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Peculiarities of Space Dependent Conservation
Laws: Inverse Design and Asymptotics

Rinaldo M. Colombo, Vincent Perrollaz and Abraham Sylla

Abstract Recently, results regarding the Inverse Design problem for Conservation
Laws and Hamilton-Jacobi equations with 𝑥-dependent convex fluxes were obtained
in [6, 7]. More precisely, characterizations of attainable sets and the set of initial
data evolving at a prescribed time into a prescribed profile were obtained. Here, we
present an explicit example that underlines deep differences between the 𝑥-dependent
and 𝑥-independent cases. Moreover, we add a detailed analysis of the time asymptotic
solution of this example, again underlining differences with the 𝑥-independent case.

1 Introduction

Consider the scalar one dimensional conservation law{
𝜕𝑡𝑢 + 𝜕𝑥 (𝐻 (𝑥, 𝑢)) = 0 (𝑡, 𝑥) ∈ ]0, +∞[ × R
𝑢(0, 𝑥) = 𝑢𝑜 (𝑥) 𝑥 ∈R . (CL)

Denote by
𝑆𝐶𝐿 : R+ × L∞ (R;R) → L∞ (R;R) (1)

the semigroup whose orbits are the entropy solutions to (CL). For any positive 𝑇

and for any assigned profile 𝑤 ∈ L∞ (R;R) the inverse design is the set of initial data
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evolving into this profile at time 𝑇 , i.e.,

𝐼𝐶𝐿
𝑇

(𝑤) B
{
𝑢𝑜 ∈ L∞ (R;R) : 𝑆𝐶𝐿

𝑇
𝑢𝑜 = 𝑤

}
. (2)

In the homogeneous case, a general characterization of 𝐼𝐶𝐿
𝑇

(𝑤) is given in [5].
Other more specific results in this setting are [12], devoted to Burgers’ equation; [3],
specific to the attainable set for boundary value problems arising in the modeling
of vehicular traffic. However, the homogeneous case significantly differs from the
present non-homogeneous one and less results in the literature are available. A first
step in this direction, limited to the study of the attainable set, is [2], see also the
related preprint [1], where 𝐻 in (CL) consists of an expression for 𝑥 > 0 and another
expression for 𝑥 < 0. A specific inverse design problem related to conservation laws,
e.g., the minimization of a sonic boom, is considered in [10], while [9] is devoted
also to Hamilton-Jacobi equation.

In [7], the characterizations obtained in [5] is extended to the non-homogeneous
case. The analytic techniques developed in [7] take advantage of the connection
𝑢 = 𝜕𝑥𝑈 between (CL) and the Hamilton-Jacobi equation{

𝜕𝑡𝑈 + 𝐻 (𝑥, 𝜕𝑥𝑈) = 0 (𝑡, 𝑥) ∈ ]0, +∞[ × R
𝑈 (0, 𝑥) = 𝑈𝑜 (𝑥) 𝑥 ∈R . (HJ)

We know, on the basis of [6], that both Cauchy problems for (CL) and (HJ) are
globally well posed under the same set of assumptions, namely:

Smoothness : 𝐻 = 𝐻 (𝑥, 𝑢) ∈ C3 (R2,R). (C3)

Compact NonHomogeneity : ∃𝑋 > 0, ∀(𝑥, 𝑢) ∈ R2

|𝑥 | > 𝑋 =⇒ 𝜕𝑥𝐻 (𝑥, 𝑢) = 0. (CNH)

Strong Convexity :
∀𝑥 ∈ R, 𝑢 ↦→ 𝜕𝑢𝐻 (𝑥, 𝑢) is an
increasing C1-diffeomorphism
of R onto itself.

(CVX)

Assumption (CVX) implies that 𝐻 is strictly convex with respect to the second
variable. Clearly, the strongly concave case is entirely analogous. Let us also mention
that for well-posedness, (CVX) is relaxed to a uniform coercivity assumption coupled
to a genuine nonlinearity assumption in [6, (UC)-(WGNL)]. Rather than tackling
directly the characterization of the inverse design for (CL), [7] deals first with (HJ)
and then uses the correspondence to get back to (CL).

Below, we construct an explicit example showing that when 𝐻 depends on 𝑥, the
inverse design 𝐼𝐶𝐿

𝑇
(𝑤) may have properties, in a sense, opposite to those that hold

in the homogeneous case, according to [5]. Indeed, in the 𝑥-independent case, the
presence of a shock in 𝑤 implies that 𝐼𝐶𝐿

𝑇
(𝑤) is a cone with infinite dimensional

extremal faces. In our 𝑥-dependent example, in spite of 𝑤 displaying a shock, 𝐼𝐶𝐿
𝑇

(𝑤)
is a singleton. On the contrary, in the homogeneous case, 𝐼𝐶𝐿

𝑇
(𝑤) is a singleton if

and only if 𝑤 is continuous.
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Furthermore, in this example, the time asymptotic solution is neither constant nor
a rescaling of a solution to a Riemann Problem. On the contrary, as 𝑡 → +∞, the
solution converges locally uniformly to a compactly supported profile displaying a
single singularity, which is a stationary entropic shock wave. This suggests various
questions about the characterization of time asymptotic profiles to non homogeneous
conservation laws and, in particular, about their stability properties.

2 Notations and Results

Recall the classical definition of entropy solution [11, Definition 1], as tweaked
in [6].

Definition 1 Fix 𝑢𝑜 ∈ L∞ (R;R). A bounded function 𝑢 ∈ L∞ (R+ × R;R) is a
solution to (CL) if for all test functions 𝜑 ∈ C∞

𝑐 (R+×R;R+) and for all scalar 𝑘 ∈ R:∫ +∞

0

∫
R
|𝑢(𝑡, 𝑥) − 𝑘 | 𝜕𝑡𝜑(𝑡, 𝑥) d𝑥 d𝑡

+
∫ +∞

0

∫
R

sgn (𝑢(𝑡, 𝑥) − 𝑘) (𝐻 (𝑥, 𝑢(𝑡, 𝑥)) − 𝐻 (𝑥, 𝑘)) 𝜕𝑥𝜑(𝑡, 𝑥) d𝑥 d𝑡

−
∫ +∞

0

∫
R

sgn (𝑢(𝑡, 𝑥) − 𝑘) 𝜕𝑥𝐻 (𝑥, 𝑘) 𝜑(𝑡, 𝑥) d𝑥 d𝑡

+
∫
R
|𝑢𝑜 (𝑥) − 𝑘 | 𝜑(0, 𝑥) d𝑥 ≥ 0.

(3)

Definition 1, taken from by [6, Definition 2.1] is, apparently, weaker than the classi-
cal Kružkov definition since it does not require the “trace at 0 condition” [11, For-
mula (2.2)]. Nevertheless, under Assumption (C3), Definition 1 ensures uniqueness
and uniform L1

loc-continuity in time of the solution, as proved in [6, Theorem 2.6].
As usual, in connection with (CL) we use the system of ordinary differential

equations {
¤𝑞 = 𝜕𝑝𝐻 (𝑞, 𝑝)
¤𝑝 = −𝜕𝑞𝐻 (𝑞, 𝑝),

(HS)

which we consider equipped either with initial or with final conditions. For all
𝑤 ∈ L∞ (R;R) such that 𝐼𝐶𝐿

𝑇
(𝑤) ≠ ∅, define

𝜋𝑤 : R −→ R
𝑥 ↦−→ 𝑞(0) where (𝑞, 𝑝) solves (HS) with

{
𝑞(𝑇) = 𝑥

𝑝(𝑇) =𝑤(𝑥) . (4)

We also introduce the set

R𝑇 B
{
𝑞 ∈ C1 ( [0, 𝑇];R) : ∃ 𝑝 ∈ C1 ( [0, 𝑇];R) such that (𝑞, 𝑝) solves (HS)

}
.

whose elements we call Hamiltonian rays. The map 𝜋𝑤 assigns to 𝑥 ∈ R the inter-
section of the minimal backward characteristics emanating from (𝑇, 𝑥), see [8, Defi-
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nition 3.1, Theorems 3.2-3.3], with the axis 𝑡 = 0. Remark that in the 𝑥-independent
case, all Hamiltonian rays are straight lines, as also any extremal characteristics, a
key simplification exploited in [5, Formula (2.3)].

Theorem 1 [7, Corollary 3.5] Let 𝐻 satisfy (C3), (CNH) and (CVX). Fix 𝑇 > 0
and 𝑤 ∈ L∞ (R;R). Then, 𝐼𝐶𝐿

𝑇
(𝑤) ≠ ∅ if and only if 𝜋𝑤 admits a non decreasing

representative. In this case, 𝐼𝐶𝐿
𝑇

(𝑤) is a closed convex cone with a unique vertex 𝑢∗𝑜.

A characterization of the attainable set for (CL) can be obtained by that for (HJ)
provided in [7, Theorem 3.2]. The latter theorem extends to the 𝑥-dependent case
some of the properties known to hold in the 𝑥-independent case, see [5]. However, the
extension to the 𝑥-dependent case can not be merely reduced to the rise of technical
difficulties. Indeed, some properties are irremediably lost and new phenomena arise.

The most apparent difference between the two situations is described in Figure 1,
with reference to extremal backward generalized characteristics (thicker curves),
whose behaviors in the two cases are quite different. In the 𝑥-independent case,
extremal backward characteristics define a non uniqueness gap. On the contrary,
in the 𝑥-dependent case, extremal backward characteristics may well intersect at
the initial time, so that the non uniqueness gap disappears. Furthermore, in the 𝑥-
independent case, an isentropic solution, see [6, Theorem 3.1], can be constructed
filling the non uniqueness gap with Hamiltonian rays, that is solutions to (HS),
emanating from 𝑞(𝑇) = 0, 𝑝(𝑇) = (1 − 𝜆)𝑤(0−) + 𝜆𝑤(0+), for 𝜆 ∈ [0, 1]. On the
contrary, the same procedure might not work in the 𝑥-dependent case, see also [4] for
a multi-d study. The numerical integrations in Figure 1, right, referred to (HS) with
Hamiltonian (5), show that extremal backward characteristics still do not intersect
in ]0, 𝑇 [ × R, but the intermediate Hamiltonian rays may well cross each other and
even exit the region bounded by the extremal characteristics.

Fig. 1 Left, in the 𝑥-independent case, the Hamiltonian rays fill the non uniqueness gap. Right, in
the 𝑥-dependent case defined by the Hamiltonian (5), extremal characteristics still do not intersect,
but Hamiltonian rays do and may well exit the non uniqueness gap or also intersect.
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When 𝐻 does not depend on 𝑥, 𝑢∗𝑜 defined in Theorem 1 is characterized by [5,
(G2) in Proposition 5.2]. Then, [5, (R1) in Lemma 7.2] ensures not only that 𝑢∗𝑜 is one
sided Lipschitz continuous, but also that the solution 𝑢̃ to (CL) with initial datum
𝑢∗𝑜 evolving into 𝑤 is Lipschitz continuous on any compact subset of ]0, 𝑇 [ × R.
Thus, 𝑢̃ satisfies the inequality in Definition 1 with an equality, i.e., it is an isentropic
solution and also reversible in time. All this is no longer true in the heterogeneous
case, as highlighted by the following theorem.

Theorem 2 [7, Theorem 4.1] Define

𝐻 (𝑥, 𝑝) B 𝑝2

2
+ 𝑔(𝑥) where 𝑔(𝑥) B

{
1 − (1 − 𝑥2)4 if |𝑥 | ≤ 1

1 otherwise. (5)

Then, (C3), (CNH) and (CVX) hold. Moreover, there exists 𝑤 ∈ L∞ (R;R) such that

(i) For all 𝑇 > 0, 𝐼𝐶𝐿
𝑇

(𝑤) is a singleton.

(ii) For all𝑇 > 𝜋/(2
√

2) the solution 𝑢 to (CL) with 𝑢(0) being the vertex of 𝐼𝐶𝐿
𝑇

(𝑤)
displays an entropic shock sited at 𝑥 = 0, whose size grows in time, that arises at
time 𝑡 = 𝜋/(2

√
2).

Elements of proof are presented in Section 3. As we mentioned before, the contrary
to (ii) holds when 𝐻 does not depend on 𝑥. In the homogeneous case, the contrary to
(i) also holds true, see [5, (G1) in Proposition 5.2]. The evolution of the numerical
solution to (CL)-(5) with initial data in 𝐼𝐶𝐿

𝑇
(𝑤) (which is a singleton) computed

with a standard finite volume scheme, is represented in Figure 2, see also Figure 4.
Therefore, there exist an 𝑥-dependent Hamiltonian 𝐻, a profile 𝑤 and a time𝑇 > 0

such that 𝐼𝐶𝐿
𝑇

(𝑤) ≠ ∅ but in any solution evolving from an initial datum in 𝐼𝐶𝐿
𝑇

(𝑤),
shocks arise before time 𝑇 , so that no reversible solution is possible, see Figure 4. In
other words, the profile 𝑤 can be reached exclusively producing a sufficient amount
of entropy and no isentropic solution evolves into 𝑤. Each of these facts requires 𝐻
to depend on 𝑥 and is false in an 𝑥-independent setting. As a consequence, no direct
definition of 𝑢∗𝑜 is available, as it was in the 𝑥-independent case, explaining why
in [7] the authors had to resort to (HJ) for its construction.

A further difference between the homogeneous and the non homogeneous cases
is in the long time behavior.

Theorem 3 Let 𝐻 be as in (5), choose

𝑢𝑜 (𝑥) B
{
−2 if 𝑥 < 0
2 if 𝑥 > 0 , (6)

and consider the corresponding entropy solution 𝑢 to (CL). Then, for all 𝑥 ∈ R\{0},

lim
𝑡→+∞

𝑢(𝑡, 𝑥) = −sgn 𝑥
√︁

2(1 − 𝑔(𝑥)) =
{
−
√

2 sgn 𝑥 (1 − 𝑥2)2 |𝑥 | ≤ 1 ,
0 |𝑥 | > 1 . (7)

The proof is sketched in Section 4, refer to Figure 2, bottom right, for the graph
of (7).
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Fig. 2 Numerically computed solution to (CL) with 𝐻 as in (5) and initial datum (6), as described
in Theorem 2. The Riemann initial datum (6) first evolves similarly to a rarefaction (top left);
then gets non monotone (top right); at time 𝑡 = 𝜋/(2

√
2) a shock is formed (bottom left) and in

subsequent times the size of the shock grows (bottom right). The latter graph also portrays the
asymptotic profile (7).

In particular, note that a stationary shock is present at 𝑥 = 0 in the time asymptotic
limit. Outside this shock, the solution is classical.

3 Theorem 2 – Sketch of the Proof

Note first that 𝐻, as defined in (5), satisfies (C3), (CNH) with 𝑋 = 1 and (CVX).
Here follows a sequence of lemmas describing the behaviors of the solutions

to (HS)– (5). The proofs, relying on standard ODE arguments, can be found in [7].
We refer to Figure 3 for an illustration of these behaviors.

Lemma 1 [7, Lemma 5.11] Let 𝐻 be as in (5) and 𝑢𝑜 be as in (6). Fix 𝑞𝑜 ≥ 0. Denote
by (𝑞, 𝑝) the solution to (HS)–(5) with initial datum (𝑞𝑜, 𝑢𝑜 (𝑞𝑜+)) = (𝑞𝑜, 2). Then,
𝑞 is increasing on [0, +∞[ and 𝑞(𝑡) −→

𝑡→+∞
+ ∞.

Lemma 2 [7, Lemma 5.12] Let 𝐻 be as in (5) and 𝑢𝑜 be as in (6). Fix 0 ≤ 𝑞𝑜 < 𝑞𝑜
and denote by (𝑞, 𝑝), respectively (𝑞, 𝑝), the global solution to (HS)–(5) with initial
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datum (𝑞𝑜, 𝑢𝑜 (𝑞𝑜+)) = (𝑞𝑜, 2), respectively (𝑞𝑜, 𝑢𝑜 (𝑞𝑜+)) = (𝑞𝑜, 2). Then, 𝑞(𝑡) <
𝑞(𝑡), for all 𝑡 ≥ 0.

Lemma 3 [7, Lemmas 5.13 – 5.15] Let 𝐻 be as in (5) and 𝑢𝑜 be as in (6). Fix
𝑝𝑜 ∈ ]0, 2[. Denote by (𝑞, 𝑝) the global solution to (HS)–(5) with initial datum
(0, 𝑝𝑜).
(i) If 𝑝𝑜 ∈ ]

√
2, 2[, then 𝑞 is increasing on [0, +∞[ and 𝑞(𝑡) −→

𝑡→+∞
+ ∞.

(ii) If 𝑝𝑜 =
√

2, then 𝑞 is increasing on [0, +∞[ and 𝑞(𝑡) −→
𝑡→+∞

1.

(iii) If 𝑝𝑜 ∈ ]0,
√

2[, then 𝑞 is periodic and the map

T : ]0,
√

2[ −→ ]0, +∞[
𝑝𝑜 ↦−→ the smallest period of 𝑞 (8)

is increasing, continuous and lim
𝑝𝑜→

√
2 T (𝑝𝑜) = +∞. Moreover, 𝑞(𝑡) > 0 for

𝑡 ∈ ]0,T (𝑝𝑜)/2[ and 𝑞(𝑡) < 0 for 𝑡 ∈ ]T (𝑝𝑜)/2,T (𝑝𝑜) [.

Lemma 4 [7, Lemma 5.16] Let 𝐻 be as in (5) and 𝑢𝑜 be as in (6). Fix 0 < 𝑝𝑜 <

𝑝̃𝑜 < 2 and denote by (𝑞, 𝑝), respectively (𝑞, 𝑝), the global solution to (HS)–(5)
with initial datum (0, 𝑝𝑜), respectively (0, 𝑝̃𝑜). Then,

(𝑖) 𝑝𝑜 ∈]0,
√

2[ =⇒ ∀𝑡 ∈ ]0,T (𝑝𝑜)/2], 𝑞(𝑡) < 𝑞(𝑡)
(𝑖𝑖) 𝑝𝑜 ∈ [

√
2, 2[ =⇒ ∀𝑡 ∈]0, +∞[, 𝑞(𝑡) < 𝑞(𝑡).

Recall that (C3)-(CNH)-(CVX) ensure that for all (𝑞𝑜, 𝑝𝑜) ∈ R2, calling (𝑞, 𝑝)
the solution to (HS)–(5) with datum (𝑞𝑜, 𝑝𝑜) at time 0, the map

F : R3 −→ R2

(𝑡, 𝑞𝑜, 𝑝𝑜) ↦−→ (𝑞(𝑡), 𝑝(𝑡)) (9)

and its two projections F𝑞 , F𝑝 are of class C2, see [7, Lemma 5.2].

Lemma 5 [7, Lemma 5.17] Let 𝐻 be as in (5) and 𝑢𝑜 be as in (6). Then, there exists
a unique map

Δ : ]0, +∞[2 −→ ([0, +∞[ × {2}) ∪ ({0} × ]0, 2])
(𝑡, 𝑥) ↦−→ (𝑞𝑜, 𝑝𝑜)

(10)

such that

F𝑞 (𝑡, 𝑞𝑜, 𝑝𝑜) = 𝑥 and ∀ 𝑠 ∈ ]0, 𝑡 [, F𝑞 (𝑠, 𝑞𝑜, 𝑝𝑜) > 0 . (11)

Moreover,

(i) Δ is continuous.

(ii) Δ is monotone, in the sense that setting Δ(𝑡𝑜, 𝑥𝑜) = (0, 𝑝𝑜) and Δ(𝑡𝑜, 𝑥′𝑜) =
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Fig. 3 On the horizontal axis, the 𝑞 component of solutions to (HS)–(5), while time 𝑡 is on the
vertical axis. Dotted curves are those considered in Lemma 1 and in Lemma 2; dashed-dotted
curves are those considered in (i) of Lemma 3; solid curves refer to (iii) of Lemma 3. The two
thicker curves depict solutions corresponding to the initial data (0,

√
2) and (0, 2) .

(0, 𝑝′𝑜), if 0 < 𝑥𝑜 < 𝑥′𝑜, then 𝑝𝑜 < 𝑝′𝑜.

(iii) For all 𝑥 ∈ ]0, +∞[, lim𝑡→0+ Δ(𝑡, 𝑥) = (𝑥, 2).

The construction of the solution to (CL)–(6) now follows from the next proposition.

Proposition 1 [7, Proposition 5.18] Let 𝐻 be as in (5) and 𝑢𝑜 as in (6). Then,

𝑢 : ]0, +∞[ × (R \ {0}) −→ R

(𝑡, 𝑥) ↦−→
{

F𝑝 (𝑡,Δ(𝑡, 𝑥)) if 𝑥 > 0

−F𝑝 (𝑡,Δ(𝑡,−𝑥)) if 𝑥 < 0.
(12)

is the solution to (CL) in the sense of Definition 1 and it is a classical solution
outside 𝑥 = 0.

We refer to [7, § 5.4] for the concluding remarks proving the properties of 𝑢.

4 Proof of Theorem 3

Since 𝑢 is odd in the space variable, we consider only the case 𝑥 > 0. Using the
notation (9), introduce the maps
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Fig. 4 Illustration of Proposition 1: evolution in time of the solution to (CL) in connection with
the orbits of (HS)–(5).

𝑞♭ (𝑡) = F𝑞 (𝑡, 0,
√

2) and 𝑞♯ (𝑡) = F𝑞 (𝑡, 0, 2) (13)

whose graphs are thicker in Figure 3. By Lemma 1 and Lemma 3, lim𝑡→+∞ 𝑞♭ (𝑡) = 1
and lim𝑡→+∞ 𝑞♯ (𝑡) = +∞.

Assume first 𝑥 ∈ ]0, 1[. Then, if 𝑡 > (𝑞♭)−1 (𝑥), by (ii) in Lemma 3 and (ii) in
Lemma 5, Δ(𝑡, 𝑥) = (0, 𝑝𝑜 (𝑡, 𝑥)) for a suitable 𝑝𝑜 (𝑡, 𝑥) ∈ ]0,

√
2[. Moreover, by (11)

in Lemma 5 and (iii) in Lemma 3, 𝑡 < T (𝑝𝑜 (𝑡, 𝑥))/2. Hence, as 𝑡 → +∞, also
T (𝑝𝑜 (𝑡, 𝑥)) → +∞. By (iii) in Lemma 3, lim𝑡→+∞ 𝑝𝑜 (𝑡, 𝑥) =

√
2.

Assume now that 𝑥 ≥ 1. If 𝑡 > (𝑞♯)−1 (𝑥), by Lemma 1, Δ(𝑡, 𝑥) = (0, 𝑝𝑜 (𝑡, 𝑥))
with 𝑝𝑜 (𝑡, 𝑥) ∈ [

√
2, 2[. By (ii) in Lemma 4 and (i) in Lemma 3, we have

lim𝑡→+∞ 𝑝𝑜 (𝑡, 𝑥) =
√

2.
Recall that along solutions to (HS)–(5), 𝐻 is conserved, that is

𝑢(𝑡, 𝑥)2

2
+ 𝑔(𝑥) = 𝑝𝑜 (𝑡, 𝑥)2

2
+ 𝑔(0) , (14)

so that
lim

𝑡→+∞
𝑢(𝑡, 𝑥)2 = 2(1 − 𝑔(𝑥)) ≥ 0 , (15)

proving (7) for 𝑥 ≥ 1.
For 𝑥 ∈ [0, 1[, we proved above that, for 𝑡 large, 𝑝𝑜 (𝑡, 𝑥) ∈ ]0,

√
2[. This, together

with (14) ensures that
𝑢(𝑡, 𝑥) <

√︁
2(1 − 𝑔(𝑥)) . (16)

By (CL), understood in its classical sense thanks to Proposition 1, and by (14)
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𝜕𝑡𝑢(𝑡, 𝑥) = −𝜕𝑥 (𝐻 (𝑥, 𝑢(𝑡, 𝑥))) = −𝜕𝑥
(
𝑝𝑜 (𝑡, 𝑥)2

2

)
= −𝑝𝑜 (𝑡, 𝑥) 𝜕𝑥 𝑝𝑜 (𝑡, 𝑥) .

Indeed, note first that by (14), 𝑝𝑜 (𝑡, 𝑥) > 0 and the Implicit Function Theorem, 𝑝𝑜
is sufficiently regular. Item (ii) in Lemma 5 implies that 𝜕𝑥 𝑝𝑜 (𝑡, 𝑥) ≥ 0, so that
𝜕𝑡𝑢(𝑡, 𝑥) ≤ 0. Hence, (15) and (16) allow to complete the proof of (7).

As a final remark, we note that as 𝑡 → +∞, 𝑢(𝑡) converges uniformly on compact
subsets ofR\{0}, thanks to pointwise convergence and monotonicity, by Dini’s The-
orem [13, Theorem 7.13]. A further technical argument, based on (ii) of Theorem 2,
allows to extend the local uniform convergence on all of R.
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