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Abstract

In this work, following the Discrete de Rham (DDR) paradigm, we develop an arbitrary-order
discrete divdiv complex on general polyhedral meshes. The construction rests 1) on discrete spaces
that are spanned by vectors of polynomials whose components are attached to mesh entities and 2) on
discrete operators obtained mimicking integration by parts formulas. We provide an in-depth study
of the algebraic properties of the local complex, showing that it is exact on mesh elements with trivial
topology. The new DDR complex is used to design a numerical scheme for the approximation of
biharmonic problems, for which we provide detailed stability and convergence analyses. Numerical
experiments complete the theoretical results.

Key words. divdiv complex, discrete de Rham method, polyhedral meshes, biharmonic problems,
mixed formulations
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1 Introduction

Let Q c R? be a polyhedral domain with boundary Q. Denote by sym and dev the symmetrisation
and deviator operators such that, for any matrix M € R4 sym M := % (M+MT7) and devM =

M - %(tr M)1 ;. We construct a discrete counterpart of the three-dimensional divdiv complex

R=1(Q) —23 HY(Q;R3) Y H(sym curl, @; T) 2% H(div div, Q; 5) Y% 12(0) — % (0},
(1.1)
where R™! := PY(Q) + xP(Q) is the lowest-order Raviart-Thomas space, H' (Q; R?) is spanned by
vector-valued functions that are square-integrable over Q along with their gradient, H (sym curl, Q; T) by
functions taking values in T := dev R3*3 that are square-integrable over Q along with the symmetric part
of their curl, and H(div div, Q; S) by functions taking values in S := sym R3*3 that are square-integrable
together with the divergence of their (row-wise) divergence. The divdiv complex can be derived from
the de Rham complex through the BGG construction [7], which offers a powerful framework to study

its theoretical properties, but still lacks a generic blueprint for the construction of discrete complexes.
The main difficulty in the numerical approximation of the complex (1.1) is related to the algebraic
constraints that appear in both the spaces and the operators. Finite element approximations of the spaces
appearing in the complex have been developed in [1, 4, 6, 15]. The discretization of the full complex is,

on the other hand, much more recent [26].
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The above references are concerned with spaces built on standard (matching simplicial) meshes. In
this work, following the Discrete de Rham (DDR) paradigm of [21, 25] (see also [12] for a very recent
generalization using differential forms), we address the discretization of the divdiv complex (1.1) on
more general meshes made of polyhedral elements and possibly featuring non-matching interfaces. The
support of such meshes provides great flexibility in the approximation of the domain and enables an
efficient use of computational resources through non-conforming local mesh refinement and agglomer-
ation [2, 3, 8]. Polytopal methods additionally benefit from a higher-level point of view, which enables
unknowns-reduction strategies such as serendipity [9, 10, 14]; see also [22] for a general framework in
the context of discrete complexes. The key idea of DDR methods consists in replacing both the spaces
and the operators in the complex with discrete counterparts. Discrete spaces are spanned by vectors
of polynomials with components attached to the mesh entities, while discrete operators are obtained
mimicking integration by parts formula. Applying this paradigm to the discretization of the divdiv
complex involves a number of subtleties, from the decomposition of traces of tensor-valued fields to
the identification of the appropriate integration by parts formulas. We provide a complete study of the
algebraic properties of the local complex showing how the design of the spaces and operators fits to
ensure exactness on mesh elements with trivial topology. Local exactness is one of the key ingredients
to prove algebraic properties of the global complex following, e.g., the paradigm of [24].

The DDR divdiv complex is then used as a starting point to design a numerical scheme for the
following fourth-order problem in mixed formulation: Given f : Q — R, find o0 € H(divdiv, Q;S)
and u € L?(Q) such that

/0’:T+/divdivru:0 vVt € H(divdiv, Q;S),
Q Q
(1.2)
—/divdiva’v=/fv Vv e L2(Q).
Q Q

Previous results in the (significantly easier) two dimensional case include the design of a DDR complex
along with its application to Kirchhoff-Love plates [19] and its serendipity variant [13]. Based on the
properties of the new three-dimensional divdiv complex, we prove stability of the DDR scheme for
problem (1.2), along with its convergence in #**!, with / denoting the meshsize and k the polynomial
degree of the complex.

The rest of the paper is organized as follows. In Section 2 we establish the setting, including the
relevant integration by parts formulas and trimmed polynomial spaces. The discrete divdiv complex
along with its algebraic properties make the object of Section 3. Section 4 contains the DDR scheme
for problem (1.2) as well as its stability and convergence analyses. Sections 5 and 6 contain the most
technical proofs of algebraic properties of the DDR complex. Finally, results on local polynomial space
of general scope are presented in Appendix A.

2 Setting
2.1 Mesh

For any (measurable) set ¥ c R3, we denote by hy its diameter. We consider meshes M;, = 7 U
Fn U EL UV, of Q, where: 7y, is a finite collection of open disjoint polyhedral elements such that
Q= Ureg, T and h = maxreg;, hr > 0; ¥ is a finite collection of open planar faces; &y, is the set
collecting the open edges of the faces; V), is the set collecting the edge endpoints. It is assumed, in what
follows, that (75, ) matches the conditions in [23, Definition 1.4], so that the faces form a partition of
the mesh skeleton (7 ¢, 0T

Given a mesh edge E € &, we denote by V1 (E) and Vo (E) the vertices in V}, corresponding to its
endpoints and ordered so that tg = hEI (xv,(E) — Xv,(E)). For the sake of conciseness, whenever no
ambiguity can arise, we avoid specifying the edge and simply write V; and Va. For any face F € ¥, we



fix a unit normal vector nr and, for any edge £ € Ef,we denote by n g the vector normal to E in the
plane containing F and oriented such that (¢g, npg, np) forms a right-handed system of coordinates.
Depending on the context, the vectors ¢g and nr g may be regarded as embedded in the plane containing
F or in the three-dimensional space.

The set collecting the mesh faces that lie on the boundary of a mesh element 7' € 7}, is denoted by
Fr. For any Y € 7;, U 7, we denote by &y the set of edges of Y. Similarly, forall Y € 7, U 7, U &,
“Vy denotes the set of vertices of Y.

For each mesh element or face Y € 7, U ¥, we fix a point xy € Y such that there exists a ball
centered in xy contained in ¥ and of diameter comparable to sy uniformly in # (when M, belongs to
a regular mesh sequence in the sense of [23, Definition 1.9]).

Throughout the paper, a < b stands for a < Cb with C depending only on £, the mesh regularity
parameter and, when polynomial functions are involved, the corresponding polynomial degree.

2.2 Local and broken polynomial spaces

For given integers n > 0 and £ > 0, P, denotes the space of n-variate polynomials of total degree < ¢,
with the convention that Pg := R for any ¢ and that ;! := {0} for any n. GivenY € 7, U %, U &y,
we denote by P¢(Y) the space spanned by the restriction to Y of the functions in Pg and by ﬂi,’y the
corresponding L2-orthogonal projector. When Y is a mesh edge E € &, or face F € 73, whenever
needed we will identify P¢(E) and P¢(F) with the spaces of one- and two-variate polynomials on E
and F, respectively. Spaces of vector- or matrix-valued functions on Y that have polynomial components
of total degree < ¢ are denoted in boldface and the codomain is specified. At the global level, we define
the broken polynomial space

PL(T) = {vin € L*(Q) : (vi)ir € PI(T) forall T € T} . (2.1)

2.3 Direct decompositions of local polynomial spaces
For any mesh face F € ¥ and any integer ¢ > 0, the following direct decomposition of vector-valued
polynomial functions holds (cf. [5]):
PL(F;R?) = RI(F) @ R (F)
with R (F) := curly P (F) and R (F) = (x — xp)PH(F).

The following lemma contains a new direct decomposition that will be needed to design the discrete
counterpart of H(sym curl, Q;).

Lemma 1 (Direct decomposition of matrix-valued polynomial fields on faces). For all F € 5, and all
€ > 0, the following direct decomposition holds:

PLF;R¥?) = CG“(F) ® CG“* (F),

with CG* (F) = curlp P (F;R?) and CG** (F) = (Id - adj) [P (F;R?) ® (x —xF)T7],
2.2)
where adj is the adjugate operator acting on 2 X 2 matrices.

Proof. See Appendix A. O

In what follows, we will also need the decompositions of matrix-valued polynomial functions on
mesh elements T € 7}, described hereafter. We start by recalling the following results (cf. [17, Lemma
4.4] and [16, Lemma 3.6], respectively:

PUT;T) = SRU(T) ® SR(T),



PUT;S) = H(T) @ HEN(T), (2.3)
with
SRUT) = curl PU(T;S),  SREUT) =dev |PH(T;RY) @ (x —x7)7],
HE(T) = hess PT+(T), HE(T) = sym [PUT;T) x (x —x7)]
where the cross product A x b between a matrix A € R3*3 and a vector v € R? is performed row-wise.
The following lemma establishes a link between SR’ (T) and e (7).

Lemma 2 (Link between SR’ (T) and HS 1 (T)). It holds
SRU(T) = curl HH(T).

Proof. Since HE"NT) ¢ PHUT:S), curl HS™H(T) ¢ SRU(T). Let now o0 € SRY(T). By
definition, there is T € 7)€+1(T; S) such that o = curlt. Recalling (2.3), T can be decomposed
as T = T1 + T with (11,72) € H(T) x H(T). Using curlhess = 0, we have o = curlt =
curlr7 + curl 79 € curl HEH (T). Since o is generic in SR (T), this concludes the proof. m]

Remark 3 (Extension to negative indices). The definitions of R (F), CG*(F), and SR’ (T) naturally
extend to £ = —1 (in which case, all of these spaces become trivial). Similarly, the definition of 7—([(T)
extends to £ = —2 and ¢ = —1, yielding the trivial space in both cases.

2.4 Trimmed local polynomial spaces

For any integer £ > 0, trimmed polynomial spaces are obtained from the direct decompositions described
in the previous section by lowering the degree of the first component. Based on this principle we define:
For all F € F,

RE(F) = RN (F) @ RE(F), (2.4)
CG™U(F) = CG' ™ (F) @ CG“ (F), (2.5)
and, forall T € 73,
SR™UT) = SRIHT) & SREU(T), (2.6)
HUT) = HHT) @ HE(T). 2.7)

Notice that, for £ = 0, all of the above spaces become trivial. Forany (X,Y) € {(R, F), (CG, F), (SR, T), (H,T)},
we denote by N:Y’t;, the L2-orthogonal projection on X ¢ (Y).

2.5 Reconstruction of tangent derivatives on edges

We will often need to reconstruct tangential derivatives of functions over edges based on their vertex
values and L2-orthogonal projections. Specifically, letting £ > 0 be an integer and denoting by d;,, the
derivative along E in the direction of g, the tangential derivative reconstruction G’)g : RXRxPHE) —
PL(E) is such that, for any (vy,, vy, vE) € RXx R x PIL(E),

/E(ﬁg(vvl,vvz,vE)rz—/EVE8tEr+[[vvr]]E VrEP[(E), 2.8)

where [ -] £ denotes the difference between vertex values on an edge such that, for any function ¢ € C°(E)
and any family {wy,, wy, } of vertex values (possibly such that wy, = wy, = 1)

[[WV¢]]E = WV2¢(XV2) - WV1¢(XV1).

When the arguments are vector- or matrix-valued, (ﬁé acts component-wise. Noticing that (ﬁg coincides
with the one-dimensional HHO gradient (cf., e.g., [23, Eq. (4.37)]), it is readily inferred that

Gr(p(xv), p(xv,), Tp 5 ) = Tp O ¢ Vo € H'(E). (2.9)
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2.6 Notation and basic results on traces

Given a family of linearly independent orthonormal vectors w = {w;};cf C R3, we define the trace of
a vector u with respect to this family by u,, := (u - w;);c; € R! We also consider its injection into the
original space

U, = Z(u SWiW;. (2.10)

iel

Likewise, for two families of linearly independent orthonormal vectors v = {v;}icr, w = {w;};cs, we
define the trace of a matrix A with respect to these families by A,,, = (vl.TAw i), jelxs € R We
also consider its injection into the original space Ay = 20, j)elxd (AW )y, @w;.

The notations defined above are used in what follows for traces on faces and edges as described
hereafter. For a face F, we consider an orthonormal basis {¢r 1, ¢F 2} of the plane tangent to F, and,
for any vector-valued field w : F — R? and any matrix-valued field 7 : F — R3*3, write w, r,
Tnn.F»> Tnt,F» and Ty p withn = {np} and ¢t = {¢tF 1,tF 2}. Similarly, for any edge E, we consider an
orthonormal basis {rng 1, ng 2} of the plane normal to E, and, for any vector-valued field w : E — R3
and any matrix-valued field 7 : E — R3*3, write Wn.E> Tnn.E> Tnt .E>» a0d Ty g Where n = {ng 1,ng 2}
and t = {tg}.

The following lemma shows that traces of functions in trimmed spaces lie in trimmed spaces. Its
proof is similar to that of [21, Proposition 8] and is omitted for the sake of conciseness.

Lemma 4 (Traces of trimmed spaces). For any element T € T, and any face F € Fr, it holds

(Onp)yr € PHF;R?) Vo e SRTNT), (2.11)
(0 X np)y p € CG*(F) Yo € HK(T). (2.12)

2.7 Integration by parts formulas

A key element for the DDR-inspired construction are the integration by parts formulas collected in this
section, which are used both to identify the components of the discrete spaces and to reconstruct the
discrete differentials and the corresponding potentials.

2.7.1 Integration by parts formulas for H'(T;R?)

LetT € 75, and let v : T :— R3 be a vector-valued function, which we assume as smooth as needed in
what follows. For all o : T — T smooth enough, it holds

/devgradv:oz—/v divo + Z wTF/v ong
T

Fe¥r

. ~T ~T
=—/v-d1v0'+ E a)TF/ (v,,,Fa'nF+vt’F0'nF),
T F

FGTT

(2.13)

where we have used the decomposition v = v,, p + v¢F of the trace of v on F into its normal and
tangential components to pass to the second line.
Let now F € F7. For all w : F — R? smooth enough and valued in the tangent space of F, it holds

/(devgradv)mF w= /(gradv)mF w = /gradF(v ng)-w

/(V np)divp w+ Z wFE/(V np)(w-nrg),

EcéEF

(2.14)

where, we have used the fact that the components extracted by (devgradv),,  are not affected by
the dev operator in the first equality and a standard integration by parts on F' to conclude. For all



o : F — R?*2 smooth enough and matrix-valued in the tangent space of F, on the other hand, we have

1
/(devgradv)t,F:U:/gradF vt,p:o——ftr(gradv)lgza
F ’ F 3JF

1
:—/ V¢ F -divFa'——/divv tro (2.15)
F 3Jr
+ Z wFE/ [(V tp)tponpg + (v - nFE)n;EO'”FE] ,
EESF E

where, in the second equality, we have used an integration by parts for the first term and decomposed
the tangent trace of v on F as v, = (v - tg)tg + (v - npp)npg after noticing that (¢g, npg) forms an
orthonormal basis of the plane orthogonal to E at each point of E.

2.7.2 Integration by parts formulas for H(sym curl, T; T)
LetT € 9. Forallt: T :— Tand o : T — S smooth enough, it holds

/symcurl’r:U:/curlr:a':/‘r:curla'— Z wTF/(Tan):a'
T T T F

Fefr

= [ Tt:curlo+ w /T:(O'Xn ).
/T Z TF i F

Fefr

(2.16)

Let now F € ¥r. We have, for r : F — R smooth enough,

/(symcurl‘r),mFr:/rotFT,,t,Fr=‘/Tm,F-curlpr— Z a)FE/(n;TtE)r, (2.17)
F ’ F F E

Ec&Efp

where we have used the fact that the component extracted by (sym curl ), £ is on the diagonal, hence it
is not affected by the sym operator (so that, in particular, (sym curl 1), r = (curlt),, r = 10tF Tus F).

For the tangential-tangential component of 7, standard integration by parts formulas on faces
(corresponding, respectively, to [25, Egs. (3.12) and (3.15)]) give:

/divF rotFTtt,Fr:—‘/rotFTtt,F-gradFr+ Z wFE/(rotFTtt,F-nFE)r
F F

EESF E
=—‘/Ttt,p:curlp grad, r + Z wFE‘/(Ttt,FtE)-gradFr (2.18)
F EESF E

+/(r0tFTtt,p-nFE)r.
E

For all E € &Ep, it holds:

/(Ttt’FtE) -gradp r = / [(tg‘rtE) O¢pr + (nppTtE) ('3,,FEr]
E E (2.19)

:/ [— (nppTnpE +npTng) (9,Er+(n;ETtE)6,,FEr],
E

where we have written gradg 7 = O¢,7 tg + On .7 RFE in the first equality and used the fact that 7 is
traceless on the last line (so that, the trace being an invariant and (fg, RpEg, ) an orthonormal basis
of R3, tpTtp +nptnpp +nitap = 0). Moreover, we have



Jotetur nre)r = [ rote(nfinur)r = [ [ grnre)r - oupy (0] rte)1]

:—/(n;ETnFE)atEr+I[(n;ETnFE)r]]E—/ [njpgrad(tte)npe| r, (2.20)
E E

where we have used an integration by parts on the first term to conclude. Plugging (2.19) and (2.20)
into (2.18) finally gives

. . T
/d1vFr0tFTtt,Fr:—/Ttt,F.curngradFr+ Z a)FE/(nFETtE)a,,FEr
F F E

EE(SF
_ Z wa/ (2nfpTnFE + npTRE) Ot — Z wFE/ [n;Egrad(‘rtE)nFE] ro(2.21)
EGSF E EESF E
+ Z wFE[[(n;ETnFE)r]]E.
EESF

2.7.3 Integration by parts formulas for H(div div,T;S)
LetT € Ty, forallv : T :— S and v : T — R smooth enough, it holds (cf. [16, Lemma 4.1])

divdivvv:/v:hessv— WTF wFE‘/(nT vng) v
i A 2, e Qy wre | (nke

FeFr E€ép

_ Z wTF/U,,,,,F OV — Z a)TF/ [2divE (Vne,F) + OnpUnnr| v. (222)
FeFr F FeFr F
3 Discrete divdiv complex

Throughout the rest of this work, we fix an integer k > 0 corresponding to the polynomial degree of the
discrete complex. The focus of this section is on the construction of the local DDR complex mimicking
(1.1) on a mesh element T € 7}, and the study of its algebraic properties. The analytical properties for
the divdiv operator are studied in Section 4 in the context of an application to a biharmonic problem.
An in-depth study of the analytical properties of the other spaces and operators is postponed to a future
work.

3.1 Local discrete spaces
The discrete counterparts of the spaces H'(T;R3), H(sym curl, T; T), and H(divdiv,T;S) are, re-

: k k k .
spectively, the spaces X & grad.T X sym curl, T and X, g5, 7 defined as follows:

k .
Xdevgrad,T = {KT = (VT, (Vn,Fs vt,Fv GV,F)FGTT! (vt,Ea vn,Es Gv,E)EeST ’ (VV, GV,V)V E(VT) :

vy € PXU(T;RY),
Va.r € PX(F), vep € PY"H(F;R?), and G, € P*L(F) for all F € F7,
ve.g € PKUE), vy g € PY(E;R?) and G, € PX(E;R??) forall E € &r,

vy €R3and G,y € R¥3 forall V e Vy },



k . )
Xoymeulr = {IT = (tsrr, (TR F.TCG.F)Fer» (T, Tt,8.Cy E)Ecer, (TV)very) :

Tsrr € SRTK(T),
Trr € R (F)and t¢g r € CG™F(F) forall F € 7,
1 € PYE;RY?), 74 p € PM*YE;R?) and C; g € PHY(E;R¥?) forall E € &r,

Ty € TforallV e (VT},

k
Xiivaivr = {UT (var. W, Dy F)Fes» VE)Ees;) :

var € HN(T),
vp € PX*Y(F) and D, r € PXL(F) forall F € 7,

and vp € P*H(E; sym R¥?) forall E € &y }

The meaning of the polynomial components in these spaces is provided by the interpolators !’5 evgradT -
1 3 k 3T k 2(7. k

c (T R ) - Xdevgrad T° !symcurl T +H (T7 T) - Xsymcurl T and Ilele T tH (T’ S) - Xdlvdlv T

such that, for all (v, 7,v) € CY(T;R?) x H*(T; T) x H*(T;S),

k k-1 k k-1 k-1 3:
!devgrad TV = (ﬂp TV (ﬂ?’ F(v ’ nF)’ﬂP F(vt F)’RP F(dlvv))Fe‘F ’

(np E(v te), ﬂ'P rVnE), 71'P e(gradv),, E)EEST (3.1)

(vCev ), gradv(xv)) ey )

k — -k k+
!symcurl,TT = ( SR 7> (ﬂR F Tnt F,T Cg e, F)FET'T

k k+1 k+1
(”p ETnn,E, ﬂp ETnt,E> 7r7)+E((grad(TtE))nn,E)EEST’ (T(xV))Ve(VT)’

. -k .
L qivV = (nmv (7 F Wnn ), Tl 2 AIVE (V) FRE) + OnpUnnF)) pegs » (n?f,gv)EeaT) :

3.2)

In what follows, for ¢ € {dev grad, sym curl, divdiv} and any Y € ¥ U Er, we denote by X ’f,Y
and I ’f’Y the restrictions of X' ’f’T and I 'f,T to Y, obtained collecting the polynomial components on Y
and its boundary.
3.2 Local operators
3.2.1 Discrete devgrad operator
Let F € ¥r. The discrete counterpart of the normal-tangential component of the discrete devgrad
operator is obtained mimicking (2.14). Specifically, we let DG,’it’ X gev grad.F R~ *1(F) be such

that, forall y . € XX grad, @nd all w € R™KL(F),

/DGﬁt’FKF'w:_‘/‘vn,FdiVFw"' a)FE/(v,,E np)(w nFE) (33)
F F EcéEF

The discrete counterpart of the tangential-tangential component is, on the other hand, obtained
mimicking (2.15). Specifically, we let DG;‘t F Xﬁevgra aF = CG " (F) be such that, for all v, €



Xk and all o € CG~*(F),

—devgrad,F
k . 1
DGtt,FKF o= VtF divp o - 3 Gy rtro
F F
(3.4)
-
+ Z “)FE/VtEtEU'"FE"' Z wFE/(Vn,E-nFE)nFEO'nFE.
EcEF EcEF E

Recalling (2.13), the element devgrad operator DGk — SRK(T) is defined such

that, for all v, € Xdevgrad,T and all 0 € SR™X(T),

—dev grad,T

‘/DG§KT Lo = —/ vr -divo + Z wTF/ Va,F RpORE +V, [ FONF), (3.5)
r Ferr
where we remind the reader that v, r denotes the injection of v  into R3.

The discrete devgrad operator %k : Xﬁevgra ar — X ;‘ym curl,7 Acting between spaces of the
discrete complex is defined, for all v, € X{’;ev grad. T by

k k
DGyy, = (DG vT’(DGntF Ve DGy v F)Feﬁ’

(Gv,E —1(trGy g + & (vy, - te. vy, - te,veE)) 2,

(3.6)
G5 (Vs o) P0.8)s O (G v 5 (G v o2 G )|

EGST’
(devGuv) y ooy )

In what follows, the restriction of ﬁ; to a face or edge Y € 7 U & of T, obtained collecting the
components on Y and its boundary, will be denoted by &;‘,

Lemma 5 (Local commutation property). The following commutation property holds

%'} (!ﬁevgrad]v) = !;‘ym curl,7 (dev gradv) Vv € H3(T;R?). (3.7
Proof. Letv € H?(T;R3). Let us check the relation on the normal-normal component on edges. By
(2.9) with ¢ = k, we have (ﬁg(v(xvl) “tg,v(xv,) - tE, n’;"}i(v -tg)) = n’;)’E((?tEv - tg). Accounting

for the previous relation we have, for all o~ € P*(E; R¥¥2),

J

where the cancellation of the projectors is made possible by their definition. Using again (2.9), this time
with € = k + 1, we infer that

1
nk ’E(gradv),m,E -3 (tl"ﬂ'k ,E(gradv),m,E +%(6,Ev . tE)) 12] o

:/(devgradv),m’E:a', (3.8)
E

GEL 0 (v ) oV XV T p (W p)) = 5L (deverad )y (3.9)
G5 ((grad v (vv, a5+ (£ ¥ (21;)) 5 7o (g2 ¥ ) = 7L (grad ((dev grad v)1e)um .
(3.10)

Combining (3.8), (3.9) and (3.10), we obtain DG (I devgrad, gY) = Symcurl g (devgradv). The com-
mutation for the components of %; on faces and on the element are proved in a similar fashion: first
by removing the projections in the definition (3.3) (respectively, (3.4) and (3.5)), and then concluding
with the integration by parts formula (2.14) (respectively, (2.15) and (2.13)). O



3.2.2 Discrete symcurl operator

The discrete symmetric curl operator on edges SC il fym cwrl.E — PKL(E; sym R?*?) is defined,
forall 7, € Xsymcur1 £ by:
SCkz, =C (CT,E — G () (TVQ)M’E,TE)) , 3.11)

where C is the fourth-order tensor such that

—ni1+n22
1 1ni2 n12 G — 2x2
C =|- 2 Vn € R**“. 3.12
(7721 7722) ( 77112+7722 21 ) n ( )

There are two components for the symmetric curl operator on faces. The first one, SCﬁ;lF :

X;‘ymcuﬂ P Pr+L(F), is defined mimicking (2.17): For all T € XSymcurl pandallr e PrL(F),
/ SCk+1FIF r= / TR F -curlp r — wFE/(Tt E-RE)T, (3.13)
F F EcEF
while the second one, SC ]g}, X fym curl.F — P*1(F), is defined mimicking (2.21): For all T F €
X{ e, and all 7 € PHL(F),

k+1 )
/SCD FIpT = /TCQ,F scurlp gradp r + E wFE/(Tt,E “NFE) Opppt
F F EEGF E

— WFE 2nFETEnFE+nFTEnF) atEr— WFE (n;ECT,EnFE)r
E

EcEr EcEFr

+ Z U.)FE[[(";E TV I’lFE) r]]E.
Ec&Efp
(3.14)

Recalling (2.16), the discrete symmetric curl operator on an element 7" € 7, is defined such that, for
allt, € Xi‘ymcuﬂ randall o € HR(T),

k . . .
‘/SCTET O = / TSR, T ccurl o + Z wTF/Tcg,F : (a'an)tt,F
T T F

Fefr

(3.15)
+ Z WTF / TR,F * (0’ X np),,t’F.
FeFr F
Finally, the discrete symmetric curl operator SC;. k. X fym el — X giv div.7 acting between discrete

spaces is defined, for all 7. € Xk as the vector collecting the components defined above:

“symcurl, T’
k. . k k+1 k+1
SChay = (SChry, (SCh et SCHETE) pegy (SCE'TL) gy ) (3.16)
It can be checked that the following commutation property with the interpolators holds:

SC;IsymcurlT‘r !dwdwT(sym curl 7) vt € H3(T;T). (3.17)
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3.2.3 Discrete divdiv operator

The discrete divdiv operator DD; X Siv vy PK(T) is defined after (2.22): For all v, € Xﬁiv div.T
and all v € PX(T),

/DD;QTVZ/UV.(’T : hessv — Z WTF Z wFE/(n;EuEnF)v
T T E

FeFr Ee&p (3.18)
- Z wTF/vF 8,,Fv— Z a)TF‘/DU,F V.
Ferr F Fefr F
By construction, it holds
DDYIS 47V =7 o (divdive) Yo € HX(T;S), (3.19)

as can be checked using (3.2) in (3.18) written for v, = I k v, cancelling the Lz—orthogonal

=divdiv,T
projectors using their definitions, and concluding with (2.22).

3.3 Local DDR complex and main results

For a given mesh element 7' € 7, the spaces and operators defined above can be arranged to form the
sequence

- 1 Ll&cv gra(_],T k &é‘ k Eé‘ k DD%' k 0
R (T) ldev grad, T : Xsym curl, T : Xdiv div,T : P (T) : {0 } :
(3.20)

Theorem 6 (Local complex property and exactness). The sequence (3.20) forms a complex which is
exact if the topology of T is trivial and if k > 1.

Remark 7 (Role of the condition £ > 1). The condition k£ > 1 is only required for the exactness of the
tail of the complex (see (3.25¢) and Remark 16 below). The head of the complex is exact also for k =0
(cf., in particular, (3.25a) and (3.25b) below).

Proof. The fact that the sequence (3.20) forms a complex is a consequence of the following relations:

Liovgraar R (T) € Ker DG, (3.21)
Im DG% ¢ Ker SCK, (3.22)
Im SCY c Ker DD%, (3.23)
Im DDX = PR(T). (3.24)

The inclusion (3.21) is a straightforward consequence of the commutation property (3.7) along with
the fact that devgrad R™*(T) = 0. The relation (3.24) classically follows from the surjectivity of
divdiv : H(divdiv,T;S) — L?(T) along with (3.19) (a more detailed argument is provided in Lemma
13 below for its global counterpart). Finally, properties (3.22) and (3.23) are proved in Section 5.

The exactness of the complex when T has a trivial topology translates into the following properties:

Loy graa s R (T) = Ker DG}, (3.25a)

Im DGk = Ker SCk (3.25b)

ImSCk =KerDD}  ifk > 1. (3.25¢)

These properties are proved in Section 6. O
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4 A mixed method for biharmonic problems

In this section we consider the application of the spaces at the tail of the above complex to the
mixed discretization of the biharmonic problem (1.2). Throughout this section, k£ > 0 is an integer
corresponding to the polynomial degree of the scheme.

4.1 Local component product

. k . . k
We furnish X, 4, 7 with the component inner product such that, for all (v;,7;) € X 4,7 X
k
Xdivdiv,T’

[QT’IT]divdiv,T = / YT ‘THT +hT Z /
T

(UF TF +h?~DU,F DT,F) +h% Z /UE TE.

Ferr 7F Eegr VE
4.1)
and we introduce the corresponding component norm such that
1
o i k
”IIT I”div div,T -— [IT 5 IT] 2 VIT € Xdiv div,T " (4-2)

Using the boundedness of L2-orthogonal projectors along with continuous trace inequalities on the
faces and edges of T, it can be proved, similarly to [21, Lemma 6], that

”l!givdiv,Tﬂ”divdiv,T b ||T”L2(T;R3><3) + hT |T|H1(T;R3X3) + hilTle(T;R"M‘) VT € HQ(T; S). (4.3)

Moreover, for all 7, € X giv div.7> taking v = DD;ET in (3.18) and using Cauchy—Schwarz, discrete
inverse and trace inequalities along with the definition (4.2) of [|-|ldivaiv,7, We get the following
boundedness property:

k -2 k
”DDTZT”L2(T) < hT ”lzrnldivdiv,T VZT € Xdivdiv,T' (4‘4)

4.2 Discrete symmetric matrix potential

In order to reconstruct a symmetric matrix potential, we first need to reconstruct face traces of degree
k. To this purpose, for each F' € F7, we can apply the principles of the HHO potential reconstruction
(see, e.g., [23, Section 5.1.3]) to devise, from the vector of polynomials (v, (n;vEnF)EegT) €
PHL(F) x (Xgee - PK(E)), a function in PX(F) that can be interpreted as the normal-normal trace
of a symmetric matrix-valued field on 7' (in passing, with these values one could actually compute
a normal-normal trace in P**1(F), but this will not be needed in what follows). The corresponding
reconstruction operator y’rj nF Xfﬁv div.F Pk (F) is, by construction, polynomially consistent: For
all v € PX(T;S), y,’f n. F!giv div.FUIF = nov|pngp. Moreover, the following boundedness property
holds:

_1
nrVrllizey s b o llavas — Vor € X5 i 7 (4.5)
The symmetric matrix potential P§ : XSN divy PX(T;S) is then defined, mimicking (2.22),
such that, for all v, € X4 a7 Forall (v,7) € Pr2(T) x HOK(T),
/PigT : (hessv +171) = / DD?QT v+ Z WTF Z wFE/(nIT,-EvEnF) v
T T Fefr Ec&p E
+ Z WTF / yrlin,FQF 6,,FV — Z WTF / Du,F V+/ Upyr ' T. (46)
Fefr F FeFr F T

By construction, the following polynomial consistency property holds:

PLI% GwrV=v Ve Pr(T;S). 4.7)
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Additionally, taking in (4.6) (v, T) such that hessv + 7 = P§ v, (this is possible by virtue of the direct
decomposition (2.3)), using Cauchy—Schwarz, discrete trace, and inverse inequalities, and invoking the
boundedness (4.4) of DD; and (4.5) of yrlin F» it 1s inferred:

k
||P Ur ||L2(T R3%3) D ”lUT |||d1vd1v T y € Xlele T (4'8)

Remark § (Polynomially consistent symmetric curl). Forall T € PrL(TT), noticing that sym curl t €
Pk(T;S), it holds

3. ]7
ear P;E!](;lv div,T (Sym curl T) = ) sym curl T,

k k yk
PT (SCTIsymcurl T )
showing that P; o Eéﬁ provides a polynomially consistent approximation of the symmetric curl inside
T. A similar construction can be repeated to obtain a consistent approximation of dev grad. Since this

construction is not needed in the present discussion, we leave the details for a future work.
4.3 Global Hessian space, reconstructions, and discrete L?-product

A global space X _dw div, 00 the mesh M, is obtained patching together the local spaces by enforcing the
single-valuedness of the unknowns attached to edges and faces shared by multiple elements. The global

divdiv operator DD} : X%, . — P¥(7;) and symmetric matrix potential operator P}, : X, .

Pk (T; S) (with Pk (Tn; S) symmetric matrix-valued version of the broken polynomial space (2.1)) are

such that, forall v, € de div. i

—

(DDﬁgh)\T = DDégT and (Pf,zh)v = Png forall T € 7p,.

We define the following L2-like product: For all (v wTn) €X —dlv div.

(v),, T divdiv,h = Z ¥y T )divdiv.T
T<T,

where

(ETaIT)divdiv,T = L Pl;"ET : P;IT + ST (QT,IT)- (49)

Above, st is a symmetric positive semi-definite stabilisation bilinear form that ensures the positivity of
(v, -)divdiv,r While preserving polynomial consistency. A possible expression for sz is the following:

st (vr.7p) =1 dwdpriyr - ET’IgwdlvTP;("IT = 77 ldivdiv,T - (4.10)
The following polynomial consistency property easily follows from (4.7) and (4.10):
st (L qwr ¥ Tp) =0 V(v,77) € PH(T;8) X X5 iy - (4.11)

Remark 9 (Difference between the component and discrete L?-products). The main difference between
the local component L2-product defined by (4.1) and the local discrete L2-product defined by (4.9) is
that the latter is consistent whenever its arguments are interpolate of polynomial functions, i.e.,

(IdIVdIV TU’!Sivdiv,TT)diniV’T = / v:T V(U’T) € Pk(T; S)
T

We close this section defining the norm induced by the L?-product: For e € 7 U {h},
— 1/2 k
”z.”divdiv,o = (_.9 T )divdiv,o VI. € Xdivdiv,o‘ 4.12)

The norm dual to ||-||div div,» 1S denoted by ||| div div., /-
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4.4 Discrete problem and main results

Set, for the sake of brevity, Z* := X X Pk (T1,). The discrete problem reads: Find (o,,up) € k
Y. <y, P L h

Zdivdiv,h
such that
(0> Tp)divdiv,h + / DD}t up =0 VT, € Xﬁivdiv,h’
Q (4.13)
—‘/DD’;lgh Vi =/fvh Yy, € Pk(ﬁ),

Q Q

or, equivalently: Find (o, u,) € Z,’f such that
An((ay,un), (x,,vn)) = / fvn  Y(z,.vi) € Z), (4.14)
Q

with bilinear form A}, : Z}’f X .Z}’f — R such that

An((vy,s wh), (T, vi)) = (V),, T )divdiv.h + / DD}t wy - / DD}y, v,.
Q Q

We state hereafter the main analysis results for the numerical scheme defined above. To this purpose,
we equip Z ;f with the following norm:
Iz, vidllz.n = Ty lldivdiven + VallL2 @) V(z,,vi) € Zf. (4.15)
Theorem 10 (Well-posedness). It holds
ﬂh((yh’ Wh), (Ih’ Vi)

1< inf sup . (4.16)
@ w1 €ZEVOY (z, ) €280 (0) (v wi)llzwll (T vi)ll z,n

Moreover, problem (4.13) (or, equivalently, (4.14)) admits a unique solution which satisfies

(@ umllz.n S 1f1lL2(0)-

Proof. See Section 4.6. |

Theorem 11 (Error estimate). Let (o, u) € H(divdiv,Q;S) x L?(Q) denote the unique solution to
the continuous problem (1.2), and assume the additional regularity o € H*(Q;S) N H***(7;,;S) and
u € H*3 (7). Then, denoting by (o), un) € Xﬁiv div.h X Pk (Tn) the unique solution to the discrete
problem (4.13) (or, equivalently, (4.14)), it holds

(&), = Ly aiv.n @t = 7 i)z S B (|0|Hk+1<7;l;R3x3> + |“|Hk+3<7z>) - @17
Proof. See Section 4.7. O

4.5 Numerical examples

The numerical scheme (4.13) was implemented using the HArDCore library (see https://github.
com/jdroniou/HArDCore). In order to validate the error estimate of Theorem 11, we consider the
following manufactured solution

u=x2(1-x)%y%(1-y)%z%(1 - 2)%, o = —hessu

on the domain Q = [0, 1]3. The method supports arbitrary polyhedral meshes, so we have considered
three mesh sequences: cubic, tetrahedral (generated using Tetgen), and Voronoi. In Figure 1 we depict,
for each mesh sequence, the error measure in the left-hand side of (4.17) as a function of the mesh
size for polynomial degrees k between 0 and 3. The convergence plots show good agreement between
the observed and predicted convergence rates. For the Tetgen mesh family, a saturation of the error is
observed for k = 0. A slight reduction of the convergence rate is also observed for the finest meshes
of the Tetgen mesh family with & = 1 and of the Voronoi mesh family for £ € {0,1}. In both cases,
however, the slope is still close to the theoretical one.
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4.6 Well-posedness

This section contains the proof Theorem 10 preceeded by two preliminary results: a uniform equivalence
of discrete L2-norms and an inf-sup condition on the discrete divdiv operator.

Lemma 12 (Uniform norm equivalence). Recalling the definitions (4.12) and (4.2) of the discrete L*-
and component norms, it holds

k
”I.Hdivdiv,o < ”lI.I”divdiv,- < HZ.”divdiv,- VI. € Xdivdiv,-‘ (4-18)

Proof. It suffices to prove (4.18) for ¢ = T € 7}, as the result for @ = /s follows squaring, summing over
T € 75, and passing to square roots. We start by proving that

HIT ”divdiv,T < |||IT ”Idivdiv,T VIT € Xgivdiv,T‘ (4-19)

To this end, we take a generic 7. € Xfliv div.T and use (4.10) to write

1 k k k k
ST (IT’ZT)2 = ”l!divdiv,TPTIT - IT”|divdiv,T < ”udivdiv,TPTIT|||divdiv,T + |||IT”|divdiv,T, (4.20)

where the conclusion follows from a triangle inequality. We then use the boundedness (4.3) of the
interpolator, discrete inverse inequalities, and the boundedness (4.8) of P; to write

k k k k 2 | pk

WL4sy aiv. 7 P77y aivaivr S IP7Tyllp2 7 maxsy + hr IPT Ty gt (rmsxsy + b |Pp Ty g2 (r maxs) 21)
X .

S IPrxrll2rpae) S Ty lldivdiv.r-

Plugging the above estimate into (4.20), we get st (7, IT)% < |l llaiv aiv,r Which, combined with
the boundedness (4.8) of Pk, yields (4.19).

Let us now prove the converse inequality
k
”lzT”ldivdiv,T N ||1T||divdiv,T VIT € Xdivdiv,T' (4~22)
To this purpose, we start using a triangle inequality to write
Ty Maivaiv.r < I, gio7 PETr = Trllaivaivr + Iy gz Py Ty lldivavs = Ti+ T, (4.23)

For the first term, we recall (4.10) to write T1 = s7 (7, IT)% < |lz; laiv div,7» Where the conclusion
follows from the definitions (4.12) of ||-||divaiv,r and (4.9) of the local discrete Lg—product. For
the second term, we use the second line of (4.21) and again the definitions recalled above to write
T2 < ||z |laivaiv,7 - Plugging the above estimates into (4.23) concludes the proof of (4.22). ]

Lemma 13 (Inf-sup condition on DD,’i). The following inf-sup condition holds uniformly in h:

Kk
1< inf sup /QDDhIh th .
PR TN £, ext o) 1Ty llaivdivnllvallL2 o

(4.24)

Proof. From the boundedness property (4.3) of the interpolator along with the uniform norm equivalence
(4.18)and hy < h < 1forall T € 75, and (3.19), it can be inferred that

115, aiv T laivaivn < 17l g2@zss) and DDRIS oo T = nf, , (divdivT) forall T € H*(Q;S),
(4.25)
where n';) ,, denotes the L?-orthogonal projector on P*(7;). Since divdiv : H*(Q;S) — L*(Q) is
surjective (see [27, Point (iv) in Theorem 3.25]), this shows that DDfl is a B-compatible operator in the
sense of [11, Section 8.4.1]. From the abstract theory therein, it can be inferred that (4.24) holds. O
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We are now ready to prove the well-posedness of the discrete problem.

Proof of Theorem 10. By (4.15), (-, -)divdiv,n 18 coercive with respect to the norm ||-||givdiv,n With
coercivity constant equal to 1. In conjunction with the inf-sup condition (4.24) on D DX, this classicaly
yields (4.16). The well-posedness of problem (4.13) (or, equivalently, (4.14)) then follows from classical
arguments (see, e.g., [20, Proposition 7]). O

4.7 Error estimate

The goal of this section is to prove Theorem 11. To this purpose, we preliminarily need estimates of the
discrete L?-product and adjoint divdiv consistency errors.

Lemma 14 (Estimate of the consistency error for the discrete L?-product). Letv € H*(Q; S) and define
the discrete L?-product consistency error

Sprod,h(l’?Ih) = / v P’ZIh - (!givdiv,hv’ Zh)divdiv,h- (4.26)
Q

Then, additionally assuming v € H**' (75 S), it holds
1Eprod.n (V5 )ldivaiv.ns S B Ul g 7 pacs)- (4.27)

Proof. We start by decomposing (4.26) as follows:

Eproan(iTy) = D [T1(T) + Tn(T) + Ty(1)]
TeT,

where, recalling that P§ !’G‘l v) = n’;, v by (4.7),

k
ivaiv.r Tp 1
T(T) = /(U - ”I;D,TU) : PrTy, To(T) = / Pgllcclivdiv,T(ﬂkP,TU ~v): Prag,
T T

I3(T) = —s7 (!(l;ivdiv,T v, IT)‘

We next proceed to estimate these terms one by one.

The first term is readily treated using a Cauchy—Schwarz inequality along with the approximation
properties of the L2-orthogonal projector (see [18, Lemma 3.1] and [23, Theorem 1.45]) for the first
factor and the definitions (4.12) of ||-||div div,r and (4.9) of the local discrete L?-product for the second:

k k k+1
T (D) < v - Tp rVll2rrea) IPTTr 2 (7 maxsy S h * |U|Hk+1(T;]R3><3)”IT”divdiv,T-
For the second term, we preliminarily notice that
k 7k k @8k k K+l
HPT!divdiv,T (”P,TU - U)”LQ(T;Rst) < ”lldivdiV,T (”p,rv - v)”ldivdiv,T S h |U|Hk+1 (T ;R3*3)>
(4.28)

where the conclusion follows combining the boundedness (4.3) of 1 k written for r = v — w5, v

k
Ldiv div,T P.T
with the approximation properties of the L?-orthogonal projector and hr < h for all T € 7;,. We can

then use a Cauchy—Schwarz inequality along with (4.12) and (4.9) as for T (T) to write

[T2(T)| < ||Plj<"lfhvdiv’]" (U—”;,TU)HL%T;RSXS)||P§"IT||L2(T;R3x3) < hk+1|U|Hk+1(T;R3x3)||IT||divdiv,T-
For the third term, recalling the polynomial consistency (4.11) of the stabilization bilinear form, we
can write, for all 7. € Xﬁiv div.T
1 T3(T)| = Is7 Ly giv.r (V= T 1 0), 77|

k k
< Ly giv.r W — Tp V) lldiv div,r 1T |ldiv div,7

(4.18) (4.28)
k k k+1
S Mgy givr @ = 7o p W aivadiv, 7 177 ldivav,r S B Ul gra 7 gocsy 177 lldivaivr . O
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Lemma 15 (Estimate of the adjoint consistency error for the divdiv operator). Let v € H 2(Q) be such
that v = 0,v = 0 on 0Q and define the divdiv adjoint consistency error linear form Egiy div.n(V;-) :

Xk — R such that, for all T, € Xk

—divdiv,h —divdiv,h’

gdivdiv,h(v;zh) = / hessv : Pﬁzh - / v DDﬁIh, (4.29)
Q Q

Then, additionally assuming v € H**3(Ty,), it holds,

1 Edivdiv.n (V; )ldiv div,ne S B V] s (g5 (4.30)

Proof. Let,forallT € 75, vy = 7rk+2 v. Combining (4.6) for (t,v) = (0, vy) with the definition (4.29)

of the adjoint consistency error, we get forany r, € Xk Xiivdiv.ne such that ||z, ||aiv div,n = 1,

gdivdiv’h(v;zh) = /(vT -v) DDkTT + Z /hess(v —vr): Pk T

T<T, T<T,

£ 3 N wrr Y wre [ (fgrene) o7 -v)
T, FeFr Eecép E

30 Y orr [ Db tap(vr =)+ Dop 7 =)
TeTn FeFr

where the insertion of the face or edge traces of v and of d, v into the boundary terms is justified by their
single-valuedness along with the assumed boundary conditions. Using Cauchy—Schwarz inequalities
along with the approximation properties of vz, the definition (4.2) of |||-|||giv div,7 » and the boundedness
(4.4) of DDX, (4.8) of P and 4.5) of y,’jn’p, we infer

N 18)
kel k+1
Edivaiv.n (Vi T))| S B W gres gy T, laivaiv, < A v s ) - m

Proof of Theorem 11. Accounting for the inf-sup condition (4.16), by [20, Theorem 10], it holds

k k
(o), = Ly giv.n @ 4 = Tp )l 2.0 S €0 (0, u5 ) || 2,00 4.31)

where ||| z.5.. denotes the norm dual to ||-|| z., and the consistency error linear form &, (o, u;-) :
Z ;l‘ — R is such that

En(0 i T, 1) = /Q £ = AL gy 7 ). (20 v)

= 8p1rod,h(0'§ zh) + /(diV divo = h—divdiv,To-) Vi + Ediv div,h (U; 1;,),

where, to pass to the second line, we have used the fact that f = — div div o almost everywhere in Q,
added the term /Q(a' +hessu) : Pflg ,» = 0, and used the definitions (4.26) and (4.29) of the L?-product
and adjoint divdiv consistency errors, while the cancellation follows from (4.25). To prove (4.17) it
suffices to use (4.27) and (4.30) to estimate the terms in the right-hand side of the above expression and
plugging the resulting bound into (4.31) after observing that ||7,, [|aivdiv.n < |(T,, Vi) |l z, by definition
of this latter norm. |

S Local complex property

We collect in this section the proofs of the complex properties (3.22) and (3.23).

17



5.1 Proof of (3.22)

Lety, € L’;evgra a7+ We need to prove that the edge, face, and element components of E?DG; Vr

(obtained plugging (3.6) into (3.16)) vanish.
5.1.1 Edge components

Given E € &r, and letting, for the sake of brevity, [} g = (5% (vv, “tg.vv, - tg, V¢, E), we have that

SC%H%]EKE =C (SIEZH((GV,Vl)nn,E’ (GV,VQ)nn,E’ G"’E)
1
- @g’l((dev Gv,V1)nn,Ea (dev Gv,Vz)nn,E’ Gv,E - g (tI‘ GV’E + rt’E) 12)]

:C[ll —IQ] .

Since (51";1 acts component-wise and the off-diagonal entries of its arguments in ¥; and Ty coincide,
the off-diagonal entries of these terms coincide as well, showing that there exists 1 € P**1(E) such that
T1 — Iy = AI5. Hence,

SCEIDGEy . =C(AlL) =0,

where the conclusion follows from the definition (3.12) of C.

5.1.2 Face components

Let now F € F7. For all r € P*1(F), using the definition (3.13) of SC,';%F with 7, = &];KF’
invoking the definition (3.3) of DGﬁt’F with test function w = curlg r € R¥(F) ¢ RT*¥L(F) (cf.

(2.4)), and noticing that curlp r - npg = —0;,.r on every edge E € Ef, we have

k+1 k _ k k+1
/F SCrt DGy r = /F DG, pyp ewlpr— ) wpp /E G5 (V) s Vg s VmE) “MET

Ec&p
(3.3) .
= _/Vn,FW_ Z wFE/(Vn,E'nF)atEr
F EESF E
_ 65k+1 X
WFE E ((vV1)n’Es(vV2)n’Esvn,E) Rpr

EcEr E
(2.8)
= - Z wrel[(vv -np)r]e =0,

EGSF

where we have concluded observing that, for any family (¢y )y e, € RV,

Z wrelev]e=0 (5.1)

EGSF

Writing the definition (3.14) of SC}}. for 7. = DGy ., we get, for all r € PK*1(F),

. k k
v [ schinely, -

k . E k+1
= _/ DG“’FKF .CurlF gradFr+ wFE/ ®E ((vV1)n’E’ (vVQ)n’E’ Vn,E) : nFE anFEr
F E
EcEF

T T
- Z wFE/(QnFEGv,E"FE +npGy gnp) O, r
E

EcEr
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1

2nl _Isnpg +nIsnr

FE
+ E wFE/ 3 [ter,E+(5l;;(VV1 'tE,VVQ'tE,Vt,E)] O
EESF E

k+1
- Z wFEL”;E®E+ ((Gv,Vl)nn’E,(Gv,Vg)nn,Ean,E)nFEr
EGSF

+ Z wFE[[(nIT:E devG, vnrEg) F]]E,

EESF

where we have used the fact that both ngg and ng have unit Euclidian norm for the fourth term.
We next expand, in the above expression, DGft’ rYp according to (3.4) with o = curly gradp r €
CG* L (F) c cG™*(F) to go on writing

/vtp W+ Gy Ftr 7 grady r)

Z wFE/ VtEat Z wFE/(VnE NEE) Oty Onpp?
E

Ec&F Ec&EF
+ Z wFE/ (—Rn;EGv,EnFE —M+ﬁ“€~hg‘\) 8tEI’
Eeé& E
F
+ Z wFE/®E(VV1 tg, Vv, “tE, Vi E) Ol
EES[-
1
b Y wrk [ OOV O V) 0 On
Ec& 2
F
_ T ®k+1 G G G
wre | Rpg®g ((Gy vi)un g: (G Vo) yp g> Gr.E)RFET
Eec&Er E

1

+ Z wrel(npgGy vnre) rle - ‘W’
EESF E

where we have used divy curly = 0in the first cancellation, the fact that tr(curly grady) = roty grady =
0 to cancel the second term, noticed that, for all £ € &F, tITz (curlp gradp r)npg = —BfEr and
n; E (curlp grady r)npg = =0, On 1 in the third and fourth terms, and observed that, forall E € &,
n;EGv,EnFE + n;Gv,Enp =tr Gy g since (npg, nF) is an orthonormal basis in the fifth term. The
cancellation of the last term follows noticing that n . .nrg = 1 and invoking (5.1).

Using the definition (2.8) of &3, on the terms where this operator appears, we then get

I= Z U)FE‘/EVt,E Of.r + Z wFE/(vn,E‘nFE)atEanFEr

EcEFr EcEFr E
- Z wFE/(nFE v.ERFE) O 1
Eec&Er
- Z wFE/vt,EatQEr+ Z wrel(vy - tg) Orpr]E
Ec&r E Ec&F
- Z wFE/(Vn,E'nFE) atEaanr+ Z wFE[[(Vv 'nFE)anFEr]]E
Eec&r E EcéF
T (5.1
+ Z wrg | (npgGy ENFE) Op 1 = Z wre[(vv)e - gradp g =0,
Ecéf E Eec&F

19



where the penultimate equality follows simplifying the terms involving integrals over E and gathering
together the edge jump terms after observing that (vy npg) Opppr+ vy -tg) Opr = (Vv), g -gradg r.

5.1.3 Element component

To conclude the proof of (3.22), we it remains to show that the element component of E;E; Vr
vanishes. Writing the definition (3.15) of SC;‘W forr, = DGTvT, we get, forall o € ﬂ_’k(T),

1::/SCiﬁl}gT:U:/DGigT:cur10'+ Z wTF/DGZ,FKF:(Gan)tt,F
T T Fefr F

k
+ Z wTF/DGnt,FKF'(UX”F)nt,F-
F

F€7:T

Next, we expand D GX 7Y according to (3.5) (which is possible since curl o € SRNT) c SR™X(T),
cf. (2.6)), DGtt pV e according to (3.4) (after noticing that, by (2.12), (00 X np )y r € CQ_’k(F)), and
DGﬁt’F_F according to (3.3) (possible since (o X nF), f € Pk(F;R?) ¢ R™*1(F)). This gives

i =T
%:—/vT.dw—euﬁﬁ+ Z a)TF/ (vupnpcurlonp +, o curlony)
T F

FeFr
1
- Z WTF VtF divp (0 X np)y p— Z wrr | Gyrly: tt.F
FeFr FE‘FT F
T
+ Z wrF Z wFE/(Vn,E'nFE)"FE(O'X"F)n,F”FE
FeFr Ecér E
.
+ Z WTF Z wFE/Vt,E te(0 X NE)y pRFE
Fefr EcEfp E
_ Z wTF/Vn,FdiVF (O'an)nt’p
FeFr r
+ Z wrF Z wFE/(VnE np)((0 X Rp)ps F - NFE),
Fe¥r Ec&Ep

where we have cancelled the first term using the identity div curl o = 0 and the sixth term using the
fact that o is symmetric, hence (0" X np),, p is traceless. Noticing that, by (2.10), VZ rpeurlonp =
ve.F - (curl o)y F, and rearranging the terms, we can go on writing

I = Z wTF/vnF[nFcurla'n W a'xnp)mp]
Fefr

+ Z wTF/VtF [(curl 0)gn, F=dive (0 X np)y 5|
Fefr

+ Z WTF Z wFE/(Vn,E'nFE)n;E(O'an)tt,FnFE
E

FeFr Ec&EF
T
+ Z WTF Z wFE/Vt,E tE(O'X"F)tt,FnFE
Fefr EcEp E

+ Z WTF Z wFE/E(Vn,E'"F)((O'X"F)m,F'"FE),

Fefr Ec&Efp
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where the first two terms cancel thanks to the identities nj. curlony = divy (00 X np),, p and

(curl o)sn,r = divp (00 X np)y g, respectively. Gathering together the terms involving integrals
over edges, and using (2.10) with u,, = v, g and w = {npg, nr}, we then have

T = Z WTF Z wFE/ [?,T,E(O'an)nFE+vt,Et,T5(a'><nF)nFE]
FETT EESF E

= Z wrF Z wFE/(Vn,E+Vt,E tg) o(nF XnpEg)
E

FeFr Ec&r
= T
=- Z WTF Z wFE/(Vn,E +veEtg) otg =0,
Fefr Ec&EFr E

where we have used the vector triple product formula to pass to the second line and the fact that
(tg, npEg, np) forms a right-handed system (i.e., ng X npg = —tg) to pass to the third line. Finally, the
conclusion follows observing that, for any family of functions (¢£)rcg, such that ¢ € L?(E) for all

E e (ST,
Z WTF Z wFE/E¢E =0. (5.2)

FeFr E€&r
This completes the proof of (3.22)
5.2 Proof of (3.23)
Letr, € X k We need to show that DD§ E; 7, = 0. Using the definition (3.18) of DD§ with

—symcurl, 7"
Yr = &5175 we have, for all v € P¥(T),

1::/DD§E§IT\;=‘/SC§IT :hessv — Z WTF Z wFE‘/(n;ESC’g”IEnF)v
r r Fefr Ecér E

- > wTF/SCf,;{FIF Onpv = wTF/SCkDf}IFv=:‘II+§B+€+©.
Fefr r Fefr F

Next, we expand SC% according to (3.15) with o = hessv € Wk_Q(T) - 7—("k(T) (cf. (2.7)), and
SCH, SCitl . and SC' 1. according to (3.11), (3.13), and (3.14), respectively, to write

nn,F>

%z/TSR,T : curlhessy
T

A
+ Z U)TF/Tcg’Fi(heSSVXl’lF)tt’F+ Z wTF/TR,F-(hessvan)m,F
Fefr r Fefr F
T
- Z WTF Z wFE/(nFECCr,EnF)V
F€7:T EESF E %
T k+1
+ Z WTF Z wFE/ (nFEC(ﬁE ((Tvl)nn,E’(TVQ)nn’E9TE)nF) %
FeFr Ec&r E
- Z (UTF/TR,F'CurlFanFV"' Z WTF Z wFE/(Tt,E‘nF)anFV G
FeFr F Fer Ecép E
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- Z wTF/FTCg,F:curlpgradFv+ Z WTF Z

Fefr Fefr Ec&F

T T
- Z WTF Z CUFE/ (2nFETEnFE+nFTEnF) 8tEv D
FeFr Ec&Efp E

T T
- Z WwrF Z wFE/nFECr,EnFEV+ Z WTF Z wFE[[V"FETV nFE]]E
E

Fe¥fr EcEp FeFr Ec&EF

wFE/(Tt,E : nFE) 5nFEV
E

=20+3:1+-~-+3:11.

We infer Ty = Ty and Ty = —T5 from the identities (hessv X nrp), p = curlp gradp v and
n;(hessv X ng) = curlg Op,v. It remains to shows that the edge terms cancel. From the defini-
tion (3.12) of C, we get , for any n € R*2, n}. .Cqnp = —3n}. .qnpg + snpnnp, hence
T T 1
nFECnnF+nFEnnFE:§trn. (5.3)

Applying the above equation to 7 = C; g and using (5.2) with ¢ = % tr Cr g, we infer T3 + T19 = 0.

We can then merge some derivatives on edges. Since (¢, g - BF) On.V + (T4.E - RFE) OnppV = Tt.E -
(gradv),, g, wealsohave Te+Tg = 0from (5.2). Letting Ty(E) = /E (2np TenFpE + n;‘rEnF) OtV
and observing that the quantity in parenthesis is equal to tr tgIs + n; g TERFE since (ng,npg) form
an orthonormal basis and the trace is an invariant, we get

19(E)=‘/trTE(’)tEv+/n;ETEnFEc?,Ev
E E

(2.8)
= /trTEatEV—/HIT:E(5];;+1((TV1),,,,,E,(Tvg),,,,,E,TE)nFEV+[[n1TcETV nrev|e
E E

(5.3) 1
= /mE (9;Ev—/§tr®]1§+1((Tvl)nn,E,(Tvz)nn’E,TE)v
E E

+ / ";EC®Z+1((TV1)nn,E’ (TVo)un s TEVRFE V + [npp Tv nFEV]E.
E

Therefore,

1
To+Ty+31 = Z WTF Z wFE/ (5tr(ﬁ]z;l((TVJnn,E,(TVg)nn,E,TE)V—tI"TE OV
E
FETT EESF

Using (5.2) with ¢g equal to the integrand in the above expression readily yields T4 + Tg + T4 = 0,
thus showing that ¥ = 0 and therefore concluding the proof.

6 Local exactness

This section contains the proof of the relations (3.25), yielding the exactness of the local complex (3.20).
6.1 Proof of (3.25a)

Having already proved (3.21), we only need to show that

k k -1
KerDGr C Loy praa R (T). (6.1)
To this purpose, we lety, € X gev grad.T be such that DG'} v, = 0and show the existence of w € R ~1(T)
suchthaty, =1 gev grad,n V- We start from the vertex and edge components, which provide the expression

for w, then show that the face and element components are also equal to the interpolate of w.
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6.1.1 Vertex and edge components

Given an edge E € &r with vertices V; and Vs, enforcing %ZK g = 0, corresponds to the following
conditions (cf. (3.6)):

devG, y, =devG, y, =0, (6.2a)

G5 (Gy.v)um. £ (G Vo) pm. - Gr.E) =0, (6.2b)

Gy - % (ter,E + G vy, - tg vy, - tE,v,,E)) I, =0, (6.2¢)
G (V) u.g> Vo) g V) = 0. (6.2d)

From (6.2a) we infer, for all V € Vg, the existence of A1y € R such that G,y = Ay I3. Condition (6.2b)
then gives Ay, I3 = Ay, I2 = G, g which implies, in particular, Ay, = Ady,. Since this reasoning applies
to all edges E € &r, this yields the existence of 1 € R such that Ay = Aforall V € Vr and G, g = Al
for all E € &r. Substituting this value of G, g in (6.2¢) results in (ﬁf{:” (vv, - te, vy, " tg,Ve.E) = 4,
which gives, accounting for (2.8), (vy, —vvy,) - tg = Ahg and vs g(x) = n’;)‘,}g [vv1 +A(x — Vvl)] -tg
for all x € E. Condition (6.2d), on the other hand, gives (vv,), g = (Vv,),, g = Vn,£. Combining the
above results on the tangential and normal components of the vertex values vy yields

VVQZVV1+/UZE[E:VV1+/1 [(VVQ_VVI)'tE] tg VE € Er.

The only possibility for this condition to hold is that there exists R1(T) s w : T 3 x > a+A(x—x7) €
R3 with @ € R3 such that vy = w(xy ) for a given vertex V € V¢ (which is sufficient for vy, = w(xy)
to hold also for all V' € Vy \ {V}). We can easily check, recalling the definition of the interpolator

on Xﬁevgra AE (which corresponds to the restriction to £ of (3.1)), that the above conditions on the
components of v . amount to
_ gk
Ve = !devgrad’Ew VE € &r. (6.3)

6.1.2 Face components
Let now F € #r. Enforcing ﬁ'g v, = 0 amounts to the following conditions, in addition to (6.2):
DG’;LFKF =0 and DGft,FgF =0.
Enforcing DGﬁt,FKF = 0 in (3.3) written for w = z € P**1(F;R?), and accounting for (6.3) gives,
—/ Vn,F diVFZ + Z a)FE/(w . nF)(z . nFE) =0 Vz € Pk+1(F;R2).
F Ec&Efp E

Integrating by parts the boundary terms and noticing that grad,(w - ng) = 0 since the function
T >x — w(x) -np € Ris constant on F (see [21, Proposition 8] for a proof of this result on general
meshes), the above condition translates to fF (w-np—vyr)divez=0forallz € Pr*1(F;R?). Since

divp : P¥1(F;R2) — PX¥(F) is onto, this implies
Vn,F =W|F " RF. (64)

Enforcing then DGZ’ rYp = 0in (3.4), removing projectors according to their respective definition,
and using the integration by parts formula (2.15), we get, for all o € CG % (F),

1
‘/(wt,F — Ve ) -divp a’+/ (/l - —Gv,p) tro=0.
F F 3
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Taking o € CG**(F) and using the fact that divy : CG%*(F) — P*1(F;R?) is onto (cf. Lemma
17) along with tr o= = 0, this condition yields

k-1
Vi,F = TTp pWt F. (6.5)

Taking o0 € CG*~1(F), using the fact that divy o = 0 and that tr CG* ™1 (F) — P*~1(F) is onto, we
have, on the other hand
Gy.r =34. (6.6)

Gathering (6.3), (6.4), (6.5), and (6.6), and recalling that the above reasoning holds for any F' € Fr, we
have thus proved that

Yp = !ﬁevgrad,FW VF € 7:T : (67)
6.1.3 Element component

To conclude the proof of (6.1), it only remains to show that DG;E v, = 0 implies
vy = ﬂ’;;}w. (6.8)

This relation reduces to the trivial identity 0 = 0 for k = 0. Let us then consider the case k > 1. Enforcing
DG;‘{T = 01n (3.5) and accounting for (6.7), (3.5) gives, for all o € SREK(T) ¢ SR™(T),

0:—/vT-div0+ Z a)TF/ ((w-nF)n;UnF +7rk’FWtT’F0'nF) :/(w—vT)-diVO',
T Ferr F T

where we have used (2.11) to remove the projector and the integration by parts formula (2.13) (after
noticing that o € SR%*(T) is traceless) to conclude. Since div : SRS*(T) — P*~1(T; R?) is onto,
this relation implies (6.8), thus concluding the proof of (6.1).

6.2 Proof of (3.25b)

Let 7, € XX | i be such that SCi 7, = 0, ie., recalling (3.11) and (3.16):
C(Crt = O (TV)n s (V) TE)) =0 VE €&, (6.9)
SCHpTp =0 VFe7r, (6.10)
SCityT. =0  VFe7r, (6.11)
SCit, =0. (6.12)

In order to show that Ker &i c Im DG’}, starting from the above conditions we will explicitly
construct v, € X ﬁev grad.T such that

DGy, -1, 6.13

determining, in this order, its vertex components (cf. (6.21)), edge components (cf. (6.23)), face
components (cf. (6.34), (6.37), and (6.38)), and element component (cf. (6.47)).

6.2.1 Vertex components

We infer from (6.9) and from the definition (3.12) of C the existence of Az € P**1(E) such that
Cee = 05" (V) unr (TVo)um. g2 TE) + AED. (6.14)

Evaluating then (3.13) for any F € #7 and r = 1 € P¥*1(F) and enforcing (6.11) gives

0=- Z wFE‘/Tt’E~nF. (6.15)

EESF E
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On the other hand, enforcing (6.10) in the definition (3.14) of SC ’g}, written for a generic r € P**1(F)
gives, using (5.3) with = Tg and expressing C; g according to (6.14),

O:—‘/Tcg,p:curlpgradFr+ Z wFE/(Tt,E-nFE)GnFEr— Z wFE/trTEHtEr
F E E

EcEF EcEF

Vo) un.g> TE)VRFET — Z wFE//lE r,
E

EGSF
(6.16)

where the cancellations follows from (2.8). Taking r = 1in the above expression gives Y. peg,. WFE / rAE =
0 for all F € Fr. Since the first Betti number of T is equal to 0, we infer from this relation that the
piecewise function equal to fE Ag on each E € &r can be regarded as the gradient of a piecewise affine

function on the edge skeleton of 7', i.e., there exists a family (v )y cqy, € RYr such that

//IEZ[[/lv]]E VEE(ST. (6.17)
E
We infer from (6.15) and (6.16) that, for all r € P1(T) and all F € F7,
Z CUFE/ (ﬁ,E-gradr—trTE(?tEr—/lEr) =0. (618)
EESF E

We construct a family (zy )y e, € (R*)Vr such that, for all E € &,
[z - W] = / p W v e PUERY),  (619)
E

[(zy - te)oe,rlE = —/ (tr‘rE Ot + AE r) +[Av rlE Vr € PLE) (6.20)
E

as follows: we first set an arbitrary value on a vertex Vj, then choose the value on neighboring vertices
according to the relations (6.19) and (6.20). The relation (6.18) ensures that this construction is
consistent. Indeed, any path leading to a given vertex will give the same value for that vertex, because
the difference between two paths is a closed loop which can be realized as the boundary of the union of
some faces F' € Fr (since the first Betti number of T is zero).

We conclude fixing the vertex components of the sought v, € Xﬁev grad,T follows:

Vy =2v and Gv,V =Ty + /lvlg forallV e (VT- (621)
With this choice it holds, for all V € Vg,
devG, vy =devty + ly devI; =devty =Ty, (6.22)

where the conclusion follows observing that 7y is traceless.
6.2.2 Edge components
We next identify suitable edge components for v, satisfying (6.13). Specifically, for any E € &r,
we define Gy g € Pk (E;R?*?), VnE € P*(E;R?), and vee € PYL(E) such that, for all o €
PELE;RP?), all w € P (E;R?), and all r € PK*1(E) such that np gt =0,
/ Gv,E :atEE' = —/ C-,-,E 10+ [[((TV)nn,E +/1vlg) : &]]E, (6.233)
E E
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/ Va E * atEW = —/ TtE ° w+ [[(Vv)"’E . W]]E, (623b)
E E

/ vep 05 =[(vy - tg)orlEe +/
E

tI‘TEatEI’+//1EV—I[/lV I"]]E. (623C)
E E

Let us check that, for any edge E € &7, DG ’fE Vg = Tp, where we remind the reader that the components
of &Zg g are extracted from (3.6). The fact that the vertex components coincide is expressed by
(6.22), so we only need to consider the edge components.

It holds, for all & € P+ (E;R>?),

L ®§+1((GV,V1)nn,E’ (GV,VQ)nn’EWGv,E) :a:
2.8),(6.21 — — 6.23a) —
2862 —f Gt 00+ [(T e + Ay I) : 5] O / Cop & (624)
E E
On the other hand, for all & € P°(E; R?*?), (2.8) together with (6.21) gives

/ ij’:’-‘-l((GV,Vl)nn,E’ (GV,Vz)nn,E’ GV,E) o
E

= [ V)un g Tle + [AvI2: Fle 2 [V )pn T + / Agly: (6.25)
E

— (6.14) —
:L[(ﬁlg'l((‘['vl)nn’E,(TV2)nn’E,TE)+/1E12] O = ‘/ECT’Eio',

where we have used (2.8) along with the fact that 0. & = 0 (since & is constant) towrite [ (Tv ), £ : T | E =
fE (5’&*1((1'\/1)""’15, (Tvz)nn’E, Tg) : 0 in the third equality. Summing (6.24) and (6.25) and noticing
that & + o spans P**1(E; R?*?) as (7, 7) spans 7)§+1(E; R2%2) x PY(E; R?*?), we conclude that

G5 ((Gy.v)pm. g Gy V). Gv.E) = Cr . (6.26)
Next, for all w € PK+1(E;R?), writingw =w +w withw = 71'23 £ W, we have

(2.8) ~ —~ _
/E (5',}+1((VV1),,,E, (Vo). VnE) W = —/Evn,E oW [ OV)p g WIE+[OVV)ue - WlE

(6.23b), (6.19) /
= T¢t,E "W,
E

G (v npr (Vo) g ViE) = Tr.E- (6.27)

To conclude the equality of the edge components, we have to prove that

so that

1
Gv,E - § (tl“Gv’E + (ﬁlk_'?(vVl “tE, Vv, - tE,Vt’E)) I, =71g. (6.28)

To this purpose, we start by noticing that, for all o € PSH(E : R?*?) letting, for the sake of brevity,
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v

g =0- %(tr o)ls,

S

.1
:/Gv,E:atEO'_g/QBZ(VVl 'tE’vVQ'tEyvt,E) tr((?tEO')
E E

1
G, E - 3 (tl“Gv,E + Gk (vy, - te, vy, 'tE,Vt,E)) 12] 200

6.23), (2.8 . . 1
( %( )_/ CT,E :0-+|I((TV)nn,E +/lvlg) IO’]]E + 5/ Vt.E tr(ﬁfEa')
E E
1
__II(VV 'tE)tI'(a U)]]E
3 = ) ) (6.29)
= —/ CT,E :6'+[[(Tv),m’E 6']][5 + —[[/lv tI"O']]E +—/vt,E tl"(atQEO')
E 3 3JE
1
- §|I(VV tg) tr(00) | E
(6.14), (2.8) .1 1 1 9
= TEZatEO'—— /lE tr0'+—[[/lv tI‘O']]E+— V¢ E tI‘(at 0')
E 3JE 3 3JE E

- %[[(VV tg) tr(0,0) | E,

where we have additionally used the fact that Iy: d = % tr o in the fourth equality. Taking o = v with
v € P (E; R??) such that trv = 0, (6.29) yields

fIz/TE:@tEv. (6.30)
E

For o such that o= = rI5 for some r € P(’)‘”(E), (6.29) gives

1 2
T = —/tI‘TE Opr + = (/ Vt.E (9t2Er— [[(VV -tE)BtEr]]E —//lEl’+[[/lV r]]E) . (6.31)
3 E 3 E E

If, in particular, we take r = 7 such that 77;, £r = 0, plugging the definition (6.23c) of v, £ into (6.31)
yields

T =

—

tr T, 7. (6.32)

On the other hand, taking g =7 € Pol(E), we infer from (6.21), (6.20), and (6.31) that

1 2
z:-/tnE 8tEF+—/trTE a,E7=/trrE &, T (6.33)
3JE 3JE E

Noticing that &, [v + (7 +7) I] spans P* (E; R>*?) when v spans the zero-trace subspace of P (E; R?*?),
7 spans the subspace of functions in P**!( E) with zero L?-orthogonal projection on P! (E), and 7 spans
P& (E), we conclude from (6.30), (6.32), and (6.33) that (6.28) holds. Combining this relation with
(6.22), (6.26), and (6.27) gives

EZEE:EE VE € &r.

6.2.3 Face components

Let F € F7. Since divy : RE**1(F) — PK(F)isan isomorphism, there exists a unique v, r € P*(F)
such that, for all w € RS (F),

/ Vu,F divp w = —/ TRF W+ Z WFE / (Vue-np)(W-npg), (6.34)
F F E

EESF
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with v, g defined by (6.23b). Plugging this v, r into the definition (3.3) of DGﬁt, p Wwith test function
w in REFL(F) ¢ RTF(F), we get

c k+1 k _ . ck+1
DGnt FYF = T g TREF- (6.35)

Recalling the definition (2.2) ongk_1 (F) and using the decomposition P* (F; R?) = grad, P*1(F)®
x1tPk=1(F) (see [5]), we can write
CG* L (F) = curlg grad, P (F) @ curlp x*P*1(F). (6.36)

Since tr : curlF lek‘l(F) Pk=1(F) is anisomorphism (notice that P*~1 (F) = tr PKL(F;R?) =

trcg*- 1(F) tr(curlp xt Pk (F)) since tr G>*"1(F) = 0 and tr curly grady = roty grady = 0
and count the dimensions), we can define uniquely G, r € P*~1(F) enforcing the following condition:
For all o € curly x*P*1(F),

1
§/Gv,F tro = Z wFE/(Vn,E'nFE)”;EO'nFE
F E

Ec&F

T .
+ Z a)FE/Vt,EtEO'nFE—/T(;g’F.O'.
E F

EESF

(6.37)

Likewise, since divy : CG%* (F) — P*"1(F;R2) is an isomorphism (see Lemma 17 below), (3.4)
yields a unique

ve.r € P*L(F;R?) such that TG, L DG v, = ncg FTCG.F- (6.38)

We next check that the face components defined above (along with the vertex components defined by
(6.21) and the edge components defined by (6.23)) yield the equality of the face components in (6.13).

Enforcing SCﬁle‘rF =0 (cf. (6.11)) in the definition (3.13) of SCfJ&F, we get
/ TR F-curlpr = Z a)FE/(T,,E “Rp)r Vr € Pk”(F). (6.39)
r EcEr E

Letting r € P*1(F), writing the definition (3.3) of DGﬁt’FgF for w = curlp r € PX(F;R?) c
Rk (F), and using the fact that divp curlp r = 0 and curlp r - npg = =0 r gives

k
/FDGM FYp-curlpr

= - Z wFE/(VnE ng) Ot

Ec&EFr
(2.8) = Z a)FE/(ﬁll{;—l((l}\/l)n,E’(vVQ)n,E’v"’E)'nFr_ Z wrel (v rle
Ec&EF E Ec
6.39
627) = Z wFE/(Tt’E‘nF)r(:)/T'R,F‘CurlF T,
EESF E F

where we have invoked (5.1) with ¢y = (vy -np)rinthe cancellation. Hence, we have 7r DGnt FYp =

’;2 FTR.F which, combined with (6.35), gives, after recalling the definition (2.4) of R K+ and using
[21, Eq. (2.14)],
DG}, pvy =TrF. (6.40)
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For any r € P**1(F), writing the definition (3.4) of DGft’ Y Witho = curly grady r and noticing
that divg curly grady r = 0, tr curlp grady r = roty grad r = 0, and that tg (curlp gradp r)npg =

—8t2Er and n;E(curlF gradp r)npg = —0p . 0,7 forall E € Ef, we get

k
/DGtt’FKF:curlpgradFr:— Z wa/(v,,,E-an)a,,FEatEr
F EGSF E

- Z wFE/ Vt,E atQEr =31 +3F9. (641
E

Ec&Efp

Writing Ty = Y geg, wreT1(E) and using the the definition (2.8) of ®*+!, we have, for all E € &,

TI(E) = / 65l)_f;Jrl(Vvl “RFE,VVy RFE,VnE *NFE) Onppt — [ (Vv - BFE)On T E
E

. (6.42)
= /(Tt,E “HFE) Onppt — (Vv - FE)On 7| E.
E

To treat the second term, we start by noticing that, for all r € P+l (F),

Z wFE/ter,EatEr

Ee&Er E
2.8)
= — Z a)FE/tr(Y)?l((Gv,Vl)nn’E,(Gv,Vg)nn,E,Gv,E)’""‘ Z wFE'Itr(Gv,V)nn,Er]]E
EcEr E EcEr
(6.26)
= - Z wFE‘/trC,-,Er+ Z a)FE[tl‘(Gv,v)nn,E”]]E
Eec&r E Ecé&F
(6.14), (6.21)
= — Z a)FE/tr(ﬁz-‘-l((TVl)nn,E’(TVQ)nn,E’TE)r_2 Z wFE‘//lEr
s E Ecg E
- F

+ ) orelr (@) rlE + W
EcEFp F
(258) Z wFE/tr‘rEa,Er—2 Z wa//lEr,

EESF E EESF E

where the cancellation is a consequence of (5.1) with ¢y = Ay r. Combining this relation with (6.28),
we get

Z wFE/®;’§(VV1 “tE, Vv, tE, Ve E) O = — Z wFE/trTE Oyt — Z wFE//lEF-
E E E

EESF EESF EGSF

Therefore, using the definition (2.8) of %, we have that

I = Z wFE/ O (vy, - tg, Vv,  tE,VeE) Ol — Z wrel(vv - te)d 7| E
E

EE(SF EESF (643)
= - Z (.UFE/tI‘TE 8,Er— Z wFE//lEr - Z UJFE'I(VV -tE)BtEr]]E.
EcEfr E EcEfp E Ec&EF
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Plugging (6.42) and (6.43) into (6.41) gives
/ DGft,FKF ccurlp grady r
F

= Z wFE/E(Tt,E'nFE)anFEF— Z wFE/EtTTEatEi’— Z wFE//lEl’

Ecép Ecép Ec&r £
(6.44)
- Z WFE ([[(VV “HFE) Ot |E+[(vy 'tE)atEr]]E)
Ec&p

:/Tcg,FicurngfadFr_W,
F Ec&p

where we have used (6.16) in the second equality, enforced (6.10) to cancel the term involving SC kD+ FTp
and invoked (5.1) with ¢y = vy - grady r to cancel the sum over the edges. The definition (6.37) of
G, F readily gives, for all o € curlg xtPrL(F),

/DG“FVF /TCQF o. (6.45)

Recalling the definition (6.38) of v, r and using (6.44) and (6.45) together with the decomposition (6.36)

to infer n’égl FDG“ Ve = Ié_gl,FIF’ we finally get, after recalling (2.5) and using [21, Eq. (2.14)],

DGy, pvy =Tcg.F- (6.46)

6.2.4 Element component

Finally, for the element component, we use the fact that div : SR®¥(T) — P*Y(T;R?) is an
isomorphism to find, from (3.5),

vy € P*HT;R?) such that 75y . DGhvy = 75  TsRT- (6.47)

T
Recalling [21, Eq. (2.14)], in order to prove that 7 SR, TDG Y, = TSR, it only remains to check that

mspr DGy, = w'5p 1 TsRT (6.48)

To prove (6.48), we start writing the definition (3.5) of DG? with o € ﬂC’Z(T) and using the fact that
divcurl o = 0 and that (curl o)np = div(o X np) for all F € Fr to infer

:/DGigT:curlo
T

Z a)TF/v,,F le(O'XI’lF) nr + Z wTF/vt,F-div((ran) = A+ B.

Fefr FeFr
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Recalling (2.12) and observing that Pk(F :R?) c Rk (F), we can invoke the definitions (3.3) of
DG’;t’F and (3.4) of DGft’F to continue as follows:

T=- Z wrr DG:I;t,FKF (O X))y F
F

Fefr A
T

+ Z WTF Z a)FE/(v,,,E-nF)nF(a'an)nFE

Fe¥fr Ec&Ep E

_ DGk . _l G Io:

wrF w0, ;VE (O XNE)y p 3 WTF v,FM
Fefr F Fefr F
T
+ Z WTF Z wFE/(Vn,E'nFE) npp(0Xnp)npg B
Fefr EcéEp E
T
+ Z WTF Z wFE/Vt,E tp(oXnp)nrg,
Fe¥fr Ec&Ep E

where the cancellation on the third line occurs because o is symmetric, therefore tr (o0 X ng )y p = 0.
We continue using the relations (6.40) and (6.46) to replace, respectively, DG’,it Y With T F and

DGft’ Y With T¢g F in the first and third terms in the right-hand side, combining the second and fifth
terms and using the injection (2.10) in R3 (additionally using the fact that (o0 X np)npg = —0tg), and
noticing that (00 X np)npg = —0y g in the last term to obtain

T=- Z wTF/TR,F'(O'X"F)m,F— Z wTF/Tcg,Fi(O'X"F)tt,F
F

Fefr F FeFr

Frrote = 3 ore Ywer | a6
EGSF E

where the cancellations of the edge terms follows from (5.2), while the conclusion is a consequence of
the zero-sym curl condition (6.12). By Lemma 2, (6.49) implies (6.48).

6.3 Proof of (3.25¢)

We conclude by counting the dimensions of each space, which are explicitly known and can be expressed
in terms of the number of geometric entity of each dimension. Specifically, we have for all £ > 1

dim R™N(T) = 4
1 .
dimg’gevgraﬂ = 12/Vr | + (Tk +6)|Er | + (2k% + 3k + 1)|Fr | + 5(1@‘ +3k? + 2k),
1
dim X5 o = 81Vr |+ (10k +16)|E7 | + (3k” + 8k + 3)|F7 | + E(8k3 +33k? + 25k),

dim X5, givr = =3+ (3k + 6)[Er | + (k* + 5k + 6)|F7 | + (k* + 5k* + 5k),

1
dim PX(T) =1+ E(k?’ +6k% + 11k).
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Moreover, by the exactness properties proved above, we have

dim Im &§ = dim Xﬁev grad,T ~ dim Ker &l;" (3%5&) dim Xﬁev grad,T — dim R_’l (T)

1 .
= 44+ 12|Vr |+ (Tk +6)|Er| + (2K + 3k + 1) |Fr| + 5(1<5+3k2+2k),

dim Im SCX = dim X* — dim Ker SCk “Z” dim x* — dim Im DG

Zsym curl,T Zsym curl,T

1
=4 —4|Vr| + (3k + 10)|E7 | + (k% + 5k + 2)|Fr | + 6(5k3 +24k? + 19k),

dimKer DD% = dim X5, 4, 7 — dimTm DD “29 dim X, . 1 — dim PX(T)

1
= -4+ (3k +6)|Er| + (k% + 5k +6)|Fr | + 6(5"3 + 24k% + 19k).

Therefore,
dim Ker DDY — dim Im SC% = 4 (|'Vr| - |Er| + |Fr| - 2) .

The Euler characteristic for an element with trivial topology gives the identity |Vr| — |Er | + |Fr| = 2.
Therefore, dim Ker DD§ = dim Im E; We conclude using the local complex property (3.23).

Remark 16 (The case k = 0). The formulas above fail when & = 0. Indeed, they give a negative
dimension (of —3) on the cell. The problem stems from the fact that dim 7—(_1(T) = dim ‘H_Q(T).
Correcting the formulas, we find

dim Ker DDY. — dimIm SCY. = 4 (|'V¢| - |&r |+ |F7]) -5 =3,

showing that exactness does not hold for k = 0.
A Results on local polynomial spaces

Lemma 17 (Isomorphism of the face divergence between polynomial spaces). The operator divp :
CGL (F) — PUY(F;R?) is an isomorphism.

Proof. Take xr =0, and write x = (x,y) . By (2.2), it holds
CG“(F) = {A(Pl,Pg) = (xP1 ypl) B ( yPy —-yP;

: PL,Pye PN}
XP2 yP2 —xP2 xPl) L 2EP ( )}

The divergence of a generic A(P1, P2) is thus given by

divy A(P1, Py) = ((xax +2yd, +3)P; — yaxpz) '

(2x0x + yOy + 3) Py — x0y P1
This expression behaves well on monomials: Given two couples (i1, j1) and (io, jo) of non-negative
integers, the above expression for Pq(x,y) = x'1y/1 and Pa(x, y) = Ax"2y/2, 1 € R, becomes

(A1)

dive A(xy/t, Ax2y/) = ((l& +2j1 +3)xfy/t — Ai2x"2‘1yj2+l) .

A2y + jo +3)x"2y/2 — jixi+lyni=l

To prove the injectivity of divg, let us show that divy A(P1, P2) = 0 implies that both P; and P-
are identically zero. We see from (A.1) that each monomial x’y/ of P; must be cancelled by a monomial
x*1y/=1in Py and vice-versa. If j = 0, no contribution from P5 appears on the first component in (A.1),
and we must have (i + 3)x’ = 0 (which is impossible since i > 0), else there must be 1 € R such that

. ii geitl -1y _ [i+2j+3—(i+1)4]xfyf _
divp A(x"y/, Ax"™"y/77) ([/1(21+J +4) — f] xl+1yj—1 =0.
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+2j+3 _ J
+1 7 2i+j+4°

This condition requires A = ie.,

(+2/+3)2i+j+4)=(>G+1)j = 2(i+/)2+10(+/)+10=0,

which is impossible to satisfy, showing that the only possibility for divg A(P1, P2) = 0 to hold is that
Pi =Py =0, i.e., divp is injective on CG¢ (F).

Let us now prove its surjectivity by showing that every vector-valued field can be obtained as a
divergence of an element of CG (F). To this end, it suffices to consider the case where one component
is a monomial and the other is zero. Letting (7, j) denote a couple of non-negative integers such that

i+ j < ¢, the above computation gives for j > 0 and A = ﬁ,

. . ) . . i
divy A (xiyj, J xi+1yj_1) _ 2(i+ j)*+ 10 + j) + 12 (x yJ)

2i+j+4 2i+j+4 0
and, by symmetry,

i
i+2j+4

diVF A (

xilyil xiyj) _ 200+ )?+10( +/) +12 ( 0 )

i+2j+4 xty/

which concludes the proof since {xiyj :i>20,j>0,andi+j<€— 1} is a basis of P¢~1(F) and its
tensorization a basis of P¢~1(F; R2). O

Proof of Lemma 1. Lemma 17 gives CG* (F)NCG®‘ (F) = {0}. We only have to check that dim P¢ (F; R?*?) =
202 +6¢ +4 = dim CGY (F) + dim CG%¢ (F). We can compute the dimension of CG* (F) from the iso-
morphism curly : PEH(F) — R’ (F) as follows: dim CG* (F) = 2(dim P+ (F)—1) = (>+5(+4.0n
the other hand, the dimension of CG%¢ (F) is given by Lemma 17: dim CG%¢(F) = dim P{~1(F;R?) =
£? + £. Summing the above expressions, the result follows. O
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