing similarly
as in [169], the convergence (9.21) may be strengthened into an exponential strong convergence in
M, for m(z) = a", r > 1, or m(z) = exp (1 f;o K/a), 0 <n < 1, meaning that there is a spectral
gap between Y1 (£) and the rest of the spectrum in these spaces.

Long-time convergence in X,. We prove the following result, the case p = 1 of which corre-
sponds to the convergence result of Theorem 9.4.

Proposition 9.6. Under the same assumptions as in Proposition 9.5, the convergence (9.21) holds
for the strong topology in X,, 1 < p < oo for all f € X,, and the convergence of the Fejér sum in
the definition of the projector Il is also for this topology.

Proof. The case p = 1 is an immediate consequence of Theorem 5.25, case (4). The proof in the
case p > 1 is a direct adaptation of the case p = 1. We aim at verifying that the trajectories
(§t f)i>o0 are relatively compact in X,,. We have already seen that Xo, C X, is dense. Besides, the
domain D(L) of the generator £ — A\; of S in X, is also dense in X, so that it suffices to check
the relative compactness of (§tf)t20 for f € Xoo N D(L). For f in X N D(L) the bounds

I1Sefllx, < Ifllx,,  1£Sefllx, = I1S:LElIx, <ILfllx, and [ISefllxe. < Iflxe

yield the relative compactness of (§t f)t>0, the second bound guaranteeing uniform Wll)’cl estimates.
We can thus apply the case (1) of Theorem 5.25 to deduce the convergence (9.21) in X, for the
strong topology. a

Propositon 9.6 extends the result of [50] where it is proved in the case p = 2 for a(z) = z by taking
advantage of the Hilbert structure of Xs and of the explicit formulation of the eigenvectors g and
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Yy in terms of f1 and ¢;. In this Hilbert setting it is proved that the Fourier series > _  (f, ¢¥x) gk
converges as n goes to infinity, and IIf is then given by the limit.

About the value of a. For ensuring that the boundary spectrum is discrete, we have used a
compactness argument. The period 27/« of the periodic semigroup SII is thus not quantified. It
is expected to be equal to the time needed for a particle to double its size by following the flow
of a, namely

2x
(9.22) i _ / .
a J,p oa(t)
which is independent of the choice of © > zy due to the condition a(2t) = 2a(¢). This is known
to be true in the case of a linear growth rate a(z) = z, see [134] or [50], and also for a general
when the size domain is (x,4x¢), see [188], where explicit computations can be carried out. In the
general case, we have not been able to prove (9.22). Yet the fact that for any x > xy the support
of S0, is a subset of Ex,(,) guarantees that the period cannot be too small as shown now.

Proposition 9.7. We have the estimate
2 > dt
(9.23) Tty = / dr
o o a(t)

Proof of Proposition 9.7. Let © > xo such that 11 (x) # 0 (actually any x > ¢ is suitable). We
have _ _
St5r — StH(SI — 0,

as t — 400, and supp S8, C Ex,(z)> SO SUPP S,1168, C Ex,(x) since S, 116, is periodic. Besides,

StH(SI — 132052 Z 1/) wzkt

=0 k=—/¢

and, since 11 (2) # 0, the period of this periodic function of time is 2Z. But since supp S,I16, C
Ex,(x) and the period of the set Ex, (4 is £q, we have proved that (9.23) holds. O

On the other hand, we can use Theorem 6.5 for deriving a quantiﬁed lower bound on «, and thus
an upper bound on the period. We work in the space X = L. . recalling that X} (£) is the same
in this space and in M¢l.

m>

Proposition 9.8. There exists a constructive constant oy > 0 such that X(L)NB(A1, 1) = {A\1}.
In particular, o > a.

To prove this result, we check that the conditions (6.7), (6.9) and (6.13) are verified, and we invoke
Theorem 6.5. We start with a lemma which, together with Lemma 9.3, will guarantee the validity
of (6.13).

Lemma 9.9. For alle >0, Ry > xg9, and Rs > xo + ¢, there exist T > 0 and ¢y > 0 such that

T Ra
/ Srédt > ch(IO,Rl)/ bdr, Yé> 0.
0 T

ote

Proof of Lemma 9.9. Throughout the proof we denote by ¢; any positive constant that depend
only on ¢. From the Duhamel formula (9.15), we get by positivity that for any ¢ > 0

/ St ¢(x)dt >/ (X, (x KX @)ds gy

We deduce that for all © € (zg, R1) and for Tj large enough so that X, (zg) > Ra, we have
To XT (QJ) R2

S;o(@)dt > ex, / oWy >cr, | d)dy,

0 T Ry

and the conclusion follows if Ry < zg + €. If not, we have with the same argument the existence
of T such that for all x € (z¢, R1)

T 2R>
/ St(a)dt > er / $(y)dy.
0

max(R1,2z0+€)
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Iterating once Duhamel’s formula and using that X(z/2) = X;(x)/2 and (9.3) we get that for all
t>0and all y € (2z¢ + ¢, R2)

Sioy) = ct/0 K(Xi—s(y)o(Xs(Xe—s(y)/2))ds = crp(Xi(y/2))-

This yields for all x € (zg, R1)

T+t T+t T
[ swowis= [ siotaas = [ sisiots
0 t 0

2Ro

= 57 6(0)dy

max(R1,2z04¢)
2R, X:(R2)

> cTct/ d(X(y/2))dy = cTct/ o(2)dz.

max(R1,2z0+€) max(Xt(%),Xt(woJr%))
Choosing t > 0 small enough so that max(X;(£), X;(zo + §)) < max(ELEE 24 4 ¢), we get
T Ro
Sré(x)ds > e / ¢(2)dz, for Ty :=T +t.
0 max( Rl;re ,Lo+€)

Iterating the argument we can build an increasing sequence of times 7;, such that

T, Ry
/ Sip(x)dt > cr, / ¢(z)dz, Vn >0,
0 max(Un ,zo+e)
where (u,) is defined by up = Ry and u,41 = “";5. Since this sequence (u,) converges to
e < xg + €, we get the conclusion by taking n large enough. O

We are now in position to prove Proposition 9.8.

Proof of Proposition 9.8. Arguing similarly as in the proof of Theorem 9.1 and using Lemma 9.9
instead of Lemma 9.2, we can prove that the conditions (6.7), (6.9) and (6.13) are verified. Applying
Theorem 6.5 then gives the result. O

9.3. The model with variability. In this last part, we consider the model with variability
given by the equation (9.2). Compared to equation (9.1), the main consequence of introducing
a variability in terms of the spectrum and the asymptotic behavior is that for equation (9.2) the
boundary spectrum is trivial and the first eigenfunction is exponentially stable, no matter if a
satisfies (9.6) or (9.19).

Additionally to the assumptions (9.3), (9.4) and (9.5), we ask that

o/

(9.24) K(x):O(exp(é/ 2K/a)) as  — 400,

Zo

for some § > 0. About the variability kernel p we suppose that
2

(9.25) / p(v,v.)dv =1, Yo, € [1,2], o€ WhH([1,2]?) and g > p.
1

for some p. > 0. We still work in the space X = L! by considering the weight m = m(x) as
function of (z,v) constant in v.

Theorem 9.10. Suppose that (9.3), (9.4), (9.5), (9.24) and (9.25) are satisfied. The first eigen-
triplet problem for equation (9.2) admits a unique solution (A1, f1,¢1) € R x Xy x X' with the
normalization ||p1|| = (¢1, f1) = 1, and this triplet additionally satisfies A1 > 0, f1 > 0 and ¢1 > 0.
Besides, there are some constructive constants C > 1, w > 0 such that

le™Se()f = (é1, S fillx < Ce™ | f = (b1, HAllx
forany f € X and t > 0.
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Yet expected, this result was known only in the case of a discrete set of variabilities [108, 328].
Theorem 9.10 is thus new in the literature.

Because of the assumption (9.25), we easily see that the construction of the semigroup and the
proof of the conditions (H1), (H2) and (H4) given in Section 9.1 for the model without variability
readily extend to the model (9.2). We thus only have to verify (H3) and some Harris type condition.

Condition (H3). Let 6 € (0,1) such that (9.24) is verified, and consider the weight function
m(z) = 2" with r > 1 or m(z) = exp (n fjg K/a) with n € (0,1 —§). We also use the two other
weights

ma(a) =exp (m [ K/a), ma(o) = exp (2 [ K/a)
xo xo

for some 1y € (9,1 — ) and Ny = 11 + §. We combine the two different splittings £ = A + B and

L = Ay + By, where

2
Af(z,v) = M1y, gy(z)f(z,v), Aof(z,v)= 4/ K(2z)p(v, v f(x, vs) dvs.
1
We prove that for any x > kg the operator
C:=(k—By) tA(k —B) 1A

is well defined and maps continuously L}, into L}, N W.!, in the sense that if (f,) is bounded
in L}, then the image is bounded in L}, N W!((zo,R) x [1,2]) for all R > 0. In particular,
C € K(LL,). More precisely, for any x > 0, we prove

wB)—1 B )1
L'rl’n A L71’nz (k—B) Ao Lrlnlmwl’l (k—Bo)

v,loc

1 1,1
Lm1 N Wloc

1
L,

where W' = {f e LL ((x0,00) x [1,2]), Ouf € LL ((0,00) x [1,2])}.

v,loc loc loc
The results for A and (k — B)~! are proved as in the case without variability. For the third one,
the fact that Ag maps L}, in L;, follows from assumption (9.24), and the fact that the range is
in Wj”lloc is a direct consequence of the assumption that p € W ([1, 2]?).
Finally we consider x — By and we first verify that it is invertible in L}, , for any k > 0. If
(k — Bp)g = f, then necessarily

1 * - xT v
(9.26) ola) = s [ gy 1) ay,
zo

where A, (z) = [7 55 "and consequently

xo a

e(mA(@)—Ax(z))/v /w

(Ax(y)—mAo(y))/v
va(@) e f(y,v)ma(y) dy.

g(z, v)ma(z) =

0

Since
Aw(x) —mAo(z) = (1 —m)Aw/—n)(2)
we have for all v € [1, 2]

/:o( K +K(x))g(x,v)m1(x)dx

1—-m

:/ % 2/(1_171)(3:)@*11”Ar»-/(l—nn(ﬂ@)/ A/ W) £y, v)m (y) dyda

9] Zo
(o] 1 1

=/ el%“/“*m)(y)ﬂy,v)ml(y)/ A @)e” 2 A=) () gy dy
€ Y

0
1 o0
,0)m dy.
e AL
We deduce that the operator k — By is invertible in L}, with [[(x — B)™!|| < 1/k. We have also
proved that (k—Bo) ™' maps L}, into Ly, with |[(k—Bo) ‘|z 11y < 1=—. The fact that
m 1

17 Km 1—m1
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it maps Wv1 lloc into Wll)c readily follows from the formula (9.26). We conclude to the compactness

of C and then to the validity of (H3). Indeed, we can write (2.20) as
fn = RB(/\n)Afn + RB()\n)En;

but also as R R
fn = RBD ()‘n)AOfn + RBO ()‘n)gn
Combining both, we get
fr = Cn+ [Ris(An) AR (M) + Riso (An)] .
Since C is compact, we conclude to (H3) with the same argument as in the proof of Lemma 2.8.

From (H1), (H2), (H3) and (H4) we infer the conclusion (C2) about existence and uniqueness
of (A1, f1,¢1), which gives a part of Theorem 9.10. For the quantitative exponential stability, we
start with a lemma.

Lemma 9.11. For all e > 0, Ry > xg, and Ry > xo + €, there exist T > 0 and cp > 0 such that

2 rRo
(9.27) Sp¢ > crl(z0,R1)%[1,2] / ¢drdv, V¢ >0.
1

Ig-’ré

Proof of Lemma 9.11. Let us fix ¢ > 0, Ry > xg, and Ry > xg + €. Throughout the proof we
denote by c¢; any positive constant that depend on ¢, and also possibly on the ingredients of the
model g, K, p and on ¢, Ry, Ry, but is independent of (z,v) € (zg, R1) % [1,2].

First step. We prove first that there exists 71 > 0 and x5 > x2 > z¢ such that x3 > max(Rz, 2x2)
and

2 xr3
(9.28) 5’}1¢ZCT11(m0,R1)x[1,2]// ¢ dzdv,
1 i)
for all ¢ > 0. We start from the Duhamel formula
(9.29)  Sid(x,v) = (X7 (x),v)e Jo KX (@))ds
+2/ / K(XY ()87 (X0 (x)/2,v,)e Jo KXL@)A" o0, )du, ds,

where X/ (z) is the solution to the characteristic equation
XP(z) =va(XP(x) with X@(z)=z.

Iterating twice (9.29), using positivity and the fact that K and a are locally bounded and g is
bounded from below, we deduce that

Sio(x,
o | / / / KX @)K (X2, (X0 () /2)0(Xp75 (X2, (X0(2)/2)2), 0. dosds'dv.ds,

on (xg, Ry) x [1,2], for all ¢ > 0. Let ¢y be such that tho (x0) = 2x0 + 1. Then, for t > 2tg, we
deduce, from the fact that K is locally bounded from below on (2x¢, 00), that

t 2 s 2
Sz, v) = Ct/ / / / (X7 (X2 (X8(2)/2)/2),vax) dvsnds’ dvyds.
2tp J 1 to J1

For t > 2ty + 2, by using the Fubini-Tonelli theorem, we thus have

2t ptotl 2
S;p(x,v) > ct/l A71A (/1 o( X (X2 (X;’,(x)/2)/2),v**)dv*) ds' dsdv,.

Using now a change of variables, we get

to+1 X7 (X2 (XY (2)/2)/2)
Sy o(z,v) > ct/ / / </ ¢(y,v**)dy) ds’ dsdv .
t—1Jto XX (XY (2)/2)/2)

t tg—2 (z0/2)/2
/ / (Y, Vix) dYdvcs.
X2 : t0+1(R1)/2)/2)

tto
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Due to the strict positivity of a, we can choose ¢t = T} large enough so that

X7, —to-2(%0/2)/2 > max (R, 2X7 (X1, 4, (X5, 11(R1)/2)/2)),

and we obtain (9.28) by setting 3 = X7, _, _,(20/2)/2 and xo = X{(X [, _, (X2 11(R1)/2)/2),
which concludes the first step of the proof.

Second step. We deduce (9.27) from (9.28) as follows. On the one hand, applying (9.28) to the
function S; ¢, we obtain

2 pxs3
Sti4t® > 1y L(zg, Ry)x[1,2] / / S} ¢ dxdv.
1 Jzo
On the other hand, iterating once the Duhamel formula (9.29), we get by positivity that
Sio(z,v) > ct[ / / K(X?(z ijS(X;’(x)/2),U*)dv*ds].

We first assume zo > 2. In that case, the term K (X?(z)) is bounded from below uniformly in
s €10,t], v € [1,2] and x € [z2, 3], so that we infer from the two above inequalities that

ST 1P > e el (g, R1)><[12// [ ),U)—i—/o /1 ¢(Xf*S(X;’(x)/2),U*)dv*ds]dxdv.

By a change of variable, we have

/ o0tz a [ ooy

X7 (x2)
and
t x3 13/2
|| e o)) vdns = e [ By v.)dy.
0 Jas X7 (X7 (2)/2)
Since X?(z) — = as t — 0, we deduce that we can find, for any ¢ > 0, a time ¢ > 0 such that
$3/2
St > el 11| [ o [ [ owvian)
1 z24C z2/2""<
As x3 > 2x9, we can choose ¢ small enough so that z3/2 > x5 + ¢, and we get
ST, 41® > er el (zg Ry x 1 2]/ / Y, v)dydv.
w2/2+C

Impose additionally that ¢ < xg. Since the sequence (u,,) defined by up = z2 and up 41 = un/2+ ¢
converges to 2¢ < 2xg, we deduce by an iteration argument the existence of a time 75 such that

2 T3
(9.30) S5,6(2) > ey Liay 1) (@) / / 6(y, v)dydo.
1 2x0+e

Using a last time the argument with ¢ < e/2 yields (9.27), since x3 > Rs.
In the case where xo < 2x¢, (9.28) directly implies (9.30) with T5 = T3, and only one iteration of
the extension argument is enough for concluding. U

We are now in position to finish the proof of Theorem 9.10.

Proof of Theorem 9.10. The proof is exactly the same as for Theorem 9.1, Lemma 9.11 replacing
Lemma 9.2. The only missing information is a quantitative L{S, estimate on the derivatives 0,¢1
and 9,¢1, in order to use the same argument as in the proof of Proposition 9.8 for verifying (6.9).

The estimate on 0,¢1 follows directly from the equation £*¢1 = Aj¢1, which also reads

1 2
Oup1 = Mo+ Ko — (:c)/ 1(z, vi)p(vs, v)dvs | -
va(z) 1

For 0,¢1 we argue by duality, using that

@l = sup (o, f).
Ifllpa=1

We start from

o1 = (A1 — B) LA b1,
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which yields
10v @1 oo (w0, R) x[1,2] = ”fiup 1<3v()\1 — By LA 61, f)
L1=

= ”fﬁup (p1, Ao(A1 — Bo) " 0uf)
p1=1

where the supremum can be taken over the functions f € C}((zo, R) x (1,2)). Using an integration
by parts in v., we have

2 K(2x)

Ao(h — Bo) "0, f(w,v) = 4 / e =8 @N/0- ), £y 0. )dy p(v, v. ) dvs

1 'U*CL(./,C) xo
2 rx
K(2z) _
— 4 0, (KT) s, =85 @/ (0. 0)) £y, 02 )dyds.
e (e o)) . v
Since [|¢1|| Lo ((zo,R)x[1,2]) < M(R), we deduce

1001 | Lo (w0, R) % [1,2])

R 2

K(2

< 4m(R) sup / / ‘31;* (ﬂe(/\xl(y)*l\xl(w))/v* o(v, v*)) ‘dvdm,
(o) (w0, Rx[1,2 oo J1 via(z)

and this last quantity is finite due to the assumptions made on the functions a, K and g. O

10. THE KINETIC LINEAR BOLTZMANN EQUATION

In this section, we consider the kinetic linear Boltzmann type equation

(10.1) Ohf+v-Vuf =V, 0(x) Vuf =X[f]-Kf, in (0,00) x0O

on the function f = f(t,z,v),t >0, (z,v) € O := Q x RY. We assume that K = K (x,v) > 0 and
that the collision operator JZ is linear and defined by

(10.2) H =ri, (Hg)(z,v) ::/ k g« dv,,

R4
for a real number 7 > 0 and some collision kernel k : Q x R x R* — R,. Here and below, we use
the common shorthands

gr = g(vs), k:=k(xz,v,v.), ke:=k(z, v, 0).

The most classical example for the collisional operator C = J# — K is the mass conservative operator
(103) Cow)i= [ o= v (g, g} do.
R

for some function .# € L} (R?) and some exponent v € R, which includes the relaxation operator

(10.4) (Core) = allp, =a). o= [ v

We make the follwing strong positivity and boundedness assumption on the collision kernel k& and
the function K. There exist v > 0 and K; > 0 such that

(10.5) V(z,v) € QxRY Ko< K(z,v){(v)" < K.

There exists a weight function m : R? — [1,00) such that

(10.6) Vpe[l,o0], kmitme LPLPLY .

For all R > 0, there exists kg > 0 such that

(10.7) V(z,v,v.) € QX Bp X Br, k(z,v,v.) > kg.

It is worth emphasizing that for J# and K defined in (10.3), the above assumptions are met when
m = #"?:RY = [1,00) (s0 that in particular .#Z > 0 a.e.) and .Z'/?(v)7 € L' N L>. We



148 C. FONTE SANCHEZ, P. GABRIEL, AND S. MISCHLER

finally assume that for some weight function m; : R — [1, 00) such that m;/m — oo at infinity,
we have

(10.8) kmy'my € LPL2,
what holds true for the relaxation operator when .#m; € L?(R%) and m~! € L?(R?), and that for
some weight function mg : R? — [1,00) such that mg/m — 0 at infinity, we have

(10.9) kmgtm € L°L)

VUL

what holds true for the relaxation operator when .#m € L*(R%) and my* € L'(R%).

For the space domain 2, we consider the two following cases:

(1) Q:=T% the torus;
(2) Q:=R? the whole space.

In case (1), and for the sake of simplicity, we will always assume that ® = 0. In case (2), we will need
a confinement mechanism which will be provided by the mean of the confinement force associated
to the confinement potential ®. We do not consider here the case of a bounded domain with
zero influx boundary condition because (1) our approach applies exactly as for the torus case and
(2) this case has already been considered in the pioneering work by Vidav [351], where existence,
uniqueness and exponential stability (with non constructive constants) have been established. We
do not consider either the case of a bounded domain complemented with a reflection as we will
consider in Section 11 for the kinetic Fokker-Planck evolution equation, because we have not been
able to establish some crucial regularity estimates which seem to be necessary in our approach.
We let this issue for a future work.

10.1. The torus. In this section, we are first concerned with the kinetic linear Boltzmann equation
in the torus

(10.10) Of+v-Vof =X[f] - Kf, in (0,00) x T? x R%

We make the boundedness and strong positivity assumptions listed above together with the addi-
tional assumption

(10.11) Em;tmy, kmf*lmm €Ly, . Z ||m;1/2(u + I poe (ray < 00,
u€zd

for some my such that m/m, € L'n L2

Theorem 10.1. For the kinetic equation (10.10) in the torus and under conditions (10.5)-(10.6)-
(10.7)-(10.8)-(10.9) and (10.11) for some weight functions m, mg, my, there exists v > 0 such
that for any r > r*, the conclusions (C3) holds in L2, and the conclusion (E31) holds in L. .

Our result may be compared to [351] which establishes the same result without constructive rate
and to [103] which establishes the same result using a probabilistic approach, both in the case of a
bounded domain with zero influx boundary condition. It also extends to a non mass conservative
situation the many results devoted to the conservative framework, see for instance the recent papers
[285, 200, 79] and the references therein. When « > 0, we may probably establish the same above
result under the sole condition r > 0 (no need for r to be large enough) by using some arguments
developed in the next section.

We present now the proof of Theorem 10.1 by establishing that the conditions presented in the
abstract part are satisfied.

Condition (H1). For an exponent p € [1,00) and a weight function m satisfying (10.6), we set

koo 1= ||km;1m|\L;QL5L€/* < 00.



ON THE KREIN-RUTMAN THEOREM AND BEYOND 149

Considering then a solution f to the evolution equation (10.10), we compute
1d
L [ = [t - Ko e
p
1-1/p
1 oo ([ rme) ™ = [ Kwo) froe

hoe [ e~ Ko [ty o

where we have used twice the Holder inequality. This differential inequality together with the
Gronwall lemma provides an apriori estimates about the growth of the L?, norm. As a consequence,
the same arguments as in section 8.3 imply that S, is a positive semigroup in LP, with growth
bound w(S¢) = rke — K. In particular, condition (H1) holds thanks to Lemma 2.2.

IN

IN

Condition (H2). For fj := lpa, p,, where B; denotes the unit ball in R, we compute
Lfo= 2 fo] — Kfo> vieanl{re%/l[fo] — K} fo.

Using (10.5) and the strong positivity condition (10.7), we get
(10.12) viengl{%[fo] — K} >rk — 272K =: ko,
which provides a constructive lower bound of the set Z defined in (2.15) thanks to Lemma 2.4-(ii).
We have thus established that £ satisfies (H2).
Condition (H3). We define the operator

Bf:=—v-V.f — K(z,v)f,

and we assume kg := —inf K < —Ky < kg, what holds whenever r > r*, with * > 0 large enough
thanks to (10.12). In the sequel, we assume p = 2 and we work in X = L2,. We immediately
deduce that B — « is dissipative for any x > rp, and thus Rp(z) is bounded in %(L2,), uniformly
in 2 € A,. For k > kg and g € L2, the function f = Rp(k)g satisfies

v-Vof+(k+K)f=g in O,

from what we deduce
o =) [ P < [ ook Pt = [ g,
1) o 1)

and finally
1

K — KRB

1£1Z2, <
Because of assumption (10.8), and defining A := ¢, we immediately deduce that
(10.13) ARg(k): L2, — L2, .
On the other hand, from the classical averaging lemma [182], we know that
(10.14) A Ri(k) : L2(0O) — HY?(0),
where for ¢ = 1 ® s € CL(O) ® CL(R?), we have defined the mapping A, : L?(O) — L?(O) by

A (F)() = 1 (2, 0) / P v)pa(v) du..

lglZz,

By classical approximation arguments, there exists a sequence (¢,,) such that ¢,, — k in the space
LOO(’]I‘d;Lfn@m_l(Rd x R9)) and such that ¢, is a linear combination of functions of C}(0) ®
CHR?). As a consequence of (10.13) and (10.14), we deduce that ARz(x) € # (L?,) and next
(Ri(k)A)? € # (L2)) for any k > kp. We may use Lemma 2.8 (and Remark 2.9-(2)) with N = 2

in X = L2, and deduce that (H3) holds.

Condition (H4). We start with a result of independent interest about strict positivity. Such an
argument is reminiscent from [88, 327] in the study of the Boltzmann equation and has been used
for instance in [293, 79].
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Lemma 10.2. For any g, 0«,t > 0, there exists ¢ > 0 such that

(10.15) (Se(t)fo)(@,v) > c1p, (v) / fo dvadz.,

TixB,,
for all fo >0 and (z,v) € T? x RZ.
Proof of Lemma 10.2. We observe that the semigroup Sz has explicit representation
(Ss(t)fo)(x,v) = fo(x — vt,v)e” Jo Klz=rv0)dr,
We next write the associated iterated Duhamel formula
Sy =S+ SgH xS+ SpgH x Sg K *xSg+ SgH x SgH x SgH *xS,.

Since all the terms are nonnegative, we may through away the first terms and the last one, and we
get
S/; Z SB*%SB*%SB-

On the one hand, using the explicit expression of Sg and (10.7), we have
(A155(s) fo) (y, w) > kge *Fe1p, (w)/ Joly — was, wi)dw. =: g(s,y, w),
BQ*

for any s > 0 and any ¢’ > . > 0, with K, := sup,cra j,<, K(2,v). On the other hand, for the
same reasons, we have

t
(1S5 * g(1)) (,v) = / k(w,0,0.)g(s, — va(t — 5),v.)e" Jo " Klemmoevddr gy g
0 Rd
t
> kylp, (U)/ / g(s,2 — v (t — 5),v.)e” K dy ds
0 JB,

t
> kz/eftKa’ 1p, (v)/ / fo(x — vi(t — 8) — wys, wy)dw,dv,.ds
0 /B, JB,,

t/2 d
> ke Ke1p (v)/ / / fo(y*,w*)$dw*ds
¢ ¢ 0 B,, JB(z4ws,(t—s)e’) (t - S)d

oKy t/2
> kZ’ 2)° 139(1})/0 /B » Fo(ys, wi)dysdw.ds
K Ox%
2 kZ’e—QlB (U)f/ fo(ys, wi)dyduws,
(t/2)* 72 /g, Jra

Ox

for any ¢ > 0 and ¢’ > max(p, 0.) such that to’ > 2, in such a way that B(z, (t/2)¢') D T¢. We
then have
5 e—tKg/
(S« HiSB D)) > K rtrle, () /T /B Fou dw-dz.

for any t > 2/o'. We finally conclude

t ds
Se(t) fo(x,v zrzkzle_”(@’/ —————1p (v / / Sox dwydz,,
c(t)folz.v) ¢ 2/0 (s/2)d=1 5, () Td J B,, 0

from what we deduce (10.15) by choosing ¢’ = 8/t. O

We now consider A > \; and 0 < f € L2, f # 0, such that
M+v-Vof +Kf—#[f]>0 in T¢ xR
We fix g, > 0 such that f # 0 on B,,. From (2.13), we have

fz/ e~ IHNES (1) fat,
0

and we conclude that f > 0 a.e. on any set T¢ x B, thanks to Lemma 10.2. We have established
that the strong maximum holds true, and thus (H4).
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Condition (H5). Assume that (A, f) € C x X\{0} satisfies
Lf =X, LIfl = (ReA)|f] = Re(signf) LS.

From (H4) and the first identity satisfied by |f|, we know that |f| > 0 a.e. on T¢ x R?. Using the
second identity, we get

K[| fI] = Re(signf) 2 [f].
Writing f = €| f|, we deduce

/ k(z,v,v.)|f(z,v:)](1 = cos(a — a))dvs =0 a.e. on T¢ x RY,
R4

and thus a = a(z) thanks to (10.7). Next, coming back to the first equation, we have
Alfle™ = L(|fle™)
= eL|f] - |fleiv - Vo
e (ReN)| f| — | fle'®iv - Vaa.
The equation simplifies into
v Vea = SmA,
so that a(x) = « is a constant and the reverse Kato’s inequality holds.

Alternatively to (H5), we readily infer from Lemma 10.2 that the variant condition (H5') is
verified.

At this stage, because of Theorem 2.21, Theorem 4.13 and Theorem 5.16 (or Theorem 5.18), we
deduce the conclusions (C1), (C2) and (C3) about the existence and uniqueness of the eigentriplet
(M1, f1,$1) which satisfies fi > 0, ¢1 > 0, A\ is algebraically simple and on the triviality of
the boundary punctual spectrum. We now establish the exponential asymptotic stability with
constructive constants.

We start with a gain of unifom boundness estimate.

Lemma 10.3. There evists N > 1 such that (ARg(x))™ : LL — L2, for any k > kg. As a
consequence, ¢1 € L>°_,.

Proof of Lemma 10.3. Step 1. We argue silmilarly as in [279, Sec. 3.1]. On the one hand, denoting
A = ¢, so that A = rA;, we have for any fo € L1,

(A1SB(t) fo)(x,v) = / k(x,v,v.) fo(z — vat,vi) €7 Jo K(@—v.r0)dr g,

R4
and, using estimate (10.11), we deduce that

I AsSsOfollee < Woms il [ oo = vt o) mdo.dz e
o
< ol e,
for any t > 0. Now, we consider fo € LLL, , we write
(A1S5(t) fo)(z,v) = Z / k(z,v,v:) fo(x — ut — vt, u + vy) e~ Jo Kla—(utvamutvdr g,
Td

u€Z?

and using estimate (10.11) again, we compute

A1S5(t) fo)(x, v)m(v) < km7*1/2m L my/?(u + v, Jo(z — ut — vt u+v.) e do,
1 zov 1
. T

u€Z4

S (Y fm 2w e [

u€eZd tT

dy
oty Mz, 17

1
Setts (1 + t_d) Il follz1 Lo

xzHvmyq

Defining (t) := e **A1S5(t), k > kp, we have first established @ : Ly, — LLLS, unifomly in

r—-uvm

time, and thus @ : LLL3%, — LLLSS, unifomly in time because LLLSS, C Ly, (we use here the fact

that m/my € L'). On the other hand, we have establised that t9u : LLLSS, ~— L% uniformly in

xHvmy
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time. Using [276, Prop. 2.5] with X := L1L3% and Y := L2, we deduce u*(+1) : L;L{’f’ml — L%
uniformly in time, and we thus conclude that @*~ : Ll — L% uniformly in time, for N := d + 2.

Using formula (2.13), we deduce that (ARz)N(z) : L1 — LSO, uniformly for any z € AK.

Step 2. In particular, (ARg)" (z) : L}, — L2, because L2 C L2, (we use here the fact that
m/my € L?). By duality, we deduce that (Rg-A*)"(2) : L2 _, — L%_,. Coming back to the
eigenvalue equation

A p1 + B 1 = Mg,

we deduce
(10.16) b1 =Rp-(M)A = (Rp- (M)A .
By construction ¢; € Lfn,l and we thus conclude that ¢1 € L7°_;. g

From now on, we choose the normalization convention [[¢1|z =1 and (f1, 1) = 1.

Because of (10.9) and proceeding similarly as during the proof of condition (H3), we have
ARg(k): L}, — Ly, VK> kg,
so that
Rp+(k)A" : Loy — L o VK> Kg.
From the first identity in (10.16), we deduce

||¢1||L°° , < Coilldrlle_,

with constructive constant Cp; € (0,00). We may here proceed along an already used argument.
Consider 0 < f € L}, and assume || f||z: < A[f]g,. We then compute

Jron = [ s [ i

mo m

mo
< (f.lo,)supm+ || f|L1,Cor sup —
O, Og m

L7,

< (f,10,)supm +
o, 2

by choosing ¢ = 0(A) large enough, where we denote O, := T x B,. Together with Lemma 10.2,
we deduce that there exists T > 0 and g4 > 0, g4 # 0, such that

(10.17) Sc(T)f = galfle

what is nothing but the Harris condition (6.8). On the other hand, from the above regularization
estimate, we have in the same time

L= g1l , < Collnllr:

-1

o el < Culldnllr
m m

for some constructive constants C; € (0,00). We may thus compute

[omr < /@m Sy

prm” +SHP—Cl/¢1m ,

IN

B,

so that for o > 0 large enough, we deduce
(10.18) Cot <l < 2/ grm~!

Together with the definition of g4, we deduce that the positivity condition (6.3) holds.
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Finally, as during the proof of (H3) above, for 0 < fo € L. and denoting f := S, (t)fo, we
compute

d

= / fmdvde = / H [ f)mdvdz — / K fmdadv

< Co/fmgdvdx—i—/w/fmdmdv,

with Cp := Hkmm&fHLﬁ £y < oo and mg/m — 0 as v — oo. Observing that
m, m,
/fmoé/ forsup—+ [ fmsup—,
B, B, ®1 Be B: ™

for any k > kg, we may choose g > 0 large enough in such a way that Sup e = < (k—k5)/Co
and we deduce that

%/fmdvdx < Cl/f¢1dvdx+n/fmdxdv

with €y = supp, . From the Gronwall lemma, we obtain

At Kt
(& — €
Il < e olay, + =1 [ foon,

from what we immediately deduce that S, satisfies the Lyapunov condition (6.7) for any ¢ > 0.
It remains to quantify the constant C;. The dual formulation of (10.15) applied to the dual
eigenfunction ¢; with ¢ =1 and g, = p yields

¢ = e*A15;(1)¢1 > eiAlclexBQ‘/ ¢1 dvida,.
Tex B,

—18UPB, Mo
1nfBQ m

Together with Equation (10.18), this provides the explicit bound C; < 2CpeM ¢

We have established that the three conditions (6.8), (6.7) and (6.9) hold, so that we conclude the
proof of Theorem 10.1 by just applying Theorem 6.3.

10.2. The whole space case. In this section, we assume that 2 := R? and we consider the kinetic

equation (10.1) with an additional force field confinement F = —V,® associated to a potential ®.
More precisely from now-on, we assume that
(10.19) O(x) = |27, B>2, K(v)= (o), >0,

that (10.6) holds (for p = 2) and that there exist {, ¢ > 0 such that
(10.20) H M) > cclo) s, M= e IvF/2,

Observe that condition (10.20) is satisfied when J# is the positive part of the mass conservative
operator (10.3). For further references, we write £ := 7 + ¢ with

Ti=—v-Vof+V,®-V,, Cf=X[f]-Kf
and we define the Hamiltonian
H:=d(x) + %|v|2.
In the sequel, we will only consider some weight functions m = w(H) with w(y) = y2, 0 > 0,

or w(y) = e, k € (0,1), so that w(H) ~ w(|v|*)w(®). For p € [1,00), we further assume that
v w (|v]?) € LP" (which imposes ¢ > d/(2p’) for a polynomial weight).

Theorem 10.4. For the kinetic equation (10.1) in the whole space with confinement force and
under conditions (10.5)-(10.6)-(10.7)-(10.8)-(10.19)-(10.20) for some weight function m = w(H) as
discuted above, the conclusion (C3) about existence, uniqueness and positivity of the eigentriplet
solution (A1, f1,®1) holds as well as the ergodicity (E2) for the weak convergence in Lll.
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We are not aware of any result on the first eigentriplet problem for such linear Boltzmann like
equation in the whole space. We may however compare our result to [200] where the corresponding
mass conservative framework is considered. We present the proof of Theorem 10.4 in that situation
by adapating the arguments presented in the previous section.

Condition (H1). Let us consider a weight function m = w(#) as intruced before and let us fix
p € [1,00). For a solution to the evolution equation (10.1), we classically compute
d P
— f—mpdvda: = / (L) P mPdvda
dt P

[ reme s+ [oeng e~ [ rxme
%/(xff)”mH/f”(% — K)m?,

by using an integration by parts and the Young inequality. For the first term, we have

/(%/f)i’mpdvdx < cw/w(@) (/ fdv)pdx

cw/w(@)/fpw(lvlg)dvdxllw_l(IUIQ)Hip/
< /fpmpdvdx.

All together and thanks to the Gronwall lemma, we have established an apriori estimate on the
evolution of the norm || f||,» and we deduce as in section 8 that £ generates a positive semigroup
on LP . In particular, the condition (H1) is satisfied thanks to Lemma 2.2.

Condition (H2). We define fy := e~ ¢* and we compute
Lfo = €fo= re_@e/“i/[e_‘”c] —Ke ¢
> (re¢ — Ko)(v)Te " >0,

for r > 0 large enough. That implies that Z is lower bounded by ¢ = 0 by using Lemma 2.4-(ii),
and we have thus established that £ satisfies (H2).

IN

Condition (H3). We introduce the collisionless operator
Bf =Tf—-Kf
and we define
Bi¢ = %T*qﬁ — K.
Our analysis is mainly a consequence of the following moment estimate.

Lemma 10.5. There exist some weight functions w < H and some real numbers «, cq, Co > 0
such that

(10.21) Bfw < Cow — coHITY.
Proof of Lemma 10.5. We split the proof into two steps.

Step 1. We first assume v <  — 2 and we define
1

w:=1+ i[m]H”/Q v+ H,
with [2]° := z|z|°~!. We observe that

1 1 1
[l2] 272 o] < Slef 4 Sl < SH + 5,

N =

so that w ~ (H). We now compute

2
Tw < L2 a2 = a2

and thus
. |
2

1
Biw < Oy |z ?|w]? - §|x|6+7/2 — o>,
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Using that
Cala? < CF + 1ol
if |2| < |v| and
Cylv)? < (401)6/(,6’72) + imﬁj
if |v| < |z|, we obtain

1

I

Brw < (CF + (4GP )H — a2 -

from what we conclude with « := ~/(25).
Step 2. We now assume ( < v+ 2 and we define

wi=1+ %[96]’8/2 v+ H,
so that again w ~ (H). We easily compute
Btw < Cola]/2 o] — %pq%ﬂ*l _ %WH.
Using Young’s inequality similarly as in the step 1, we get that
Biw < CH — cla|35~1 — efof?+7,
which in turn implies (10.21) with « := min(y/2,1/2 - 1/0). O
We classically deduce the following resolvent estimate.

Lemma 10.6. For any weight function mg := w(H), there exists a weight function my := wi(H)
such that mq/mo — 0o as H — oo and for any k > kg > —Kj there holds

(10.22) Ri : L*(mg) — L*(my).

Proof of Lemma 10.6. We split the proof into two steps.

Step 1. We fix kg € (— Ko, ko) and mg := wo(H) with wp a function as defined above. We observe
that

B*mg = —Kmg < —my,
so that

[te=B)s(ma) = [ 205~ Byma <0,

which means that x — B is a dissipative operator in L?no. We deduce that Rp(k) : L%m — L%m for
any K > —1.
Step 2. We take
m:=wH)w, w(H):=wo(H)/H,
where w is defined as in Step 1 of Lemma 10.5 when v < 8 — 2 and as in Step 2 of Lemma 10.5

when v > 8 — 2. In any cases m < mp. On the other hand, Lemma 10.5 and 7*w(H) = 0 imply
together that

Bfm < Com — cow(H)H™TY,  a>0.

This apriori estimate implies Rg(Cy) : L2, — L2, , with m; := meH®. For g € L2, and

myo mo

k> kp = —Kj, the function f :=Rp(k)g € L2, C L*(m) also satisfies
(Co=B)f =g+ (Ca—K)f.
We deduce || fll 2(my) S N9llL2m) + 1 f11220m) S 11f 1l 22(me)» Which is nothing but (10.22). O

We argue as during the proof of (H3) in Section 10.1. By a localization argument and the averaging
lemma, we have ARp(k) : L7, — L?(Bgr x Bg) with compact injection for any R > 0. Togeher
with Lemma 10.6, we deduce that R (k) € K(L2, ) for any x > kp, and we conclude exactly as in
Section 10.1.
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Condition (H4) and (H5'). We recall that it has been proved in [79, Lem. 4.5] that the semigroup
S associated to the operator L satisfies the Harris condition: for any 7" > 0 and p > 0, there exists
o > 0 such that

(10.23) Srf> alBQ/ fdxdv, VY f>0,
Bﬁg

for some constant ¥ € (0,1) and where B, := {(z,v) € R?%; |z| < r, |v| < r}. Although the
statement of [79, Lem. 4.5] is not written in that way, one may easily track the constants appearing
in Lemmas 3.5, 3.6, 3.7 and 4.1 in [79] and one obtain (10.23) with ¢ := 1/2. Now, (10.23)
immediately implies (H5’) which in turn implies (H4) thanks to Lemma 4.8-(2)-(3).

Because L is the generator of a semigroup it also satisfies the weak maximum principle and Kato’s
inequalities (H1'). We are then in position to apply Theorem 2.21, Theorem 4.13, Theorem 5.18
and Theorem 5.23-(3) and thus complete the proof of Theorem 10.4.

11. THE KINETIC FOKKER-PLANCK EQUATION
In this part, we consider the kinetic Fokker-Planck evolution equation associated to the operator
(11.1) Lf:=—v-Vof+A,f+b-V,f+cf,

on functions f : O — R, where O := Q x R?, Q@ € R? is a domain, b: O — R? is a given vector
field and ¢ : O — R is a given function. In contrast with the previous part, collisions are typically
modelized by a Fokker-Planck operator A, f + div,(vf) (when b = v and ¢ = d) which takes
into account a thermal bath of (Gaussian) whitenoise instead of the integral collisional operator
J|f] — K f in the linear Boltzmann equation (10.1).

We will consider the case when € is a bounded domain and the equation is complemented with
a boundary condition. More precisely, we assume the classical balance between the values of the
trace v f of f on the outgoing and incoming velocities subsets of the boundary

(11.2) (v-F)(x,v) = Ro(y, f(2,.))(v) on E_,

where in this context we define % := {v € R3; £ v -1, > 0} the sets of outgoing (X% ) and incoming
(37) velocities at point = € 9€, next the sets

Y1 ={(z,v) € B5tv, v >0} = {(z,v); x € 9, v € TL},

and finally the outgoing and incoming trace functions v+ f := 15, vf. Here and in the sequel, v,
denotes the unit normal outward vector field defined on the boundary set 9€2. We similarly define
the grazing velocity set

Yo ={(z,v) € ;v -v=0}.

The reflection operator %, is local in position, but can be local or nonlocal in the velocity variable,
so that it writes

(Zrg)(v) = / 7(x, v, 0.) g (Vi )Us - Vg duy,
X3

for a reflection kernel r : 9Q x R% x R — R. Some classical general assumptions on r are

(11.3) r>0, Zil=1 XM =M,

for some positive function .# = .#(v), see for instance [95, 97, 98]. The second (normalisation)
condition corresponds to the fact that all the particles reaching the outgoing boundary are put
back on the incoming boundary (no mass is lost) while the third (reciprocity) condition means
(when . is a Gaussian function) that the wall is in a local equilibrium state and is not influenced
by the incoming particles. The normalization condition implies the local mass conservation

(11.4) /ﬁrg|y-v|dv:/ gv - vdv,
5o )

s
+
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while the three assumptions (11.3) on r together also imply

/ (ﬁmg){/fl*wu - v|dv
X

IN

/Ez (Bl ) M)) (gl ) 0 - 0]

/ GAMT (B - vedus,
X3

where we have used the Cauchy-Schwarz inequality (and the fact that r > 0) in the first line and
the reciprocity condition in the second line. As a consequence, we have

(11.5) /(%19)2%71|V-v|dv§/ G v vdv,
i @

3

where we have used the normalization condition in that last step. In the sequel, we will rather
consider the possibly position dependent Maxwell boundary condition operator

(11.6) Z:g = a(x)Dzg + ()29,

where the accommodation coefficients «, 8 : 9 — [0, 1] satisfy a(x) + B(x) =: ((z) <1, T'y is the
specular reflection operator

(11.7) La(g(x,))(v) = g(x,Vav), Vv =v—2v(z)(v(z) - v),
and D, is the diffusive operator
(11.8) Da(g(x,))(v) = cwtl (v)g(2),  g(x) = [ g(z,w)v(z) wdw.

b

it

Here the constant c_4 := (27)'/? is such that c///j//: 1 and .# stands for the standard Maxwellian
(11.9) A (v) = (2m) "% exp(—[v]*/2),
or, more generally, .# = .#(|v|) > 0 is such that
(11.10) D=1, Dol =M, ()M c LR,

with ¢ > 1 (that last condition is necessary in order that the second relation above makes sense).
The boundary condition (11.6) corresponds to the pure specular reflection boundary condition
when 8 = 1 and it corresponds to the pure diffusive boundary condition when o« = 1. When ( = 1,
the Maxwell boundary condition operator (11.6) satisfies (11.3). On the contrary, when ¢ # 1, the
L? estimate (11.5) holds but not anymore the mass conservation (11.4). However, the following L!
estimate

(11.11) / |%wg||u-v|d1)§§*/ lglv - vdv
e X3

holds, with 0 < sup{ < ¢* < 1. Finally, the case ( = 0 corresonds to the zero inflow problem.

Let us finally mention that similarly as in Part 8, the regularity needed on the domain 2 may be
formulated in the following way: we assume that € is locally on one side of 9Q and there exists
a function § = g € W2>(R?) such that for all x in an interior neighborhood of 9§ one has
§(z) = dist(z,09) and the vector field v defined on R? by = — v(z) = v, := —V,6(z) coincides
with the previously defined unit outward normal vector field on 9Q and satisfies ||v||L~ = 1. We
also assume that the Lebesgue measure on 0f) is well defined and it is denoted by do.

11.1. The trace problem.

We consider in this section the trace problem for a solution g = g(z,v) to the stationary Vlasov-
Fokker-Planck equation

(11.12) Mg:=v-Vyg—b-Vyg—Ayg=G in O,

for a given a vector field b = b(x,v), a source term G = G(z,v) and for a solution g = ¢(¢,z,v) to
the evolution Vlasov-Fokker-Planck equation

(11.13) Og+v-Vyg—0b-Vyg—Ayg=G in (0,T) x O,

for a given a vector field b = b(t, z,v), a source term G = G(t,z,v). The second problem has been
considered first in [91] and next in [272, Sec. 4], where a strong (renormalized) trace function is
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proved to exist. In the sequel, we recall these results and slightly extending them by considering a
possible L2H ~! source term. We introduce some notations. We denote

d¢ ;= |v(x) - v|dvdo, and d¢? := (v(z) - 0)%dvdo,

the measures on the boundary set 3. We denote by B; the class of renormalized functions g €
VVI?):O (R) such that 8" has a ‘compact support, by By the class of functions § € Wli’cm (R) such

that 8” € L>°(R) and by Dy(O) the space of test functions ¢ € D(O) such that ¢ = 0 on 3Xg. We
finally define the dual operator

M*p = —v-Vyp + div,(bp) — Ayep.

Theorem 11.1. We consider g,b € L? Hlloc,w GeL?,  H_ ' andwe assume that g is a solu-

loc,z loc,z""loc,v

tion to the stationary Vlasov-Fokker-Planck equation (11.12). Then there exists vg € L2 (3, d&?)
such that the following Green renormalized formula

(11.14) / /O (Blg) M*p — 8"(9) IV, g2) dvdz + (G, B'(9)¢) =
=//Zﬁ(vg)<ﬂ v(z) - v dvdo,

holds for any renormalized function 8 € By and any test functions ¢ € D(O), as well as for any
renormalized function B € By and any test functions p € Do(O). It is worth emphasizing that
B'(g)p € L2H} so that the duality product (G, (g)p) is well defined.

If furthermore yxg € L} (3;d€) then vig € LE (3;d€) and (11.14) holds for any renormalized

function B € By and any test functions ¢ € D(O).

Proof of Theorem 11.1. We only allude the proof which uses very similar arguments as those
presented in Section 10 and that can also be partially found in [136, 272]. In the one hand,
considering the mollifier (p.)e>o defined in (8.19) with z := (z,y), we get that g. is smooth and
satisfies

ge 7 9 in leoc,zHl{)c,va MgE = GE — G in LIQOC,IH_l

loc,v?

which is nothing but a variant of [139, Lem. II.1]. The function g. being smooth, for any 3 € C?
such that 8 € C}, we may differentiate 3(g.) and we get

MB(ge) + B"(92)|Vwgel* = B'(9:)Ge in O,
with. We may thus pass to the limit as ¢ — 0 and we obtain (11.14). O

We also write without proof (since this one is similar to the proof of Proposition 8.10) a stability
result that we will use several times in the sequel.

and (Gy,) of L2, _H !

loc,z""loc,v

Proposition 11.2. Let us consider three sequences (gx), (bx) of L. . Hic ,
such that

V- Vagk — b - Vogr — Dogr = G in D'(O)
for any k > 1 and three functions g,b € L? Hllocm and G € L2 _H~ ' such that g, — g strongly

loc,z loc,z""loc,v

in L%OWCH1 by — b weakly in L (O) and Gy, — G strongly in L} H ! . Then g satisfies

loc,v? loc,z""loc,v*

(11.12) and, up to the extaction of a subsequence, Ygr, — vg a.e. on X\Xog.

(2) If gi. — g weakly in Li _(O) then g satisfies (11.14) and, up to the extaction of a subsequence,

loc

Yok —vg on X\Xg (we recall that the renormalized convergence has been defined in (8.51)).

11.2. Well-posedness problem with inflow term at the boundary. We consider the kinetic
Fokker-Planck operator £ defined in (11.1) and we start revisiting the well posedness problem

(11.15) A=L)f=F in O, y_f=g on X_,
for given data §: O - Rand g: X_ — R.
For a given weight function m : R? — [1,00), we define the measure d¢,, := m?|v(z) - v| dvda,

on the boundary . We next define L?H, = L?H (O) the space associated to the Hilbert norm
defined by

£ 2, = F11Z2, + IV flIZs
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and we assume that m satisfies the Poincaré type inequality
Vm
(11.16) HfW”L%L N HfHLQH?l”a Vfe L2H71n'
Such a Poincaré inequality is classically known to be true when m := .# 7, .# is the Maxwellian
(11.9) and ¥ > 0. We also define
L*H,," == {§ = g+ div,G; g,G; € L2, (0)},
so that when m = 1 the space L?H . is nothing but the space of continuous and linear mappings
on L2H!. For § € L?*H,;! and f € L>H},, we may thus write
(S, fm2> < ||§HL2H,;1 ||f||L2H}n-

We finally define in this context

Wy :={feL?H'; ©-V,f € L*?H'},
and

Was i={g € Wa; vg € L*(3;dém)},
with Wy 5 # W in general.
Theorem 11.3. Let us fiz a vector field b € HE (O), a function ¢ € L>(O), a weight function
m: R% — [1,00) and let us assume that b/{v) € L>(0), that (11.16) holds and that
Am? 1
Ly~ Y

2m? 2 m
For any § € L?H,,}, g € L*>(X_;d¢,,) and X > \*, there exists a unique solution f € Wa s to the

Dirichlet problem (11.15). We have furthermore f >0 if § > 0 and g > 0.

A similar result is proved in [129, Appendix A] in the case Q2 = R%. Also observe that (11.17) holds
with m := .4~/ when . is the standard Maxwellian (11.9) and b(v) = v, with ¥ > 1/2.

Proof of Theorem 11.3. We split the proof into five steps.

(11.17) A i=ess supw < 00, w:=c+

Step 1. A priori estimates. We argue similarly as in [90, 89]. Multiplying the first equation in
(11.15) by fm?, performing several integrations by part in the velocity variable and using the
Green formula, we have

1
/ A —@)f2m? + = / (vf)*m?v - —|—/ Vo f|?m? = (§, fm?).
o 2 Js o
Fixing A > A", using the Young inequality

1
”gHL?H;l”f”L?H}n < (m

and the boundary condition on the incoming set ¥_ in (11.15), we deduce

14+ A=A
R R R e L TR

1 A=A 1
5 812 + S5, + 5 IV,

e Because of the first equation in (11.15) and the above estimate, we find

(11.19) @-Vgcf:<71>(S—>\f+Avf+b-va+cf)ELQHﬂjl,
so that f € Wa.

e Multiplying the first equation in (11.15) by f1, ¢ := v(z) - m? where here and below we use the
notations ¥ := v/(v), ¥ := v/ (v)?, (v)? ;= 1+|v|?, and using the Green formula and one integration
by part in the velocity variable, we get

3 [P ormt = 5 [ Po-Daimt = [ 9.rp

[ 1Vt =V + [ Pote= )+ @ o),
o o
Observing that

IS SO < 8Nl oz 1fv(@) - Oll2my, S SN p2pz 11 L2,
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and
1FVotlie S 1fllom,
recalling that b/(v) € L>°(O) and using the Cauchy-Schwarz inequality, we deduce

(11.20) 17 f 122 (ssaez) < CQ+ Ml Zem, + CISl pepsn 1l L2mm,
for some constant C' = C(b, ¢, m,v), with d&?, := (v - 9)?>m?dvdo,.

e For latter reference, we establish an estimate about the behaviour of the solution near the
boundary. We now introduce the following Lions-Perthame [256] type weight function

(11.21) V= 26(x)?v(z) - 0,
and we observe that ¥ = 0 on X, (v)¢ € L>®(0), V¢ € L*°(0O) and
v Vath = W(ﬁ o (2))? + 26() /20 - Dy ().

Multiplying the first equation in (11.15) by fi, we have

l v - 20 — i v . —o)f*p =
5 o Verto= [ F Vst [ Vi)V + [ 0=afte = (p.ro).

Using Cauchy-Schwarz and Young inequalities, we deduce
(0-v(x)?
(11.22 [ P dvds < O+ WD s + 1P s ),
for some constant C' = C(b, ¢, n).
e We finally state a somehow classical regularity estimate when F € L2 (O). Taking advantage
of the fact that F € L2 and f € L?H}, and localizing the problem by introducing the function
9= fxe € L;H (R xRY), xc € C2(0), 1o, < xe <1, 0. = {(z,v) € O; §(z) > ¢, |v| <1/e},
we have
v-Vaeg — Ayg + (0)2g = G in D'(R? x RY),
with
G:=(F =M —cf =b-Vyuf)xe —2Vof - Voxe + ()2 fxe € L*(R? x RY).
From the quantitative Hormander’s hypoellipticity estimate of Hérau & Pravda-Starov [210, Prop. 2.1],
we then have

1D gll> + 1 D3l S 11Gllz> + llgll e
Coming back to the function f and using the previous estimates, we deduce
(11.23) 1D fll 200y + I1D2fllL2(0.) < CUILS 20y + 1f ]l L2(0));
for a constant C' = C(\, &) > 0.

Step 2. Existence. We assume g = 0. A possible way for proving the existence is to use Lions’
variant of the Lax-Milgram theorem [250, Chap III, §1] as in [36, 129] and as we proceed now.
Defining the bilinear form £ : L2H} (0) x CL(OUX_) = R, by

E(f.p) = /O (A — L) fom?

= / Af =b-Vof —cf)pm® + Vo f -V (pm?) = f(v- Vap)m?,
o
for any f € L?H} (O) and p € C}(OUX_), we observe that this one is coercive, namely
1
o) = [O-@mt s [ Vel 4 g [ (P,
o o 2 Js_

> hllelZam
for any ¢ € CH(OUX_), with k := min(A—A*,1) > 0. From the above mentioned Lions’s theorem,
for any § € L2H,}, there exists f € L2H}, such that

(11.24) E(f, ) = (F,om?), VYoeClOux.).

In particular, f satisfies the first equation in (11.15) in the distributional sense D’(0Q), and thus
from (11.19), we deduce that f € W,. Thanks to the trace Theorem 11.1 and the estimate (11.20),
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the function f admits a trace vf € L*(2;d€2,). Using the Green formula (11.14) with 8 = id € By,
we have

(11.25) // A + Fp) dvdx = // vf o v(z) - vdvdoy,

for any » € D(O). Particularizing to ¢ € D(O UX_) and comparing with (11.24), we deduce that
v-f=0.

Step 3. Existence. The general case g € L*(X_;d¢,,). When g € C%(3_), there exists a function
h e CZ(OUX_) such that by, = g and we consider the source term G := §+ (L — \)h € L*H,}
as well as the problem

A=L)g=GinO, y_g=0onX_.

From Step 2, there exists a solution g € W3 to this problem and we set f := g+ b, in such a way
that f € Wy and satisfies

Lro-ee = [an-cye+ [ -

/Gso+/(/\—ﬁ)h<p—/b\zsw-v,
1) 1) b))
and thus

(11.26) /f)\ L) /&p /E, gov-v,

for any p € C2(O U X_). Together with (11.25), we get that v_f = g on ¥_. In order to deal
with the general case g € L?(X_;d¢,,), we introduce a sequence (g") of C2(3_) such that g" — g
in L2(X_,d¢,,) and we next consider the associated sequence of solutions (f™) of Wa s just built
above. Using the estimates exhibited in Step 1, we get that (f™) is a Cauchy sequence in Wa, so
that it converges to a limit f € Ws 5. We may pass to the limit in (11.26) written for the sequence
(f™) and deduce that the same equation holds at the limit for f.

Step 4. Uniqueness. Consider two weak solutions f; € W5 to the equation (11.15) in the sense that
E(fisp) = (T om?), VoeC(OUE.).
In particular, the difference f := fo — f1 € W5 satisfies
E(f,9) =0, VpeC(OUZ.),

and from the above discussion v_f = 0 € L?(X_;d&,,). Thanks to the trace Theorem 11.1, we
deduce that vf € L% (%;d&,,) and we may choose 3(s) = s? in the Green formula (11.14): we get

/Of2{v-sz0—divv(b<p)+Avs0+2f(c—/\)<ﬁ}—2|Vuf|2s0:/ (vf)?v - ve,

pau

for any test function ¢ € C2(0). Choosing ¢ = m2x,, with x,(v) := x(v/0), x € C%(R),
1p, < x < 1p,, we deduce

1 v
/f2m2{(A—W)xg+§b'Vx@— =
O

— Vyx, — A < 0.
m Xeo XQ}—

Because f € L?H]},, we may pass to the limit ¢ — oo thanks to the dominated convergence theorem
and we obtain
/ Pm*(\ —w) <0,
o
and thus f = 0.

Step 5. Positivity. We assume now that § > 0 and g > 0. We proceed similarly as in the previous
step by considering 8(s) = 52, ¢ = m?xas. Letting M — oo, we deduce

/ PmPA—w) <0
o

and thus f_ = 0. g
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Summing up, gathering the above estimates (11.18), (11.19), (11.20), (11.22), (11.23), we see that
there exists a constant C' > 0 such that any function f € D(L) satisfies

. V-V
(11.27) [ fllems, + 110 Vafllpeg + ||fm||L2
+ ||'7f||L2(E;d§$n) + H’HfHL?(z;dgm) <O fllz + 1££]z2)

and for any € > 0 there exists a constant C; such that any function f € D(L) satisfies
1D fll20.) + 1D2 fllz20.) < Ce(ll fllzz + I1£F ]I 2)-

11.3. Well-posedness problem with reflection condition at the boundary. We consider
now the well posedness problem associated to the stationary equation
(11.28) AN=L0)f=F in O, v_f=Rvy+f on X_|

for a given datum § : O — R, where the kinetic Fokker-Planck operator L is still defined by (11.1)
and the reflexion operator & is described in (11.6), (11.7), (11.8).

Theorem 11.4. Let us fix a vector field b € HL _(O) and a function ¢ € L>(O) which satisfy the
assumptions of Theorem 11.8 with a given weight function m : R — [1,00) for the pure specular
reflection case a = 0 and with the weight function m = .# /2 when o # 0, where .# is the
Gaussian function (11.9) or a more general equilibrium satsifying (11.10). In that last case, we
furthermore assume one of the two following conditions

(i) 1=+ a?/2 > 6, >0, and we observe that L?(%;d¢,,) € LY(X; d€),

(ii) (v)2 4 € L', and we observe that L?(%;d¢2,) € LY(3; d€),
where we recall that we have defined d,, := m?|v(x) - v|dvdo, and d&2, := m?(v(x) - ©)?dvdo,.
For any § € L>H_;' and A\ > \*, there exists at least one solution f € Wy to the Dirichlet problem
(11.28). Assuming furthermore that
(11.29) A = esssup (¢ — divh) < oo,
and A > X**, the solution f is unique and f >0 if § > 0.

It is worth emphasizing that the assumptions of Theorem 11.4 hold when b = v and m := .# /2.
We also emphasize on the fact that the additional assumptions (i) or (i) are made in order to
prove the uniqueness of the solution during the proof.

Proof of Theorem 11.4. We split the proof into four steps.

Step 1. A priori estimates. We multiply the first equation in (11.28) by fm?2. As in Step 1 of the
proof of Theorem 11.3, we get

1
[ o=@t 5 [antmtveos [ V,1Pn? = @ )
o b o
Using for instance [55, Lem. 3.1], we have

(11.30) /E(Wf)gmgv 0> /Z (1 =) (1 f)? + (D vy £)Pldém = Ec.a(v4 f) >0,

with Dtg := g — Dg. Using that the contribution of the boundary is nonnegative in the first
estimate, we first deduce

A =X fIe, + IVAIZ2, < I8l e pr Il z2my,
for A > A\*, so that
min(A — X" V)| fllpza, < I8l p2p-
From the three above estimates together, for A > A\*, we obtain
1 1
11.31 A— 22/U22—a < ——— 817 e -
130 [ o=@t [ (Vo G ) € e

There is no difficulty for also getting the pieces of information (11.19), (11.20), (11.22) and (11.23),
so that in particular f € Ws. It is worth emphasizing here that when (v)2.# € L', we have
L2(d€2)) C LY(Z; d€) by using the Cauchy-Schwarz and (11.20), so that in particular the boundary
condition is well defined.
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Let us show now how the last conclusion also holds under condition (i) in the statement of the
Theorem. We then assume ¥ = 1 in (11.10) and we show how to establish an additionnal a priori
estimate. We indeed know from (11.20) that

[ @) opmtdvde, < [ ()06 mideds, < O

and similarly as in [18] or [272, proof of Lemma 2.2] that
1= / lv(x) - v| A dv=C (v(x) - 0)2 M dv, Yz € o,
e se

for some constant C' € (0, 00), so that

1132 [ @D )P =C [ (@D ) 0P < OO

Summing up (11.31) and (11.32), and using that
(7+£)? < 2D f)? + 2(De f)?,

we deduce that
(11.33) [ ¢ @2 P < ClBla
P28

Defining

feEWa g :={g€ Wz v_g=%719}.
we see that Wa 5 = Wap if 1 — ( + «?/2 > 6, > 0, but it is worth emphasizing that we may have
Wa.z # Wa s in the general case.
Step 2. Existence when § > 0. With the help of Theorem 11.3, we define fyo = 0 and, recursively
for any n > 1, we define f,, € Wa 5y as the solution of

(11.34) AN=L)fn=F in O, ~v_fon=RV+fn-1 on X_.

It is worth emphasizing here that v, f,—1 € L?(X4;d&,,) implies Z(v4 fa—1) € L*(X_;d&,) be-
cause of (11.5). We also notice that f,, > 0 because § > 0. By linearity

A=L)(for1— fa) =0 in O, v (fas1— fu) = By+(fo — fu-1) on X,

and we thus show recursevily that f,+1 — f, > 0. In other words, (f,) is an increasing sequence
and thus also is (vf,). From (11.30), we have

[onra, = [ Crefuden - J

> /E Crefuden - /E (B fn) A > (4 fr),

so that the estimate (11.31) holds true for f,, (instead of f) uniformly in n > 1. From the
monotonous convergence theorem, there exists f € L2H}, satisfying (11.31), (11.33), (11.20) and
such that f, ~ f a.e. Thanks to Proposition 11.2, we have vf, ~ vf a.e. on X, from what we
deduce that Zvy fn, — Zv+f in L*(X_;d€?2,) thanks to the monotonous convergence theorem. As
a consequence, we may pass to the limit in the weak formulation of (11.34), and we get that f is a
solution of (11.28). We may also pass to the liminf in the estimate (11.31) written for f,, and we
thus deduce that the same estimate holds for f.

Step 3. Existence when § € Lan’ll. When § € Lfn, we may introduce the splitting § = §+ — §—,
just use the previous step for F+ and conclude by linearity of the equation. When § ¢ L2, we
proceed similarly as in [272] and in the following way. We first assume ¢ < ¢* € [0,1) and we
consider the mapping ¥ : Wy s — Wa s, g — f = ¥(g), where f is the solution to the stationary
problem

(11.35) {(A—E)f=§ in O

Y-f=%y4g on  X_.
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The space Wa 5 is endowed with the norm || - ||w, ,, defined by

1913, = llgllz2 + IVogliZz + 79072 (ae,)-

From (11.18) and the estimate || Zgllr2(s_.de,.) < C*ll9ll2(s. de,,) What we obtain by repeating
the proof of (11.5), we deduce

1
a”f”%%gn + ||’Y+f||2L2(2+;d§m) < CAHgHizH;Ll + v+l L2 (5 den)

A

S CA”gHi?H;ﬁ + Cllvgllz s sdem)

for some cosntant C > 0. By linearity of (11.35), we deduce that for two functions g1, g2 € Wa x,
and denoting f; := ¥(g;), we have

1 *
C—sz — fillfem + e fo = v filliecsaen) < Clvege = 7401 1225, dem):

so that ¥ is a contraction in Wy x. By the Banach fixed point theorem, we deduce that there
exists a solution f € Wa x to the equation (11.28) in that case. Finally, in order to deal with the
case (* = 1, we consider a sequence () of [0,1) such that ¢ ,* 1 and the associated sequence
(fn) of solutions in Wh 5, associated to the equation (11.28) with the modified reflection kernel
Kng =t Hg. From (11.31) and (11.20), that sequence satisfies

||fn||L2H1 + H’an”L? sidez) T Era(vefn) < C/\||3||L2H—1

When a # 0, the above estimate or (11.33) also implies that (v f,) belongs to a weakly compact
set of L1(X;d€). As a consequence, there exist f € Wy and 4+ two functions defined on ¥4 such
that, up to the extraction of a subsequence,

fnéf LQHrlna Vifnér)/:t LQ(E:t;ng’L)a

Vefn =Y LN(S45dE),  Bryifo — B7r L'(S-;dE),
where we have used (11.11) for the last convergence. Using Proposition 11.2, we may thus pass
to the limit in the equation (11.28) satisfied by f, with modified reflection kernel %,, and we get
that f is a solution of (11.28). In the pure specular reflection case a@ = 0, only the first line of

convergences holds, but that it is enough in order to pass to the limit in the equations (we refer to
[270, 272] for similar arguments).

Step 4. Other properties. We further assume A > A**. We proceed similarly as in [261]. Consider
two weak solutions f; € Wa to the equation (11.28). In particular, the difference f := fo — f1 € Wy
satisfies

A=L)f=0in O, ~y_f=Xy+f on X_.

Using the Green renormalized formula (11.14), we have

0—/ BN — o+ 8" (NIVIPe + BU)(diva(be) — v Vap — App) + /viv vp.

for any B8 € C%(R), 8’ € C}(R) and any test function ¢ € C2(O). We choose ¢ = ¢(v) >0, 3 >0
and 38" > 0, so that

0> / B'(1)A — )+ B (diva(bie) — Auep) + / (v - v,

By an approximation argument, we may now take §5(s) = |s|, and we get

0>/ |FI{X = o) + (divy (bp) — Ay }+/|vf|v V.

We observe that in any cases we have f € L2 (O) C LY(O) and ~f € L'(X;d¢). By an approxi-
mation argument, we may now take ¢ = 1 and using the L! estimate (11.11) on Z (with ¢* = 1),

we get
/ (e fllv -] — / e il ol
> oy

/|f|{/\—6+divub}2(x\—/\**)/ f].
o o

o
Y

v
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We deduce that f = 0. The proof of the positivity property follows the same arguments but
choosing 5(s) = s_. O

For latter reference, we state the counterpart of the preceding result for the kinetic Fokker-Planck
evolution equation.

Theorem 11.5. Let us make the same assumptions as in Theorem 11.4. For any fo € L?,, there
exists a unique solution f € C([0,T); L%)NL*(0,T; H}) for any T > 0 to the kinetic Fokker-Planck
evolution equation

(11.36) {5tf: Lf in (0,00) x O

V-f=%v+f on  (0,00) x E_,
with £ defined in (11.1) and # defined in (11.6).

The proof of Theorem 11.5 is skipped since it is a mere adaptation of the proof of Theorem 8.23
and Theorem 11.4. We refer to [365, Cor. 2 7, Lem. 2.8 and Cor. 2.8] where similar well-posedness
results are established (see also [272] for the existence part).

11.4. The first eigenvalue problem in a domain with reflection at the boundary.
We consider now the first eigenvalue problem for the kinetic Fokker-Planck operator (11.1) in a
domain with reflection at the boundary, namely

{)\f+U-V$f—Avf—b-va—cf:0 in O
Y-f=%y+f on E_,
and the associated dual problem. In this section, we assume that b and ¢ satisfy the assumptions

of Theorem 11.3 with the weight function m := .# /2 when o # 0 and for a given weight function
m : R% — [1,00) when a = 0 and Z is given by (11.6). We additionnally assume that

(11.37)

(11.38) liminf w(z,v) = —o0,
|(z,v)]| =00
where we recall that @ is defined in (11.17). When .# is the Gaussian function, we find
2+d 1
w=c+ i 2+ — idivb—b-v,

so that (11.38) holds when b is typically a bounded perturbation of the vector field by(v) = Jgv,
Yo > 1/2, and more precisely
divyb € L(0) and  inf lim inf(b - v(v) ™) > ¥y > 1/2.
x v|— 00
The above condition is quite technical but can be seen as a compatibility condition between the
thermalization due to the boundary and to the Fokker-Planck collisional operator. We are then
able to work in the functional space X := L2 (O).

Theorem 11.6. Under the above conditions, the first eigentriplet problem associated to (11.1) has
a unique solution (A1, f1,¢1) € R x X x X" with f1 > 0 and ¢ > 0.

The proof of Theorem 11.6 follows from Theorem 2.21, Theorem 4.13 and Theorem 5.16 as a
consequence of conditions (H1)-(H5). We prove now that each of these conditions is satisfied.
Theorem 11.6 generalizes [248, Thm. 2.12] where the same problem is tackled for the zero inflow
condition (« = 8 = 0) with b = v — F(z) and ¢ = 1 by using the classical Krein-Rutman theorem
[238] in the space X = C,(0). We also refer to [193, Thm. 6.8] for a variant and somehow
generalisation of [248].

Condition (H1). From Theorem 11.4, the operator £ satisfies (H1) with

k1 := max(\*, \*),
with A\* defined by (11.17) and \** defined by (11.29). For later reference, let us state more
precisely the available estimates for f. On the one hand, repeating the proof of Step 1 in the

proof of Theorem 11.4, we establish that for any A > k; and § € L2, the solution f € W5 to the
Dirichlet problem (11.28) satisfies

(11.39) /(9(A—w)+f2m2+/o|vvf|2m2+%Sga(%rf) < A_lA*

2
13132 -
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On the other hand, adapting the proof of (11.22), we straightforwardly obtain

A . 2
(11.40) / fQ%dvdx < c/stQ,
o
for some constant C' = C(b, c,v, A). For €,,&,, 0 > 0, let us now define
(11.41) U:={(z,v) € O; d(z,00) > e, |v]| < o},

and compute
/ f2m2 S/f2m21\v|29+/f2m21Az+/f2m21Ba
Z/lc

with

Ay :={v € B,, (i-v(x)*<e?}, B:={(zv); [v|<o, (0-n)?>e2, dz,00)<e.}.

For the second term, we have
[rmta < [IAPr s e
(" ') N 1720

where we have used the Holder inequality with » € (1,2*/2) in the first line and the Sobolev
inequality in the second line. For the third term, we have
1/2

[ s < w5 [ oL

€

IN

A

Gathering these last estimates with (11.39) and (11.40), we have established that the solution f to
equation (11.28) furthermore satisfies

1/2

1 ©
(11.42) f*m? < C(—2 + 0% e, —|—m2(g)5 5 )/SQmQ,
ue <Q> €

for a constant C' = C(b, ¢,Q2, \) and for any £,,¢,, 0 > 0.

The strong maximum principle. Let us now consider a function 0 < f € W5\{0} which satisfies
the Dirichlet problem (11.28) associated to A > k1 and a source term 0 < § € L2, NL>. In order to
simplify the discussion, we assume that the normalization || f||z> = 1 holds. For proving the strong
maximum principle, we briefly explain how we may adapt the arguments we have presented for the
diffusive equation in Part 7 by taking in particular advantage of the above established estimates,
the regularity results established in [181, 192] and some spreading positivity results we learnt in
[353, Cor. A.20]. We proceed in three steps.

Step 1. On the one hand, from (11.42), we may choose conveniently o~ !, &,,&, > 0 small enough
in such a way that

1
[t < S,
uc
where U is defined by (11.41). Because of the normalization condition, we have
1
(11.43) / fPm? > | £z
Z/{ 2 m

and consequently f(zo,v0)? > 03 := || f[|22 (2[| 1|32 )~* for at least one point (zo,vo) € U.
Step 2. On the other hand, let us recall some integrability and regularity results established in
[181] for a solution ¢ to the kinetic Fokker-Planck evolution equation
0tg+v-Veg=A2,9g+B-Vyg+s in V,
or a sub-solution
0t g+v-Veg < Ayg+B-Vyg+s in V,
for some bounded set V C (0,7) x O, s € L?(V) and B € L>*(V). For that purpose, given some
(t*,x*,v*), we define

Qr = {(ta,v); te (" =0, o —a® — (t—)0* <%, Jo—v'] <7},
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We claim then that there exist 2 < p < ¢ < 00, a € (0,1) and for any 0 < r; < 1y there exists C
such that

(11.44) lgllr@.,) < CUgllzz@.y) + Isllz2@.,))

for any nonnegative subsolution g on @, from [181, Thm. 6],

(11.45) lgllz=(@.,) < Clgll2@.y) + IsllLa@,,))

for any nonnegative subsolution g on @, from [181, Thm. 12] and

(11.46) l9llce@.) < CUlgllez@.,) + Islz=@.y))

for any solution g on @, from [181, Thm. 3]. As a consequence of (11.44) and a classical covering
argument, for any bounded set Y C U C O, there exist Cyp = Co(U) and Cy = C1(U, A) such that

[ fllr@y < Co ([ fllzz0) + 15+ ¢f = Afllz20)) < CilllfllLz(0) + [I§llL2(0))-
Observing that for o = p/2 > 1, we have

V-V fC = Ay fe—b-Vof?+of TN —ef =) =

—~

—4—ggflwufw2n2so,

so that f¢ is a weak sub-solution to the kinetic Fokker-Planck equation, we may repeat the argument
and obtain in that way that f € LP*(U) for any k > 1, with py := ¢*2. Now, choosing k such that
pr > ¢ and using (11.45) (as well as again a classical covering argument), we get

[l S N fllzzo) + I8+ cf = Afllzaoy S I fllz20) + 18l La(o)-
Using finally (11.46), we deduce that there exists a constant C' = C'(U, A) such that

I fllce@y S I fllc2o) + 1Sl Le=(0)-

Together with the conclusion of the first step, we deduce that there exists a constructive constante
ro > 0 such that f > 001 p((z0,v0),r0)-

Step 3. From [353, Cor. A.20], we deduce that for any bounded set U C U C O, there exists a
constructive constant 6 = 6(dg, ro,U) > 0 such that

f(z,v) >4 forany (z,v)€U,

where it is worth emphasizing that the hypothesis b,¢ € C(O) made in [353, Cor. A.20] is not
really necessary and can be replaced by b,c € L (U). Because U may be choosen arbitrary, we
have established that f > 0 on O and the strong maximum principle.

Condition (H2). For a given function 0 < hy € C2(O) normalized by [|hol[2 = 1, we define
fo € D(L) as the solution to

(k1=L)fo=ho in O, ~y_fo=Rv+fo on T_.
Taking advantage of the fact that hy has compact support, we compute
1—/%m—/ 1= £)foham? = [ s = £)(hom) < Cal ol
with C := [[m~ (k1 — L*)(hom?)||z2. On the other hand, from (11.27), we have

(11.47) 1 foll 2, + ”fOWHLz < Gy

for a constant Cy only depending on ||ho||z2 , #1 and the constant C' which appears in (11.27).
Arguing as in (11.43), we deduce that

(11.48) / fém? > (201)7Y, suppho C U,
u

with U = U, defined in (11.41) and ¢ > 0 small enough (chosen constructively from Co and Ch).
From the above constructive strong maximum principle, we deduce that fo > el > 1/Cohg for
some ¢,Cyp > 0. We conclude as in the second constructive argument for (H2) in Section 7.1.
Coming back indeed to the equation, we have

Lfo = k1fo—ho > k1fo — [lhollL=1u > (k1 — [[ho||L=Cb) fo,
so that (H2) holds with xg := k1 — ||ho||L=Co from Lemma 2.4-(ii).
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Condition (H3). Let us fix k < ko arbitrary. We define Bf := Lf —nxgr(v)f for any f € Wa o,
with g € D(R?) such that 15, < xr < 1p,, and for some given n, R > 0 to be specified below.
We observe that, at least formally,

[rmr@=nr = [@-rx-marmt =g [ antmt-o [ 9. ee

Thanks to (11.38), there exists a constant R > 0 such that
sup w < K.
vERI\ Bgr
Choosing n := supwy — Kk, we deduce that w — k — nxyr < 0. On the other hand, because of
(11.30), the contribution of the boundary term in the above identity is non positive. We thus
deduce that (B — k) is dissipative in L2,. We now establish that the associated operator B has
compact resolvent. For § € L2 | we consider f € L2, the solution to

(11.49) —Bf=F in O, ~_f=%v+f on X_,

which existence follows from Theorem 11.4. From the above discussion (with k = —1) and the
same arguments as in Step 1 of the proof of Theorem 11.3, we have

(11.50) [Pz [19,00m2 < [ g

Together with the regularity estimate (11.23) and the compact imbedding H*/3(U) C L*(U), we
conclude that B has compact resolvent. The operator A on L2, defined by Af := nxr(v)f being
bounbded, we may apply Lemma 2.8-(2) and we deduce that (H3) holds for both the primal and
the dual problems.

Condition (H4) is nothing but the yet established strong maximum principle.

A variant of condition (H5). Consider (f,\) a pair of eigenfunction and eigenvalue such that
A € ¥pi(L). Arguing similarly as in the proof of condition (H5) in Section 7.1, we know that

Lf=if, 9eR, L|f|=0

and introducing the real and complex part decomposition f = g 4 ih, we have
1
/ —lgVuh — hV,g|* =0,
o |f]

and finally ¢V, ,h — hV,g = 0 a.e. on O. Because of the regularity estimate presented during
the above proof of the strong maximum principle, the functions f has Holder regularity, and
thus g and h are continuous on O. Because |f| # 0, we may claim that there exists a point
(xo,v0) € O such that h(zg,vp) > 0 for instance. Denoting by w the connected component of
{(z,v) € O; h(z,v) > 0} containing (z¢, vg), we have V(g/h) = 0 on w, and thus ¢ = a(z)h on
w for some continuous function a : 2 — R. Coming back to the eigenvalue equation that we may
write in the following system form

Lg=—Vh, Lh="1g,
we compute
—vh = Z(ah) = alh—hv-Vyo=adg—hv-Vea on w,
so that
—¥9=0a?9—v-Vya on w.
We deduce that « is a constant on w and finally ¥ = 0. We have thus established that A = ;.

At this stage, we may use Theorem 2.21, Theorem 4.13 and Theorem 5.16, in order to get the
conclusions (C1), (C2) and (C3) about the existence and uniqueness of the eigentriplet (A1, f1, ¢1)
which satisfies fi > 0, ¢;1 > 0, Ay is algebraically simple and on the triviality of the boundary
punctual spectrum.

We briefly explain how we may deduce the stability of f; by adapting some arguments developped
in [269] and already mentioned. On the one hand, we know from [269, Lem. 1.1] that any solution
f to the rescaled evolution equation (11.36) with £ replaced by £ = £ — \; satisfies

O (H(X) fr1) + dive (vH (X) frgr) — divy ($TVo(H(X) f1/¢1)) = —H"(X) f141 |V, X %,
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for any convex function H : R — R and with X := f/f1. After integration, we get
d

(11.51) —/ H(X)fig +/ v-vH(X)figr = —/ H"(X)f1¢1|V, X |2,
dt Jo ) o

When H(s) :=|s|, the boundary term is

/|’Yf|"/¢1V'U = / I’y+f|9?*%¢1v-v—/ | By 1 fly—or|v - vl
) o >

v

| batl@soiv-ol= [ @ thoonlvl =0
> >
from what we deduce the non expansive property

(1152 [ilor< [ 1flor, vaiztoz0
o o
On the other hand, from the Cauchy-Schwarz inequality, we have

(R [)? < (Bve f1)R (V4 2 /74 1),
so that

/E (Z?/”;) v - v|</ R(v+ 2 [+ Fi) -1 lv - v|

and finally
/(vf)z(vfl)’lwl v <0.
When H(s) = s%, the equatlon (11.51) and the last inequality imply

(11.53) u /O Fron(F/F)? +2 /O Lo V(R < 0.

We next recall a classical compactness result.

Lemma 11.7. Let (g,) be a sequence of functions such that
(gn) is bounded in L>(0,T; L? N L*(0,T; L?

zv, loc) x,loc

H; 1oc)
and

Otgn +v - Vg — Aygn = Gy bounded in Lfoc,
then (gn) belongs to a strong compact set of L3 _.

Proof of Lemma 11.7. We just sketch it. Because
Otgn +v - Vg = Aygn + G, bounded in L? H; ',
the usual averaging lemma in [182, 137] implies that
(gn * p) belongs to a strong compact set of L7, _,

for any p € D(R?). On the other hand, introducing a mollifiers sequence (p.) and writing then
gn = (gn _gn*p5)+gn*psv

we see that the first term is small uniformly in n as € — 0 and the second term is relativelly
compact thanks to the first step, from what we immediately conclude. O

Now, for 0 < fo € Lj , we introduce the sequence fox := (fo A k)1y, € L2(f{ Y1) N L2, with
Uy == {(x,v) € O;68(z) > 1/k, |v] < k}, and the associated solution fr € L°(0,T;L?) N
L?(0,00; L2H}). Because of (11.53), for any increasing sequence (t,,) which converges to oo and
for any function ¢, € D(0), 1y, < ¢m < 1, the rescaled and truncated function g, (t) :=
felt +t) it *Al(t“")gp meet the hypothesis of Lemma 11.7, from what we classically deduce
that the sequence of fn( )= fr(t +tn)f1 Le=M(t+tn) is relatively strongly compact in L2 .. Re-
peating the proof of Theorem 4.23 and Theorem 5.23 (see also [269, Thm. 3.2]), we deduce that
fn (t) = (fok, #1)f1 ast — oco. Together with the above non expansive property (11.53), we deduce
that f: — (fo, #1)f1 in L;l as t — oo.

We summarize our convergence result in the following theorem.

Theorem 11.8. For any fo € L2, the holds fi — (fo,¢1)f1 in Ll1 as t — oo.
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Theorem 11.8 generalizes [248, Thm. 2.18] for the zero inflow condition and [5, Thms. 1.6 &
1.7] for the torus case. It is worth emphasizing that in these papers the longtime convergence is
established with exponantial rate (with constructive estimate in [5]). In [248] the proof is based
on a representation formula for the associated semigroup S which is proved to have a kernel
pe € (L' N L NC>®)(O) for any t > 0 (see [248, Thms. 2.4 & 2.6] as well as [330, 213, 247]). One
then classically deduces that S; € ' (X) for any ¢t > 0 and X = LP, p € [1,00], or X = Cp (see
(248, Thm. 2.18]), and next one may apply Theorem 5.28. We also refer to [193, Thm. 6.8], [299)
and [218, 219, 220] for related results.

We follow now a similar approach as in [248, 193]. We start with a series of technical results. Here,
we make the additional assumption

(11.54) w?(x,v) ;== sup wy(x,v) < K < 00,
1<p<oo

with

— 2 div(bmP
(2 p)Amp+z|Vmp| —l—c—l iv(bmD)

/ 2

wp:: )
p mp pom P mp

and my, = .4~ 1H/P,

Lemma 11.9. For any fived k < ko there exists oz > 0, 0, > 0 and k2 € R such that defining

Af =&, (v)Co, (@) f with &, € DRT), 1ju<p, < &, < Ljoj<2p,s Gpo € D), Lo@yzp,/2 < Con <
15(2)>0,, and next B := L — A, there hold

(11.55) 1S5 2y < € Vt=0,
(11.56) 1S5l zwr,) < €, Vt=0, Vpe (200].

Proof of Lemma 11.9. We first recall from Step 1 of the proof of Theorem 11.3 and (11.30) that

@f P, = = [Pt =5 it [ fam

—/|Vf|2m2+/f2wm2
and, with ¢ defined in (11.21),

(Lfhe = =5 [PV - [ 15Vt [ Vi) Vor = [ere
< —/fz%dvdm+0/(f2+lvﬂ2).

Defining then m := m — B, with 8 > 0 small enough, and summing up the two previous estimates,
we get

IN

i, < =0 [ PEIDE -5 [19imt + [ fent 1),
Similarly as in (11.41), we define
U :={(z,v) € O; 6(x) > 0z, [v| <ov}
and we observe that
U°c AuBUC,
with
A:={veB,, |0-v(z) <e,}, B:={ve€B,, |0-n|>ecy §x) <oz}
for some e, > 0, and C':= By . We next repeat the proof of (11.42), and we get
1/2

/ - 1
P 5 (e [19up et [PCOE L [ e e
ue @ (pv)

Observing that

[ ety < [ patve, [ putio, [ pu
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with Cy :=sup(w + 2 — k)4 < 00, and A > C.1y for n := Cj, altogether, we conclude with
(Bfs frz, < wllflL2 -
We then classically deduce that (11.55) holds.

Similarly as for the first estimate and in the proof of [274, Lem. 3.8], for any smooth, rapidly
decaying and positive function f, we have

Jens = [E0I oo 1) [190m, ) (-t [ g7z,

p
From Darozes-Guiraud (or Jensen) inequality, we know that the first (boundary) term is nonpositive
(see [124] or [272, Rem. 6.4]) and we then classically conclude to (11.56). O

Lemma 11.10. There ezists a finite family 2 =pg < p1 < -+- < pr < 00 and « € (0,1) such that
such that both C = B, L, for any T > 7 >0 andV CC O,

T
(11.57) [ 1ASe@3oll g, dt <O ol g o 5= 10k
(11.58) sup [[AS5(t) follL= < Cprll follLew,
te[r,T]
(11.59) sup [|Ss(t)follcavy < Coll follL=-
te[r,T]

Proof of Lemma 11.10. For 0 < fo € L2, let us denote f := Sgfy which thus satisfies the PDE
of —Bf =s:=cf in D'((0,T) x O).
Let us fix two open sets U; such that [7,T] x supp¢ x supp¢ C Uy CC Uy CC (0,T) x O. From
[181, Thm. 6] and a covering lemma, there exists a constant Cp > 0 and p; > 2 such that
1z o) < Co(lfllezny + Isllez))-
The estimate (11.57) for j = 1 then follows from Theorem 11.5 (and the classical underlying energy
estimate). On the other hand, [181, Thm. 12] similarly implies that there exists a constant Cj, > 0
and p € (p1,00) such that
£l ooy < Cre(f L2y + I8l Loe @),

and interpolating with the previous estimate, we get

1fllees o) < Ci—1(If L2y + Isllpri-r ) Vi, 2<j <k—1.

The growth bound (11.56) and the two last estimates imply (11.58) and (11.57) for any 2 < j <
k — 1. Finally, [181, Thm. 3] similarly implies that there exists a constant Cy4+1 > 0 and « € (0, 1)
such that

[fllcewo) < Crorr (If 2wy + IsllL=(y)),
from what we deduce (11.59) in the same way. O

Theorem 11.11. Under the conditions of Theorem 11.6 and the additional assumption (11.54),
the conclusion (E31) holds in L2, with non constructive rate.

Proof of Theorem 11.11. We introduce the splitting
Ag:=MTY.g9, YT.g:=xe9, B:=L—A,
with x. € C%(0), 1y, < Xe < 1y, and Uz := {|v| < 1/e, §(x) > e}. We next write the iterated
Duhamel formulas (with N := k + 2)
Sr=V+WxS,,

with the usual notations (3.41) for V' and W associated to the integer N := k4 2 and k& > 1 has
been introduced in Lemma 11.10. Next for T' > 0 large, 7 € (0,7) small and two functions (of
operators) a and b, we define the modified convolution operator

t—7

(a*, b)(t) ::/ a(t —s)b(s)ds if te [r,T — 1]
(a*,b)(t) =0 if te[r,T—7],
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(with these notations %9 = %) and by induction a* ! := a, a** := a** ¥~V x_q for k > 2. With
these notations, we define the new splitting
Se=V+K+K;+K,
with
= T W X Sﬁ, ch = W*Sg—W-,— X Sg, KQC = (1—T,,)W-,— * Sﬁ,
where W, ( SpA)**N and v > 0. For later references, we also define recursively Zg := S,
=y = SBA x; Z¢_1 for £ > 1, so that K = Y.Zx. The sequel of the proof is split into two steps.

Step 1. On the one hand, we compute

T—1 t—T1
IEv@follz, < ISslivauzy [ || ASst-saEia@dsh],, d
T T
< o / / | ASss(t) A1 (5) foll o dids
T TT
< CTcgl/ 1AZ5-1(5) foll 2, ds.
and thus
(11.60) IEN(T) foll Lz, < Crllfollrz,,

where we have used (11.56) in the first line, the Fubini theorem in the second line, (11.57) with
j =1 in the third line and several times (11.55) in the last line.

For k < ko, we may choose £ > 0 small enough such that (11.55) holds. From the very definition
of A and Sp, we may thus fix kg € (k, ko) arbitrary and next T" > 0 large enough such that
IV(T)|| w12,y < 3e"#7. We may next use (11.55) and fix 7 > 0 small enough such that

| KS(T) || #(r2,) < 7Cr < 2e™57.
Last, because of (11.60), we may fix v > 0 small enough, in such a way that
IK5(T) follzz, < nW)IEN (D) follpry, < g™ follzz, -

The three last estimates together, we have established
(11.61) IV + Kf + K))(T) || ez, < e

Step 2. Performing the same kind of computations as for proving (11.60) and in particular using
(11.57), we get

T
/0 ||v4:j(S)fo||L§';gp+j1+1 ds

IN

T T—1
/ / ”ASB(t)AEj*l(S)fOHLfV{‘*'l dtds
0 T Piti

IN

T
o [ 142l
0 J

for j =1,...,k, and with pg11 := co. Iterating and using (11.57) with j = 0, we get

T
/ IAZk(8) foll e ds < 1 follzz -
0

Similarly, we may write

sup [ASksifollsse < sup / I ASs(t — 5)ASk(s) foll L ds
[7,T] te[r,T]
T
< sup [ ASs()]azm) / I AZ4 () foll e s,
te[r,T] T
thanks to (11.58), and
T—1
1K folloeo) < / 1S5(T — ) AZpas () follom ey ds
<

CT sup || AZk41 folles
[7,T]
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thanks to (11.59). The three last estimates together and the compact support property suppy, CC
O imply

”KfOHCﬂﬁL%npl Slfollez, Vfoe L,

from what we deduce that K € ¢ (L?)). We may apply Theorem 5.28 in order to conclude. g

12. A MUTATION-SELECTION MODEL
In this section, we consider the mutation-selection evolution equation associated to the mutation-
selection operator
(12.1) Lf=Jxf—-W()f

defined on functions f : R¢ — R, where .J is a the mutation kernel, * stands for the convolution
operator and W is a confining potential.

12.1. Almost regular mutation kernel. We assume that the mutation kernel J is a positive
finite measure of R which is lower bounded on a neighborhood of the origin, or in other words

(12.2) 0<JeM\(RY, J>Jdp,

for some constants J,, > 0. We also assume that the selection potential W : R? — R is continuous
and satisfies

(12.3) Wi(z) >W(0) =0, Yz #0, W(x) = +o0 as |z] — .

We finally assume the following compatibility condition between mutation and selection: there
exist B > 0 and a bounded Borel set A C R? such that

J(dz)

(124) a = egihr;f A, m > ].7
(12.5) J=JL+J, J16€ Ccl(Rd), Kw = || 21 :=/ dJy < ko = (a—1)p,
R4

where we use the notation Ag = AN{W > g}. In the sequel, we work in the Banach lattice
X := LY(RY).
Theorem 12.1. Under the above assumptions, we have
(1) The first eigentriplet problem (1.1)-(1.2) admits a unique solution (A1, fi,¢1) € R x X1 x
X' with the normalization ||¢1|| = (o1, f1) = 1, and this triplet additionally satisfies
A > ko, 0< f1 € L%W> (RN Ly, (RY) and 0 < ¢y € L}W> (RN L%y (R9).
(2) Moreover, L generates a semigroup Sy on X and for any fo € X, there holds

(12.6) le™ S (t) fo — (b1, fo) fill L < Ce™ | fo — (¢, fo) fill e,

for any t > 0 and for some constructive constants C > 1, a > 0.
Let us comment on the above result.

Remark 12.2.

(1) Assumption (12.4) is satisfies when W is small enough in a neighborhood of the origin. It is
for instance satisfied if W~' ¢ LY(By). That is in particular the case in dimension d =1 when W
is Lipschitz, because of the condition W(0) = 0.

(2) Assume J(x) = e~ %p(e~12) with p € CLRY) NPRY) and p > pilp,, p« >0, so that J = Jy
and Jo =0, and W = W(|z|). We may observe that for § >0 and € > 0 small enough

J(x —
M dy =:a > —Ineas{]Rfl|r NB}>1,

. P
ﬂ<V‘}?j)<2B/B<W(y)<2,B W(y) 28
so that (12.4) holds with A := {W(x) < 2f}.

(3) Assumption (12.4) is similar to [249, Condition (2.3)], see also [6, Assumption 2.6] and the
comparison with [6, Assumption 2.4], as well as [75, Condition (3.7)-(3.8)] and [77, p. 250, Note
added in proof.]. On the other hand, the conditions on J are relazed here since J may have singular
part in (12.5).
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(4) Optimal conditions linking J and W for the existence of a spectral gap are still unknown. In
the recent paper [6], using variational methods in a L? framework, the authors obtain a quantified
spectral gap and the associated exponential stability when the mutation kernel J is additionally
assumed to be symmetric. Up to our knowledge, Theorem 12.1 is the very first result providing a
quantified spectral gap for a non-symmetric mutation kernel J.

(5) Condition (12.4) can be compared to the condition

_ J(x—y)
a 1= esssup / ——dy < 1,
zER Rd W(y)

under which no first eigenfunction may exist in X . First, we claim that \y > 0. Indeed, considering
e >0 and f. =1p_, we have

so that the condition (H2) holds for kg = —infp. W for any e > 0. Since W is continuous and
W(0) =0, we deduce that A1 > 0 by passing to the limit € — 0. Assume now by contradiction that
there exists f1 € X4 \ {0} such that

(127) /\1f1 = Lfl =Jx f1 — Wf1
and define, for any € > 0, the function p.(z) = 5+W( € L=(R?). Testing (12.7) against p. we
get for any € € (0,1)

0< Mlfien) < Mlwa = [ ZEEE f(y)dxdy—/%h(xmx

(2)
<a/f1 5+W( )f(x)dx,

and passing to the limit ¢ — 0 we obtain the contradiction 0 < M {f1,¢1) < (@—1) [ f1 < 0.
However, there always exists a principal eigenvector fi in M*(R?), which might have an atom at
the origin when @ < 1, see for instance [77].

The proof of Theorem 12.1 follows from Theorem 2.21, Theorem 4.13 and Theorem 5.16 as a
consequence of conditions (H1)-(H5) that we establish now. Setting D(L) := L}W> (RY), we
observe that £ is an unbounded closed operator with dense domain D(L).

Condition (H1) and (H1’). We define the semigroup
Sw(t)f(x) ="V f(z), VfeL pellodl,

which is clearly a positive semigroup of contractions. We next define Sy as a bounded perturbation
of Sw. It is also positive and it satisfies the growth estimate ||Sz(t)[|sz(r) < el/In?, where we
recall that ||J||; stands for the L' norm or the total variation norm of .J. We deduce that (H1)
holds true with x; := ||J||; thanks to Lemma 2.2-(i). Multiplying Lf by sign f, for f € D(L), we
immediately get Kato’s inequality

(sign f)Lf = (sign f)J * f = WIf| < J = |f[ = W[f] = LIf].
Condition (H2). Let us define fy := %1145, where Ag is introduced in condition (12.4). We

compute
1 1
J (1ABW) ~1a, = (T (1Aﬁw) ~1)14,

(essint [« (1Agmlf)} ~1)14,

IEAB

Lfo

v

= (a— l)lAB > (a— 1)%1A5 = koJo,

where in the second equality we have used the very definition of a in assumption (12.4). We
conclude that (H2) holds thanks to Lemma 2.4-(ii).

Condition (H3). We introduce the splitting
(12.8) L=A+B, Af:=Jixf, Bf:=Joxf—-W(x)f.
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Arguing as in the proof of condition (H1), we see that B is the generator a positive semigroup
in LP(R%), 1 < p < oo, with growth bound w(Sg) < k. and thus (o — B) is invertible for any
> Ko > Ky, With

(12.9) (e = B) sz < -

Next, observing that

1

— K

(W+a)h=(a—Bh+ Jsxh,
for any h € D(L) and o > kg, we deduce that
(12.10) (W+a)(a—-B) lg=g+Jox((a—B)g),
for any g € X and «a > ko. Together with (12.9), we deduce

(12.11) (e = B)"YgllLr, < llgllze + | J2 % (@ = B)"'g)llz» <

o
lgllze,
K.

for any g € LP and a > kg. Defining W(a) := (o — B) "' A, we finally deduce from (12.10) the
identity

Af + Jo* ((a — B) LAY,

1
W =
()] W+« W+a
for any f € X and a > k9. We may then compute

1 1 _
V(@) fllse < =l Afllzs + [ Lallsll(e = B) "L Af 1=,
and together with (12.9) for p = oo and (12.11), we deduce

1
(12.12) V(@) fll < [[T1lloo——
for any f € X and a > k¢. Starting from the same identity, we prove in a similar way

(12.13) IW(a) fllzg < /1l

for any f € X and o > ko. As a conclusion and gathering (12.9), (12.11), (12.12) and (12.13), we
have established that

(12.14) W(a) : L' = Liyy N Ly,

with uniform bound for any o > kg. Observing that L}W> NLGy C L' is weakly compact and using
Lemma 2.13 with p = 1, we deduce that (H3) holds. We can actually strengthen the compactness
by noticing that A : L' — L‘l,V N W is bounded because of assumption (12.5). This ensures that
A: L' — L' is compact, from what we deduce that W(a) : L' — L is strongly compact for all
a > Kg. We may thus apply Lemma 2.8-(2) to infer that condition (H3) holds for both the primal
and the dual problems.

Condition (H4). Assume that A > A\ and f € D(L) = L}W> satisfy
(12.15) =1 720, A—£)f >0

Denoting Wg := infpe W, we compute

LJ>@f"—/fWﬂ——wmmm,

for R > 0 large enough by taking advantage of the fact that W (z) tend to infinity when |z| — oo.
In particular, there exists a:{; € Bp such that

/Br/2(rf fzo= %(é)d >0,

where we recall that r is defined in (12.2). We deduce that

TNz [ ) 2 )
r 0



176 C. FONTE SANCHEZ, P. GABRIEL, AND S. MISCHLER

Using the equation (12.15), we obtain
(/ * f)(x) J+6
> > 1
@) 2 iy +x = WR T A Brate) ()
for W[R] = supg, W. With that last information and (12.2) again, we have now
Jo  Jd
1
iz 20 WIR]+ X~ B @0)
and, iterating the argument, we deduce
S
f= 2(m—Dd(W[R] + )\)mflé‘ler/Q@g)
with ¥ = ¥(R) > 0 for m = m(R) large enough. Choosing R an integer, we have proved that
(12.16) f>ho:=3R)1p, + Y Fn+1)1g, 5, >0.
n>R
That means that the (H4) holds, with constructive lower bound.
Condition (H5). Let us consider f € L1 \{0} and A € C such that (5.16) holds, in particular

(12.17) LIf| = ReN)|f| and L]|f| = Re(signf)Lf.

The first equality means that Re) is an eigenvalue associated to a positive eigenfunction, and
Lemma 4.17 then enforces ReA = \;. Lemma 4.18 subsequently ensures that | f| € (Span f1)+\ {0},
and in particular |f| > 0. Throwing away the term W|f| in each side of the second identity
n (12.17), we have

2 ;leRa

§Re|f7|(J*f):J*|f|.

Integrating this equation, we get

[ @ —wmeliswi - 22 ] ay=o
R2d

f (@)
From the positivity condition (12.2) on J, we deduce
@) o e @) (T 0 vy e BE o g <r
1) = (@) = Re[ [ = o f@)] =0, Yoy eRY eyl <1,

and thus f(x)/|f(z)| = @ for any 2 € R? for a constant u € C. That ends the proof of the reverse
Kato’s inequality (H5).

Proof of theorem 12.1 part (1). We may use Theorem 2.21 in order to establish the existence of
a solution (A1, f1,¢1) € (0,+00) x L' x L™ to the first eigentriplet problem (1.1)-(1.2). From
Theorem 4.13 and Theorem 5.16, this solution is unique, f; > 0, ¢1 > 0, A1 is algebraically simple
for both £ and £* and it is the unique eigenvalue in X, (L).

Due to (12.14), we actually have f; € L (wy N L3y Observing that £* is of the same type as L,

ﬁ¢:J*¢—W¢ J(x) := J(—x),

and considering the dual problem as a primal problem in L', Theorem 2.21 also provides the
existence of Aj > 0 and 0 < ¢} € L%W> N L3y such that

Lih1 = M¢i
Because of Remark 4.16, we have in fact A\] = A1 and the simplicity of A\; then yields that
Span¢; = Span¢;. This ensures that ¢; € L}W> N L?§V> and also that ¢, enjoys the explicit
lower bound (12.16). Besides, we can prove

lp1llzos [ p1] Lo~
Ko

by arguing similarly as for (12.13). |

A1 K1
J o < ||J-
< il SV o1l < [[J1llr -

(W)

In order to prove Theorem 12.1 part (2) with constructive constants we use a Doeblin-Harris type
argument
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Lemma 12.3 (Lyapunov Condition). Under the above assumptions, for any T > 0, there are

v € (0,1) and K > 0 such that

ST £l < vellfller + K[ fllo-
Proof of Lemma 12.3. Writing f; = S, f = e 1S, () f, we have, since A\; > 0,

G s [ 1g1= [ wisl

1711
s/B%(anl Wl + R/Bmel,

for any R > 0 and some ap the bound by below of ¢; in Br. Choosing R large enough so that

W(x) > ||J|l1 + 1 for |z| > R, we get

d lJ]lL +1
E/Rdm'S_/Rd|ft|+T/Rd|ft|¢l'
/Rd | felp1 < /Rd Stlfoldr = /Rd |fol#1,

[l +1
agR

Since

we infer

ISefIl < e F L+ === = e ) flls,

by Gronwall’s lemma.

O

Lemma 12.4 (Harris’s condition). Under the assumption above, there exist 1o € X' |, go € X4

and T > 0 such that

(12.18) Srf = go(fitbo), VfeXy.

Proof of Lemma 12.4. Step 1. proof of (12.18). From Duhamel’s formula (3.9) we have
Sp=5p+ -+ (SgA)* VD % Sg + (55A) N xS,

We note that

t
(S A+ S5)f / S(t — 5).ASs(s)fds = / LA(feV @) W@ E-5) g,
0
For any R > r, x € Bp, it is satisfied that
A @) = [ I fwe Oy = L VR [ fa
R4 ()

with W[R] defined as in the proof of (12.16). Then we get
L il %
Subsequently, we obtain that
S e (S50 55)10) > 1 (@) [ Jose™ERIA <1BR @ )f(y)dy> ds,

with

A <1BR<x> I f(y)dy> = [e s [ sz [ ey

We claim that for all a > r,

[ seaayzim [ s
Br(r) Ba(y) Ba+7‘/2(z)
Indeed, we deduce

/ / 2)dedy = / / 1, ) (2) () dzdy = / £(2) / 15,0 (v)dy d
B, (x) (z) JRE R4 B, (x)
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and, since for all z € By, /2(),

z—x 3r
B£ - B’r‘ mBa )
4(|Z_x|4 +x)c (£) N Ba(2)

we have

/B W 2 Boalls, ()

and consequently,

/ / f(z)dzdy2|Br/4|/ F(2)dz.
B’V‘(r) Ba(y) Ba+7‘/2(z)

We have obtained that
S5 A+ (SpA* Sp)f(2) = 1p,,_ () J2t% /2e” VA / Fly)dy.
Biyr2()
Iterating the same argument we arrive to
t’n
(554)™) 5 Saf (@) 2 L, 2) T2 e Vo [ F()dy.
n!
Br+(n71)r/2(r)
In consequence, for R = (n + 1)r, we get
tTL
(S5A)"™) « S (x) = 1, (@) 2 Ly VROl f F(w)dy.
n!
B(n—1)r/2(0)

Coming back to the Duhamel formula (3.9), we deduce

n!

(D" wiani)
Sef (@) 2 15, () Y2 L wie s /B F(y)dy,
(n—1)r/2

n=2

from where (12.18) follows with

(n—1)r/2

- J*T " — n r
o = Z ( n') o~ W2(n+1)r)T
n=2 ’

and go :=1p,. O

Proof of Theorem 12.1 part (2). Let us consider A > 0 and f € X such that || f|| < A[f]4,. For
any integer n > 1, we have

Ao = [ sor+ [ ron<anifain + 8.0

Oln<f7 1r/)0> + 611"4[.]0]4)1)

with «,, = ||¢1]|L=/infp, o and G, = ||¢1||La<>ow>/infB; W. Choosing na such that 8,,4 < 1/2,
we deduce the constructive estimate

IN

[f]¢1 < 20, <fa ¢0>7

and thus that (6.8) holds with g4 := (2c,,) "!go. Because of the constructive lower bound (12.16)
on ¢1, we have

(¢1,9r) = (20m,) " (ho, go) =: T4,

which provides (6.9) in a quantified way. The two above estimates and the Lyapunov condition
established in Lemma 12.3 ensure that we may apply the Harris-Doblin Theorem 6.3 and thus
conclude to (12.6) with constructive rate. O
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12.2. A singular mutation kernel. Here we consider a mutation kernel supported by a set of
zero Lebesgue measure, which thus does not satisfy (12.2). The kernel J € M} (R?) is defined for
any test function ¢ € Co(R?) by

d
<']7 QO> = 671 Z/ @(07 Y 0) Ty, 0) T O)Ji(ailxi)d'xiv
i=1 7R

where (J;)1<i<q is a family of L' positive kernels on R and € > 0 is a variance parameter. The
operator L then reads

d
) =¢! xr— ze;)d; “12)dz — x)f(x),
L) = ;/Rf( VIi(eLe)dz — W (a) f(x)

where e; is the i-th unit vector of the canonical basis of R?. This model was recently considered and
studied by [350] through a probabilistic approach. It shares similarities with a model of telomere
shortening which is under study in [147]. We show that the method developed in the first sections
of the present paper allows us to handle this model, under similar yet slightly different assumptions
on the J; and W than in [350]. In particular we consider more general fitness functions W than
quadratic ones. More precisely, we assume that W is a continuous function that satisfies (12.3)
and

d
(12.19) log W (z) = O(|z|*) as |z|? == fo — 00.
i=1

The kernels J; are supposed to be centered Gaussian distributions

M; 2%
3

202

oV 2T ’
for given masses (M;)1<i<a € (0,+00)? and variances (0;)1<;<qa € (0,+00)?. Similarly as in
Section 12.1, we work in the Banach lattice X = L'(R?) and we may prove the following result.

Ji(z) = MGy, (2) ==

Theorem 12.5. Under the above assumptions, there exists a constructive €9 > 0 small enough,
such that for any € € (0,&0) the following conclusions hold

(1) The first eigentriplet problem (1.1)-(1.2) admits a unique solution (A1, fi,¢1) € R x X1 x
X' with the normalization ||¢1|| = (o1, f1) = 1, and this triplet additionally satisfies
)\1>0, f1>0and¢1>0.

(2) Moreover, L generates a semigroup Sy on X and for any fo € X, there holds

(12.20) le™ S (t) fo — (b1, fo) fillr < Ce™ || fo = (o1, fo) frller,

for any t > 0 and for some constructive constants C,a > 0.

Remark 12.6. The assumption of small variance € in Theorem 12.5 replaces (12.4)-(12.5) as
a condition which guarantees the strict positivity of ko in the condition (H2), and so the strict
positivity of M\1. This property is fundamental for ensuring the existence of fi in L' and for the
existence of a spectral gap. On the contrary, for large values of €, there cannot exist fi € L',
as it is proved in Remark 12.2-(5). The reason is a concentration phenomenon which creates an
atom at the origin for the principal eigenvector when the dispersion due to the mutations is too big.
This is already noticed in [350, Rk. 5.3.1], and we refer to [64, 77, 110] for more details about the
singularity of fi and the concentration phenomenon.

For proving Theorem 12.5, we first show that the conditions (H1), (H2) and (H3) are verified
for the dual problem in L> = X’ = (L!)’. Then we check that the Harris conditions are satisfied,
thus ensuring the existence, uniqueness and exponential stability for the primal problem.

It is worth noticing that since the J; are symmetric, we have £* = L and the only difference
between the primal and dual problems is the Banach lattice in which it is posed.

Condition (H1) and (H1’). With the same proof as in Section 12.1, £ generates a positive
semigroup S in L' with w(S) < ||J||; and satisfies Kato’s inequality. We deduce that (H1) and
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(H1') are verified for both £ in X and £* in X' with

d
R1 = HJHl = ZMl
i=1

Condition (H2). In view of condition (H3), we aim at verifying (H2) with x¢ close enough to
k1. More precisely, we define p € (0, 1] the ratio between the geometric and arithmetic means of
the masses M;, namely

4_ M, 1/d
p e (11171(17)
EZi:lMi

C _ de 1M dl d d
' 2 k¢ 2
and we prove that there exists e such that if € € (0,¢p), then (H2) is verified with
Ko = Ok1 with 0 := (1 — ¢34 e (0,1).
Let us fix n > 0 small enough so that

we set

€ (0,1/2],

2 2
L+ (1ei)° < (1+9)
for all i € {1,---,d}. We then define

d
T) = H Ge/n(z)),

and we compute

Lh@ Cepy * Geon ) _ gy g St ™)y
fo(@) ;M Ge/n(2i) m )_;Ml Genli) W)
n*(noi)? a3
Z \/T (1+ (no;)? 282) Wiz)

1+ n?(noi)? af
- ZM Xp(mza)—w(“f)-

Due to Assumptions (12.3) and (12.19) on W and using Jensen’s inequality, we have
d
1-6 clzrg . 10 .
<7 i , le/d<_§ O
Wix) < 5 (12’1;1(1 Ml)de < 2 M;e
for some C' > 0 large enough. Choosing €9 > 0 small enough so that

n (77(71)
20 2 T (yoy)C

for all i € {1,---,d}, we obtain that
d
Lfo(x) Ca?
>0 M;e"% >0k =K
B0y L= o
for any € € (0,&¢]. By virtue of Lemma 2.4-(ii), this proves the announced result.
Condition (H3) in X’ = L. We use the splitting £ = A+ B with B¢ = —W ¢, and we aim at

proving that (2.29) holds with N = d in order to apply Lemma 2.19. More precisely, we want to
find o € L' and v € (0,1) such that for any o > kg, there holds

(12.21) | (Re(@) A6l <ol + [ dle)eta)da
for all ¢ € LS. We have
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and, defining

Aro(a)s=de [ ola =1y with 7o) = [[ ),

we have
Al = A, + A,
with both A, and A, positive operators. Positivity ensures that

d
A zxy = Al = dHMi

i=1
and
d
[ Asllzxy = At =AY = | A < |71 = d ] ] M.
i=1
We deduce that for any « > ko,

[(Re()A)*|| e < 15 [AsllLe + g™ [ Ris () Arpl| v

A e

For any R > 0 we have

A'r(b(x) B dg_dlBR (x) B
ko +W(z) Ko+ W(x) /BRQS(x ) JE(y/e) dy

de= g, () de 1 ge (1)
£ “Bad) — ) J®(y/e)d 7*?/ — ) J®(y/e) d
P B;b(x y)J ¥ (y/e) dy + i [Ple =) T (y/e) dy
de=d & M, dIT, M;
< - y+— J®(y)d oo —ai=L Tt
< ewa / )y [0l + = o]
<wg™ [ o@entdy+ 2o
where
d Hd,1 Mi/(fi dko
@Rzil_ ]-B and ’I]R:d/ J d +— Mla
27T(€/€0)d B IC?/ED H
and with Wg = inf g W. We may therefore infer that
wd —d[l, Mi + g
[(Rs()A) 9|, < il :,11 |l + (&, ¢r)-
0

Since W (z) — +oc and J®(x) — 0 as |z| — oo, we can find R large enough so that

gl
< 5 H M; = C’illj

i=1
Recalling that k¢ = (1 — ¢)x{, we then obtain (12.21) with

d d
1_§Hi:1Mi 1-¢ 1 1
! i - 1+¢ me ween

Invoking Lemma 2.19, we deduce that (H3) holds true for £* = £ in X' = L.

From conditions (H1)-(H2)-(H3), we infer the existence of a solution to the dual problem.

Lemma 12.7. If € < eo, where €y is defined in the paragraph about Condition (H2) above, then
there exist \1 > ko and ¢ € X/, ||¢1||L~ = 1, such that L*¢1 = A\p1. Moreover, ¢1 € Ly and

(p1,0) >1—~
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Proof. The existence of (A1, ¢1) follows from applying Theorem 2.21. The equation L¢1 = A\ ¢
readily gives that

[1llzgy < 11T * d1llzee + Aalldrllzee < (I T]l + A,
and the estimate {¢1,p) > 1 —+ comes from Lemma 2.19 O
We now aim at verifying (6.8), (6.7) and (6.9) in order to apply Theorem 6.3.

Lemma 12.8 (Lyapunov Condition). Under the above assumptions, for any T > 0, there are
~vr € (0,1) and K > 0 such that

157 SNl <7zl fllze + Kl Fller-
Proof. The proof is exactly the same as for Lemma 12.3 in Section 12.1. ]

Lemma 12.9 (Harris’s condition). Under the above assumptions, there exists 1o € X' |, go € X4
and T > 0 such that

(12.22) Srf={f,vo)go, VfeEXy.
Proof. We prove the dual version of (12.22), namely
(1223) ST¢ Z <¢7 gO>1r/)07 \Vld) S X;a

where we have used that S} = S« (T) = Sz(T) = Sr, since L* = £ due to the symmetry of J.
The iterated Duhamel formula (3.9) and the positivity of A and Sg ensure that

Sr > (SBA)(*d) * Sg.
We start by estimating (Sg.A * Sg)(t)¢ for ¢ > 0. Since

AS5(s)p(x) > et / (x — zep)e *WE=2e1) Iy (2 /e) dz
R

xr1+1
>t / P(x — zep)e W (E=2e1) J (2 /) dz
11—1
x1+1
> gfle*SWH””‘“]Jl(lxﬂ%l) / oz — ze1) dz,

w171
where we recall the notation W[R] = supg, W, we get
t 1y [ott
(SpA % Sp)(t)p(z) > _e—tWHzHl]Jl (ﬁ) / oz — ze1)dz.
€ € 11
Using now the part J, of J we obtain
A(SpA* Sp)(s)(x)

1 xr1+1
Z Eigjl (%) / €_SW[|r_Z2e2‘+1] / (;5(33‘ — zZ1€e1 — Zzel) dz1 JQ(ZQ/&‘) de
R 11—1

xo+1
%J1(|CC1|+1)J2(|CC2|+1)675W[\w\+2]/ :
€ 3 3 o

Y

xr1+1
/ o(x — z1€1 — 29€1) dz1d2o
—1 32171

and then
((SsA) 2 % Sg)(t)d ()

t2 1 1
> ﬁeftw[\w\+2]e]1(|xl| + )J2(|$2| + )/
€ € € -

Iterating and using the successive J;’s parts of J we finally get

Sc(t)d(x) = ((S5A)*Y « Sp) () (<)

t a w |z| +1
> (lz|+d] yo (L1 T 2 / d
ST g e J ( - ) 1 ¢(y) Y,

r2+1 pxi+1
o(x — z1€1 — 22€1) dz1d20.
271 32171

which yields (12.23), and so (12.22), with

T g _rwial+d e (12l +1
@[Jo(x)—ﬁs e J( 5 )
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and go = 1[_1’1]d. O

Corollary 12.10. For e € (0,g9), there exists f1 € X4 such that Lf1 = M\ f1 with (f1,¢1) = 1.
Moreover, the exponential convergence (12.20) holds for some constructive constants C > 1 and
a>0.

Proof. Similarly as in the proof of Theorem 12.1 part (2), we can infer from Lemma 12.9 that (6.8)
holds with g = Crgo where Cr > 0 is an explicit constant. The Lyapunov condition (6.7) is
established in Lemma 12.8, and the positivity condition (6.9) readily follows from the estimate
(¢1,%) > 1 — ~ established in Lemma 12.7. We can thus apply Theorem 6.3 which, together with
its attached Remark 6.4, gives the conclusion. |

Proof of Theorem 12.5. It only remains to prove the uniqueness and strict positivity properties.
Combining (12.22) and (12.22) with ¢ = go, we get that

Serf = Sr(S15) 2 (fb0)Sran = ([ 68)tf, v = 244F. v}

forall f € X . Since ¢y > 0, this ensures that (4.12) is verified, and then (H4) because of point (4)
in Lemma 4.8. This gives the result of uniqueness and strict positivity by using Theorem 4.13. O
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