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Abstract

In this work, following the Discrete de Rham (DDR) paradigm, we develop an arbitrary-order
discrete divdiv complex on general polyhedral meshes. The construction rests 1) on discrete spaces
that are spanned by vectors of polynomials whose components are attached to mesh entities and 2) on
discrete operators obtained mimicking integration by parts formulas. We provide an in-depth study
of the algebraic properties of the local complex, showing that it is exact onmesh elements with trivial
topology. The new DDR complex is used to design a numerical scheme for the approximation of
biharmonic problems, for which we provide detailed stability and convergence analyses. Numerical
experiments complete the theoretical results.

Key words. divdiv complex, discrete de Rham method, polyhedral meshes, biharmonic problems,
mixed formulations
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1 Introduction
Let Ω ⊂ R3 be a polyhedral domain with boundary mΩ. Denote by sym and dev the symmetrisation
and deviator operators such that, for any matrix S ∈ R3×3 , sym S ≔ 1

2
(
S + S>) and dev S ≔

S − 1
3
(tr S)O3 . We construct a discrete counterpart of the three-dimensional divdiv complex

R
−,1 (Ω) N1 (Ω;R3) N(sym curl,Ω;T) N(div div,Ω;S) !2 (Ω) {0},8Ω dev grad sym curl div div 0

(1.1)
where R−,1 ≔ P

0(Ω) + xP0(Ω) is the lowest-order Raviart–Thomas space, N1(Ω;R3) is spanned by
vector-valued functions that are square-integrable overΩ alongwith their gradient,N(sym curl,Ω;T) by
functions taking values in T ≔ devR3×3 that are square-integrable overΩ along with the symmetric part
of their curl, andN(div div,Ω;S) by functions taking values in S ≔ symR3×3 that are square-integrable
together with the divergence of their (row-wise) divergence. The divdiv complex can be derived from
the de Rham complex through the BGG construction [7], which offers a powerful framework to study
its theoretical properties, but still lacks a generic blueprint for the construction of discrete complexes.
The main difficulty in the numerical approximation of the complex (1.1) is related to the algebraic

constraints that appear in both the spaces and the operators. Finite element approximations of the spaces
appearing in the complex have been developed in [1, 4, 6, 15]. The discretization of the full complex is,
on the other hand, much more recent [26].
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The above references are concerned with spaces built on standard (matching simplicial) meshes. In
this work, following the Discrete de Rham (DDR) paradigm of [21, 25] (see also [12] for a very recent
generalization using differential forms), we address the discretization of the divdiv complex (1.1) on
more general meshes made of polyhedral elements and possibly featuring non-matching interfaces. The
support of such meshes provides great flexibility in the approximation of the domain and enables an
efficient use of computational resources through non-conforming local mesh refinement and agglomer-
ation [2, 3, 8]. Polytopal methods additionally benefit from a higher-level point of view, which enables
unknowns-reduction strategies such as serendipity [9, 10, 14]; see also [22] for a general framework in
the context of discrete complexes. The key idea of DDR methods consists in replacing both the spaces
and the operators in the complex with discrete counterparts. Discrete spaces are spanned by vectors
of polynomials with components attached to the mesh entities, while discrete operators are obtained
mimicking integration by parts formula. Applying this paradigm to the discretization of the divdiv
complex involves a number of subtleties, from the decomposition of traces of tensor-valued fields to
the identification of the appropriate integration by parts formulas. We provide a complete study of the
algebraic properties of the local complex showing how the design of the spaces and operators fits to
ensure exactness on mesh elements with trivial topology. Local exactness is one of the key ingredients
to prove algebraic properties of the global complex following, e.g., the paradigm of [24].
The DDR divdiv complex is then used as a starting point to design a numerical scheme for the

following fourth-order problem in mixed formulation: Given 5 : Ω → R, find 2 ∈ N(div div,Ω;S)
and D ∈ !2(Ω) such that∫

Ω

2 : 3 +
∫
Ω

div div 3 D = 0 ∀3 ∈ N(div div,Ω;S),

−
∫
Ω

div div2 E =

∫
Ω

5 E ∀E ∈ !2(Ω).
(1.2)

Previous results in the (significantly easier) two dimensional case include the design of a DDR complex
along with its application to Kirchhoff–Love plates [19] and its serendipity variant [13]. Based on the
properties of the new three-dimensional divdiv complex, we prove stability of the DDR scheme for
problem (1.2), along with its convergence in ℎ:+1, with ℎ denoting the meshsize and : the polynomial
degree of the complex.
The rest of the paper is organized as follows. In Section 2 we establish the setting, including the

relevant integration by parts formulas and trimmed polynomial spaces. The discrete divdiv complex
along with its algebraic properties make the object of Section 3. Section 4 contains the DDR scheme
for problem (1.2) as well as its stability and convergence analyses. Sections 5 and 6 contain the most
technical proofs of algebraic properties of the DDR complex. Finally, results on local polynomial space
of general scope are presented in Appendix A.

2 Setting
2.1 Mesh
For any (measurable) set . ⊂ R3, we denote by ℎ. its diameter. We consider meshes Mℎ ≔ Tℎ ∪
Fℎ ∪ Eℎ ∪ Vℎ of Ω, where: Tℎ is a finite collection of open disjoint polyhedral elements such that
Ω =

⋃
) ∈Tℎ ) and ℎ = max) ∈Tℎ ℎ) > 0; Fℎ is a finite collection of open planar faces; Eℎ is the set

collecting the open edges of the faces;Vℎ is the set collecting the edge endpoints. It is assumed, in what
follows, that (Tℎ, Fℎ) matches the conditions in [23, Definition 1.4], so that the faces form a partition of
the mesh skeleton

⋃
) ∈Tℎ m) .

Given a mesh edge � ∈ Eℎ, we denote by +1(�) and +2(�) the vertices inVℎ corresponding to its
endpoints and ordered so that t� = ℎ−1

�
(x+2 (�) − x+1 (�) ). For the sake of conciseness, whenever no

ambiguity can arise, we avoid specifying the edge and simply write +1 and +2. For any face � ∈ Fℎ, we
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fix a unit normal vector n� and, for any edge � ∈ E� ,we denote by n�� the vector normal to � in the
plane containing � and oriented such that ( t� , n�� , n� ) forms a right-handed system of coordinates.
Depending on the context, the vectors t� and n�� may be regarded as embedded in the plane containing
� or in the three-dimensional space.
The set collecting the mesh faces that lie on the boundary of a mesh element ) ∈ Tℎ is denoted by

F) . For any . ∈ Tℎ ∪ Fℎ, we denote by E. the set of edges of . . Similarly, for all . ∈ Tℎ ∪ Fℎ ∪ Eℎ,
V. denotes the set of vertices of . .
For each mesh element or face . ∈ Tℎ ∪ Fℎ, we fix a point x. ∈ . such that there exists a ball

centered in x. contained in . and of diameter comparable to ℎ. uniformly in ℎ (whenMℎ belongs to
a regular mesh sequence in the sense of [23, Definition 1.9]).
Throughout the paper, 0 . 1 stands for 0 ≤ �1 with � depending only on Ω, the mesh regularity

parameter and, when polynomial functions are involved, the corresponding polynomial degree.

2.2 Local and broken polynomial spaces
For given integers = ≥ 0 and ℓ ≥ 0, Pℓ= denotes the space of =-variate polynomials of total degree ≤ ℓ,
with the convention that Pℓ0 ≔ R for any ℓ and that P−1

= ≔ {0} for any =. Given . ∈ Tℎ ∪ Fℎ ∪ Eℎ,
we denote by Pℓ (. ) the space spanned by the restriction to . of the functions in Pℓ3 and by cℓP,.

the
corresponding !2-orthogonal projector. When . is a mesh edge � ∈ Eℎ or face � ∈ Fℎ, whenever
needed we will identify Pℓ (�) and Pℓ (�) with the spaces of one- and two-variate polynomials on �
and �, respectively. Spaces of vector- or matrix-valued functions on. that have polynomial components
of total degree ≤ ℓ are denoted in boldface and the codomain is specified. At the global level, we define
the broken polynomial space

Pℓ (Tℎ) ≔
{
Eℎ ∈ !2(Ω) : (Eℎ) |) ∈ Pℓ ()) for all ) ∈ Tℎ

}
. (2.1)

2.3 Direct decompositions of local polynomial spaces
For any mesh face � ∈ Fℎ and any integer ℓ ≥ 0, the following direct decomposition of vector-valued
polynomial functions holds (cf. [5]):

P
ℓ (�;R2) = R

ℓ (�) ⊕ R
c,ℓ (�)

with Rℓ (�) ≔ curl� Pℓ+1(�) and Rc,ℓ (�) ≔ (x − x� )Pℓ−1(�).

The following lemma contains a new direct decomposition that will be needed to design the discrete
counterpart of N(sym curl,Ω;).

Lemma 1 (Direct decomposition of matrix-valued polynomial fields on faces). For all � ∈ Fℎ and all
ℓ ≥ 0, the following direct decomposition holds:

P
ℓ (�;R2×2) = CG

ℓ (�) ⊕ CG
c,ℓ (�),

with CG
ℓ (�) ≔ curl� P

ℓ+1(�;R2) and CG
c,ℓ (�) ≔ (Id − adj)

[
P

ℓ−1(�;R2) ⊗ (x − x� )ᵀ
]
,
(2.2)

where adj is the adjugate operator acting on 2 × 2 matrices.

Proof. See Appendix A. �

In what follows, we will also need the decompositions of matrix-valued polynomial functions on
mesh elements ) ∈ Tℎ described hereafter. We start by recalling the following results (cf. [17, Lemma
4.4] and [16, Lemma 3.6], respectively:

P
ℓ () ;T) = SR

ℓ ()) ⊕ SR
c,ℓ ()),
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P
ℓ () ;S) = H

ℓ ()) ⊕ H
c,ℓ ()), (2.3)

with
SR

ℓ ()) ≔ curlPℓ+1() ;S), SR
c,ℓ ()) ≔ dev

[
P

ℓ−1() ;R3) ⊗ (x − x) )ᵀ
]
,

H
ℓ ()) ≔ hessPℓ+2()), H

c,ℓ ()) ≔ sym
[
P

ℓ−1() ;T) × (x − x) )
]
,

where the cross product G × b between a matrix G ∈ R3×3 and a vector v ∈ R3 is performed row-wise.
The following lemma establishes a link between SR

ℓ ()) andHc,ℓ+1()).
Lemma 2 (Link between SR

ℓ ()) andHc,ℓ+1())). It holds

SR
ℓ ()) = curlHc,ℓ+1()).

Proof. Since H
c,ℓ+1()) ⊂ P

ℓ+1() ;S), curlHc,ℓ+1()) ⊂ SR
ℓ ()). Let now 2 ∈ SR

ℓ ()). By
definition, there is 3 ∈ P

ℓ+1() ;S) such that 2 = curl 3. Recalling (2.3), 3 can be decomposed
as 3 = 31 + 32 with (31, 32) ∈ H

ℓ ()) × H
c,ℓ ()). Using curl hess = 0, we have 2 = curl 3 =

����curl 31 + curl 32 ∈ curlHc,ℓ+1()). Since 2 is generic in SR
ℓ ()), this concludes the proof. �

Remark 3 (Extension to negative indices). The definitions of Rℓ (�), CGℓ (�), and SR
ℓ ()) naturally

extend to ℓ = −1 (in which case, all of these spaces become trivial). Similarly, the definition ofHℓ ())
extends to ℓ = −2 and ℓ = −1, yielding the trivial space in both cases.
2.4 Trimmed local polynomial spaces
For any integer ℓ ≥ 0, trimmed polynomial spaces are obtained from the direct decompositions described
in the previous section by lowering the degree of the first component. Based on this principle we define:
For all � ∈ Fℎ,

R
−,ℓ (�) ≔ R

ℓ−1(�) ⊕ R
c,ℓ (�), (2.4)

CG
−,ℓ (�) ≔ CG

ℓ−1(�) ⊕ CG
c,ℓ (�), (2.5)

and, for all ) ∈ Tℎ,

SR
−,ℓ ()) ≔ SR

ℓ−1()) ⊕ SR
c,ℓ ()), (2.6)

H
−,ℓ ()) ≔ H

ℓ−2()) ⊕ H
c,ℓ ()). (2.7)

Notice that, for ℓ = 0, all of the above spaces become trivial. For any (X, . ) ∈ {(R, �), (CG, �), (SR, )), (H, ))},
we denote by 0−,ℓ

X,.
the !2-orthogonal projection on X−,ℓ (. ).

2.5 Reconstruction of tangent derivatives on edges
We will often need to reconstruct tangential derivatives of functions over edges based on their vertex
values and !2-orthogonal projections. Specifically, letting ℓ ≥ 0 be an integer and denoting by mt� the
derivative along� in the direction of t� , the tangential derivative reconstructionGℓ

�
: R×R×Pℓ−1(�) →

Pℓ (�) is such that, for any (E+1 , E+2 , E� ) ∈ R × R × Pℓ−1(�),∫
�

Gℓ
� (E+1 , E+2 , E� ) A = −

∫
�

E� mt� A + ÈE+ AÉ� ∀A ∈ Pℓ (�), (2.8)

whereÈ·É� denotes the difference between vertex values on an edge such that, for any function q ∈ �0(�)
and any family {F+1 , F+2} of vertex values (possibly such that F+1 = F+2 = 1)

ÈF+ qÉ� ≔ F+2q(x+2) − F+1q(x+1).

When the arguments are vector- or matrix-valued,Gℓ
�
acts component-wise. Noticing thatGℓ

�
coincides

with the one-dimensional HHO gradient (cf., e.g., [23, Eq. (4.37)]), it is readily inferred that

Gℓ
� (q(x+1), q(x+2), cℓ−1

P,�q) = cℓP,�mt�q ∀q ∈ �1(�). (2.9)
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2.6 Notation and basic results on traces
Given a family of linearly independent orthonormal vectors w = {w8}8∈� ⊂ R3, we define the trace of
a vector u with respect to this family by uw ≔ (u · w8)8∈� ∈ R� We also consider its injection into the
original space

ûw ≔
∑
8∈�

(u · w8)w8 . (2.10)

Likewise, for two families of linearly independent orthonormal vectors v = {v8}8∈� , w = {w 9} 9∈� , we
define the trace of a matrix G with respect to these families by Gvw ≔ (v>

8
Gw 9) (8, 9) ∈�×� ∈ R�×� . We

also consider its injection into the original space ̂Gvw ≔
∑

(8, 9) ∈�×� (v>8 Gw 9)v8 ⊗ w 9 .
The notations defined above are used in what follows for traces on faces and edges as described

hereafter. For a face �, we consider an orthonormal basis {t�,1, t�,2} of the plane tangent to �, and,
for any vector-valued field w : � → R3 and any matrix-valued field 3 : � → R3×3, write wt ,� ,
gnn,� , 3nt ,� , and 3tt ,� with n = {n� } and t = {t�,1, t�,2}. Similarly, for any edge � , we consider an
orthonormal basis {n�,1, n�,2} of the plane normal to � , and, for any vector-valued field w : � → R3

and any matrix-valued field 3 : � → R3×3, write wn,� , 3nn,� , 3nt ,� , and gtt ,� where n = {n�,1, n�,2}
and t = {t� }.
The following lemma shows that traces of functions in trimmed spaces lie in trimmed spaces. Its

proof is similar to that of [21, Proposition 8] and is omitted for the sake of conciseness.

Lemma 4 (Traces of trimmed spaces). For any element ) ∈ Tℎ and any face � ∈ F) , it holds

(2n� )tt ,� ∈ P
:−1(�;R2) ∀2 ∈ SR

−,: ()), (2.11)

(2 × n� )tt ,� ∈ CG
−,: (�) ∀2 ∈ H

−,: ()). (2.12)

2.7 Integration by parts formulas
A key element for the DDR-inspired construction are the integration by parts formulas collected in this
section, which are used both to identify the components of the discrete spaces and to reconstruct the
discrete differentials and the corresponding potentials.

2.7.1 Integration by parts formulas for N1() ;R3)
Let ) ∈ Tℎ and let v : ) :→ R3 be a vector-valued function, which we assume as smooth as needed in
what follows. For all 2 : ) → T smooth enough, it holds∫

)

dev grad v : 2 = −
∫
)

v · div2 +
∑
� ∈F)

l) �

∫
�

v>2n�

= −
∫
)

v · div2 +
∑
� ∈F)

l) �

∫
�

(
v̂>n,�2n� + v̂>t ,�2n�

)
,

(2.13)

where we have used the decomposition v = v̂n,� + v̂t ,� of the trace of v on � into its normal and
tangential components to pass to the second line.
Let now � ∈ F) . For all w : � → R2 smooth enough and valued in the tangent space of �, it holds∫

�

(dev grad v)nt ,� · w =

∫
�

(grad v)nt ,� · w =

∫
�

grad� (v · n� ) · w

= −
∫
�

(v · n� ) div� w +
∑

� ∈E�

l��

∫
�

(v · n� ) (w · n�� ),
(2.14)

where, we have used the fact that the components extracted by (dev grad v)nt ,� are not affected by
the dev operator in the first equality and a standard integration by parts on � to conclude. For all
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2 : � → R2×2 smooth enough and matrix-valued in the tangent space of �, on the other hand, we have∫
�

(dev grad v)tt ,� :2 =

∫
�

grad� vt ,� :2 − 1
3

∫
�

tr(grad v)O2 :2

= −
∫
�

vt ,� · div� 2 − 1
3

∫
�

div v tr2

+
∑

� ∈E�

l��

∫
�

[
(v · t� ) t>�2n�� + (v · n�� )n>��2n��

]
,

(2.15)

where, in the second equality, we have used an integration by parts for the first term and decomposed
the tangent trace of v on � as vt ,� = (v · t� ) t� + (v · n�� )n�� after noticing that ( t� , n�� ) forms an
orthonormal basis of the plane orthogonal to � at each point of � .

2.7.2 Integration by parts formulas for N(sym curl, ) ;T)
Let ) ∈ Tℎ. For all 3 : ) :→ T and 2 : ) → S smooth enough, it holds∫

)

sym curl 3 : 2 =

∫
)

curl 3 : 2 =

∫
)

3 : curl 2 −
∑
� ∈F)

l) �

∫
�

(3 × n� ) : 2

=

∫
)

3 : curl 2 +
∑
� ∈F)

l) �

∫
�

3 : (2 × n� ).
(2.16)

Let now � ∈ F) . We have, for A : � → R smooth enough,∫
�

(sym curl 3)nn,� A =

∫
�

rotF gnt ,� A =

∫
�

gnt ,� · curl� A −
∑

� ∈E�

l��

∫
�

(n>�3t� ) A, (2.17)

wherewe have used the fact that the component extracted by (sym curl 3)nn,� is on the diagonal, hence it
is not affected by the sym operator (so that, in particular, (sym curl 3)nn,� = (curl 3)nn,� = rotF gnt ,� ).
For the tangential-tangential component of 3, standard integration by parts formulas on faces

(corresponding, respectively, to [25, Eqs. (3.12) and (3.15)]) give:∫
�

div� rotF gtt ,�A = −
∫
�

rotF gtt ,� · grad� A +
∑

� ∈E�

l��

∫
�

(rotF gtt ,� · n�� )A

= −
∫
�

gtt ,� : curl� grad� A +
∑

� ∈E�

l��

∫
�

(gtt ,� t� ) · grad� A

+
∫
�

(rotF gtt ,� · n�� ) A.

(2.18)

For all � ∈ E� , it holds:∫
�

(gtt ,� t� ) · grad� A =

∫
�

[
( t>�3t� ) mt� A + (n>��3t� ) mn��

A
]

=

∫
�

[
−
(
n>��3n�� + n>�3n�

)
mt� A + (n>��3t� ) mn��

A
]
,

(2.19)

where we have written grad� A = mt� A t� + mn��
A n�� in the first equality and used the fact that 3 is

traceless on the last line (so that, the trace being an invariant and ( t� , n�� , n� ) an orthonormal basis
of R3, t>

�
3t� + n>

��
3n�� + n>

�
3n� = 0). Moreover, we have
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∫
�

(rotF gtt ,� · n�� ) A =
∫
�

rotF(n>��gtt ,� ) A =
∫
�

[
mt� (n>��3n�� ) A − mn��

(n>��3t� ) A
]

= −
∫
�

(n>��3n�� ) mt� A + È(n>��3n�� ) AÉ� −
∫
�

[
n>�� grad(3t� )n��

]
A, (2.20)

where we have used an integration by parts on the first term to conclude. Plugging (2.19) and (2.20)
into (2.18) finally gives∫

�

div� rotF gtt ,�A = −
∫
�

gtt ,� : curl� grad� A +
∑

� ∈E�

l��

∫
�

(n>��3t� ) mn��
A

−
∑

� ∈E�

l��

∫
�

(
2n>��3n�� + n>�3n�

)
mt� A −

∑
� ∈E�

l��

∫
�

[
n>�� grad(3t� )n��

]
A

+
∑

� ∈E�

l��È(n>��3n�� ) AÉ� .

(2.21)

2.7.3 Integration by parts formulas for N(div div, ) ;S)
Let ) ∈ Tℎ, for all 4 : ) :→ S and E : ) → R smooth enough, it holds (cf. [16, Lemma 4.1])∫

)

div div 4 E =

∫
)

4 : hess E −
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��4n� ) E

−
∑
� ∈F)

l) �

∫
�

hnn,� mn�
E −

∑
� ∈F)

l) �

∫
�

[
2 div� (hnt ,� ) + mn�

hnn,�
]
E. (2.22)

3 Discrete divdiv complex
Throughout the rest of this work, we fix an integer : ≥ 0 corresponding to the polynomial degree of the
discrete complex. The focus of this section is on the construction of the local DDR complex mimicking
(1.1) on a mesh element ) ∈ Tℎ and the study of its algebraic properties. The analytical properties for
the divdiv operator are studied in Section 4 in the context of an application to a biharmonic problem.
An in-depth study of the analytical properties of the other spaces and operators is postponed to a future
work.

3.1 Local discrete spaces
The discrete counterparts of the spaces N1() ;R3), N(sym curl, ) ;T), and N(div div, ) ;S) are, re-
spectively, the spaces ^:

dev grad,) , ^
:
sym curl,) , and ^

:
div div,) defined as follows:

^:
dev grad,) ≔

{
v
)
=
(
v) , (En,� , vt ,� , �v,� )� ∈F) , (Et ,� , vn,� ,Mv,� )� ∈E)

, (v+ ,Mv,+ )+ ∈V)

)
:

v) ∈ P
:−1() ;R3),

En,� ∈ P: (�), vt ,� ∈ P
:−1(�;R2), and �v,� ∈ P:−1(�) for all � ∈ F) ,

Et ,� ∈ P:−1(�), vn,� ∈ P
: (� ;R2) and Mv,� ∈ P

: (� ;R2×2) for all � ∈ E) ,

v+ ∈ R3 and Mv,+ ∈ R3×3 for all + ∈ V)

}
,
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^:
sym curl,) ≔

{
3
)
=
(
3SR,) , (3R,� , 3CG,� )� ∈F) , (3� , gt ,� ,Iv,� )� ∈E)

, (3+ )+ ∈V)

)
:

3SR,) ∈ SR
−,: ()),

3R,� ∈ R
−,:+1(�) and 3CG,� ∈ CG

−,: (�) for all � ∈ F) ,
3� ∈ P

: (� ;R2×2), gt ,� ∈ P
:+1(� ;R2) and I3,� ∈ P

:+1(� ;R2×2) for all � ∈ E) ,

3+ ∈ T for all + ∈ V)

}
,

^:
div div,) ≔

{
4
)
=
(
4H,) , (h� , �4,� )� ∈F) , (4� )� ∈E)

)
:

4H,) ∈ H
−,: ()),

h� ∈ P:+1(�) and �4,� ∈ P:+1(�) for all � ∈ F) ,

and 4� ∈ P
:+1(� ; symR2×2) for all � ∈ E)

}
.

The meaning of the polynomial components in these spaces is provided by the interpolators O:dev grad,) :
I1() ;R3) → ^:

dev grad,) , O
:
sym curl,) : N3() ;T) → ^:

sym curl,) , and O
:
div div,) : N2() ;S) → ^:

div div,)
such that, for all (v, 3, 4) ∈ I1() ;R3) × N3() ;T) × N2() ;S),

O:dev grad,) v ≔

(
0:−1
P,)

v,
(
c:
P,� (v · n� ), 0:−1

P,�
(vt ,� ), c:−1

P,� (div v)
)
� ∈F) ,(

c:−1
P,� (v · t� ), 0

:
P,�

(vn,� ), 0:
P,�

(grad v)nn,�
)
� ∈E)

,(
v(x+ ), grad v(x+ )

)
+ ∈V)

)
,

(3.1)

O:sym curl,) 3 ≔

(
0−,:
SR,)

3,
(
0−,:+1
R,�

3nt ,� , 0
−,:
CG,�

3tt ,�
)
� ∈F) ,(

0:
P,�

3nn,� , 0
:+1
P,�

3nt ,� , 0
:+1
P,�

((grad(3t� ))nn,�
)
� ∈E)

,
(
3(x+ )

)
+ ∈V)

)
,

O:div div,) 4 ≔

(
0−,:
H,)

4,
(
c:+1
P,� (hnn,� ), c

:+1
P,� (2 div� (4 |� n� ) + mn�

hnn,� )
)
� ∈F) , (0

:+1
P,�

4)� ∈E)

)
.

(3.2)
In what follows, for • ∈ {dev grad, sym curl, div div} and any . ∈ F) ∪ E) , we denote by ^:

•,.
and O:•,. the restrictions of ^

:
•,) and O:•,) to . , obtained collecting the polynomial components on .

and its boundary.

3.2 Local operators
3.2.1 Discrete devgrad operator
Let � ∈ F) . The discrete counterpart of the normal-tangential component of the discrete devgrad
operator is obtained mimicking (2.14). Specifically, we let JM:

nt ,� : ^:
dev grad,� → R

−,:+1(�) be such
that, for all v

�
∈ ^:

dev grad,� and all w ∈ R
−,:+1(�),∫

�

JM:
nt ,� v� · w = −

∫
�

En,� div� w +
∑

� ∈E�

l��

∫
�

(vn,� · n� ) (w · n�� ). (3.3)

The discrete counterpart of the tangential-tangential component is, on the other hand, obtained
mimicking (2.15). Specifically, we let JM:

tt ,� : ^:
dev grad,� → CG

−,: (�) be such that, for all v
�

∈

8



^:
dev grad,� and all 2 ∈ CG

−,: (�),∫
�

JM:
tt ,� v� :2 = −

∫
�

vt ,� · div� 2 − 1
3

∫
�

�v,� tr2

+
∑

� ∈E�

l��

∫
�

Et ,� t>�2n�� +
∑

� ∈E�

l��

∫
�

(vn,� · n�� ) n>��2n�� .
(3.4)

Recalling (2.13), the element devgrad operator JM:
) : ^:

dev grad,) → SR
−,: ()) is defined such

that, for all v
)
∈ ^:

dev grad,) and all 2 ∈ SR
−,: ()),∫

)

JM:
) v) :2 = −

∫
)

v) · div2 +
∑
� ∈F)

l) �

∫
�

(
En,� n>�2n� + v̂>t ,�2n�

)
, (3.5)

where we remind the reader that v̂t ,� denotes the injection of vt ,� into R3.
The discrete devgrad operator JM:

)
: ^:

dev grad,) → ^:
sym curl,) acting between spaces of the

discrete complex is defined, for all v
)
∈ ^:

dev grad,) , by

JM:
)
v
)
≔

(
JM:

) v) ,
(
JM:

nt ,� v� , JM:
tt ,� v�

)
� ∈F)

,(
Mv,� − 1

3
(
trMv,� +G:

� (v+1 · t� , v+2 · t� , Et ,� )
)
O2,

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ),G

:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� )

)
� ∈E)

,(
devMv,+

)
+ ∈V)

)
.

(3.6)

In what follows, the restriction of JM:
)
to a face or edge . ∈ F) ∪ E) of ) , obtained collecting the

components on . and its boundary, will be denoted by JM:
.
.

Lemma 5 (Local commutation property). The following commutation property holds

JM:
)
(O:dev grad,) v) = O:sym curl,) (dev grad v) ∀v ∈ N3() ;R3). (3.7)

Proof. Let v ∈ N3() ;R3). Let us check the relation on the normal-normal component on edges. By
(2.9) with ℓ = : , we have G:

�
(v(x+1) · t� , v(x+2) · t� , c:−1

P,�
(v · t� )) = c:

P,�
(mt� v · t� ). Accounting

for the previous relation we have, for all 2 ∈ P
: (� ;R2×2),∫

�

[
�

��0:
P,�

(grad v)nn,� − 1
3

(
tr
�
��0:
P,�

(grad v)nn,� +
�
��c:
P,� (mt� v · t� )

)
O2

]
:2

=

∫
�

(dev grad v)nn,� :2, (3.8)

where the cancellation of the projectors is made possible by their definition. Using again (2.9), this time
with ℓ = : + 1, we infer that

G:+1
� (v(x+1)n,� , v(x+2)n,� , 0

:
P,�

(vn,� )) = 0:+1
P,�

(dev grad v)nt ,� , (3.9)

G:+1
� ((grad v(x+1))nn,� , (grad v(x+2))nn,� , 0

:
P,�

(grad v)nn,� ) = 0:+1
P,�

(grad((dev grad v) t� ))nn,� .
(3.10)

Combining (3.8), (3.9) and (3.10), we obtain JM:
�
(O:dev grad,�v) = O:sym curl,� (dev grad v). The com-

mutation for the components of JM:
)
on faces and on the element are proved in a similar fashion: first

by removing the projections in the definition (3.3) (respectively, (3.4) and (3.5)), and then concluding
with the integration by parts formula (2.14) (respectively, (2.15) and (2.13)). �
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3.2.2 Discrete symcurl operator

The discrete symmetric curl operator on edges YI:+1
� : ^:

sym curl,� → P
:+1(� ; symR2×2) is defined,

for all 3
�
∈ ^:

sym curl,� , by:

YI:+1
� 3

�
≔ C

(
I3,� −G:+1

� ((3+1)nn,� , (3+2)nn,� , 3� )
)
, (3.11)

where C is the fourth-order tensor such that

C

(
[11 [12
[21 [22

)
=

(
[12

−[11+[22
2−[11+[22

2 −[21

)
∀( ∈ R2×2. (3.12)

There are two components for the symmetric curl operator on faces. The first one, (�:+1
nn,� :

^:
sym curl,� → P:+1(�), is defined mimicking (2.17): For all 3

�
∈ ^:

sym curl,� and all A ∈ P:+1(�),∫
�

(�:+1
nn,�3� A =

∫
�

3R,� · curl� A −
∑

� ∈E�

l��

∫
�

(gt ,� · n� ) A, (3.13)

while the second one, (�:+1
�,� : ^:

sym curl,� → P:+1(�), is defined mimicking (2.21): For all 3
�

∈
^:

sym curl,� and all A ∈ P:+1(�),∫
�

(�:+1
�,�3� A = −

∫
�

3CG,� : curl� grad� A +
∑

� ∈E�

l��

∫
�

(3t ,� · n�� ) mn��
A

−
∑

� ∈E�

l��

∫
�

(
2n>��3�n�� + n>�3�n�

)
mt� A −

∑
� ∈E�

l��

∫
�

(n>��I3,� n�� ) A

+
∑

� ∈E�

l��È(n>�� 3+ n�� ) AÉ� .

(3.14)
Recalling (2.16), the discrete symmetric curl operator on an element ) ∈ Tℎ is defined such that, for

all 3
)
∈ ^:

sym curl,) and all 2 ∈ H
−,: ()),∫

)

YI:
) 3) :2 ≔

∫
)

3SR,) : curl 2 +
∑
� ∈F)

l) �

∫
�

3CG,� : (2 × n� )tt ,�

+
∑
� ∈F)

l) �

∫
�

3R,� · (2 × n� )nt ,� .
(3.15)

Finally, the discrete symmetric curl operator YI:
)

: ^:
sym curl,) → ^:

div div,) acting between discrete
spaces is defined, for all 3

)
∈ ^:

sym curl,) , as the vector collecting the components defined above:

YI:
)
3
)
≔

(
YI:

) 3) ,
(
(�:+1

nn,�3� , (�
:+1
�,�3�

)
� ∈F) ,

(
YI:+1

� 3
�

)
� ∈E)

)
. (3.16)

It can be checked that the following commutation property with the interpolators holds:

YI:
)
O:sym curl,) 3 = O:div div,) (sym curl 3) ∀3 ∈ N3() ;T). (3.17)
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3.2.3 Discrete divdiv operator

The discrete divdiv operator ��:
)

: ^:
div div,) → P: ()) is defined after (2.22): For all 4

)
∈ ^:

div div,)
and all E ∈ P: ()),∫

)

��:
) 4) E =

∫
)

4H,) : hess E −
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��4�n� ) E

−
∑
� ∈F)

l) �

∫
�

h� mn�
E −

∑
� ∈F)

l) �

∫
�

�4,� E.

(3.18)

By construction, it holds

��:
) O

:
div div,) 4 = c:

P,) (div div 4) ∀4 ∈ N2() ;S), (3.19)

as can be checked using (3.2) in (3.18) written for 4
)

= O:div div,) 4, cancelling the !2-orthogonal
projectors using their definitions, and concluding with (2.22).

3.3 Local DDR complex and main results
For a given mesh element ) ∈ Tℎ, the spaces and operators defined above can be arranged to form the
sequence

R
−,1()) ^:

dev grad,) ^:
sym curl,) ^:

div div,) P: ()) {0}.
O :dev grad,) JM:

)
YI:

)
��:

) 0

(3.20)

Theorem 6 (Local complex property and exactness). The sequence (3.20) forms a complex which is
exact if the topology of ) is trivial and if : ≥ 1.

Remark 7 (Role of the condition : ≥ 1). The condition : ≥ 1 is only required for the exactness of the
tail of the complex (see (3.25c) and Remark 16 below). The head of the complex is exact also for : = 0
(cf., in particular, (3.25a) and (3.25b) below).

Proof. The fact that the sequence (3.20) forms a complex is a consequence of the following relations:

O:dev grad,)R
−,1()) ⊂ Ker JM:

)
, (3.21)

Im JM:
)
⊂ Ker YI:

)
, (3.22)

Im YI:
)
⊂ Ker ��:

) , (3.23)

Im ��:
) = P: ()). (3.24)

The inclusion (3.21) is a straightforward consequence of the commutation property (3.7) along with
the fact that dev gradR

−,1()) = 0. The relation (3.24) classically follows from the surjectivity of
div div : N(div div, ) ;S) → !2()) along with (3.19) (a more detailed argument is provided in Lemma
13 below for its global counterpart). Finally, properties (3.22) and (3.23) are proved in Section 5.
The exactness of the complex when ) has a trivial topology translates into the following properties:

O:dev grad,)R
−,1()) = Ker JM:

)
(3.25a)

Im JM:
)
= Ker YI:

)
(3.25b)

Im YI:
)
= Ker ��:

) if : ≥ 1. (3.25c)

These properties are proved in Section 6. �
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4 A mixed method for biharmonic problems
In this section we consider the application of the spaces at the tail of the above complex to the
mixed discretization of the biharmonic problem (1.2). Throughout this section, : ≥ 0 is an integer
corresponding to the polynomial degree of the scheme.

4.1 Local component product

We furnish ^:
div div,) with the component inner product such that, for all (4) , 3) ) ∈ ^:

div div,) ×
^:

div div,) ,

[4
)
, 3

)
]div div,) ≔

∫
)

4H,) : 3H,) + ℎ)

∑
� ∈F)

∫
�

(
h� g� + ℎ2

) �4,� �3,�

)
+ ℎ2

)

∑
� ∈E)

∫
�

4� : 3� .

(4.1)
and we introduce the corresponding component norm such that

|||3
)
|||div div,) ≔ [3

)
, 3

)
] 1

2 ∀3
)
∈ ^:

div div,) . (4.2)

Using the boundedness of !2-orthogonal projectors along with continuous trace inequalities on the
faces and edges of ) , it can be proved, similarly to [21, Lemma 6], that

|||O:div div,) 3 |||div div,) . ‖3‖R2 () ;R3×3) + ℎ) |3 |N1 () ;R3×3) + ℎ2
) |3 |N2 () ;R3×3) ∀3 ∈ N2() ;S). (4.3)

Moreover, for all 3
)

∈ ^:
div div,) , taking E = ��:

)
3
)
in (3.18) and using Cauchy–Schwarz, discrete

inverse and trace inequalities along with the definition (4.2) of |||·|||div div,) , we get the following
boundedness property:

‖��:
) 3) ‖!2 () ) . ℎ−2

) |||3
)
|||div div,) ∀3

)
∈ ^:

div div,) . (4.4)

4.2 Discrete symmetric matrix potential
In order to reconstruct a symmetric matrix potential, we first need to reconstruct face traces of degree
: . To this purpose, for each � ∈ F) , we can apply the principles of the HHO potential reconstruction
(see, e.g., [23, Section 5.1.3]) to devise, from the vector of polynomials (h� , (n>�4�n� )� ∈E)

) ∈
P:−1(�) ×

(>
� ∈E�

P: (�)
)
, a function in P: (�) that can be interpreted as the normal-normal trace

of a symmetric matrix-valued field on ) (in passing, with these values one could actually compute
a normal-normal trace in P:+1(�), but this will not be needed in what follows). The corresponding
reconstruction operator W:

nn,� : ^:
div div,� → P: (�) is, by construction, polynomially consistent: For

all 4 ∈ P
: () ;S), W:

nn,� O
:
div div,�4 |� = n>

�
4 |� n� . Moreover, the following boundedness property

holds:
‖W:

nn,�4�
‖!2 (� ) . ℎ

− 1
2

�
|||4

)
|||div div,) ∀4

)
∈ ^:

div div,) . (4.5)

The symmetric matrix potential V:
)

: ^:
div div,) → P

: () ;S) is then defined, mimicking (2.22),
such that, for all 4

)
∈ ^:

div div,) : For all (E, 3) ∈ P:+2()) ×H
c,: ()),∫

)

V:
) 4) : (hess E + 3) =

∫
)

��:
) 4) E +

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��4�n� ) E

+
∑
� ∈F)

l) �

∫
�

W:
nn,�4�

mn�
E −

∑
� ∈F)

l) �

∫
�

�4,� E +
∫
)

4H,) : 3. (4.6)

By construction, the following polynomial consistency property holds:

V:
) O

:
div div,) 4 = 4 ∀4 ∈ P

: () ;S). (4.7)
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Additionally, taking in (4.6) (E, 3) such that hess E + 3 = V:
)
4
)
(this is possible by virtue of the direct

decomposition (2.3)), using Cauchy–Schwarz, discrete trace, and inverse inequalities, and invoking the
boundedness (4.4) of ��:

)
and (4.5) of W:

nn,� , it is inferred:

‖V:
) 4) ‖R2 () ;R3×3) . |||4

)
|||div div,) ∀4

)
∈ ^:

div div,) . (4.8)

Remark 8 (Polynomially consistent symmetric curl). For all 3 ∈ P
:+1() ;T), noticing that sym curl 3 ∈

P
: () ;S), it holds

V:
) (YI:

)
O:sym curl,) 3)

(3.17)
= V:

) O
:
div div,) (sym curl 3) (4.7)= sym curl 3,

showing that V:
)
◦ YI:

)
provides a polynomially consistent approximation of the symmetric curl inside

) . A similar construction can be repeated to obtain a consistent approximation of dev grad. Since this
construction is not needed in the present discussion, we leave the details for a future work.

4.3 Global Hessian space, reconstructions, and discrete !2-product

A global space ^:
div div,ℎ on the meshMℎ is obtained patching together the local spaces by enforcing the

single-valuedness of the unknowns attached to edges and faces shared by multiple elements. The global
divdiv operator ��:

ℎ
: ^:

div div,ℎ → P: (Tℎ) and symmetric matrix potential operator V:
ℎ

: ^:
div div,ℎ →

P
: (Tℎ;S) (with P: (Tℎ;S) symmetric matrix-valued version of the broken polynomial space (2.1)) are
such that, for all 4

ℎ
∈ ^:

div div,ℎ,

(��:
ℎ4ℎ

) |) ≔ ��:
) 4) and (V:

ℎ4ℎ
) |) ≔ V:

) 4) for all ) ∈ Tℎ.

We define the following !2-like product: For all (4
ℎ
, 3

ℎ
) ∈ ^:

div div,ℎ,

(4
ℎ
, 3

ℎ
)div div,ℎ ≔

∑
) ∈Tℎ

(4
)
, 3

)
)div div,) ,

where
(4

)
, 3

)
)div div,) ≔

∫
)

V:
) 4) : V:

) 3) + B) (4) , 3) ). (4.9)

Above, B) is a symmetric positive semi-definite stabilisation bilinear form that ensures the positivity of
(·, ·)div div,) while preserving polynomial consistency. A possible expression for B) is the following:

B) (4) , 3) ) = [O:div div,) V
:
) 4) − 4

)
, O:div div,) V

:
) 3) − 3

)
]div div,) . (4.10)

The following polynomial consistency property easily follows from (4.7) and (4.10):

B) (O:div div,) 4, 3) ) = 0 ∀(4, 3
)
) ∈ P

: () ;S) × ^:
div div,) . (4.11)

Remark 9 (Difference between the component and discrete !2-products). The main difference between
the local component !2-product defined by (4.1) and the local discrete !2-product defined by (4.9) is
that the latter is consistent whenever its arguments are interpolate of polynomial functions, i.e.,

(O:div div,) 4, O
:
div div,) 3)div div,) =

∫
)

4 : 3 ∀(4, 3) ∈ P
: () ;S).

We close this section defining the norm induced by the !2-product: For • ∈ Tℎ ∪ {ℎ},

‖3•‖div div,• ≔ (3•, 3•)
1/2
div div,• ∀3• ∈ ^:

div div,•. (4.12)

The norm dual to ‖·‖div div,ℎ is denoted by ‖·‖div div,ℎ,∗.
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4.4 Discrete problem and main results

Set, for the sake of brevity,Z:
ℎ
≔ ^:

div div,ℎ×P: (Tℎ). The discrete problem reads: Find (2ℎ
, Dℎ) ∈ Z:

ℎ

such that
(2

ℎ
, 3

ℎ
)div div,ℎ +

∫
Ω

��:
ℎ3ℎ Dℎ = 0 ∀3

ℎ
∈ ^:

div div,ℎ,

−
∫
Ω

��:
ℎ2ℎ

Eℎ =

∫
Ω

5 Eℎ ∀Eℎ ∈ P: (Tℎ),
(4.13)

or, equivalently: Find (2
ℎ
, Dℎ) ∈ Z:

ℎ
such that

Aℎ ((2ℎ
, Dℎ), (3ℎ, Eℎ)) =

∫
Ω

5 Eℎ ∀(3
ℎ
, Eℎ) ∈ Z:

ℎ , (4.14)

with bilinear form Aℎ : Z:
ℎ
×Z:

ℎ
→ R such that

Aℎ ((4ℎ
, Fℎ), (3ℎ, Eℎ)) ≔ (4

ℎ
, 3

ℎ
)div div,ℎ +

∫
Ω

��:
ℎ3ℎ Fℎ −

∫
Ω

��:
ℎ4ℎ

Eℎ .

We state hereafter the main analysis results for the numerical scheme defined above. To this purpose,
we equipZ:

ℎ
with the following norm:

‖(3
ℎ
, Eℎ)‖Z,ℎ ≔ ‖3

ℎ
‖div div,ℎ + ‖Eℎ ‖!2 (Ω) ∀(3

ℎ
, Eℎ) ∈ Z:

ℎ . (4.15)

Theorem 10 (Well-posedness). It holds

1 . inf
(4ℎ ,Fℎ) ∈Z:

ℎ
\{0}

sup
(3

ℎ
,Eℎ) ∈Z:

ℎ
\{0}

Aℎ ((4ℎ
, Fℎ), (3ℎ, Eℎ))

‖(4
ℎ
, Fℎ)‖Z,ℎ ‖(3ℎ, Eℎ)‖Z,ℎ

. (4.16)

Moreover, problem (4.13) (or, equivalently, (4.14)) admits a unique solution which satisfies

‖(2
ℎ
, Dℎ)‖Z,ℎ . ‖ 5 ‖!2 (Ω) .

Proof. See Section 4.6. �

Theorem 11 (Error estimate). Let (2, D) ∈ N(div div,Ω;S) × !2(Ω) denote the unique solution to
the continuous problem (1.2), and assume the additional regularity 2 ∈ N2(Ω;S) ∩ N:+1(Tℎ;S) and
D ∈ �:+3(Tℎ). Then, denoting by (2

ℎ
, Dℎ) ∈ ^:

div div,ℎ × P: (Tℎ) the unique solution to the discrete
problem (4.13) (or, equivalently, (4.14)), it holds

‖(2
ℎ
− O:div div,ℎ2, Dℎ − c:

P,ℎD)‖Z,ℎ . ℎ:+1
(
|2 |N :+1 (Tℎ ;R3×3) + |D |� :+3 (Tℎ)

)
. (4.17)

Proof. See Section 4.7. �

4.5 Numerical examples
The numerical scheme (4.13) was implemented using the HArDCore library (see https://github.
com/jdroniou/HArDCore). In order to validate the error estimate of Theorem 11, we consider the
following manufactured solution

D = G2(1 − G)2H2(1 − H)2I2(1 − I)2, 2 = −hess D

on the domain Ω = [0, 1]3. The method supports arbitrary polyhedral meshes, so we have considered
three mesh sequences: cubic, tetrahedral (generated using Tetgen), and Voronoi. In Figure 1 we depict,
for each mesh sequence, the error measure in the left-hand side of (4.17) as a function of the mesh
size for polynomial degrees : between 0 and 3. The convergence plots show good agreement between
the observed and predicted convergence rates. For the Tetgen mesh family, a saturation of the error is
observed for : = 0. A slight reduction of the convergence rate is also observed for the finest meshes
of the Tetgen mesh family with : = 1 and of the Voronoi mesh family for : ∈ {0, 1}. In both cases,
however, the slope is still close to the theoretical one.
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4.6 Well-posedness
This section contains the proof Theorem 10 preceeded by two preliminary results: a uniform equivalence
of discrete !2-norms and an inf-sup condition on the discrete divdiv operator.

Lemma 12 (Uniform norm equivalence). Recalling the definitions (4.12) and (4.2) of the discrete !2-
and component norms, it holds

‖3•‖div div,• . |||3• |||div div,• . ‖3•‖div div,• ∀3• ∈ ^:
div div,•. (4.18)

Proof. It suffices to prove (4.18) for • = ) ∈ Tℎ, as the result for • = ℎ follows squaring, summing over
) ∈ Tℎ, and passing to square roots. We start by proving that

‖3
)
‖div div,) . |||3

)
|||div div,) ∀3

)
∈ ^:

div div,) . (4.19)

To this end, we take a generic 3
)
∈ ^:

div div,) and use (4.10) to write

B) (3) , 3) )
1
2 = |||O:div div,) V

:
) 3) − 3

)
|||div div,) ≤ |||O:div div,) V

:
) 3) |||div div,) + |||3

)
|||div div,) , (4.20)

where the conclusion follows from a triangle inequality. We then use the boundedness (4.3) of the
interpolator, discrete inverse inequalities, and the boundedness (4.8) of V:

)
to write

|||O:div div,) V
:
) 3) |||div div,) . ‖V:

) 3) ‖R2 () ;R3×3) + ℎ) |V:
) 3) |N1 () ;R3×3) + ℎ2

) |V:
) 3) |N2 () ;R3×3)

. ‖V:
) 3) ‖R2 () ;R3×3) . |||3

)
|||div div,) .

(4.21)

Plugging the above estimate into (4.20), we get B) (3) , 3) )
1
2 . |||3

)
|||div div,) which, combined with

the boundedness (4.8) of V:
)
, yields (4.19).

Let us now prove the converse inequality

|||3
)
|||div div,) . ‖3

)
‖div div,) ∀3

)
∈ ^:

div div,) . (4.22)

To this purpose, we start using a triangle inequality to write

|||3
)
|||div div,) ≤ |||O:div div,) V

:
) 3) − 3

)
|||div div,) + |||O:div div,) V

:
) 3) |||div div,) ≕ T1 + T2. (4.23)

For the first term, we recall (4.10) to write T1 = B) (3) , 3) )
1
2 ≤ ‖3

)
‖div div,) , where the conclusion

follows from the definitions (4.12) of ‖·‖div div,) and (4.9) of the local discrete !2-product. For
the second term, we use the second line of (4.21) and again the definitions recalled above to write
T2 ≤ ‖3

)
‖div div,) . Plugging the above estimates into (4.23) concludes the proof of (4.22). �

Lemma 13 (Inf-sup condition on ��:
ℎ
). The following inf-sup condition holds uniformly in ℎ:

1 . inf
Eℎ ∈P: (Tℎ)\{0}

sup
3
ℎ
∈^ :

div div,ℎ\{0}

∫
Ω
��:

ℎ
3
ℎ
Eℎ

‖3
ℎ
‖div div,ℎ ‖Eℎ ‖!2 (Ω)

. (4.24)

Proof. From the boundedness property (4.3) of the interpolator alongwith the uniform norm equivalence
(4.18) and ℎ) ≤ ℎ . 1 for all ) ∈ Tℎ, and (3.19), it can be inferred that

‖O:div div,ℎ3‖div div,ℎ . ‖3‖N2 (Ω;R3×3) and ��:
ℎ O

:
div div,ℎ3 = c:

P,ℎ (div div 3) for all 3 ∈ N2(Ω;S),
(4.25)

where c:
P,ℎ
denotes the !2-orthogonal projector on P: (Tℎ). Since div div : N2(Ω;S) → !2(Ω) is

surjective (see [27, Point (iv) in Theorem 3.25]), this shows that ��:
ℎ
is a �-compatible operator in the

sense of [11, Section 8.4.1]. From the abstract theory therein, it can be inferred that (4.24) holds. �
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We are now ready to prove the well-posedness of the discrete problem.

Proof of Theorem 10. By (4.15), (·, ·)div div,ℎ is coercive with respect to the norm ‖·‖div div,ℎ with
coercivity constant equal to 1. In conjunction with the inf-sup condition (4.24) on ��:

ℎ
, this classicaly

yields (4.16). The well-posedness of problem (4.13) (or, equivalently, (4.14)) then follows from classical
arguments (see, e.g., [20, Proposition 7]). �

4.7 Error estimate
The goal of this section is to prove Theorem 11. To this purpose, we preliminarily need estimates of the
discrete !2-product and adjoint divdiv consistency errors.

Lemma 14 (Estimate of the consistency error for the discrete !2-product). Let 4 ∈ N2(Ω;S) and define
the discrete !2-product consistency error

Eprod,ℎ (4; 3
ℎ
) ≔

∫
Ω

4 : V:
ℎ3ℎ − (O:div div,ℎ4, 3ℎ)div div,ℎ . (4.26)

Then, additionally assuming 4 ∈ N:+1(Tℎ;S), it holds

‖Eprod,ℎ (4; ·)‖div div,ℎ,∗ . ℎ:+1 |4 |N :+1 (Tℎ ;R3×3) . (4.27)

Proof. We start by decomposing (4.26) as follows:

Eprod,ℎ (4; 3
ℎ
) =

∑
) ∈Tℎ

[T1()) + T2()) + T3())]

where, recalling that V:
)
O:div div,) (0

:
P,)

4) = 0:
P,)

4 by (4.7),

T1()) ≔
∫
)

(4 − 0:
P,)

4) : V:
) 3) , T2()) ≔

∫
)

V:
) O

:
div div,) (0

:
P,)

4 − 4) : V:
) 3) ,

T3()) ≔ −B) (O:div div,) 4, 3) ).

We next proceed to estimate these terms one by one.
The first term is readily treated using a Cauchy–Schwarz inequality along with the approximation

properties of the !2-orthogonal projector (see [18, Lemma 3.1] and [23, Theorem 1.45]) for the first
factor and the definitions (4.12) of ‖·‖div div,) and (4.9) of the local discrete !2-product for the second:

|T1()) | . ‖4 − 0:
P,)

4‖R2 () ;R3×3) ‖V:
) 3) ‖R2 () ;R3×3) . ℎ:+1 |4 |N :+1 () ;R3×3) ‖3) ‖div div,) .

For the second term, we preliminarily notice that

‖V:
) O

:
div div,) (0

:
P,)

4 − 4)‖R2 () ;R3×3)
(4.8)
. |||O:div div,) (0

:
P,)

4 − 4) |||div div,) . ℎ:+1 |4 |N :+1 () ;R3×3) ,
(4.28)

where the conclusion follows combining the boundedness (4.3) of O:div div,) written for 3 = 4 − 0:
P,)

4

with the approximation properties of the !2-orthogonal projector and ℎ) ≤ ℎ for all ) ∈ Tℎ. We can
then use a Cauchy–Schwarz inequality along with (4.12) and (4.9) as for T1()) to write

|T2()) | . ‖V:
) O

:
div div,) (4−0:

P,)
4)‖R2 () ;R3×3) ‖V:

) 3) ‖R2 () ;R3×3) . ℎ:+1 |4 |N :+1 () ;R3×3) ‖3) ‖div div,) .

For the third term, recalling the polynomial consistency (4.11) of the stabilization bilinear form, we
can write, for all 3

)
∈ ^:

div div,) ,

|T3()) | = |B) (O:div div,) (4 − 0:
P,)

4), 3
)
) |

≤ ‖O:div div,) (4 − 0:
P,)

4)‖div div,) ‖3) ‖div div,)
(4.18)
. |||O:div div,) (4 − 0:

P,)
4) |||div div,) ‖3) ‖div div,)

(4.28)
. ℎ:+1 |4 |N :+1 () ;R3×3) ‖3) ‖div div,) . �
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Lemma 15 (Estimate of the adjoint consistency error for the divdiv operator). Let E ∈ �2(Ω) be such
that E = mnE = 0 on mΩ and define the divdiv adjoint consistency error linear form Êdiv div,ℎ (E; ·) :
^:

div div,ℎ → R such that, for all 3
ℎ
∈ ^:

div div,ℎ,

Êdiv div,ℎ (E; 3
ℎ
) ≔

∫
Ω

hess E : V:
ℎ3ℎ −

∫
Ω

E ��:
ℎ3ℎ . (4.29)

Then, additionally assuming E ∈ �:+3(Tℎ), it holds,

‖Êdiv div,ℎ (E; ·)‖div div,ℎ,∗ . ℎ:+1 |E |� :+3 (Tℎ) . (4.30)

Proof. Let, for all ) ∈ Tℎ, E) ≔ c:+2
P,)

E. Combining (4.6) for (3, E) = (0, E) ) with the definition (4.29)
of the adjoint consistency error, we get, for any 3

ℎ
∈ ^:

div div,ℎ, such that ‖3ℎ ‖div div,ℎ = 1,

Êdiv div,ℎ (E; 3
ℎ
) =

∑
) ∈Tℎ

∫
)

(E) − E) ��:
) 3) +

∑
) ∈Tℎ

∫
)

hess(E − E) ) : V:
) 3)

+
∑
) ∈Tℎ

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��3�n� ) (E) − E)

+
∑
) ∈Tℎ

∑
� ∈F)

l) �

∫
�

[
W:
nn,�3� mn�

(E) − E) + �3,� (E) − E)
]
,

where the insertion of the face or edge traces of E and of mnE into the boundary terms is justified by their
single-valuedness along with the assumed boundary conditions. Using Cauchy–Schwarz inequalities
along with the approximation properties of E) , the definition (4.2) of |||·|||div div,) , and the boundedness
(4.4) of ��:

)
, (4.8) of V:

)
, and (4.5) of W:

nn,� , we infer���Êdiv div,ℎ (E; 3
ℎ
)
��� . ℎ:+1 |E |� :+3 (Tℎ) |||3ℎ |||div div,ℎ

(4.18)
. ℎ:+1 |E |� :+3 (Tℎ) . �

Proof of Theorem 11. Accounting for the inf-sup condition (4.16), by [20, Theorem 10], it holds

‖(2
ℎ
− O:div div,ℎ2, D − c:

P,ℎD)‖Z,ℎ . ‖Eℎ (2, D; ·)‖Z,ℎ,∗, (4.31)

where ‖·‖Z,ℎ,∗ denotes the norm dual to ‖·‖Z,ℎ and the consistency error linear form Eℎ (2, D; ·) :
Z:

ℎ
→ R is such that

Eℎ (2, D; 3
ℎ
, Eℎ) ≔

∫
Ω

5 Eℎ − Aℎ ((O:div div,ℎ2, c
:
P,ℎD), (3ℎ, Eℎ))

= Eprod,ℎ (2; 3
ℎ
) +

(((((((((((((((((∫
Ω

(div div2 − ��:
ℎ O

:
div div,)2) Eℎ + Êdiv div,ℎ (D; 3

ℎ
),

where, to pass to the second line, we have used the fact that 5 = − div div2 almost everywhere in Ω,
added the term

∫
Ω
(2 + hess D) : V:

ℎ
3
ℎ
= 0, and used the definitions (4.26) and (4.29) of the !2-product

and adjoint divdiv consistency errors, while the cancellation follows from (4.25). To prove (4.17) it
suffices to use (4.27) and (4.30) to estimate the terms in the right-hand side of the above expression and
plugging the resulting bound into (4.31) after observing that ‖3

ℎ
‖div div,ℎ ≤ ‖(3

ℎ
, Eℎ)‖Z,ℎ by definition

of this latter norm. �

5 Local complex property
We collect in this section the proofs of the complex properties (3.22) and (3.23).
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5.1 Proof of (3.22)

Let v
)
∈ ^:

dev grad,) . We need to prove that the edge, face, and element components of YI
:
)
JM:

)
v
)

(obtained plugging (3.6) into (3.16)) vanish.

5.1.1 Edge components
Given � ∈ E) , and letting, for the sake of brevity, Γt ,� ≔ G:

�
(v+1 · t� , v+2 · t� , Et ,� ), we have that

YI:+1
� JM:

�
v
�
= C

[
G:+1

�

(
(Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,�

)
−G:+1

�

(
(devMv,+1)nn,� , (devMv,+2)nn,� ,Mv,� − 1

3
(
trMv,� + Γt ,�

)
O2

) ]
≕ C [T1 − T2] .

Since G:+1
�
acts component-wise and the off-diagonal entries of its arguments in T1 and T2 coincide,

the off-diagonal entries of these terms coincide as well, showing that there exists _ ∈ P:+1(�) such that
T1 − T2 = _O2. Hence,

YI:+1
� JM:

�
v
�
= C(_O2) = 0,

where the conclusion follows from the definition (3.12) of C.

5.1.2 Face components

Let now � ∈ F) . For all A ∈ P:+1(�), using the definition (3.13) of (�:+1
nn,� with 3� = JM:

�
v
�
,

invoking the definition (3.3) of JM:
nt ,� with test function w = curl� A ∈ R

: (�) ⊂ R
−,:+1(�) (cf.

(2.4)), and noticing that curl� A · n�� = −mt� A on every edge � ∈ E� , we have∫
�

(�:+1
nn,�JM:

�
v
�
A =

∫
�

JM:
nt ,� v� · curl� A −

∑
� ∈E�

l��

∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · n� A

(3.3)
= −

∫
�

En,�((((((div� curl� A −
∑

� ∈E�

l��

∫
�

(vn,� · n� ) mt� A

−
∑

� ∈E�

l��

∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · n� A

(2.8)
= −

∑
� ∈E�

l��È(v+ · n� )AÉ� = 0,

where we have concluded observing that, for any family (i+ )+ ∈V�
∈ RV� ,∑

� ∈E�

l��Èi+ É� = 0 (5.1)

Writing the definition (3.14) of (�:+1
�,� for 3� = JM:

�
v
�
, we get, for all A ∈ P:+1(�),

T ≔

∫
�

(�:+1
�,�JM:

�
v
�
A

= −
∫
�

JM:
tt ,� v� : curl� grad� A +

∑
� ∈E�

l��

∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · n�� mn��

A

−
∑

� ∈E�

l��

∫
�

(2n>��Mv,�n�� + n>�Mv,�n� ) mt� A
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+
∑

� ∈E�

l��

∫
�������������:1

2n>
��

O2n�� + n>
�
O2n�

3
[
trMv,� +G:

� (v+1 · t� , v+2 · t� , Et ,� )
]
mt� A

−
∑

� ∈E�

l��

∫
�

n>��G
:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� )n�� A

+
∑

� ∈E�

l��È(n>�� devMv,+ n�� ) AÉ� ,

where we have used the fact that both n�� and n� have unit Euclidian norm for the fourth term.
We next expand, in the above expression, JM:

tt ,� v� according to (3.4) with 2 = curl� grad� A ∈
CG

:−1(�) ⊂ CG
−,: (�) to go on writing

T =

∫
�

vt ,� ·(((((((((
div� curl� grad� A + 1

3
�������������∫
�

�v,� tr(curl� grad� A)

+
∑

� ∈E�

l��

∫
�

Et ,� m2
t� A +

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) mt� mn��
A

+
∑

� ∈E�

l��

∫
�

(
−A2n>��Mv,�n�� −XXXXXXn>�Mv,�n� +XXXXtrMv,�

)
mt� A

+
∑

� ∈E�

l��

∫
�

G:
� (v+1 · t� , v+2 · t� , Et ,� ) mt� A

+
∑

� ∈E�

l��

∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · n�� mn��

A

−
∑

� ∈E�

l��

∫
�

n>��G
:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� )n�� A

+
∑

� ∈E�

l��È(n>��Mv,+ n�� ) AÉ� − 1
3
((((((((((((((((∑
� ∈E�

l��ÈA trMv,+ n>��n��É� ,

wherewehave useddiv� curl� = 0 in the first cancellation, the fact that tr(curl� grad� ) = rotF grad� =

0 to cancel the second term, noticed that, for all � ∈ E� , t>� (curl� grad� A)n�� = −m2
t�
A and

n>
��

(curl� grad� A)n�� = −mt� mn��
A in the third and fourth terms, and observed that, for all � ∈ E� ,

n>
��

Mv,�n�� + n>
�
Mv,�n� = trMv,� since (n�� , n� ) is an orthonormal basis in the fifth term. The

cancellation of the last term follows noticing that n>
��

n�� = 1 and invoking (5.1).
Using the definition (2.8) of G•

�
on the terms where this operator appears, we then get

T =
∑

� ∈E�

l��

∫
�

Et ,� m2
t� A +

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) mt� mn��
A

−
∑

� ∈E�

l��

∫
�

(n>��Mv,�n�� ) mt� A

−
∑

� ∈E�

l��

∫
�

Et ,� m2
t� A +

∑
� ∈E�

l��È(v+ · t� ) mt� AÉ�

−
∑

� ∈E�

l��

∫
�

(vn,� · n�� ) mt� mn��
A +

∑
� ∈E�

l��È(v+ · n�� ) mn��
AÉ�

+
∑

� ∈E�

l��

∫
�

(n>��Mv,�n�� ) mt� A =
∑

� ∈E�

l��È(v+ )t ,� · grad� AÉ�
(5.1)
= 0,
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where the penultimate equality follows simplifying the terms involving integrals over � and gathering
together the edge jump terms after observing that (v+ ·n�� ) mn��

A + (v+ · t� ) mt� A = (v+ )t ,� ·grad� A .

5.1.3 Element component

To conclude the proof of (3.22), we it remains to show that the element component of YI:
)
JM:

)
v
)

vanishes. Writing the definition (3.15) of YI:
) for 3) = JM:

)
v
)
, we get, for all 2 ∈ H

−,: ()),

T ≔

∫
)

YI:
) JM:

)
v
)

:2 =

∫
)

JM:
) v) : curl 2 +

∑
� ∈F)

l) �

∫
�

JM:
tt ,� v� : (2 × n� )tt ,�

+
∑
� ∈F)

l) �

∫
�

JM:
nt ,� v� · (2 × n� )nt ,� .

Next, we expand JM:
) v) according to (3.5) (which is possible since curl 2 ∈ SR

:−1()) ⊂ SR
−,: ()),

cf. (2.6)), JM:
tt ,� v� according to (3.4) (after noticing that, by (2.12), (2 × n� )tt ,� ∈ CG

−,: (�)), and
JM:

nt ,� v� according to (3.3) (possible since (2 × n� )nt ,� ∈ P
: (�;R2) ⊂ R

−,:+1(�)). This gives

T = −
∫
)

v) ·(((((div curl 2 +
∑
� ∈F)

l) �

∫
�

(
En,� n

>
� curl 2n� + v̂>t ,� curl 2n�

)
−

∑
� ∈F)

l) �

∫
�

vt ,� · div� (2 × n� )tt ,� − 1
3

∑
� ∈F)

l) �

∫
�

�v,�((((((((O2 : (2 × n� )tt ,�

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) n>�� (2 × n� )tt ,� n��

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

Et ,� t>� (2 × n� )tt ,� n��

−
∑
� ∈F)

l) �

∫
�

En,� div� (2 × n� )nt ,�

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n� ) ((2 × n� )nt ,� · n�� ),

where we have cancelled the first term using the identity div curl 2 = 0 and the sixth term using the
fact that 2 is symmetric, hence (2 × n� )tt ,� is traceless. Noticing that, by (2.10), v̂

>
t ,� curl 2n� =

vt ,� · (curl 2)tn,� , and rearranging the terms, we can go on writing

T =
∑
� ∈F)

l) �

∫
�

En,�
((((((((((((((((([
n>� curl 2n� − div� (2 × n� )nt ,�

]
+

∑
� ∈F)

l) �

∫
�

vt ,� ·
hhhhhhhhhhhhhhhhh

[
(curl 2)tn,� − div� (2 × n� )tt ,�

]
+

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) n>�� (2 × n� )tt ,� n��

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

Et ,� t>� (2 × n� )tt ,� n��

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n� ) ((2 × n� )nt ,� · n�� ),
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where the first two terms cancel thanks to the identities n>
�

curl 2n� = div� (2 × n� )nt ,� and
(curl 2)tn,� = div� (2 × n� )tt ,� , respectively. Gathering together the terms involving integrals
over edges, and using (2.10) with uw = vn,� and w = {n�� , n� }, we then have

T =
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

[
v̂>n,� (2 × n� )n�� + Et ,� t>� (2 × n� )n��

]
=

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(v̂n,� + Et ,� t� )>2(n� × n�� )

= −
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(v̂n,� + Et ,� t� )>2t� = 0,

where we have used the vector triple product formula to pass to the second line and the fact that
( t� , n�� , n� ) forms a right-handed system (i.e., n� × n�� = −t� ) to pass to the third line. Finally, the
conclusion follows observing that, for any family of functions (q� )� ∈E)

such that q� ∈ !2(�) for all
� ∈ E) , ∑

� ∈F)

l) �

∑
� ∈E�

l��

∫
�

q� = 0. (5.2)

This completes the proof of (3.22)

5.2 Proof of (3.23)

Let 3
)
∈ ^:

sym curl,) . We need to show that ��:
)
YI:

)
3
)
= 0. Using the definition (3.18) of ��:

)
with

4
)
= YI:

)
3
)
, we have, for all E ∈ P: ()),

T ≔

∫
)

��:
) YI

:
)
3
)
E =

∫
)

YI:
) 3) : hess E −

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��YI
:+1
� 3

�
n� ) E

−
∑
� ∈F)

l) �

∫
�

(�:+1
nn,�3� mn�

E −
∑
� ∈F)

l) �

∫
�

(�:+1
�,�3� E ≕ A +B + ℭ +D.

Next, we expand YI:
) according to (3.15) with 2 = hess E ∈ H

:−2()) ⊂ H
−,: ()) (cf. (2.7)), and

YI:+1
� , (�:+1

nn,� , and (�
:+1
�,� according to (3.11), (3.13), and (3.14), respectively, to write

T =

∫
)

3SR,) :(((((curl hess E

+
∑
� ∈F)

l) �

∫
�

3CG,� : (hess E × n� )tt ,� +
∑
� ∈F)

l) �

∫
�

3R,� · (hess E × n� )nt ,�


A

−
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(n>��CI3,�n� ) E

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(
n>��CG

:+1
� ((3+1)nn,� , (3+2)nn,� , 3� )n�

)
E


B

−
∑
� ∈F)

l) �

∫
�

3R,� · curl� mn�
E +

∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(gt ,� · n� ) mn�
E

}
ℭ
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−
∑
� ∈F)

l) �

∫
�

3CG,� : curl� grad� E +
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(gt ,� · n�� ) mn��
E

−
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(
2n>��3�n�� + n>�3�n�

)
mt� E

−
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

n>��I3,� n�� E +
∑
� ∈F)

l) �

∑
� ∈E�

l��ÈE n>�� 3+ n��É�


D

≕ 0 + T1 + · · · + T11.

We infer T1 = −T7 and T2 = −T5 from the identities (hess E × n� )tt ,� = curl� grad� E and
n>
�
(hess E × n� ) = curl� mn�

E. It remains to shows that the edge terms cancel. From the defini-
tion (3.12) of C, we get , for any ( ∈ R2×2, n>

��
C(n� = −1

2n
>
��

(n�� + 1
2n

>
�
(n� , hence

n>��C(n� + n>��(n�� =
1
2 tr (. (5.3)

Applying the above equation to ( = I3,� and using (5.2) with q� = 1
2 trI3,� , we infer T3 + T10 = 0.

We can then merge some derivatives on edges. Since (gt ,� · n� ) mn�
E + (gt ,� · n�� ) mn��

E = gt ,� ·
(grad E)n,� ,wealso haveT6+T8 = 0 from (5.2). LettingT9(�) ≔

∫
�

(
2n>

��
3�n�� + n>

�
3�n�

)
mt� E

and observing that the quantity in parenthesis is equal to tr 3� O2 + n>
��

3�n�� since (n� , n�� ) form
an orthonormal basis and the trace is an invariant, we get

T9(�) =
∫
�

tr 3� mt� E +
∫
�

n>��3�n�� mt� E

(2.8)
=

∫
�

tr 3� mt� E −
∫
�

n>��G
:+1
� ((3+1)nn,� , (3+2)nn,� , 3� )n�� E + Èn>�� 3+ n�� EÉ�

(5.3)
=

∫
�

tr 3� mt� E −
∫
�

1
2 trG:+1

� ((3+1)nn,� , (3+2)nn,� , 3� ) E

+
∫
�

n>��CG
:+1
� ((3+1)nn,� , (3+2)nn,� , 3� )n�� E + Èn>�� 3+ n�� EÉ� .

Therefore,

T9 + T4 + T11 =
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(
1
2 trG:+1

� ((3+1)nn,� , (3+2)nn,� , 3� ) E − tr 3� mt� E

)
.

Using (5.2) with q� equal to the integrand in the above expression readily yields T4 + T9 + T11 = 0,
thus showing that T = 0 and therefore concluding the proof.
6 Local exactness
This section contains the proof of the relations (3.25), yielding the exactness of the local complex (3.20).

6.1 Proof of (3.25a)
Having already proved (3.21), we only need to show that

Ker JM:
)
⊂ O:dev grad,)R

−,1()). (6.1)

To this purpose, we let v
)
∈ ^:

dev grad,) be such that JM:
)
v
)
= 0 and show the existence ofw ∈ R

−,1())
such that v

)
= O:dev grad,ℎw. We start from the vertex and edge components, which provide the expression

for w, then show that the face and element components are also equal to the interpolate of w.
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6.1.1 Vertex and edge components

Given an edge � ∈ E) with vertices +1 and +2, enforcing JM:
�
v
�
= 0, corresponds to the following

conditions (cf. (3.6)):

devMv,+2 = devMv,+1 = 0, (6.2a)

G:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� ) = 0, (6.2b)

Mv,� − 1
3

(
trMv,� +G:

� (v+1 · t� , v+2 · t� , Et ,� )
)
O2 = 0, (6.2c)

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) = 0. (6.2d)

From (6.2a) we infer, for all + ∈ V� , the existence of _+ ∈ R such that Mv,+ = _+ O3. Condition (6.2b)
then gives _+1 O2 = _+2 O2 = Mv,� which implies, in particular, _+1 = _+2 . Since this reasoning applies
to all edges � ∈ E) , this yields the existence of _ ∈ R such that _+ = _ for all + ∈ V) and Mv,� = _O2
for all � ∈ E) . Substituting this value of Mv,� in (6.2c) results in G:+1

�
(v+1 · t� , v+2 · t� , Et ,� ) = _,

which gives, accounting for (2.8), (v+2 − v+1) · t� = _ℎ� and Et ,� (x) = c:−1
P,�

[
v+1 + _(x − v+1)

]
· t�

for all x ∈ � . Condition (6.2d), on the other hand, gives (v+1)n,� = (v+2)n,� = vn,� . Combining the
above results on the tangential and normal components of the vertex values v+ yields

v+2 = v+1 + _ℎ� t� = v+1 + _
[
(v+2 − v+1) · t�

]
t� ∀� ∈ E) .

The only possibility for this condition to hold is that there existsR−,1()) 3 w : ) 3 x ↦→ a+_(x−x) ) ∈
R3 with a ∈ R3 such that v+ = w(x+ ) for a given vertex + ∈ V) (which is sufficient for v+ ′ = w(x+ ′)
to hold also for all + ′ ∈ V) \ {+}). We can easily check, recalling the definition of the interpolator
on ^:

dev grad,� (which corresponds to the restriction to � of (3.1)), that the above conditions on the
components of v

�
amount to

v
�
= O:dev grad,�w ∀� ∈ E) . (6.3)

6.1.2 Face components

Let now � ∈ F) . Enforcing JM:
�
v
�
= 0 amounts to the following conditions, in addition to (6.2):

JM:
nt ,� v� = 0 and JM:

tt ,� v� = 0.

Enforcing JM:
nt ,� v� = 0 in (3.3) written for w = z ∈ P

:+1(�;R2), and accounting for (6.3) gives,

−
∫
�

En,� div� z +
∑

� ∈E�

l��

∫
�

(w · n� ) (z · n�� ) = 0 ∀z ∈ P
:+1(�;R2).

Integrating by parts the boundary terms and noticing that grad� (w · n� ) = 0 since the function
) 3 x ↦→ w(x) · n� ∈ R is constant on � (see [21, Proposition 8] for a proof of this result on general
meshes), the above condition translates to

∫
�
(w · n� − En,� ) div� z = 0 for all z ∈ P

:+1(�;R2). Since
div� : P:+1(�;R2) → P: (�) is onto, this implies

En,� = w |� · n� . (6.4)

Enforcing then JM:
tt ,� v� = 0 in (3.4), removing projectors according to their respective definition,

and using the integration by parts formula (2.15), we get, for all 2 ∈ CG
−,: (�),∫

�

(wt ,� − vt ,� ) · div� 2 +
∫
�

(
_ − 1

3�v,�

)
tr2 = 0.
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Taking 2 ∈ CG
c,: (�) and using the fact that div� : CGc,: (�) → P

:−1(�;R2) is onto (cf. Lemma
17) along with tr2 = 0, this condition yields

vt ,� = 0:−1
P,�

wt ,� . (6.5)

Taking 2 ∈ CG
:−1(�), using the fact that div� 2 = 0 and that trCG:−1(�) → P:−1(�) is onto, we

have, on the other hand
�v,� = 3_. (6.6)

Gathering (6.3), (6.4), (6.5), and (6.6), and recalling that the above reasoning holds for any � ∈ F) , we
have thus proved that

v
�
= O:dev grad,�w ∀� ∈ F) . (6.7)

6.1.3 Element component

To conclude the proof of (6.1), it only remains to show that JM:
) v) = 0 implies

v) = 0:−1
P,)

w. (6.8)

This relation reduces to the trivial identity 0 = 0 for : = 0. Let us then consider the case : ≥ 1. Enforcing
JM:

) v) = 0 in (3.5) and accounting for (6.7), (3.5) gives, for all 2 ∈ SR
c,: ()) ⊂ SR

−,: ()),

0 = −
∫
)

v) · div2 +
∑
� ∈F)

l) �

∫
�

(
(w · n� ) n>�2n� +

�
��0:−1
P,�

ŵ>
t ,�2n�

)
=

∫
)

(w − v) ) · div2,

where we have used (2.11) to remove the projector and the integration by parts formula (2.13) (after
noticing that 2 ∈ SR

c,: ()) is traceless) to conclude. Since div : SR
c,: ()) → P

:−1() ;R3) is onto,
this relation implies (6.8), thus concluding the proof of (6.1).

6.2 Proof of (3.25b)

Let 3
)
∈ ^:

sym curl,) be such that YI
:
)
3
)
= 0, i.e., recalling (3.11) and (3.16):

C
(
I3,� −G:+1

� ((3+1)nn,� , (3+2)nn,� , 3� )
)
= 0 ∀� ∈ E) , (6.9)

(�:+1
�,�3� = 0 ∀� ∈ F) , (6.10)

(�:+1
nn,�3� = 0 ∀� ∈ F) , (6.11)

YI:
) 3) = 0. (6.12)

In order to show that Ker YI:
)

⊂ Im JM:
)
, starting from the above conditions we will explicitly

construct v
)
∈ ^:

dev grad,) such that
JM:

)
v
)
= 3

)
(6.13)

determining, in this order, its vertex components (cf. (6.21)), edge components (cf. (6.23)), face
components (cf. (6.34), (6.37), and (6.38)), and element component (cf. (6.47)).

6.2.1 Vertex components
We infer from (6.9) and from the definition (3.12) of C the existence of _� ∈ P:+1(�) such that

I3,� = G:+1
� ((3+1)nn,� , (3+2)nn,� , 3� ) + _� O2. (6.14)

Evaluating then (3.13) for any � ∈ F) and A ≡ 1 ∈ P:+1(�) and enforcing (6.11) gives

0 = −
∑

� ∈E�

l��

∫
�

gt ,� · n� . (6.15)
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On the other hand, enforcing (6.10) in the definition (3.14) of (�:+1
�,� written for a generic A ∈ P:+1(�)

gives, using (5.3) with ( = 3� and expressing I3,� according to (6.14),

0 = −
∫
�

3CG,� : curl� grad� A +
∑

� ∈E�

l��

∫
�

(gt ,� · n�� )mn��
A −

∑
� ∈E�

l��

∫
�

tr 3� mt� A

���������������

−
∑

� ∈E�

l��

∫
�

n>��3�n�� mt� A

((((((((((((((+
∑

� ∈E�

l��Èn>��3+ n�� AÉ�

(((((((((((((((((((((((((((

−
∑

� ∈E�

l��

∫
�

n>��G
:+1
� ((3+1)nn,� , (3+2)nn,� , 3� )n�� A −

∑
� ∈E�

l��

∫
�

_� A,

(6.16)
where the cancellations follows from (2.8). Taking A ≡ 1 in the above expression gives

∑
� ∈E�

l��

∫
�
_� =

0 for all � ∈ F) . Since the first Betti number of ) is equal to 0, we infer from this relation that the
piecewise function equal to

∫
�
_� on each � ∈ E) can be regarded as the gradient of a piecewise affine

function on the edge skeleton of ) , i.e., there exists a family (_+ )+ ∈V)
∈ RV) such that∫

�

_� = È_+ É� ∀� ∈ E) . (6.17)

We infer from (6.15) and (6.16) that, for all A ∈ P1()) and all � ∈ F) ,∑
� ∈E�

l��

∫
�

(
ĝt ,� · grad A − tr 3� mt� A − _� A

)
= 0. (6.18)

We construct a family (z+ )+ ∈V)
∈ (R3)V) such that, for all � ∈ E) ,

È(z+ )n,� · wÉ� =

∫
�

gt ,� · w ∀w ∈ P
0(� ;R2), (6.19)

È(z+ · t� )mt� AÉ� = −
∫
�

(
tr 3� mt� A + _� A

)
+ È_+ AÉ� ∀A ∈ P1(�) (6.20)

as follows: we first set an arbitrary value on a vertex +0, then choose the value on neighboring vertices
according to the relations (6.19) and (6.20). The relation (6.18) ensures that this construction is
consistent. Indeed, any path leading to a given vertex will give the same value for that vertex, because
the difference between two paths is a closed loop which can be realized as the boundary of the union of
some faces � ∈ F) (since the first Betti number of ) is zero).
We conclude fixing the vertex components of the sought v

)
∈ ^:

dev grad,) as follows:

v+ ≔ z+ and Mv,+ ≔ 3+ + _+ O3 for all + ∈ V) . (6.21)

With this choice it holds, for all + ∈ V� ,

devMv,+ = dev 3+ + _+ dev O3 = dev 3+ = 3+ , (6.22)

where the conclusion follows observing that 3+ is traceless.

6.2.2 Edge components
We next identify suitable edge components for v

)
satisfying (6.13). Specifically, for any � ∈ E) ,

we define Mv,� ∈ P
: (� ;R2×2), vn,� ∈ P

: (� ;R2), and Et ,� ∈ P:−1(�) such that, for all 2̃ ∈
P

:+1
0 (� ;R2×2), all w̃ ∈ P

:+1
0 (� ;R2), and all A ∈ P:+1(�) such that c1

P,�
A = 0,∫

�

Mv,� : mt� 2̃ = −
∫
�

I3,� : 2̃ + È((3+ )nn,� + _+ O2) : 2̃É� , (6.23a)
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∫
�

vn,� · mt� w̃ = −
∫
�

gt ,� · w̃ + È(v+ )n,� · w̃É� , (6.23b)∫
�

Et ,� m2
t� A = È(v+ · t� )mt� AÉ� +

∫
�

tr 3� mt� A +
∫
�

_� A − È_+ AÉ� . (6.23c)

Let us check that, for any edge � ∈ E) , JM:
�
v
�
= 3

�
, where we remind the reader that the components

of JM:
�
v
�
are extracted from (3.6). The fact that the vertex components coincide is expressed by

(6.22), so we only need to consider the edge components.
It holds, for all 2̃ ∈ P

:+1
0 (� ;R2×2),∫

�

G:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� ) : 2̃

(2.8), (6.21)
= −

∫
�

Mv,� : mt� 2̃ + È((3+ )nn,� + _+ O2) : 2̃É�
(6.23a)
=

∫
�

I3,� : 2̃. (6.24)

On the other hand, for all 2 ∈ P
0(� ;R2×2), (2.8) together with (6.21) gives∫

�

G:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� ) :2

= È(3+ )nn,� :2É� + È_+ O2 :2É�
(6.17)
= È(3+ )nn,� :2É� +

∫
�

_� O2 :2

=

∫
�

[
G:+1

� ((3+1)nn,� , (3+2)nn,� , 3� ) + _� O2
]

:2 (6.14)
=

∫
�

I3,� :2,

(6.25)

wherewehave used (2.8) alongwith the fact that mt�2 = 0 (since2 is constant) towriteÈ(3+ )nn,� :2É� =∫
�
G:+1

�
((3+1)nn,� , (3+2)nn,� , 3� ) :2 in the third equality. Summing (6.24) and (6.25) and noticing

that f̃ + f spans P:+1(� ;R2×2) as (f̃, f) spans P:+1
0 (� ;R2×2) ×P

0(� ;R2×2), we conclude that

G:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� ) = I3,� . (6.26)

Next, for all w ∈ P:+1(� ;R2), writing w = w + w̃ with w ≔ 00
P,�

w, we have∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · w

(2.8)
= −

∫
�

vn,� · mt� w̃ + È(v+ )n,� · w̃É� + È(v+ )n,� · wÉ�

(6.23b), (6.19)
=

∫
�

3t ,� · w,

so that
G:+1

� ((v+1)n,� , (v+2)n,� , vn,� ) = gt ,� . (6.27)

To conclude the equality of the edge components, we have to prove that

Mv,� − 1
3

(
trMv,� +G:

� (v+1 · t� , v+2 · t� , Et ,� )
)
O2 = 3� . (6.28)

To this purpose, we start by noticing that, for all 2 ∈ P
:+1
0 (� ;R2×2) letting, for the sake of brevity,
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2̌ ≔ 2 − 1
3 (tr2)O2,

T ≔

∫
�

[
Mv,� − 1

3

(
trMv,� +G:

� (v+1 · t� , v+2 · t� , Et ,� )
)
O2

]
: mt�2

=

∫
�

Mv,� : mt� 2̌ − 1
3

∫
�

G:
� (v+1 · t� , v+2 · t� , Et ,� ) tr(mt�2)

(6.23a), (2.8)
= −

∫
�

I3,� : 2̌ + È
(
(3+ )nn,� + _+ O2

)
: 2̌É� + 1

3

∫
�

Et ,� tr(m2
t�2)

− 1
3È(v+ · t� ) tr(mt�2)É�

= −
∫
�

I3,� : 2̌ + È(3+ )nn,� : 2̌É� + 1
3È_+ tr2É� + 1

3

∫
�

Et ,� tr(m2
t�2)

− 1
3È(v+ · t� ) tr(mt�2)É�

(6.14), (2.8)
=

∫
�

3� : mt� 2̌ − 1
3

∫
�

_� tr2 + 1
3È_+ tr2É� + 1

3

∫
�

Et ,� tr(m2
t�2)

− 1
3È(v+ · t� ) tr(mt�2)É� ,

(6.29)

where we have additionally used the fact that O2 : 2̌ = 1
3 tr2 in the fourth equality. Taking 2 = 4 with

4 ∈ P
:+1
0 (� ;R2×2) such that tr 4 = 0, (6.29) yields

T =

∫
�

3� : mt�4. (6.30)

For 2 such that 2 = A O2 for some A ∈ P:+1
0 (�), (6.29) gives

T =
1
3

∫
�

tr 3� mt� A +
2
3

(∫
�

Et ,� m2
t� A − È(v+ · t� )mt� AÉ� −

∫
�

_� A + È_+ AÉ�
)
. (6.31)

If, in particular, we take A = Ã such that c1
P,�

Ã = 0, plugging the definition (6.23c) of Et ,� into (6.31)
yields

T =

∫
�

tr 3�mt� Ã . (6.32)

On the other hand, taking @ = A ∈ P1
0 (�), we infer from (6.21), (6.20), and (6.31) that

T =
1
3

∫
�

tr 3� mt� A +
2
3

∫
�

tr 3� mt� A =

∫
�

tr 3� mt� A (6.33)

Noticing that mt� [4 + ( Ã + A) O2] spansP: (� ;R2×2)when4 spans the zero-trace subspace ofP:+1
0 (� ;R2×2),

Ã spans the subspace of functions in P:+1(�) with zero !2-orthogonal projection on P1(�), and A spans
P1

0 (�), we conclude from (6.30), (6.32), and (6.33) that (6.28) holds. Combining this relation with
(6.22), (6.26), and (6.27) gives

JM:
�
v
�
= 3

�
∀� ∈ E) .

6.2.3 Face components

Let � ∈ F) . Since div� : Rc,:+1(�) → P: (�) is an isomorphism, there exists a unique En,� ∈ P: (�)
such that, for all w ∈ R

c,:+1(�),∫
�

En,� div� w = −
∫
�

3R,� · w +
∑

� ∈E�

l��

∫
�

(vn,� · n� ) (w · n�� ), (6.34)
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with vn,� defined by (6.23b). Plugging this En,� into the definition (3.3) of JM:
nt ,� with test function

w in Rc,:+1(�) ⊂ R
−,:+1(�), we get

0c,:+1
R,�

JM:
nt ,� v� = 0c,:+1

R,�
3R,� . (6.35)

Recalling the definition (2.2) ofCG:−1(�) and using the decompositionP: (�;R2) = grad� P:+1(�)⊕
x⊥P:−1(�) (see [5]), we can write

CG
:−1(�) = curl� grad� P:+1(�) ⊕ curl� x⊥P:−1(�). (6.36)

Since tr : curl� x⊥P:−1(�) → P:−1(�) is an isomorphism (notice thatP:−1(�) = trP:−1(�;R2) (2.2)=
trCG:−1(�) (6.36)= tr(curl� x⊥P:−1(�)) since trGc,:−1(�) = 0 and tr curl� grad� = rotF grad� = 0
and count the dimensions), we can define uniquely �v,� ∈ P:−1(�) enforcing the following condition:
For all 2 ∈ curl� x⊥P:−1(�),

1
3

∫
�

�v,� tr2 =
∑

� ∈E�

l��

∫
�

(vn,� · n�� ) n>��2n��

+
∑

� ∈E�

l��

∫
�

Et ,� t>�2n�� −
∫
�

3CG,� :2.

(6.37)

Likewise, since div� : CGc,: (�) → P
:−1(�;R2) is an isomorphism (see Lemma 17 below), (3.4)

yields a unique

vt ,� ∈ P
:−1(�;R2) such that 0c,:

CG,�
JM:

tt ,� v� = 0c,:
CG,�

3CG,� . (6.38)

We next check that the face components defined above (along with the vertex components defined by
(6.21) and the edge components defined by (6.23)) yield the equality of the face components in (6.13).
Enforcing (�:+1

nn,�3� = 0 (cf. (6.11)) in the definition (3.13) of (�:+1
nn,� , we get∫

�

3R,� · curl� A =
∑

� ∈E�

l��

∫
�

(gt ,� · n� ) A ∀A ∈ P:+1(�). (6.39)

Letting A ∈ P:+1(�), writing the definition (3.3) of JM:
nt ,� v� for w = curl� A ∈ P

: (�;R2) ⊂
R

−,:+1(�), and using the fact that div� curl� A = 0 and curl� A · n�� = −mt� A gives∫
�

JM:
nt ,� v� · curl� A

= −
∑

� ∈E�

l��

∫
�

(vn,� · n� ) mt� A

(2.8) =
∑

� ∈E�

l��

∫
�

G:+1
� ((v+1)n,� , (v+2)n,� , vn,� ) · n� A −

������������∑
� ∈E�

l��È(v+ · n� ) AÉ�

(6.27) =
∑

� ∈E�

l��

∫
�

(gt ,� · n� )A
(6.39)
=

∫
�

3R,� · curl� A,

wherewehave invoked (5.1)with i+ = (v+ ·n� )A in the cancellation. Hence, we have 0:
R,�

JM:
nt ,� v� =

0:
R,�

3R,� , which, combined with (6.35), gives, after recalling the definition (2.4) of R−,:+1 and using
[21, Eq. (2.14)],

JM:
nt ,� v� = 3R,� . (6.40)
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For any A ∈ P:+1(�), writing the definition (3.4) of JM:
tt ,� v� with2 = curl� grad� A and noticing

that div� curl� grad� A = 0, tr curl� grad� A = rotF grad� A = 0, and that t>
�
(curl� grad� A)n�� =

−m2
t�
A and n>

��
(curl� grad� A)n�� = −mn��

mt� A for all � ∈ E� , we get∫
�

JM:
tt ,� v� : curl� grad� A = −

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) mn��
mt� A

−
∑

� ∈E�

l��

∫
�

Et ,� m2
t� A ≕ T1 + T2. (6.41)

Writing T1 =
∑

� ∈E�
l��T1(�) and using the the definition (2.8) of G:+1

�
, we have, for all � ∈ E� ,

T1(�) =
∫
�

G:+1
� (v+1 · n�� , v+2 · n�� , vn,� · n�� ) mn��

A − È(v+ · n�� )mn��
AÉ�

(6.27)
=

∫
�

(gt ,� · n�� ) mn��
A − È(v+ · n�� )mn��

AÉ� .
(6.42)

To treat the second term, we start by noticing that, for all A ∈ P:+1(�),∑
� ∈E�

l��

∫
�

trMv,� mt� A

(2.8)
= −

∑
� ∈E�

l��

∫
�

trG:+1
� ((Mv,+1)nn,� , (Mv,+2)nn,� ,Mv,� ) A +

∑
� ∈E�

l��Ètr (Mv,+ )nn,� AÉ�

(6.26)
= −

∑
� ∈E�

l��

∫
�

trI3,� A +
∑

� ∈E�

l��Ètr (Mv,+ )nn,� AÉ�

(6.14), (6.21)
= −

∑
� ∈E�

l��

∫
�

trG:+1
� ((3+1)nn,� , (3+2)nn,� , 3� ) A − 2

∑
� ∈E�

l��

∫
�

_� A

+
∑

� ∈E�

l��Ètr (3+ )nn,� AÉ� +
����������2

∑
� ∈E�

l��È_+ AÉ�

(2.8)
=

∑
� ∈E�

l��

∫
�

tr 3� mt� A − 2
∑

� ∈E�

l��

∫
�

_� A,

where the cancellation is a consequence of (5.1) with i+ = _+ A . Combining this relation with (6.28),
we get∑
� ∈E�

l��

∫
�

G:
� (v+1 · t� , v+2 · t� , Et ,� ) mt� A = −

∑
� ∈E�

l��

∫
�

tr 3� mt� A −
∑

� ∈E�

l��

∫
�

_� A.

Therefore, using the definition (2.8) of G:
�
, we have that

T2 =
∑

� ∈E�

l��

∫
�

G:
� (v+1 · t� , v+2 · t� , Et ,� ) mt� A −

∑
� ∈E�

l��È(v+ · t� )mt� AÉ�

= −
∑

� ∈E�

l��

∫
�

tr 3� mt� A −
∑

� ∈E�

l��

∫
�

_� A −
∑

� ∈E�

l��È(v+ · t� )mt� AÉ� .
(6.43)
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Plugging (6.42) and (6.43) into (6.41) gives∫
�

JM:
tt ,� v� : curl� grad� A

=
∑

� ∈E�

l��

∫
�

(gt ,� · n�� ) mn��
A −

∑
� ∈E�

l��

∫
�

tr 3� mt� A −
∑

� ∈E�

l��

∫
�

_� A

−
∑

� ∈E�

l��

(
È(v+ · n�� )mn��

AÉ� + È(v+ · t� )mt� AÉ�
)

=

∫
�

3CG,� : curl� grad� A −
�������������∑
� ∈E�

l��Èv+ · grad� AÉ� ,

(6.44)

where we have used (6.16) in the second equality, enforced (6.10) to cancel the term involving (�:+1
�,�3� ,

and invoked (5.1) with i+ = v+ · grad� A to cancel the sum over the edges. The definition (6.37) of
�v,� readily gives, for all 2 ∈ curl� x⊥P:−1(�),∫

�

JM:
tt ,� v� :2 =

∫
�

3CG,� :2. (6.45)

Recalling the definition (6.38) of vt ,� and using (6.44) and (6.45) together with the decomposition (6.36)
to infer 0:−1

CG,�
JM:

tt ,� v� = 0:−1
CG,�

3
�
, we finally get, after recalling (2.5) and using [21, Eq. (2.14)],

JM:
tt ,� v� = 3CG,� . (6.46)

6.2.4 Element component

Finally, for the element component, we use the fact that div : SR
c,: ()) → P

:−1() ;R3) is an
isomorphism to find, from (3.5),

v) ∈ P
:−1() ;R3) such that 0c,:

SR,)
JM:

) v) = 0c,:
SR,)

3SR,) . (6.47)

Recalling [21, Eq. (2.14)], in order to prove that 0−,:
SR,)

JM:
) v) = 3SR,) , it only remains to check that

0:−1
SR,)

JM:
) v) = 0:−1

SR,)
3SR,) . (6.48)

To prove (6.48), we start writing the definition (3.5) of JM:
) with 2 ∈ H

c,; ()) and using the fact that
div curl 2 = 0 and that (curl 2)n� = div(2 × n� ) for all � ∈ F) to infer

T ≔

∫
)

JM:
) v) : curl 2

=
∑
� ∈F)

l) �

∫
�

En,� div(2 × n� ) · n� +
∑
� ∈F)

l) �

∫
�

v̂t ,� · div(2 × n� ) ≕ A +B.

30



Recalling (2.12) and observing that P: (�;R2) ⊂ R
−,:+1(�), we can invoke the definitions (3.3) of

JM:
nt ,� and (3.4) of JM:

tt ,� to continue as follows:

T = −
∑
� ∈F)

l) �

∫
�

JM:
nt ,� v� · (2 × n� )nt ,�

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n� ) n>� (2 × n� )n��


A

−
∑
� ∈F)

l) �

∫
�

JM:
tt ,� v� : (2 × n� )tt ,� − 1

3
∑
� ∈F)

l) �

∫
�

�v,�((((((((O2 : (2 × n� )tt ,�

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

(vn,� · n�� ) n>�� (2 × n� )n��

+
∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

Et ,� t>� (2 × n� )n�� ,


B

where the cancellation on the third line occurs because 2 is symmetric, therefore tr (2 × n� )tt ,� = 0.
We continue using the relations (6.40) and (6.46) to replace, respectively, JM:

nt ,� v� with 3R,� and
JM:

tt ,� v� with 3CG,� in the first and third terms in the right-hand side, combining the second and fifth
terms and using the injection (2.10) in R3 (additionally using the fact that (2 × n� )n�� = −2t� ), and
noticing that t>

�
(2 × n� )n�� = −ftt ,� in the last term to obtain

T = −
∑
� ∈F)

l) �

∫
�

3R,� · (2 × n� )nt ,� −
∑
� ∈F)

l) �

∫
�

3CG,� : (2 × n� )tt ,�

−
����������������∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

v̂n,�2t� −
((((((((((((((((∑
� ∈F)

l) �

∑
� ∈E�

l��

∫
�

Et ,� ftt ,�

(3.15)
=

∫
)

3SR,) : curl 2 −
�������
∫
)

YI:
) 3) :2,

(6.49)

where the cancellations of the edge terms follows from (5.2), while the conclusion is a consequence of
the zero-sym curl condition (6.12). By Lemma 2, (6.49) implies (6.48).

6.3 Proof of (3.25c)
We conclude by counting the dimensions of each space, which are explicitly known and can be expressed
in terms of the number of geometric entity of each dimension. Specifically, we have for all : ≥ 1

dimR
−,1()) = 4

dim ^:
dev grad,) = 12|V) | + (7: + 6) |E) | + (2:2 + 3: + 1) |F) | +

1
2 (:

3 + 3:2 + 2:),

dim ^:
sym curl,) = 8|V) | + (10: + 16) |E) | + (3:2 + 8: + 3) |F) | +

1
6 (8:

3 + 33:2 + 25:),

dim ^:
div div,) = −3 + (3: + 6) |E) | + (:2 + 5: + 6) |F) | + (:3 + 5:2 + 5:),

dim P: ()) = 1 + 1
6 (:

3 + 6:2 + 11:).
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Moreover, by the exactness properties proved above, we have

dim Im JM:
)
= dim ^:

dev grad,) − dim Ker JM:
)

(3.25a)
= dim ^:

dev grad,) − dimR
−,1())

= −4 + 12|V) | + (7: + 6) |E) | + (2:2 + 3: + 1) |F) | +
1
2 (:

3 + 3:2 + 2:),

dim Im YI:
)
= dim ^:

sym curl,) − dim Ker YI:
)

(3.25b)
= dim ^:

sym curl,) − dim Im JM:
)

= 4 − 4|V) | + (3: + 10) |E) | + (:2 + 5: + 2) |F) | +
1
6 (5:

3 + 24:2 + 19:),

dim Ker ��:
) = dim ^:

div div,) − dim Im ��:
)

(3.25c)
= dim ^:

div div,) − dim P: ())

= −4 + (3: + 6) |E) | + (:2 + 5: + 6) |F) | +
1
6 (5:

3 + 24:2 + 19:).

Therefore,
dim Ker ��:

) − dim Im YI:
)
= 4 ( |V) | − |E) | + |F) | − 2) .

The Euler characteristic for an element with trivial topology gives the identity |V) | − |E) | + |F) | = 2.
Therefore, dim Ker ��:

)
= dim Im YI:

)
. We conclude using the local complex property (3.23).

Remark 16 (The case : = 0). The formulas above fail when : = 0. Indeed, they give a negative
dimension (of −3) on the cell. The problem stems from the fact that dimH

−1()) = dimH
−2()).

Correcting the formulas, we find

dim Ker ��0
) − dim Im YI0

)
= 4 ( |V) | − |E) | + |F) |) − 5 = 3,

showing that exactness does not hold for : = 0.
A Results on local polynomial spaces
Lemma 17 (Isomorphism of the face divergence between polynomial spaces). The operator div� :
CG

c,ℓ (�) → P
ℓ−1(�;R2) is an isomorphism.

Proof. Take x� = 0, and write x = (G, H)>. By (2.2), it holds

CG
c,ℓ (�) =

{
G(%1, %2) ≔

(
G %1 H %1
G %2 H %2

)
−
(
H %2 −H %1
−G %2 G %1

)
: %1, %2 ∈ Pℓ−1(�)

}
.

The divergence of a generic G(%1, %2) is thus given by

div� G(%1, %2) =
(
(GmG + 2HmH + 3)%1 − HmG%2
(2GmG + HmH + 3)%2 − GmH%1

)
.

This expression behaves well on monomials: Given two couples (81, 91) and (82, 92) of non-negative
integers, the above expression for %1(G, H) = G81H 91 and %2(G, H) = _G82H 92 , _ ∈ R, becomes

div� G(G81H 91 , _G82H 92) =
(
(81 + 2 91 + 3)G81H 91 − _82G

82−1H 92+1

_(282 + 92 + 3)G82H 92 − 91G
81+1H 91−1

)
. (A.1)

To prove the injectivity of div� , let us show that div� G(%1, %2) ≡ 0 implies that both %1 and %2
are identically zero. We see from (A.1) that each monomial G8H 9 of %1 must be cancelled by a monomial
G8+1H 9−1 in %2 and vice-versa. If 9 = 0, no contribution from %2 appears on the first component in (A.1),
and we must have (8 + 3)G8 = 0 (which is impossible since 8 ≥ 0), else there must be _ ∈ R such that

div� G(G8H 9 , _G8+1H 9−1) =
(
[8 + 2 9 + 3 − (8 + 1)_] G8H 9

[_(28 + 9 + 4) − 9] G8+1H 9−1

)
≡ 0.
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This condition requires _ =
8+2 9+3
8+1 =

9

28+ 9+4 , i.e.,

(8 + 2 9 + 3) (28 + 9 + 4) = (8 + 1) 9 =⇒ 2(8 + 9)2 + 10(8 + 9) + 10 = 0,

which is impossible to satisfy, showing that the only possibility for div� G(%1, %2) ≡ 0 to hold is that
%1 = %2 ≡ 0, i.e., div� is injective on CGc,ℓ (�).
Let us now prove its surjectivity by showing that every vector-valued field can be obtained as a

divergence of an element of CGℓ (�). To this end, it suffices to consider the case where one component
is a monomial and the other is zero. Letting (8, 9) denote a couple of non-negative integers such that
8 + 9 ≤ ℓ, the above computation gives for 9 > 0 and _ =

9

28+ 9+4 ,

div� G

(
G8H 9 ,

9

28 + 9 + 4G
8+1H 9−1

)
=

2(8 + 9)2 + 10(8 + 9) + 12
28 + 9 + 4

(
G8H 9

0

)
and, by symmetry,

div� G

(
8

8 + 2 9 + 4G
8−1H 9+1, G8H 9

)
=

2(8 + 9)2 + 10(8 + 9) + 12
8 + 2 9 + 4

(
0

G8H 9

)
,

which concludes the proof since
{
G8H 9 : 8 ≥ 0, 9 ≥ 0, and 8 + 9 ≤ ℓ − 1

}
is a basis of Pℓ−1(�) and its

tensorization a basis of Pℓ−1(�;R2). �

Proof of Lemma 1. Lemma17givesCGℓ (�)∩CGc,ℓ (�) = {0}. Weonly have to check thatdimP
ℓ (�;R2×2) =

2ℓ2 + 6ℓ + 4 = dimCG
ℓ (�) + dimCG

c,ℓ (�). We can compute the dimension of CGℓ (�) from the iso-
morphism curl� : Pℓ+1

0 (�) → R
ℓ (�) as follows: dimCG

ℓ (�) = 2
(
dim Pℓ+1(�)−1

)
= ℓ2+5ℓ+4.On

the other hand, the dimension of CGc,ℓ (�) is given by Lemma 17: dimCG
c,ℓ (�) = dimP

ℓ−1(�;R2) =
ℓ2 + ℓ. Summing the above expressions, the result follows. �
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(a) Cubic mesh family
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(b) Tetgen tetrahedral mesh family
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(c) Voronoi mesh family

Figure 1: Sample mesh (left) and error ‖(2
ℎ
− O:div div,ℎ2, Dℎ − c:

P,ℎ
D)‖Z,ℎ v. mesh size ℎ (right).
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