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Introduction

Let Ω ⊂ R 3 be a polyhedral domain with boundary Ω. Denote by sym and dev the symmetrisation and deviator operators such that, for any matrix ∈ R × , sym ≔ 1 2 + and dev ≔ -1 (tr ) . We construct a discrete counterpart of the three-dimensional divdiv complex R -,1 (Ω) 1 (Ω; R 3 ) (sym curl, Ω; T) (div div, Ω; S) 2 (Ω) {0}, Ω dev grad sym curl div div 0

(1.1)

where R -,1 ≔ P 0 (Ω) + P 0 (Ω) is the lowest-order Raviart-Thomas space, 1 (Ω; R 3 ) is spanned by vector-valued functions that are square-integrable over Ω along with their gradient, (sym curl, Ω; T) by functions taking values in T ≔ dev R 3×3 that are square-integrable over Ω along with the symmetric part of their curl, and (div div, Ω; S) by functions taking values in S ≔ sym R 3×3 that are square-integrable together with the divergence of their (row-wise) divergence. The divdiv complex can be derived from the de Rham complex through the BGG construction [START_REF] Arnold | Complexes from complexes[END_REF], which offers a powerful framework to study its theoretical properties, but still lacks a generic blueprint for the construction of discrete complexes. The main difficulty in the numerical approximation of the complex (1.1) is related to the algebraic constraints that appear in both the spaces and the operators. Finite element approximations of the spaces appearing in the complex have been developed in [START_REF] Adams | A Mixed Finite Element Method for Elasticity in Three Dimensions[END_REF][START_REF] Arnold | Mixed finite elements for elasticity[END_REF][START_REF] Arnold | Finite elements for symmetric tensors in three dimensions[END_REF][START_REF] Chen | Finite Elements for div-and divdiv-Conforming Symmetric Tensors in Arbitrary Dimension[END_REF]. The discretization of the full complex is, on the other hand, much more recent [START_REF] Hu | Conforming finite element divdiv complexes and the application for the linearized Einstein-Bianchi system[END_REF].

The above references are concerned with spaces built on standard (matching simplicial) meshes. In this work, following the Discrete de Rham (DDR) paradigm of [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF][START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF] (see also [START_REF] Bonaldi | An exterior calculus framework for polytopal methods[END_REF] for a very recent generalization using differential forms), we address the discretization of the divdiv complex (1.1) on more general meshes made of polyhedral elements and possibly featuring non-matching interfaces. The support of such meshes provides great flexibility in the approximation of the domain and enables an efficient use of computational resources through non-conforming local mesh refinement and agglomeration [START_REF] Antonietti | Review of discontinuous Galerkin finite element methods for partial differential equations on complicated domains[END_REF][START_REF] Antonietti | ℎ -version composite discontinuous Galerkin methods for elliptic problems on complicated domains[END_REF][START_REF] Bassi | On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations[END_REF]. Polytopal methods additionally benefit from a higher-level point of view, which enables unknowns-reduction strategies such as serendipity [START_REF] Beirão Da Veiga | Serendipity virtual elements for general elliptic equations in three dimensions[END_REF][START_REF] Da Veiga | Stability and interpolation properties of serendipity nodal virtual elements[END_REF][START_REF] Chen | Stabilization-free serendipity virtual element method for plane elasticity[END_REF]; see also [START_REF] Di Pietro | Homological-and analytical-preserving serendipity framework for polytopal complexes, with application to the DDR method[END_REF] for a general framework in the context of discrete complexes. The key idea of DDR methods consists in replacing both the spaces and the operators in the complex with discrete counterparts. Discrete spaces are spanned by vectors of polynomials with components attached to the mesh entities, while discrete operators are obtained mimicking integration by parts formula. Applying this paradigm to the discretization of the divdiv complex involves a number of subtleties, from the decomposition of traces of tensor-valued fields to the identification of the appropriate integration by parts formulas. We provide a complete study of the algebraic properties of the local complex showing how the design of the spaces and operators fits to ensure exactness on mesh elements with trivial topology. Local exactness is one of the key ingredients to prove algebraic properties of the global complex following, e.g., the paradigm of [START_REF] Di Pietro | Cohomology of the discrete de Rham complex on domains of general topology[END_REF].

The DDR divdiv complex is then used as a starting point to design a numerical scheme for the following fourth-order problem in mixed formulation: Given : Ω → R, find ∈ (div div, Ω; S) and ∈ 2 (Ω) such that

∫ Ω : + ∫ Ω div div = 0 ∀ ∈ (div div, Ω; S), - ∫ Ω div div = ∫ Ω ∀ ∈ 2 (Ω). (1.2) 
Previous results in the (significantly easier) two dimensional case include the design of a DDR complex along with its application to Kirchhoff-Love plates [START_REF] Di Pietro | A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem[END_REF] and its serendipity variant [START_REF] Botti | A serendipity fully discrete div-div complex on polygonal meshes[END_REF]. Based on the properties of the new three-dimensional divdiv complex, we prove stability of the DDR scheme for problem (1.2), along with its convergence in ℎ +1 , with ℎ denoting the meshsize and the polynomial degree of the complex. The rest of the paper is organized as follows. In Section 2 we establish the setting, including the relevant integration by parts formulas and trimmed polynomial spaces. The discrete divdiv complex along with its algebraic properties make the object of Section 3. Section 4 contains the DDR scheme for problem (1.2) as well as its stability and convergence analyses. Sections 5 and 6 contain the most technical proofs of algebraic properties of the DDR complex. Finally, results on local polynomial space of general scope are presented in Appendix A.

Setting

Mesh

For any (measurable) set ⊂ R 3 , we denote by ℎ its diameter. We consider meshes M ℎ ≔ T ℎ ∪ F ℎ ∪ E ℎ ∪ V ℎ of Ω, where: T ℎ is a finite collection of open disjoint polyhedral elements such that Ω = ∈T ℎ and ℎ = max ∈T ℎ ℎ > 0; F ℎ is a finite collection of open planar faces; E ℎ is the set collecting the open edges of the faces; V ℎ is the set collecting the edge endpoints. It is assumed, in what follows, that (T ℎ , F ℎ ) matches the conditions in [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Definition 1.4], so that the faces form a partition of the mesh skeleton ∈T ℎ . Given a mesh edge ∈ E ℎ , we denote by 1 ( ) and 2 ( ) the vertices in V ℎ corresponding to its endpoints and ordered so that = ℎ -1 ( 2 ( ) -1 ( ) ). For the sake of conciseness, whenever no ambiguity can arise, we avoid specifying the edge and simply write 1 and 2 . For any face ∈ F ℎ , we fix a unit normal vector and, for any edge ∈ E ,we denote by the vector normal to in the plane containing and oriented such that ( , , ) forms a right-handed system of coordinates. Depending on the context, the vectors and may be regarded as embedded in the plane containing or in the three-dimensional space.

The set collecting the mesh faces that lie on the boundary of a mesh element ∈ T ℎ is denoted by F . For any ∈ T ℎ ∪ F ℎ , we denote by E the set of edges of . Similarly, for all ∈ T ℎ ∪ F ℎ ∪ E ℎ , V denotes the set of vertices of .

For each mesh element or face ∈ T ℎ ∪ F ℎ , we fix a point ∈ such that there exists a ball centered in contained in and of diameter comparable to ℎ uniformly in ℎ (when M ℎ belongs to a regular mesh sequence in the sense of [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Definition 1.9]).

Throughout the paper, stands for ≤ with depending only on Ω, the mesh regularity parameter and, when polynomial functions are involved, the corresponding polynomial degree.

Local and broken polynomial spaces

For given integers ≥ 0 and ℓ ≥ 0, P ℓ denotes the space of -variate polynomials of total degree ≤ ℓ, with the convention that P ℓ 0 ≔ R for any ℓ and that P -1 ≔ {0} for any . Given ∈ T ℎ ∪ F ℎ ∪ E ℎ , we denote by P ℓ ( ) the space spanned by the restriction to of the functions in P ℓ 3 and by ℓ P, the corresponding 2 -orthogonal projector. When is a mesh edge ∈ E ℎ or face ∈ F ℎ , whenever needed we will identify P ℓ ( ) and P ℓ ( ) with the spaces of one-and two-variate polynomials on and , respectively. Spaces of vector-or matrix-valued functions on that have polynomial components of total degree ≤ ℓ are denoted in boldface and the codomain is specified. At the global level, we define the broken polynomial space

P ℓ (T ℎ ) ≔ ℎ ∈ 2 (Ω) : ( ℎ ) | ∈ P ℓ ( ) for all ∈ T ℎ .
(2.1)

Direct decompositions of local polynomial spaces

For any mesh face ∈ F ℎ and any integer ℓ ≥ 0, the following direct decomposition of vector-valued polynomial functions holds (cf. [START_REF] Arnold | Finite Element Exterior Calculus[END_REF]):

P ℓ ( ; R 2 ) = R ℓ ( ) ⊕ R c,ℓ ( ) with R ℓ ( ) ≔ curl P ℓ+1 ( ) and R c,ℓ ( ) ≔ ( -)P ℓ-1 ( ).
The following lemma contains a new direct decomposition that will be needed to design the discrete counterpart of (sym curl, Ω;).

Lemma 1 (Direct decomposition of matrix-valued polynomial fields on faces). For all ∈ F ℎ and all ℓ ≥ 0, the following direct decomposition holds:

P ℓ ( ; R 2×2 ) = CG ℓ ( ) ⊕ CG c,ℓ ( ), with CG ℓ ( ) ≔ curl P ℓ+1 ( ; R 2 ) and CG c,ℓ ( ) ≔ (Id -adj) P ℓ-1 ( ; R 2 ) ⊗ ( -) , (2.
2) where adj is the adjugate operator acting on 2 × 2 matrices.

Proof. See Appendix A.

In what follows, we will also need the decompositions of matrix-valued polynomial functions on mesh elements ∈ T ℎ described hereafter. We start by recalling the following results (cf. [START_REF] Chen | Discrete Hessian complexes in three dimensions[END_REF]Lemma 4.4] and [START_REF] Chen | Finite elements for divdiv-conforming symmetric tensors in three dimensions[END_REF]Lemma 3.6], respectively:

P ℓ ( ; T) = SR ℓ ( ) ⊕ SR c,ℓ ( ), P ℓ ( ; S) = H ℓ ( ) ⊕ H c,ℓ ( ), (2.3) with SR ℓ ( ) ≔ curl P ℓ+1 ( ; S), SR c,ℓ ( ) ≔ dev P ℓ-1 ( ; R 3 ) ⊗ ( -) , H ℓ ( ) ≔ hess P ℓ+2 ( ), H c,ℓ ( ) ≔ sym P ℓ-1 ( ; T) × ( -) ,
where the cross product × between a matrix ∈ R 3×3 and a vector ∈ R 3 is performed row-wise.

The following lemma establishes a link between SR ℓ ( ) and H c,ℓ+1 ( ).

Lemma 2 (Link between SR ℓ ( ) and H c,ℓ+1 ( )). It holds

SR ℓ ( ) = curl H c,ℓ+1 ( ).
Proof. Since H c,ℓ+1 ( ) ⊂ P ℓ+1 ( ; S), curl H c,ℓ+1 ( ) ⊂ SR ℓ ( ). Let now ∈ SR ℓ ( ). By definition, there is ∈ P ℓ+1 ( ; S) such that = curl . Recalling (2.3), can be decomposed as

= 1 + 2 with ( 1 , 2 ) ∈ H ℓ ( ) × H c,ℓ ( ). Using curl hess = 0, we have = curl = curl 1 + curl 2 ∈ curl H c,ℓ+1 ( ).
Since is generic in SR ℓ ( ), this concludes the proof.

Remark 3 (Extension to negative indices). The definitions of R ℓ ( ), CG ℓ ( ), and SR ℓ ( ) naturally extend to ℓ = -1 (in which case, all of these spaces become trivial). Similarly, the definition of H ℓ ( ) extends to ℓ = -2 and ℓ = -1, yielding the trivial space in both cases.

Trimmed local polynomial spaces

For any integer ℓ ≥ 0, trimmed polynomial spaces are obtained from the direct decompositions described in the previous section by lowering the degree of the first component. Based on this principle we define:

For all ∈ F ℎ , R -,ℓ ( ) ≔ R ℓ-1 ( ) ⊕ R c,ℓ ( ), (2.4 
) CG -,ℓ ( ) ≔ CG ℓ-1 ( ) ⊕ CG c,ℓ ( ), (2.5) 
and, for all ∈ T ℎ ,

SR -,ℓ ( ) ≔ SR ℓ-1 ( ) ⊕ SR c,ℓ ( ), (2.6) H -,ℓ ( ) ≔ H ℓ-2 ( ) ⊕ H c,ℓ ( ).
(2.7)

Notice that, for ℓ = 0, all of the above spaces become trivial. For any (X, ) ∈ {(R, ), (CG, ), (SR, ), (H, )}, we denote by -,ℓ X, the 2 -orthogonal projection on X -,ℓ ( ).

Reconstruction of tangent derivatives on edges

We will often need to reconstruct tangential derivatives of functions over edges based on their vertex values and 2 -orthogonal projections. Specifically, letting ℓ ≥ 0 be an integer and denoting by the derivative along in the direction of , the tangential derivative reconstruction ℓ : R×R×P ℓ-1 ( ) → P ℓ ( ) is such that, for any

( 1 , 2 , ) ∈ R × R × P ℓ-1 ( ), ∫ ℓ ( 1 , 2 , ) = - ∫ + ∀ ∈ P ℓ ( ), (2.8) 
where • denotes the difference between vertex values on an edge such that, for any function ∈ 0 ( ) and any family { 1 , 2 } of vertex values (possibly such that 1 = 2 = 1)

≔ 2 ( 2 ) -1 ( 1 ).
When the arguments are vector-or matrix-valued, ℓ acts component-wise. Noticing that ℓ coincides with the one-dimensional HHO gradient (cf., e.g., [23, Eq. (4.37)]), it is readily inferred that ℓ ( ( 1 ), ( 2 ), ℓ-1

P, ) = ℓ P, ∀ ∈ 1 ( ).
(2.9)

Notation and basic results on traces

Given a family of linearly independent orthonormal vectors = { } ∈ ⊂ R 3 , we define the trace of a vector with respect to this family by ≔ ( • ) ∈ ∈ R We also consider its injection into the original space ≔ ∈ ( • ) .

(2.10)

Likewise, for two families of linearly independent orthonormal vectors = { } ∈ , = { } ∈ , we define the trace of a matrix with respect to these families by ≔ ( ) ( , ) ∈ × ∈ R × . We also consider its injection into the original space ≔ ( , ) ∈ × ( ) ⊗ . The notations defined above are used in what follows for traces on faces and edges as described hereafter. For a face , we consider an orthonormal basis { ,1 , ,2 } of the plane tangent to , and, for any vector-valued field : → R 3 and any matrix-valued field : → R 3×3 , write , , , , , , and , with = { } and = { ,1 , ,2 }. Similarly, for any edge , we consider an orthonormal basis { ,1 , ,2 } of the plane normal to , and, for any vector-valued field : → R 3 and any matrix-valued field : → R 3×3 , write , , , , , , and , where = { ,1 , ,2 } and = { }.

The following lemma shows that traces of functions in trimmed spaces lie in trimmed spaces. Its proof is similar to that of [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF]Proposition 8] and is omitted for the sake of conciseness.

Lemma 4 (Traces of trimmed spaces). For any element ∈ T ℎ and any face ∈ F , it holds

( ) , ∈ P -1 ( ; R 2 ) ∀ ∈ SR -, ( ), (2.11) 
( × ) , ∈ CG -, ( ) ∀ ∈ H -, ( ).
(2.12)

Integration by parts formulas

A key element for the DDR-inspired construction are the integration by parts formulas collected in this section, which are used both to identify the components of the discrete spaces and to reconstruct the discrete differentials and the corresponding potentials.

Integration by parts formulas for

1 ( ; R 3 )
Let ∈ T ℎ and let : :→ R 3 be a vector-valued function, which we assume as smooth as needed in what follows. For all : → T smooth enough, it holds

∫ dev grad : = - ∫ • div + ∈ F ∫ = - ∫ • div + ∈ F ∫ , + , , (2.13) 
where we have used the decomposition = , + , of the trace of on into its normal and tangential components to pass to the second line. Let now ∈ F . For all : → R 2 smooth enough and valued in the tangent space of , it holds

∫ (dev grad ) , • = ∫ (grad ) , • = ∫ grad ( • ) • = - ∫ ( • ) div + ∈E ∫ ( • ) ( • ), (2.14) 
where, we have used the fact that the components extracted by (dev grad ) , are not affected by the dev operator in the first equality and a standard integration by parts on to conclude. For all : → R 2×2 smooth enough and matrix-valued in the tangent space of , on the other hand, we have

∫ (dev grad ) , : = ∫ grad , : - 1 3 ∫ tr(grad ) 2 : = - ∫ , • div - 1 3 ∫ div tr + ∈E ∫ ( • ) + ( • ) , (2.15) 
where, in the second equality, we have used an integration by parts for the first term and decomposed the tangent trace of on as , = ( • ) + ( • ) after noticing that ( , ) forms an orthonormal basis of the plane orthogonal to at each point of .

Integration by parts formulas for (sym curl, ; T)

Let ∈ T ℎ . For all : :→ T and : → S smooth enough, it holds

∫ sym curl : = ∫ curl : = ∫ : curl - ∈ F ∫ ( × ) : = ∫ : curl + ∈ F ∫ : ( × ).
(2.16)

Let now ∈ F . We have, for : → R smooth enough,

∫ (sym curl ) , = ∫ rot F , = ∫ , • curl - ∈E ∫ ( ) , (2.17) 
where we have used the fact that the component extracted by (sym curl ) , is on the diagonal, hence it is not affected by the sym operator (so that, in particular, (sym curl ) , = (curl ) , = rot F , ).

For the tangential-tangential component of , standard integration by parts formulas on faces (corresponding, respectively, to [START_REF] Di Pietro | Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra[END_REF]Eqs. (3.12) and (3.15)]) give:

∫ div rot F , = - ∫ rot F , • grad + ∈E ∫ (rot F , • ) = - ∫ , : curl grad + ∈E ∫ ( , ) • grad + ∫ (rot F , • ) . (2.18) 
For all ∈ E , it holds:

∫ ( , ) • grad = ∫ ( ) + ( ) = ∫ - + + ( ) , (2.19) 
where we have written grad = + in the first equality and used the fact that is traceless on the last line (so that, the trace being an invariant and ( , , ) an orthonormal basis of R 3 , + + = 0). Moreover, we have

∫ (rot F , • ) = ∫ rot F ( , ) = ∫ ( ) - ( ) = - ∫ ( ) + ( ) - ∫ grad( ) , (2.20) 
where we have used an integration by parts on the first term to conclude. Plugging (2. [START_REF] Di Pietro | A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem[END_REF]) and (2.20) into (2.18) finally gives

∫ div rot F , = - ∫ , : curl grad + ∈E ∫ ( ) - ∈E ∫ 2 + - ∈E ∫ grad( ) + ∈E ( ) . 
(2.21)

Integration by parts formulas for (div div, ; S)

Let ∈ T ℎ , for all : :→ S and : → R smooth enough, it holds (cf. [START_REF] Chen | Finite elements for divdiv-conforming symmetric tensors in three dimensions[END_REF]Lemma 4.1])

∫ div div = ∫ : hess - ∈ F ∈E ∫ ( ) - ∈ F ∫ , - ∈ F ∫ 2 div ( , ) + , . (2.22) 

Discrete divdiv complex

Throughout the rest of this work, we fix an integer ≥ 0 corresponding to the polynomial degree of the discrete complex. The focus of this section is on the construction of the local DDR complex mimicking (1.1) on a mesh element ∈ T ℎ and the study of its algebraic properties. The analytical properties for the divdiv operator are studied in Section 4 in the context of an application to a biharmonic problem.

An in-depth study of the analytical properties of the other spaces and operators is postponed to a future work.

Local discrete spaces

The discrete counterparts of the spaces 1 ( ; R 3 ), (sym curl, ; T), and (div div, ; S) are, respectively, the spaces dev grad, , sym curl, , and div div, defined as follows:

dev grad, ≔ = , ( , , , , , ) ∈ F , ( , , , , , ) ∈E , ( , , ) ∈V : ∈ P -1 ( ; R 3 ),
, ∈ P ( ), , ∈ P -1 ( ; R 2 ), and , ∈ P -1 ( ) for all ∈ F ,

, ∈ P -1 ( ), , ∈ P ( ; R 2 ) and , ∈ P ( ; R 2×2 ) for all ∈ E , ∈ R 3 and , ∈ R 3×3 for all ∈ V , sym curl, ≔ = SR, , ( R, , C G, ) ∈ F , ( , , , , ) ∈E , ( ) ∈V : SR, ∈ SR -, ( ), R, ∈ R -, +1 ( ) and C G, ∈ CG -, ( ) for all ∈ F , ∈ P ( ; R 2×2 ), , ∈ P +1 ( ; R 2 ) and , ∈ P +1 ( ; R 2×2 ) for all ∈ E , ∈ T for all ∈ V , div div, ≔ = H, , ( , , ) ∈ F , ( ) ∈E :
H, ∈ H -, ( ), ∈ P +1 ( ) and , ∈ P +1 ( ) for all ∈ F , and

∈ P +1 ( ; sym R 2×2 ) for all ∈ E .
The meaning of the polynomial components in these spaces is provided by the interpolators dev grad, :

1 ( ; R 3 ) → dev grad, , sym curl, : 3 ( ; T) → sym curl, , and div div, : ) ∈E .

2 ( ; S) → div div, such that, for all ( , , ) ∈ 1 ( ; R 3 ) × 3 ( ; T) × 2 ( ; S), dev grad, ≔ -1 P, , P, ( • ), -1 P, ( , ), -1 P, (div ) ∈ F , -1 P, ( • ), P, ( , ), P, (grad ) , ∈E , ( ), grad ( ) ∈V , (3.1) sym curl, ≔ -, SR, , -, +1 R, , , -, C G, , ∈ 
(3.2) In what follows, for • ∈ {dev grad, sym curl, div div} and any ∈ F ∪ E , we denote by •, and •, the restrictions of •, and •, to , obtained collecting the polynomial components on and its boundary.

Local operators

Discrete devgrad operator

Let

∈ F . The discrete counterpart of the normal-tangential component of the discrete devgrad operator is obtained mimicking (2.14). Specifically, we let , : dev grad, → R -, +1 ( ) be such that, for all ∈ dev grad, and all ∈ R -, +1 ( ),

∫ , • = - ∫ , div + ∈E ∫ ( , • ) ( • ). (3.3)
The discrete counterpart of the tangential-tangential component is, on the other hand, obtained mimicking (2.15). Specifically, we let , : dev grad, → CG -, ( ) be such that, for all ∈ dev grad, and all ∈ CG -, ( ),

∫ , : = - ∫ , • div - 1 3 ∫ , tr + ∈E ∫ , + ∈E ∫ ( , • ) . (3.4)
Recalling (2.13), the element devgrad operator : dev grad, → SR -, ( ) is defined such that, for all ∈ dev grad, and all ∈ SR -, ( ),

∫ : = - ∫ • div + ∈ F ∫ , + , , (3.5) 
where we remind the reader that , denotes the injection of , into R 3 .

The discrete devgrad operator : dev grad, → sym curl, acting between spaces of the discrete complex is defined, for all ∈ dev grad, , by

≔ , , , , ∈ F , , -1 3 tr , + ( 1 • , 2 • , , ) 2 , +1 (( 1 ) , , ( 2 ) , , , ), +1 (( , 1 ) , , ( , 2 ) , , , ) ∈E , dev , ∈V . (3.6) 
In what follows, the restriction of to a face or edge ∈ F ∪ E of , obtained collecting the components on and its boundary, will be denoted by .

Lemma 5 (Local commutation property). The following commutation property holds

( dev grad, ) = sym curl, (dev grad ) ∀ ∈ 3 ( ; R 3 ). (3.7)
Proof. Let ∈ 3 ( ; R 3 ). Let us check the relation on the normal-normal component on edges. By (2.9) with ℓ = , we have

( ( 1 ) • , ( 2 ) • , -1 P, ( • )) = P, ( • ).
Accounting for the previous relation we have, for all ∈ P ( ; R 2×2 ),

∫ P, (grad ) , - 1 3 tr 
P, (grad ) , + P, ( • ) 2 : = ∫ (dev grad ) , : , (3.8) 
where the cancellation of the projectors is made possible by their definition. Using again (2.9), this time with ℓ = + 1, we infer that +1 ( ( 1 ) , , ( 2 ) , , P, ( , )) = +1 P, (dev grad ) , , (3.9) +1 ((grad ( 1 )) , , (grad ( 2 )) , , P, (grad ) , ) = +1 P, (grad((dev grad ) )) , .

Combining (3.8), (3.9) and (3.10), we obtain ( dev grad, ) = sym curl, (dev grad ). The commutation for the components of on faces and on the element are proved in a similar fashion: first by removing the projections in the definition (3.3) (respectively, (3.4) and (3.5)), and then concluding with the integration by parts formula (2.14) (respectively, (2.15) and (2.13)).

Discrete symcurl operator

The discrete symmetric curl operator on edges +1 : sym curl, → P +1 ( ; sym R 2×2 ) is defined, for all ∈ sym curl, , by:

+1 ≔ C , -+1 (( 1 ) , , ( 2 ) , , ) , (3.11) 
where C is the fourth-order tensor such that

C 11 12 21 22 = 12 -11 + 22 2 -11 + 22 2 -21 ∀ ∈ R 2×2 . (3.12)
There are two components for the symmetric curl operator on faces. The first one, +1 , :

sym curl, → P +1 ( ), is defined mimicking (2.17): For all ∈ sym curl, and all ∈ P +1 ( ),

∫ +1 , = ∫ R, • curl - ∈E ∫ ( , • ) , (3.13) 
while the second one,

+1

, : sym curl, → P +1 ( ), is defined mimicking (2.21): For all ∈ sym curl, and all ∈ P +1 ( ),

∫ +1 , = - ∫ C G, : curl grad + ∈E ∫ ( , • ) - ∈E ∫ 2 + - ∈E ∫ ( , ) + ∈E (
) .

(3.14) Recalling (2.16), the discrete symmetric curl operator on an element ∈ T ℎ is defined such that, for all ∈ sym curl, and all ∈ H -, ( ),

∫ : ≔ ∫ SR, : curl + ∈ F ∫ C G, : ( × ) , + ∈ F ∫ R, • ( × ) , . (3.15) 
Finally, the discrete symmetric curl operator : sym curl, → div div, acting between discrete spaces is defined, for all ∈ sym curl, , as the vector collecting the components defined above:

≔ , +1 , , +1 , ∈ F , +1 ∈E . (3.16)
It can be checked that the following commutation property with the interpolators holds:

sym curl, = div div, (sym curl ) ∀ ∈ 3 ( ; T).
(3.17)

Discrete divdiv operator

The discrete divdiv operator : div div, → P ( ) is defined after (2.22): For all ∈ div div, and all ∈ P ( ),

∫ = ∫ H, : hess - ∈ F ∈E ∫ ( ) - ∈ F ∫ - ∈ F ∫ , . (3.18) 
By construction, it holds

div div, = P, (div div ) ∀ ∈ 2 ( ; S), (3.19) 
as can be checked using (3.2) in (3.18) written for = div div, , cancelling the 2 -orthogonal projectors using their definitions, and concluding with (2.22).

Local DDR complex and main results

For a given mesh element ∈ T ℎ , the spaces and operators defined above can be arranged to form the sequence

R -,1 ( ) dev grad, sym curl, div div, P ( ) {0}. dev grad, 0 (3.20) 
Theorem 6 (Local complex property and exactness). The sequence (3.20) forms a complex which is exact if the topology of is trivial and if ≥ 1.

Remark 7 (Role of the condition ≥ 1). The condition ≥ 1 is only required for the exactness of the tail of the complex (see (3.25c) and Remark 16 below). The head of the complex is exact also for = 0 (cf., in particular, (3.25a) and (3.25b) below).

Proof. The fact that the sequence (3.20) forms a complex is a consequence of the following relations: The exactness of the complex when has a trivial topology translates into the following properties:

dev grad, R -,1 ( ) ⊂ Ker , (3.21) Im ⊂ Ker , (3.22) Im ⊂ Ker , (3.23 
dev grad, R -,1 ( ) = Ker (3.25a) Im = Ker (3.25b) Im = Ker if ≥ 1. (3.25c)
These properties are proved in Section 6.

A mixed method for biharmonic problems

In this section we consider the application of the spaces at the tail of the above complex to the mixed discretization of the biharmonic problem (1.2). Throughout this section, ≥ 0 is an integer corresponding to the polynomial degree of the scheme.

Local component product

We furnish div div, with the component inner product such that, for all ( , ) ∈ div div, × div div, ,

[ , ] div div, ≔ ∫ H, : H, + ℎ ∈ F ∫ + ℎ 2 , , + ℎ 2 ∈E ∫ : . (4.
1) and we introduce the corresponding component norm such that

||| ||| div div, ≔ [ , ] 1 2 ∀ ∈ div div, . (4.2) 
Using the boundedness of 2 -orthogonal projectors along with continuous trace inequalities on the faces and edges of , it can be proved, similarly to [21, Lemma 6], that

||| div div, ||| div div, 2 ( ;R 3×3 ) + ℎ | | 1 ( ;R 3×3 ) + ℎ 2 | | 2 ( ;R 3×3 ) ∀ ∈ 2 ( ; S). (4.3)
Moreover, for all ∈ div div, , taking = in (3.18) and using Cauchy-Schwarz, discrete inverse and trace inequalities along with the definition (4.2) of |||•||| div div, , we get the following boundedness property:

2 ( ) ℎ -2 ||| ||| div div, ∀ ∈ div div, . (4.4) 

Discrete symmetric matrix potential

In order to reconstruct a symmetric matrix potential, we first need to reconstruct face traces of degree . To this purpose, for each ∈ F , we can apply the principles of the HHO potential reconstruction (see, e.g., [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Section 5.1.3]) to devise, from the vector of polynomials ( , (

) ∈E ) ∈ P -1 ( ) × ∈E P ( ) , a function in P ( ) that can be interpreted as the normal-normal trace of a symmetric matrix-valued field on (in passing, with these values one could actually compute a normal-normal trace in P +1 ( ), but this will not be needed in what follows). The corresponding reconstruction operator , : div div, → P ( ) is, by construction, polynomially consistent: For all ∈ P ( ; S),

, div div, | = |
. Moreover, the following boundedness property holds:

, 2 ( ) ℎ -1 2 ||| ||| div div, ∀ ∈ div div, . (4.5) 
The symmetric matrix potential : div div, → P ( ; S) is then defined, mimicking (2.22), such that, for all ∈ div div, : For all ( , ) ∈ P +2 ( ) × H c, ( ),

∫ : (hess + ) = ∫ + ∈ F ∈E ∫ ( ) + ∈ F ∫ , - ∈ F ∫ , + ∫ H, : . (4.6)
By construction, the following polynomial consistency property holds:

div div, = ∀ ∈ P ( ; S). (4.7) 
Additionally, taking in (4.6) ( , ) such that hess + = (this is possible by virtue of the direct decomposition (2.3)), using Cauchy-Schwarz, discrete trace, and inverse inequalities, and invoking the boundedness (4.4) of and (4.5) of , , it is inferred:

2 ( ;R 3×3 ) ||| ||| div div, ∀ ∈ div div, . (4.8) 
Remark 8 (Polynomially consistent symmetric curl). For all ∈ P +1 ( ; T), noticing that sym curl ∈ P ( ; S), it holds

( sym curl, ) (3.17) 
= div div, (sym curl )

(4.7) = sym curl ,
showing that • provides a polynomially consistent approximation of the symmetric curl inside . A similar construction can be repeated to obtain a consistent approximation of dev grad. Since this construction is not needed in the present discussion, we leave the details for a future work.

Global Hessian space, reconstructions, and discrete 2 -product

A global space div div,ℎ on the mesh M ℎ is obtained patching together the local spaces by enforcing the single-valuedness of the unknowns attached to edges and faces shared by multiple elements. The global divdiv operator ℎ : div div,ℎ → P (T ℎ ) and symmetric matrix potential operator ℎ : div div,ℎ → P (T ℎ ; S) (with P (T ℎ ; S) symmetric matrix-valued version of the broken polynomial space (2.1)) are such that, for all ℎ ∈ div div,ℎ ,

( ℎ ℎ ) | ≔ and ( ℎ ℎ ) | ≔ for all ∈ T ℎ .
We define the following 2 -like product: For all ( ℎ , ℎ ) ∈ div div,ℎ ,

( ℎ , ℎ ) div div,ℎ ≔ ∈T ℎ ( , ) div div, , where 
( , ) div div, ≔ ∫ : + ( , ). (4.9) 
Above, is a symmetric positive semi-definite stabilisation bilinear form that ensures the positivity of (•, •) div div, while preserving polynomial consistency. A possible expression for is the following:

( , ) = [ div div, -, div div, -] div div, . (4.10) 
The following polynomial consistency property easily follows from (4.7) and (4.10):

( div div, , ) = 0 ∀( , ) ∈ P ( ; S) × div div, . (4.11) 
Remark 9 (Difference between the component and discrete 2 -products). The main difference between the local component 2 -product defined by (4.1) and the local discrete 2 -product defined by (4.9) is that the latter is consistent whenever its arguments are interpolate of polynomial functions, i.e., ( div div, , div div, ) div div, = ∫ : ∀( , ) ∈ P ( ; S).

We close this section defining the norm induced by the 2 -product:

For • ∈ T ℎ ∪ {ℎ}, • div div,• ≔ ( • , • ) 1 /2 div div,• ∀ • ∈ div div,• . (4.12) 
The norm dual to • div div,ℎ is denoted by • div div,ℎ, * .

Discrete problem and main results

Set, for the sake of brevity, Z ℎ ≔ div div,ℎ × P (T ℎ ). The discrete problem reads:

Find ( ℎ , ℎ ) ∈ Z ℎ such that ( ℎ , ℎ ) div div,ℎ + ∫ Ω ℎ ℎ ℎ = 0 ∀ ℎ ∈ div div,ℎ , - ∫ Ω ℎ ℎ ℎ = ∫ Ω ℎ ∀ ℎ ∈ P (T ℎ ), (4.13) 
or, equivalently:

Find ( ℎ , ℎ ) ∈ Z ℎ such that A ℎ (( ℎ , ℎ ), ( ℎ , ℎ )) = ∫ Ω ℎ ∀( ℎ , ℎ ) ∈ Z ℎ , (4.14) 
with bilinear form

A ℎ : Z ℎ × Z ℎ → R such that A ℎ (( ℎ , ℎ ), ( ℎ , ℎ )) ≔ ( ℎ , ℎ ) div div,ℎ + ∫ Ω ℎ ℎ ℎ - ∫ Ω ℎ ℎ ℎ .
We state hereafter the main analysis results for the numerical scheme defined above. To this purpose, we equip Z ℎ with the following norm: 

( ℎ , ℎ ) Z,ℎ ≔ ℎ div div,ℎ + ℎ 2 (Ω) ∀( ℎ , ℎ ) ∈ Z ℎ . ( 4 
( ℎ , ℎ ) ∈Z ℎ \{0} sup ( ℎ , ℎ ) ∈Z ℎ \{0} A ℎ (( ℎ , ℎ ), ( ℎ , ℎ )) ( ℎ , ℎ ) Z,ℎ ( ℎ , ℎ ) Z,ℎ . (4.16) 
Moreover, problem (4.13) (or, equivalently, (4.14)) admits a unique solution which satisfies

( ℎ , ℎ ) Z,ℎ 2 (Ω) . Proof. See Section 4.6.
Theorem 11 (Error estimate). Let ( , ) ∈ (div div, Ω; S) × 2 (Ω) denote the unique solution to the continuous problem (1.2), and assume the additional regularity ∈ 2 (Ω; S) ∩ +1 (T ℎ ; S) and ∈ +3 (T ℎ ). Then, denoting by ( ℎ , ℎ ) ∈ div div,ℎ × P (T ℎ ) the unique solution to the discrete problem (4.13) (or, equivalently, (4.14)), it holds

( ℎ -div div,ℎ , ℎ -P,ℎ ) Z,ℎ ℎ +1 | | +1 ( T ℎ ;R 3×3 ) + | | +3 ( T ℎ ) . (4.17) 
Proof. See Section 4.7.

Numerical examples

The numerical scheme (4.13) was implemented using the HArDCore library (see https://github. com/jdroniou/HArDCore). In order to validate the error estimate of Theorem 11, we consider the following manufactured solution

= 2 (1 -) 2 2 (1 -) 2 2 (1 -) 2 , = -hess on the domain Ω = [0, 1] 3 .
The method supports arbitrary polyhedral meshes, so we have considered three mesh sequences: cubic, tetrahedral (generated using Tetgen), and Voronoi. In Figure 1 we depict, for each mesh sequence, the error measure in the left-hand side of (4.17) as a function of the mesh size for polynomial degrees between 0 and 3. The convergence plots show good agreement between the observed and predicted convergence rates. For the Tetgen mesh family, a saturation of the error is observed for = 0. A slight reduction of the convergence rate is also observed for the finest meshes of the Tetgen mesh family with = 1 and of the Voronoi mesh family for ∈ {0, 1}. In both cases, however, the slope is still close to the theoretical one.

Well-posedness

This section contains the proof Theorem 10 preceeded by two preliminary results: a uniform equivalence of discrete 2 -norms and an inf-sup condition on the discrete divdiv operator.

Lemma 12 (Uniform norm equivalence). Recalling the definitions (4.12) and (4.2) of the discrete 2and component norms, it holds

• div div,• ||| • ||| div div,• • div div,• ∀ • ∈ div div,• . (4.18)
Proof. It suffices to prove (4.18) for • = ∈ T ℎ , as the result for • = ℎ follows squaring, summing over ∈ T ℎ , and passing to square roots. We start by proving that div div,

||| ||| div div, ∀ ∈ div div, . (4.19) 
To this end, we take a generic ∈ div div, and use (4.10) to write ( , )

1 2 = ||| div div, -||| div div, ≤ ||| div div, ||| div div, + ||| ||| div div, , (4.20) 
where the conclusion follows from a triangle inequality. We then use the boundedness (4.3) of the interpolator, discrete inverse inequalities, and the boundedness (4.8) of to write

||| div div, ||| div div, 2 ( ;R 3×3 ) + ℎ | | 1 ( ;R 3×3 ) + ℎ 2 | | 2 ( ;R 3×3 ) 2 ( ;R 3×3 ) ||| ||| div div, . (4.21) 
Plugging the above estimate into (4.20), we get ( , )

||| ||| div div, which, combined with the boundedness (4.8) of , yields (4.19).

Let us now prove the converse inequality

||| ||| div div, div div, ∀ ∈ div div, . (4.22) 
To this purpose, we start using a triangle inequality to write

||| ||| div div, ≤ ||| div div, -||| div div, + ||| div div, ||| div div, ≕ 1 + 2 . (4.23)
For the first term, we recall (4.10) to write 1 = ( , )

1 2 ≤ div div,
, where the conclusion follows from the definitions (4.12) of • div div, and (4.9) of the local discrete 2 -product. For the second term, we use the second line of (4.21) and again the definitions recalled above to write 2 ≤ div div, . Plugging the above estimates into (4.23) concludes the proof of (4.22).

Lemma 13 (Inf-sup condition on ℎ ). The following inf-sup condition holds uniformly in ℎ:

1 inf ℎ ∈ P ( T ℎ )\{0} sup ℎ ∈ div div,ℎ \{0} ∫ Ω ℎ ℎ ℎ ℎ div div,ℎ ℎ 2 (Ω) . ( 4 

.24)

Proof. From the boundedness property (4.3) of the interpolator along with the uniform norm equivalence (4.18) and ℎ ≤ ℎ 1 for all ∈ T ℎ , and (3.19), it can be inferred that div div,ℎ div div,ℎ 2 (Ω;R 3×3 ) and ℎ div div,ℎ = P,ℎ (div div ) for all ∈ 2 (Ω; S), (4.25) where P,ℎ denotes the 2 -orthogonal projector on P (T ℎ ). Since div div : 2 (Ω; S) → 2 (Ω) is surjective (see [START_REF] Pauly | The divDiv-complex and applications to biharmonic equations[END_REF]Point (iv) in Theorem 3.25]), this shows that ℎ is a -compatible operator in the sense of [START_REF] Boffi | Mixed finite element methods and applications[END_REF]Section 8.4.1]. From the abstract theory therein, it can be inferred that (4.24) holds.

We are now ready to prove the well-posedness of the discrete problem.

Proof of Theorem 10. By (4.15), (•, •) div div,ℎ is coercive with respect to the norm • div div,ℎ with coercivity constant equal to 1. In conjunction with the inf-sup condition (4.24) on ℎ , this classicaly yields (4.16). The well-posedness of problem (4.13) (or, equivalently, (4.14)) then follows from classical arguments (see, e.g., [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF]Proposition 7]).

Error estimate

The goal of this section is to prove Theorem 11. To this purpose, we preliminarily need estimates of the discrete 2 -product and adjoint divdiv consistency errors.

Lemma 14 (Estimate of the consistency error for the discrete 2 -product). Let ∈ 2 (Ω; S) and define the discrete 2 -product consistency error

E prod,ℎ ( ; ℎ ) ≔ ∫ Ω : ℎ ℎ -( div div,ℎ , ℎ ) div div,ℎ . (4.26)
Then, additionally assuming ∈ +1 (T ℎ ; S), it holds

E prod,ℎ ( ; •) div div,ℎ, * ℎ +1 | | +1 ( T ℎ ;R 3×3 ) . (4.27)
Proof. We start by decomposing (4.26) as follows:

E prod,ℎ ( ; ℎ ) = ∈T ℎ [ 1 ( ) + 2 ( ) + 3 ( )]
where, recalling that div div, ( P, ) = P, by (4.7),

1 ( ) ≔ ∫ ( -P, ) : , 2 ( ) ≔ ∫ div div, ( P, -) : , 3 ( ) ≔ -( div div, , ).
We next proceed to estimate these terms one by one. The first term is readily treated using a Cauchy-Schwarz inequality along with the approximation properties of the 2 -orthogonal projector (see [START_REF] Di Pietro | -approximation properties of elliptic projectors on polynomial spaces, with application to the error analysis of a Hybrid High-Order discretisation of Leray-Lions problems[END_REF]Lemma 3.1] and [START_REF] Di Pietro | The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications[END_REF]Theorem 1.45]) for the first factor and the definitions (4.12) of • div div, and (4.9) of the local discrete 2 -product for the second:

| 1 ( )| -P, 2 ( ;R 3×3 ) 2 ( ;R 3×3 ) ℎ +1 | | +1 ( ;R 3×3 ) div div, .
For the second term, we preliminarily notice that div div, ( P, -) 2 ( ;R 3×3 )

(4.8) ||| div div, ( P, -)||| div div, ℎ +1 | | +1 ( ;R 3×3 ) , ( 4 
.28) where the conclusion follows combining the boundedness (4.3) of div div, written for = -P, with the approximation properties of the 2 -orthogonal projector and ℎ ≤ ℎ for all ∈ T ℎ . We can then use a Cauchy-Schwarz inequality along with (4.12) and (4.9) as for 1 ( ) to write

| 2 ( )| div div, ( -P, ) 2 ( ;R 3×3 ) 2 ( ;R 3×3 ) ℎ +1 | | +1 ( ;R 3×3 ) div div, .
For the third term, recalling the polynomial consistency (4.11) of the stabilization bilinear form, we can write, for all ∈ div div, ,

| 3 ( )| = | ( div div, ( -P, ), )| ≤ div div, ( -P, ) div div, div div, (4.18) 
||| div div, ( -P, )||| div div, div div, (4.28)

ℎ +1 | | +1 ( ;R 3×3 ) div div, .
Lemma 15 (Estimate of the adjoint consistency error for the divdiv operator). Let ∈ 2 (Ω) be such that = = 0 on Ω and define the divdiv adjoint consistency error linear form E div div,ℎ ( ; •) :

div div,ℎ → R such that, for all ℎ ∈ div div,ℎ , E div div,ℎ ( ; ℎ ) ≔ ∫ Ω hess : ℎ ℎ - ∫ Ω ℎ ℎ . (4.29)
Then, additionally assuming ∈ +3 (T ℎ ), it holds,

E div div,ℎ ( ; •) div div,ℎ, * ℎ +1 | | +3 ( T ℎ ) . (4.30) Proof. Let, for all ∈ T ℎ , ≔ +2 P,
. Combining (4.6) for ( , ) = (0, ) with the definition (4.29) of the adjoint consistency error, we get, for any ℎ ∈ div div,ℎ , such that ℎ div div,ℎ = 1,

E div div,ℎ ( ; ℎ ) = ∈T ℎ ∫ ( -) + ∈T ℎ ∫ hess( -) : + ∈T ℎ ∈ F ∈E ∫ ( ) ( -) + ∈T ℎ ∈ F ∫ , ( -) + , ( -) ,
where the insertion of the face or edge traces of and of into the boundary terms is justified by their single-valuedness along with the assumed boundary conditions. Using Cauchy-Schwarz inequalities along with the approximation properties of , the definition (4.2) of |||•||| div div, , and the boundedness (4.4) of , (4.8) of , and (4.5) of , , we infer

E div div,ℎ ( ; ℎ ) ℎ +1 | | +3 ( T ℎ ) ||| ℎ ||| div div,ℎ (4.18) ℎ +1 | | +3 ( T ℎ ) .
Proof of Theorem 11. Accounting for the inf-sup condition (4.16), by [START_REF] Di Pietro | A third Strang lemma for schemes in fully discrete formulation[END_REF]Theorem 10], it holds

( ℎ -div div,ℎ , -P,ℎ ) Z,ℎ E ℎ ( , ; •) Z,ℎ, * , (4.31) 
where • Z,ℎ, * denotes the norm dual to • Z,ℎ and the consistency error linear form E ℎ ( , ; •) : ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ∫

Z ℎ → R is such that E ℎ ( , ; ℎ , ℎ ) ≔ ∫ Ω ℎ -A ℎ (( div div,ℎ , P,ℎ ), ( ℎ , ℎ )) = E prod,ℎ ( ; ℎ ) + ( (
Ω (div div - ℎ div div, ) ℎ + E div div,ℎ ( ; ℎ ),
where, to pass to the second line, we have used the fact that =div div almost everywhere in Ω, added the term ∫ Ω ( + hess ) : ℎ ℎ = 0, and used the definitions (4.26) and (4.29) of the 2 -product and adjoint divdiv consistency errors, while the cancellation follows from (4.25). To prove (4.17) it suffices to use (4.27) and (4.30) to estimate the terms in the right-hand side of the above expression and plugging the resulting bound into (4.31) after observing that ℎ div div,ℎ ≤ ( ℎ , ℎ ) Z,ℎ by definition of this latter norm.

Local complex property

We collect in this section the proofs of the complex properties (3.22) and (3.23).

Proof of (3.22)

Let

∈ dev grad, . We need to prove that the edge, face, and element components of (obtained plugging (3.6) into (3.16)) vanish.

Edge components

Given ∈ E , and letting, for the sake of brevity, Γ , ≔

( 1 • , 2 • , , ), we have that

+1 = C +1 ( , 1 ) , , ( , 2 ) , , , -+1 (dev , 1 ) , , (dev , 2 ) , , , - 1 3 tr , + Γ , 2 ≕ C [ 1 -2 ] .
Since +1 acts component-wise and the off-diagonal entries of its arguments in 1 and 2 coincide, the off-diagonal entries of these terms coincide as well, showing that there exists ∈ P +1 ( ) such that 1 -2 = 2 . Hence,

+1 = C( 2 ) = 0,
where the conclusion follows from the definition (3.12) of C.

Face components

Let now ∈ F . For all ∈ P +1 ( ), using the definition (3.13) of

+1 , with = , invoking the definition (3.3) of , with test function = curl ∈ R ( ) ⊂ R -, +1 ( ) (cf. (2.4
)), and noticing that curl • =on every edge ∈ E , we have

∫ +1 , = ∫ , • curl - ∈E ∫ +1 (( 1 ) , , ( 2 ) 
, , , ) •

(3.3) = - ∫ , ( ( ( ( ( ( div curl - ∈E ∫ ( , • ) - ∈E ∫ +1 (( 1 ) , , ( 2 ) , , , ) • (2.8) = - ∈E ( • ) = 0,
where we have concluded observing that, for any family

( ) ∈V ∈ R V , ∈E = 0 (5.1)
Writing the definition (3.14) of

+1

, for = , we get, for all ∈ P +1 ( ),

≔ ∫ +1 , = - ∫ , : curl grad + ∈E ∫ +1 (( 1 ) , , ( 2 ) , , , ) • - ∈E ∫ (2 , + , ) + ∈E ∫ 
: 1 2 2 + 2 3 tr , + ( 1 • , 2 • , , ) - ∈E ∫ +1 (( , 1 ) , , ( , 2 ) , , , ) + ∈E ( dev , 
) ,

where we have used the fact that both and have unit Euclidian norm for the fourth term. We next expand, in the above expression, , according to (3.4) with = curl grad ∈ CG -1 ( ) ⊂ CG -, ( ) to go on writing

= ∫ , • ( ( ( ( ( ( ( ( ( 
div curl grad + 1 3 ∫ , tr(curl grad ) + ∈E ∫ , 2 + ∈E ∫ ( , • ) + ∈E ∫ -A 2 , - X X X X X X , + X X X X tr , + ∈E ∫ ( 1 • , 2 • , , ) + ∈E ∫ +1 (( 1 ) , , ( 2 ) , , , ) • - 
∈E ∫ +1 (( , 1 ) , , ( , 2 ) , , , ) + ∈E ( , ) - 1 3 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ∈E tr , , 
where we have used div curl = 0 in the first cancellation, the fact that tr(curl grad ) = rot F grad = 0 to cancel the second term, noticed that, for all ∈ E , (curl grad ) = -2 and (curl grad ) =in the third and fourth terms, and observed that, for all ∈ E , , + , = tr , since ( , ) is an orthonormal basis in the fifth term. The cancellation of the last term follows noticing that = 1 and invoking (5.1). Using the definition (2.8) of • on the terms where this operator appears, we then get

= ∈E ∫ , 2 + ∈E ∫ ( , • ) - ∈E ∫ ( , ) - ∈E ∫ , 2 + ∈E ( • ) - ∈E ∫ ( , • ) + ∈E ( • ) + ∈E ∫ ( , ) = ∈E ( ) , • grad (5.1) = 0,
where the penultimate equality follows simplifying the terms involving integrals over and gathering together the edge jump terms after observing that ( • ) + ( • ) = ( ) , • grad .

Element component

To conclude the proof of (3.22), we it remains to show that the element component of vanishes. Writing the definition (3.15) of for = , we get, for all ∈ H -, ( ),

≔ ∫ : = ∫ : curl + ∈ F ∫ , : ( × ) , + ∈ F ∫ , • ( × ) , .
Next, we expand according to (3.5) (which is possible since curl ∈ SR -1 ( ) ⊂ SR -, ( ), cf. (2.6)), , according to (3.4) (after noticing that, by (2.12), ( × ) , ∈ CG -, ( )), and , according to (3.3) (possible since ( × ) , ∈ P ( ; R 2 ) ⊂ R -, +1 ( )). This gives

= - ∫ • ( ( ( ( ( div curl + ∈ F ∫ , curl + , curl - ∈ F ∫ , • div ( × ) , - 1 3 ∈ F ∫ , ( ( ( ( ( ( ( ( 2 : 
( × ) , + ∈ F ∈E ∫ ( , • ) ( × ) , + ∈ F ∈E ∫ , ( × ) , - ∈ F ∫ , div ( × ) , + ∈ F ∈E ∫ ( , • ) (( × ) , • ),
where we have cancelled the first term using the identity div curl = 0 and the sixth term using the fact that is symmetric, hence ( × ) , is traceless. Noticing that, by (2.10), , curl = , • (curl ) , , and rearranging the terms, we can go on writing

= ∈ F ∫ , ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( curl 
-div ( × ) , + ∈ F

∫ , • h h h h h h h h h h h h h h

h h h (curl ) , -div ( × ) , + ∈ F ∈E ∫ ( , • ) ( × ) , + ∈ F ∈E ∫ , ( × ) , + ∈ F ∈E ∫ ( , • ) (( × ) , • ),
where the first two terms cancel thanks to the identities curl = div ( × ) , and (curl ) , = div ( × ) , , respectively. Gathering together the terms involving integrals over edges, and using (2.10) with = , and = { , }, we then have

= ∈ F ∈E ∫ , ( × ) + , ( × ) = ∈ F ∈E ∫ ( , + , ) ( × ) = - ∈ F ∈E ∫ ( , + , ) = 0,
where we have used the vector triple product formula to pass to the second line and the fact that ( , , ) forms a right-handed system (i.e., × = -) to pass to the third line. Finally, the conclusion follows observing that, for any family of functions ( ) ∈E such that

∈ 2 ( ) for all ∈ E , ∈ F ∈E ∫ = 0. (5.2) 
This completes the proof of (3. 

+ ∈ F ∫ C G, : (hess × ) , + ∈ F ∫ R, • (hess × ) ,              - ∈ F ∈E ∫ ( C , ) + ∈ F ∈E ∫ C +1 (( 1 ) , , ( ( ( ( curl hess 
, , )

             - ∈ F ∫ R, • curl + ∈ F ∈E ∫ ( , • ) ℭ - ∈ F ∫ C G, : curl grad + ∈ F ∈E ∫ ( , • ) - ∈ F ∈E ∫ 2 + - ∈ F ∈E ∫ , + ∈ F ∈E                          ≕ 0 + 1 + • • • + 11 .
We infer 1 = -7 and 2 = -5 from the identities (hess × ) , = curl grad and (hess × ) = curl . It remains to shows that the edge terms cancel. From the definition (3.12) of C, we get , for any ∈ R 2×2 ,

C = -1 2 + 1 2 , hence C + = 1 2 tr . (5.3)
Applying the above equation to = , and using (5.2) with = 1 2 tr , , we infer 3 + 10 = 0. We can then merge some derivatives on edges. Since ( , • ) + ( , • ) = , • (grad ) , , we also have 6 + 8 = 0 from (5.2). Letting 9 ( ) ≔ ∫ 2 + and observing that the quantity in parenthesis is equal to tr 2 + since ( , ) form an orthonormal basis and the trace is an invariant, we get

9 ( ) = ∫ tr + ∫ (2.8) = ∫ tr - ∫ +1 (( 1 ) , , ( 2 ) , , ) + (5.3) 
= ∫ tr - ∫ 1 2 tr +1 (( 1 ) , , ( 2 ) 
, , )

+ ∫ C +1 (( 1 ) , , ( 2 ) 
, , ) + .

Therefore,

9 + 4 + 11 = ∈ F ∈E ∫ 1 2 tr +1 (( 1 ) , , ( 2 ) 
, , )tr .

Using (5.2) with equal to the integrand in the above expression readily yields 4 + 9 + 11 = 0, thus showing that = 0 and therefore concluding the proof.

Local exactness

This section contains the proof of the relations (3.25), yielding the exactness of the local complex (3.20). To this purpose, we let ∈ dev grad, be such that = 0 and show the existence of ∈ R -,1 ( ) such that = dev grad,ℎ . We start from the vertex and edge components, which provide the expression for , then show that the face and element components are also equal to the interpolate of .

Taking ∈ CG c, ( ) and using the fact that div : CG c, ( ) → P -1 ( ; R 2 ) is onto (cf. Lemma 17) along with tr = 0, this condition yields

, = -1 P, , . (6.5) 
Taking ∈ CG -1 ( ), using the fact that div = 0 and that tr CG -1 ( ) → P -1 ( ) is onto, we have, on the other hand , = 3 .

(6.6) Gathering (6.3), (6.4), (6.5), and (6.6), and recalling that the above reasoning holds for any ∈ F , we have thus proved that = dev grad, ∀ ∈ F . (6.7)

Element component

To conclude the proof of (6.1), it only remains to show that = 0 implies

= -1 P, . (6.8) 
This relation reduces to the trivial identity 0 = 0 for = 0. Let us then consider the case ≥ 1. Enforcing = 0 in (3.5) and accounting for (6.7), (3.5) gives, for all ∈ SR c, ( ) ⊂ SR -, ( ),

0 = - ∫ • div + ∈ F ∫ ( • ) + -1 P, , = ∫ ( -) • div ,
where we have used (2.11) to remove the projector and the integration by parts formula (2.13) (after noticing that ∈ SR c, ( ) is traceless) to conclude. Since div : SR c, ( ) → P -1 ( ; R 3 ) is onto, this relation implies (6.8), thus concluding the proof of (6.1).

Proof of (3.25b)

Let ∈ sym curl, be such that = 0, i.e., recalling (3.11) and (3.16):

C , -+1 (( 1 ) , , ( 2 ) 
, , ) = 0 ∀ ∈ E , (6.9)

+1 , = 0 ∀ ∈ F , (6.10) 
+1 , = 0 ∀ ∈ F , (6.11) = 0. (6.12)

In order to show that Ker ⊂ Im , starting from the above conditions we will explicitly construct ∈ dev grad, such that = (6.13) determining, in this order, its vertex components (cf. (6.21)), edge components (cf. (6.23)), face components (cf. (6.34), (6.37), and (6.38)), and element component (cf. (6.47)).

Vertex components

We infer from (6.9) and from the definition (3.12) of C the existence of ∈ P +1 ( ) such that = 0 for all ∈ F . Since the first Betti number of is equal to 0, we infer from this relation the piecewise function equal to ∫ on each ∈ E can be regarded as the gradient of a piecewise affine function on the edge skeleton of , i.e., there exists a family ( ) ∈V ∈ R V such that ∫ = ∀ ∈ E . (6.17)

, = +1 (( 1 ) , , ( 2 ) 
We infer from (6.15) and (6.16) that, for all ∈ P 1 ( ) and all ∈ F ,

∈E ∫ , • grad -tr - = 0. (6.18) 
We construct a family ( ) ∈V ∈ (R 3 ) V such that, for all ∈ E ,

( ) , • = ∫ , • ∀ ∈ P 0 ( ; R 2 ), (6.19) 
( • ) = - ∫ tr + + ∀ ∈ P 1 ( ) (6.20) 
as follows: we first set an arbitrary value on a vertex 0 , then choose the value on neighboring vertices according to the relations (6. [START_REF] Di Pietro | A fully discrete plates complex on polygonal meshes with application to the Kirchhoff-Love problem[END_REF]) and (6.20). The relation (6.18) ensures that this construction is consistent. Indeed, any path leading to a given vertex will give the same value for that vertex, because the difference between two paths is a closed loop which can be realized as the boundary of the union of some faces ∈ F (since the first Betti number of is zero). We conclude fixing the vertex components of the sought ∈ dev grad, as follows:

≔ and , ≔ + 3 for all ∈ V . (6.21)
With this choice it holds, for all ∈ V ,

dev , = dev + dev 3 = dev = , (6.22) 
where the conclusion follows observing that is traceless.

Edge components

We next identify suitable edge components for satisfying (6.13). Specifically, for any ∈ E , we define , ∈ P ( ; R 2×2 ), , ∈ P ( ; R 2 ), and , ∈ P -1 ( ) such that, for all ∈ P +1 0 ( ; R 2×2 ), all ∈ P +1 0 ( ; R 2 ), and all ∈ P +1 ( ) such that = ( ) , :

+ ∫ 2 : = ∫ +1 (( 1 ) , , ( 2 ) , , ) + 2 : (6.14) 
= ∫ , : ,

where we have used (2.8) along with the fact that = 0 (since is constant) to write ( ) , :

= ∫ +1 (( 1 ) , , ( 2 ) 
, , ) : in the third equality. Summing (6.24) and (6.25) and noticing that + spans P +1 ( ; R 2×2 ) as ( , ) spans P +1 0 ( ; R 2×2 ) × P 0 ( ; R 2×2 ), we conclude that +1 (( , 1 ) , , ( , 2 ) , , , ) = , .

Next, for all ∈ P +1 ( ; R 2 ), writing = + with ≔ 0 P, , we have

∫ +1 (( 1 ) , , ( 2 ) 
, , , ) • (2.8) = - ∫ , • + ( ) , • + ( ) , • (6.23b), (6.19) = ∫ , • , so that +1 (( 1 ) , , ( 2 ) , , , ) = , . (6.27) 
To conclude the equality of the edge components, we have to prove that , -

1 3 tr , + ( 1 • , 2 • , , ) 2 = . (6.28)
To this purpose, we start by noticing that, for all ∈ P +1 0 ( ; R 2×2 ) letting, for the sake of brevity, with , defined by (6.23b). Plugging this , into the definition (3.3) of

, with test function in R c, +1 ( ) ⊂ R -, +1 ( ), we get c, +1 R, , = c, +1 R, R, . (6.35) 
Recalling the definition (2.2) of CG -1 ( ) and using the decomposition P ( ; R 2 ) = grad P +1 ( )⊕ ⊥ P -1 ( ) (see [START_REF] Arnold | Finite Element Exterior Calculus[END_REF]), we can write CG -1 ( ) = curl grad P +1 ( ) ⊕ curl ⊥ P -1 ( ).

(6.36)

Since tr : curl ⊥ P -1 ( ) → P -1 ( ) is an isomorphism (notice that P -1 ( )

= tr P -1 ( ; R 2 ) (2.2) = tr CG -1 ( ) (6.36) 
= tr(curl ⊥ P -1 ( )) since tr G c, -1 ( ) = 0 and tr curl grad = rot F grad = 0 and count the dimensions), we can define uniquely , ∈ P -1 ( ) enforcing the following condition: For all ∈ curl ⊥ P -1 ( ),

1 3 ∫ , tr = ∈E ∫ ( , • ) + ∈E ∫ , - ∫ C G, : . (6.37) 
Likewise, since div : CG c, ( ) → P -1 ( ; R 2 ) is an isomorphism (see Lemma 17 below), (3.4) yields a unique

, ∈ P -1 ( ; R 2 ) such that c, C G, , = c, C G, C G, . (6.38) 
We next check that the face components defined above (along with the vertex components defined by (6.21) and the edge components defined by (6.23)) yield the equality of the face components in (6.13). Enforcing Letting ∈ P +1 ( ), writing the definition (3.3) of , for = curl ∈ P ( ; R 2 ) ⊂ R -, +1 ( ), and using the fact that div curl = 0 and curl 

• = - gives ∫ , • curl = - ∈E ∫ ( , • ) (2.8) = ∈E ∫ +1 (( 1 ) , , ( 2 ) , , , ) • - ∈E ( • ) (6.27) = ∈E ∫ ( , • ) (6.39) = ∫ R, •
( ) = ∫ +1 ( 1 • , 2 • , , • ) -( • ) (6.27) = ∫ ( , • ) -( • ) . ( 6 
= ∈E ∫ tr -2 ∈E ∫ ,
where the cancellation is a consequence of (5.1) with = . Combining this relation with (6.28), we get

∈E ∫ ( 1 • , 2 • , , ) = - ∈E ∫ tr - ∈E ∫ .
Therefore, using the definition (2.8) of , we have that 

To prove (6.48), we start writing the definition (3.5) of with ∈ H c, ( ) and using the fact that div curl = 0 and that (curl ) = div( × ) for all ∈ F to infer

≔ ∫ : curl = ∈ F ∫ , div( × ) • + ∈ F ∫ , • div( × ) ≕ + .
Moreover, by the exactness properties proved above, we have dim Im = dim dev grad,dim Ker showing that exactness does not hold for = 0.

A Results on local polynomial spaces

Lemma 17 (Isomorphism of the face divergence between polynomial spaces). The operator div : CG c,ℓ ( ) → P ℓ-1 ( ; R 2 ) is an isomorphism.

Proof. Take = 0, and write = ( , ) . By (2.2), it holds

CG c,ℓ ( ) = ( 1 , 2 ) ≔ 1 1 2 2 - 2 -1 -2 1 : 1 , 2 ∈ P ℓ-1 ( ) .
The divergence of a generic ( 1 , 2 ) is thus given by

div ( 1 , 2 ) = ( + 2 + 3) 1 - 2 (2 + + 3) 2 - 1 .
This expression behaves well on monomials: Given two couples ( 1 , 1 ) and ( 2 , 2 ) of non-negative integers, the above expression for 1 ( , ) = 1 1 and 2 ( ,

) = 2 2 , ∈ R, becomes div ( 1 1 , 2 2 ) = ( 1 + 2 1 + 3) 1 1 -2 2 -1 2 +1 (2 2 + 2 + 3) 2 2 -1 1 +1 1 -1 . (A.1)
To prove the injectivity of div , let us show that div ( 1 , 2 ) ≡ 0 implies that both 1 and 2 are identically zero. We see from (A.1) that each monomial of 1 must be cancelled by a monomial +1 -1 in 2 and vice-versa. If = 0, no contribution from 2 appears on the first component in (A.1), and we must have ( + 3) = 0 (which is impossible since ≥ 0), else there must be ∈ R such that This condition requires = +2 +3 +1 = 2 + +4 , i.e., ( + 2 + 3) (2 + + 4) = ( + 1) =⇒ 2( + ) 2 + 10( + ) + 10 = 0, which is impossible to satisfy, showing that the only possibility for div ( 1 , 2 ) ≡ 0 to hold is that 1 = 2 ≡ 0, i.e., div is injective on CG c,ℓ ( ).

Let us now prove its surjectivity by showing that every vector-valued field can be obtained as a divergence of an element of CG ℓ ( ). To this end, it suffices to consider the case where one component is a monomial and the other is zero. Letting ( , ) denote a couple of non-negative integers such that + ≤ ℓ, the above computation gives for > 0 and = which concludes the proof since : ≥ 0, ≥ 0, and + ≤ ℓ -1 is a basis of P ℓ-1 ( ) and its tensorization a basis of P ℓ-1 ( ; R 2 ).

Proof of Lemma 1. Lemma 17 gives CG ℓ ( )∩CG c,ℓ ( ) = {0}. We only have to check that dim P ℓ ( ; R 2×2 ) = 2ℓ 2 + 6ℓ + 4 = dim CG ℓ ( ) + dim CG c,ℓ ( ). We can compute the dimension of CG ℓ ( ) from the isomorphism curl : P ℓ+1 0 ( ) → R ℓ ( ) as follows: dim CG ℓ ( ) = 2 dim P ℓ+1 ( ) -1 = ℓ 2 +5ℓ+4. On the other hand, the dimension of CG c,ℓ ( ) is given by Lemma 17: dim CG c,ℓ ( ) = dim P ℓ-1 ( ; R 2 ) = ℓ 2 + ℓ. Summing the above expressions, the result follows.

  ) Im = P ( ). (3.24) The inclusion (3.21) is a straightforward consequence of the commutation property (3.7) along with the fact that dev grad R -,1 ( ) = 0. The relation (3.24) classically follows from the surjectivity of div div : (div div, ; S) → 2 ( ) along with (3.19) (a more detailed argument is provided in Lemma 13 below for its global counterpart). Finally, properties (3.22) and (3.23) are proved in Section 5.

. 15 )

 15 Theorem 10 (Well-posedness). It holds 1 inf

22 ) 5 . 2 ≕

 2252 Proof of (3.23) Let ∈ sym curl, . We need to show that = 0. Using the definition (3.18) of with = , we have, for all ∈ P ( ), + + ℭ + . Next, we expand according to (3.15) with = hess ∈ H -2 ( ) ⊂ H -, ( ) (cf. (2.7)), and +1 , +1 , , and +1 , according to (3.11), (3.13), and (3.14), respectively, to write = ∫ SR, :(

6 . 1

 61 Proof of(3.25a) Having already proved (3.21), we only need to show thatKer⊂ dev grad, R -,1 ( ). (6.1)

,Recalling [ 21 ,

 21 used(6.16) in the second equality, enforced (6.10) to cancel the term involving +1 , , and invoked (5.1) with = • grad to cancel the sum over the edges. The definition (6.37) of , readily gives, for all ∈ curl ⊥ P -1 ( ), ∫ , : = ∫ C G, : . (6.45)Recalling the definition (6.38) of , and using (6.44) and (6.45) together with the decomposition (6.36) to infer -1 we finally get, after recalling (2.5) and using[START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF] Eq. (2.14)], the element component, we use the fact that div : SR c, ( ) → P -1 ( ; R 3 ) is an isomorphism to find, from (3.5), ∈ P -1 ( ; R 3 ) such that c, Eq. (2.14)], in order to prove that -,SR,= SR, , it only remains to check that

== - 4 + 2 ( 3 + 3 2 4 - 6 (5 3 + 6 (5 3 +

 423346363 dim dev grad,dim R -,1 ( ) 12|V | + (7 + 6)|E | + (2 2 + 3 + 1)|F | + 1 + 2 ), dim Im = dim sym curl,dim Ker (3.25b) = dim sym curl,dim Im = 4|V | + (3 + 10)|E | + ( 2 + 5 + 2)|F | + 1 24 2 + 19 ), dim Ker = dim div div,dim Im (3.25c) = dim div div,dim P ( ) = -4 + (3 + 6)|E | + ( 2 + 5 + 6)|F | + 1 24 2 + 19 ). Therefore, dim Ker dim Im = 4 ( |V | -|E | + |F | -2) .The Euler characteristic for an element with trivial topology gives the identity|V | -|E | + |F | = 2.Therefore, dim Ker = dim Im . We conclude using the local complex property (3.23). Remark 16 (The case = 0). The formulas above fail when = 0. Indeed, they give a negative dimension (of -3) on the cell. The problem stems from the fact that dim H -1 ( ) = dim H -2 ( ).Correcting the formulas, we find dim Ker 0dim Im 0 = 4 ( |V | -|E | + |F |) -5 = 3,

  div ( , +1 -1 ) = [ + 2 + 3 -( + 1) ] [ (2 + + 4) -] +1 -1 ≡ 0.

  F ,

			P,	, , +1 P,	, , +1 P, ((grad(	)) ,	∈E , ( ) ∈V ,
	div div,	≔ -, H,	,	+1 P, (	, ), +1 P, (2 div ( |	) +

, ) ∈ F , ( +1 P,

  , 1 ) , , ( , 2 ) , , , ) : , 1 ) , , ( , 2 ) , , , ) :

					∫				∫			
							, •	= -		, • + ( ) , •	,	(6.23b)
			∫	,	2	= ( • )	+	∫	tr	+	∫	-	.	(6.23c)
	Let us check that, for any edge ∈ E ,	= , where we remind the reader that the components
	of		are extracted from (3.6). The fact that the vertex components coincide is expressed by
	(6.22), so we only need to consider the edge components.	
	It holds, for all ∈ P +1 0 ( ; R 2×2 ),				
	∫	+1 (( (2.8), (6.21) =	-	∫	, :	+ (( ) , +	2 ) :	(6.23a) =	∫	, : . (6.24)
	On the other hand, for all ∈ P 0 ( ; R 2×2 ), (2.8) together with (6.21) gives
		∫	+1 (( = ( ) , :	+	2 :	(6.17)	
													1 P,	= 0,
				∫				∫				
					, :	= -	, : + (( ) , +	2 ) :	,	(6.23a)

  .42)To treat the second term, we start by noticing that, for all ∈ P +1 ( ),

		∫			
		tr ,			
	∈E				
	(2.8) = -				
	(6.26) = -	∫	tr ,	+	tr ( , ) ,
		∈E		∈E
	= (6.14), (6.21)	-			∫
					∈E
	+	tr ( ) ,	+	2
		∈E			∈E
	(2.8)				

∈E ∫ tr +1 (( , 1 ) , , ( , 2 ) , , , ) + ∈E tr ( , ) , ∈E ∫ tr +1 (( 1 ) , ,

( 2 )

, , ) -2

  2 + +4 ,

	div	, 2 + + 4	+1 -1 =	2( + ) 2 + 10( + ) + 12 2 + + 4	0
	and, by symmetry,						
	div	+ 2 + 4	-1 +1 ,	=	2( + ) 2 + 10( + ) + 12 + 2 + 4	0	,
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Vertex and edge components

Given an edge ∈ E with vertices 1 and 2 , enforcing = 0, corresponds to the following conditions (cf. (3.6)): dev , 2 = dev , 1 = 0, (6.2a) +1 (( , 1 ) , , ( , 2 ) , , , ) = 0, (6.2b)

, -

2c) +1 (( 1 ) , , ( 2 ) , , , ) = 0.

(6.2d)

From (6.2a) we infer, for all ∈ V , the existence of ∈ R such that , = 3 . Condition (6.2b) then gives 1 2 = 2 2 = , which implies, in particular, 1 = 2 . Since this reasoning applies to all edges ∈ E , this yields the existence of ∈ R such that = for all ∈ V and , = 2 for all ∈ E . Substituting this value of , in (6.2c) results in

which gives, accounting for (2.8), ( 2 -1 ) • = ℎ and , ( )

• for all ∈ . Condition (6.2d), on the other hand, gives ( 1 ) , = ( 2 ) , = , . Combining the above results on the tangential and normal components of the vertex values yields

The only possibility for this condition to hold is that there exists R -,1 ( )

) for a given vertex ∈ V (which is sufficient for = ( ) to hold also for all ∈ V \ { }). We can easily check, recalling the definition of the interpolator on dev grad, (which corresponds to the restriction to of (3.1)), that the above conditions on the components of amount to = dev grad, ∀ ∈ E . (6.3)

Face components

Let now ∈ F . Enforcing = 0 amounts to the following conditions, in addition to (6.2):

3) written for = ∈ P +1 ( ; R 2 ), and accounting for (6.3) gives, -

Integrating by parts the boundary terms and noticing that grad [START_REF] Di Pietro | An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency[END_REF]Proposition 8] for a proof of this result on general meshes), the above condition translates to

Enforcing then , = 0 in (3.4), removing projectors according to their respective definition, and using the integration by parts formula (2.15), we get, for all ∈ CG -, ( ),

,

where we have additionally used the fact that 2 : ˇ = 1 3 tr in the fourth equality. Taking = with ∈ P +1 0 ( ; R 2×2 ) such that tr = 0, (6.29) yields

For such that = 2 for some ∈ P +1 0 ( ), (6.29) gives On the other hand, taking = ∈ P 1 0 ( ), we infer from (6.21), (6.20), and (6.31) that

Noticing that [ + ( + ) 2 ] spans P ( ; R 2×2 ) when spans the zero-trace subspace of P +1 0 ( ; R 2×2 ), spans the subspace of functions in P +1 ( ) with zero 2 -orthogonal projection on P 1 ( ), and spans P 1 0 ( ), we conclude from (6.30), (6.32), and (6.33) that (6.28) holds. Combining this relation with (6.22), (6.26), and (6.27) gives = ∀ ∈ E .

Face components

Let ∈ F . Since div : R c, +1 ( ) → P ( ) is an isomorphism, there exists a unique , ∈ P ( ) such that, for all ∈ R c, +1 ( ),

Recalling (2.12) and observing that P ( ; R 2 ) ⊂ R -, +1 ( ), we can invoke the definitions (3.3) of , and (3.4) of , to continue as follows:

where the cancellation on the third line occurs because is symmetric, therefore tr ( × ) , = 0. We continue using the relations (6.40) and (6.46) to replace, respectively, , with R, and , with C G, in the first and third terms in the right-hand side, combining the second and fifth terms and using the injection (2.10) in R 3 (additionally using the fact that ( × ) = -), and noticing that ( × ) = -, in the last term to obtain where the cancellations of the edge terms follows from (5.2), while the conclusion is a consequence of the zero-sym curl condition (6.12). By Lemma 2, (6.49) implies (6.48).

Proof of (3.25c)

We conclude by counting the dimensions of each space, which are explicitly known and can be expressed in terms of the number of geometric entity of each dimension. Specifically, we have for all