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SPACE-TIME FLUCTUATIONS IN A QUASI-STATIC LIMIT

C. BERNARDIN, P. GONÇALVES, AND S. OLLA

Abstract. We consider the macroscopic limit for the space-time density fluctuations
in the open symmetric simple exclusion in the quasi-static scaling limit. We prove that
the distribution of these fluctuations converge to a gaussian space-time field that is delta
correlated in time but with long-range correlations in space.

1. Introduction

Consider a stochastic dynamics of interacting particles where the only conserved quantity
is given by the number of particles, in equilibrium with a reversible stationary (equilibrium)
Gibbs measure µρ, ρ indicates here the average density of particles. The fluctuation field of
the density of particles at a given time t is defined by averaging in space on a macroscopic
scale N . After a diffusive rescaling of space and time the fluctuations field in space of the
density of particles converges to a distribution Yt(u) expected to evolve in time following
the infinite dimensional Langevin equation ([10], section II.2.9)

∂tYt(u) = Dρ∂
2
uYt(u)−

√
2χρDρ∂uw(t, u), (1)

where Dρ is the diffusivity at density ρ, χρ is the static compressibility and w(t, u) is a
standard space-time white noise. The equation (1) shall be considered in a weak sense
and we wrote it in one dimension for simplicity. The only stationary distribution for (1) is
given by the centered Gaussian distribution with covariance

E (Yt(u)Yt(v)) = χρδ(u− v), (2)

that correspond to the static fluctuations field of the stationary Gibbs measure, that typ-
ically have exponential decay of space correlations on the microscopic scale. The time
correlations of the solution of (1) have exponential decay.

In this article we consider the space-time fluctuations of the density of a open system on
the space-time box: {1, . . . , N − 1} × [0, N2+αT ]. When α > 0 as N →∞ this correspond
to a quasi-static scaling limit, where the time scale is larger than the typical scale where
the dynamics relax to equilibrium (i.e. the diffusive time scale with α = 0 [2]). We expect
that the limit space-time field is a centered gaussian field Y(t, u) with covariance

E (Y(t, u)Y(s, v)) = χρδ(t− s)(−∂2u)−1(u, v), (3)

where (−∂2u)−1(u, v) is the Green’s function of the laplacian on [0, 1] with given boundary
conditions. While the delta-correlation in time is a natural consequence of the quasi-static
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time scale, at first sight it may look surprising the long range correlation in space appearing
in (3).

In the present article we prove such macroscopic behaviour for the open symmetric
simple exclusion on the discrete interval {1, . . . , N − 1} with boundary reservoirs, but we
go beyond the equilibrium case (reservoirs at the same density ρ) and we consider reservoirs
at different densities (ρ−(t) on the left and ρ+(t) on the right) that change in time on the
macroscopic quasi-static scale, in the same situation as considered in [2]. When ρ± do not
change in time, a stationary state exists that has a density profile ρ(u) = (ρ+ − ρ−)u+ ρ−
and has long range correlations. The static fluctuation field in this stationary state in the
limit N →∞ has covariance (see [11, 9])

E (Y(u)Y(v)) = χρ(u)δ(u− v)− (ρ+ − ρ−)2 (−∂2u)−1(u, v), (4)

where χρ = ρ(1 − ρ). A similar limit is found for the density fluctation at macroscopic
time t in [2] when ρ±(t) are time dependent. Then we prove in this situation that the
space-time fluctuation field converges to a centered gaussian field with variance defined by
(13) and (14).

Even though long-range space correlations related to the Green function of the Dirichlet
Laplacian appears in (3) (and its generalization (13)) as well as in (4), there is not a
direct connection between the two results. Notice that in the covariance of the space-time
fluctuations (3) the long range correlations appear also in equilibrium (i.e. ρ− = ρ+), while
in the space-fluctuations in the stationary state they appears only if ρ− 6= ρ+. Also in
(3) there is no term with a delta correlation in space, unlike in (4), and the long range
correlations are positive, while they are negative in (4).

We carry out the complete proof for the open SSEP in Section 3, while in Section 4 we
sketch the extension to other reversible stochastic dynamics like the zero range model.

2. SSEP with boundary reservoirs

2.1. The model. Let α > 0. We consider the symmetric simple exclusion process {ηt ; t ≥
0} on the interval {1, . . . , N−1}, with boundary creation/destruction of particles with rates
ρ−(t) at x = 1 and ρ+(t) at x = N − 1. The generator of the time inhomogeneous pure
jumps Markov process {ηtN2+α ; t ≥ 0} with state space ΩN = {0, 1}{1,...,N−1} is given by

LN,t = N2+α
(
L0
N + L±N,t

)
where the generators above are acting on functions f : ΩN → R according to

(L0
Nf)(η) =

N−2∑
x=1

[
f(ηx,x+1)− f(η)

]
and

(L−N,tf)(η) = [1− ρ−(t)] η(1)
[
f(η1)− f(η)

]
+ ρ−(t)(1− η(1))

[
f(η1)− f(η)

]
and

(L+
N,tf)(η) = [1− ρ+(t)] η(N−1)

[
f(ηN−1)− f(η)

]
+ρ+(t)(1−η(N−1))

[
f(ηN−1)− f(η)

]
.
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Above, ηx,y is the configuration obtained from η by exchanging the occupation variables
at sites x and y, while ηx is the configuration obtained from η by flipping the occupation
variable at site x, that is:

ηx,y(z) =


η(z), if z /∈ {x, y},
η(y) if z = x,

η(x) if z = y,

and

ηx(y) =

{
η(y) if y 6= x,

1− η(x) if y = x.

2.2. Hydrodynamic limit. It is proved in [2] the following Law of Large Numbers: if
ρ0 : [0, 1]→ [0, 1] is a measurable profile and at initial time the (deterministic or random)
initial probability measure µN on ΩN is such that

1

N

N−1∑
x=1

G

(
x

N

)
η0(x)

prob.−→
N→∞

∫ 1

0

G(u)ρ0(u) du, (5)

for any continuous function G : [0, 1]→ R, then at any time t ≥ 0 it holds

1

N

N−1∑
x=1

G

(
x

N

)
ηtN2+α(x)

prob.−→
N→∞

∫ 1

0

G(u)ρt(u) du,

with ρt(u) = (ρ+(t)− ρ−(t))u+ ρ−(t).

(6)

Let µN be a probability measure on ΩN and, for t ≥ 0, we denote

ρNt (x) := EµN [ηtN2+α(x)] , x ∈ {1, . . . , N − 1}, (7)

with ρNt (0) := ρ−(t), and ρNt (N) := ρ+(t). Define for any u, v ∈ [0, 1] and s, t ≥ 0

ϕN(u, v; s, t) := EµN
[(
ηsN2+α([Nu])− ρNs ([Nu])

) (
ηtN2+α([Nv])− ρNt ([Nv])

)]
. (8)

From here on we assume that

sup
N∈N

sup
u,v∈[0,1],u 6=v

N |ϕN(u, v; 0, 0)| . 1. (9)

It is proved in Theorem 2.2 of [2] that, for u 6= v and u, v 6∈ {0, 1},

lim
N→∞

NϕN(u, v; t, t) = − (ρ+(t)− ρ−(t))u(1− v) (10)

and for t 6= s

lim
N→∞

NϕN(u, v; s, t) = 0. (11)
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2.3. Main result. For a fixed T > 0, we denote the open set ΩT = (0, T ) × (0, 1) ⊂ R2.
We define the (centered) space-time distribution valued random field YN acting on f ∈
C∞ (ΩT ,C) as

YN(f) =

∫ T

0

1
√
N1−α

N−1∑
x=1

f(t, x
N

)
(
ηtN2+α(x)− ρNt (x)

)
dt. (12)

Let Y be the space-time distribution valued centered Gaussian field such that for any
function f the variance V(f) of Y(f) is given by

V(f) = 2

∫ T

0

ds

∫ 1

0

du ρs(u)(1− ρs(u)) |∂uF (s, u)|2 (13)

where F is the solution of{
(∂2uF ) (t, u) = f(t, u), u ∈ [0, 1],

F (t, 0) = F (t, 1) = 0,
(14)

for all t ∈ [0, T ].
Our main result is the following.

Theorem 1. The sequence {YN ; N ≥ 1} converges in law, as N → +∞, to Y.

Remark 1. We have defined YN as an element of the dual of C∞ (ΩT ). In the theory of
distributions is usually denoted E (ΩT ) = C∞ (ΩT ) and D (ΩT ) = C∞0 (ΩT ). The restriction
from E′ (ΩT ) to D′ (ΩT ) is injective (cf. [1], Chapter 8). In Subsection 3.2 we prove that
{YN ; N ≥ 1} is tight in a Sobolev space H−m,−k ⊂ E′ (ΩT ).

3. Proof of Theorem 1

The proof of Theorem 1 is a consequence of two ingredients: convergence of finite dimen-
sional distributions and tightness. Therefore, in Proposition 1 we establish the convergence
in law of the sequence {YN(f) ; N ≥ 1} to Y(f) for any test function f and in Lemma 2 we
prove that the sequence {YN ; N ≥ 1} is tight in a suitable Sobolev space of distributions.

Notation: in the following we denote by . an inequality that is correct up to a multi-
plicative constant independent of N .

3.1. Convergence of finite-dimensional distributions.

Proposition 1. For any θ ∈ R and for any real valued function f it holds

lim
N→∞

E
(
exp

{
iθYN(f)

})
= exp

{
− θ2

2
V(f)

}
(15)

where V(f) is defined in (13).

Proof. Note that from (12) we have

YN(f) = Nα/2

∫ T

0

dt YN
t (f)
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where the space fluctuation field {YN
t ; t ≥ 0} is defined on a space-time function f :

[0, T ]× [0, 1]→ R as

YN
t (f) :=

1
√
N

N−1∑
x=1

f(t, x
N

)
(
ηtN2+α(x)− ρNt (x)

)
.

With the convention that ηt(0) = ρ−(t) and ηt(N) = ρ+(t) for all t ∈ [0, T ], we observe
that

LN,t(ηt(x)) = Nα(∆Nηt)(x), x ∈ {1, . . . , N − 1},

where (∆Nηt)(x) = N2 (ηt(x+ 1) + ηt(x− 1)− 2ηt(x)). In particular,

∂t
[
ρNt (x)

]
= Nα(∆Nρ

N
t )(x), x ∈ {1, . . . , N − 1}.

Let G : (t, u) ∈ [0, T ] × [0, 1] → R be a differentiable function in time with Dirichlet
boundary conditions, i.e., for any t ∈ [0, T ]

G(t, 0) = G(t, 1) = 0.

Since ∆Nρ
N
s (x) = 0, by Dynkin’s formula it follows that the process {MN

t (G) ; t ≥ 0}
defined by

MN
t (G) = YN

t (G)− YN
0 (G)

−
∫ t

0

1
√
N

N∑
x=0

∂sG(s, x
N

)(ηsN2+α(x)− ρNs (x))ds

−Nα−1/2
∫ t

0

N−1∑
x=1

G(s, x
N

)
[
∆N

(
ηsN2+α(x)− ρNs (x)

)]
ds

(16)

is a martingale w.r.t. the natural filtration of {ηtN2+α ; t ≥ 0}. By performing a summation
by parts and noting that G satisfies the Dirichlet boundary conditions, we get

MN
t (G) = YN

t (G)− YN
0 (G)−

∫ t

0

YN
s (∂sG+Nα∆̃NG)ds,

where ∆̃N is defined by

(∆̃NG)(u) = N2
[
G(u+ 1

N
) +G(u− 1

N
)− 2G(u)

]
, u ∈ { 1

N
, . . . , N−1

N
}.

It follows that

YN
(

∆̃NG+N−α∂tG
)

=
1

Nα/2

{
YN
T (G)− YN

0 (G)
}
− 1

Nα/2
MN

T (G). (17)
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Let now f ∈ C∞(ΩT ,R) and consider, for any N ≥ 1, the function FN(t, x
N

), x ∈
{0, . . . , N}, satisfying the finite-dimensional linear differential equation

N−α∂tF
N(t, x

N
) + ∆̃NF

N(t, x
N

) = f(t, x
N

), x ∈ {1, · · · , N − 1}, 0 < t < T,

FN(t, 0) = FN(t, 1) = 0,

FN(T, ·) = F (T, ·).
(18)

The quadratic variation of the martingale N−α/2MN
T (FN) satisfies

VN(f) := N

∫ T

0

N−1∑
x=0

(
ηsN2+α(x)− ηsN2+α(x+ 1)

)2 ∣∣∣FN
(
s, x+1

N

)
− FN

(
s, x

N

)∣∣∣2
L2

−→
N→∞

2

∫ T

0

ds

∫ 1

0

du ρ(s, u)(1− ρ(s, u)) |∂uF (s, u)|2 = V(f).

(19)

To prove the previous convergence, we use (30) proved below. It is then sufficient to
prove that

∫ T

0

1

N

N−1∑
x=0

(
ηsN2+α(x)− ηsN2+α(x+ 1)

)2 ∣∣(∂uF )(s, x
N

)
∣∣2 ds

L2

−→
N→∞

∫ T

0

(∫ 1

0

ρ(s, u)(1− ρ(s, u))|(∂uF )(s, u)|2du
)
ds,

(20)

but this is a simple consequence of Theorem 3.1 of [2].

Let us now prove (15). Recalling that FN(T, ·) = F (T, ·) we rewrite (17) with G replaced
by FN as

YN(f) = −N−α/2
[
YN

0 (FN)− YN
T (F ) + MN

T (FN)
]
.

We have then

E
[

exp{iθYN(f)}
]

= E
[(

exp
{
− iθN−α/2

(
YN

0 (FN)− YN
T (F )

)}
− 1
)

exp
{
− iθN−α/2MN

T (FN)
}]

+ E
[

exp
{
− iθN−α/2MN

T (FN) +
θ2

2
VN(f)

}
exp

{
− θ2

2
VN(f)

}]
.

(21)
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The modulus of the first term on the right-hand side of the previous display is bounded
from above by∣∣∣E[( exp

{
− iθN−α/2

(
YN

0 (FN)− YN
T (F )

)}}
− 1
)

exp
{
− iθN−α/2MN

T (FN)
}]∣∣∣

≤ E
[∣∣∣ exp

{
− iθN−α/2

(
YN

0 (FN)− YN
T (F )

)}}
− 1
∣∣∣]

. |θ|N−α/2
(
E
[∣∣∣YN

0 (FN)
∣∣∣]+ E

[∣∣∣YN
T (F )

∣∣∣])
≤ |θ|N−α/2

√
E
[∣∣∣YN

0 (FN)
∣∣∣2]+ |θ|N−α/2

√
E
[∣∣∣YN

T (F )
∣∣∣2]

. |θ|N−α/2
[
N−1

N−1∑
x,y=1

(
FN
(
0, x

N

)
FN
(
0, y

N

)
+ F

(
T, x

N

)
F
(
T, y

N

))
ϕN
(
x
N
, y
N

; 0, 0
)]1/2

(22)

where the space-time density correlation function ϕN is defined in (8). Then by assumption
on the initial condition, see (9), and by Lemma 1, we have that

N−1
N−1∑
x,y=1

FN
(
0, x

N

)
FN
(
0, y

N

)
ϕN
(
x
N
, y
N

; 0, 0
)

≤ N−2
N−1∑
x,y=1
x 6=y

|FN
(
0, x

N

)
||FN

(
0, y

N

)
|+N−1

N−1∑
x=1

FN
(
0, x

N

)2
ϕN
(
x
N
, x
N

; 0, 0
)

≤

(
N−1

N−1∑
x=1

∣∣FN
(
0, x

N

)∣∣)2

+ CN−1
N−1∑
x=1

FN
(
0, x

N

)2
= o(Nα)

(23)

we get that the first term on the right-hand side of (21) goes to 0 as N → +∞. The term
involving F (T, ·) goes to 0 as well, since F is bounded.

Now let us focus on the remaining quantity in (21):

E
[

exp{−iθN−α/2MN
T (FN) +

θ2

2
VN(f)

}
exp

{
− θ2

2
VN(f)

}]
. (24)

Last display can be rewritten as

E
[

exp
{
− iθN−α/2MN

T (FN) +
θ2

2
VN(f)

}(
exp

{
− θ2

2
VN(f)

}
− exp

{
− θ2

2
V(f)

})]
+E
[

exp
{
− iθN−α/2MN

T (FN) +
θ2

2
VN(f)

}
exp

{−θ2
2

V(f)
}]
.

(25)

Since on the second term of last display we have the exponential complex martingale

exp
{
− iθN−α/2MN

T (FN) +
θ2

2
VN(f)

}
,
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which has constant expectation equal to one, the second term of (25) is, in fact, equal to

exp
{
− θ2

2
V(f)

}
.

It remains to estimate the first term of (25) and show that it goes to zero as N → +∞.
That term can be rewritten as

E
[

exp
{
− iθN−α/2MN

T (FN)
}(

1− exp
{θ2

2

[
VN(f)− V(f)

] })]
. (26)

From the inequality |1 − ex| ≤ |x|e|x|, plus the fact that VN(f) . 1, V(f) . 1 and (19),
the proof ends. �

Lemma 1. Let f ∈ C∞(ΩT ) be real valued. Let F (t, u) be the unique solution of the Laplace
equation {

(∂2uF ) (t, u) = f(t, u), u ∈ (0, 1), 0 < t < T,

F (t, 0) = F (t, 1) = 0.
(27)

For any N ≥ 1, let FN(t, x
N

), x ∈ {0, . . . , N}, be the solution of the equation
N−α∂tF

N(t, x
N

) + ∆̃NF
N(t, x

N
) = f(t, x

N
), x ∈ {1, . . . , N − 1}, 0 < t < T,

FN(t, 0) = FN(t, 1) = 0,

FN(T, x
N

) = F (T, x
N

).

(28)

Then
1

N

N−1∑
z=1

|FN(0, z
N

)|2 = o(Nα) (29)

and

lim
N→+∞

∫ T

0

1

N

N−1∑
z=0

∣∣N (FN(t, z+1
N

)− FN(t, z
N

)
)
− ∂uF

(
t, z
N

)∣∣2 dt = 0. (30)

Proof. Notice that F can be explicitly computed and it is given by

F (t, u) =

∫ u

0

(∫ v

0

f(t, w)dw

)
dv − u

(∫ 1

0

(∫ v

0

f(t, w)dw

)
dv

)
.

Let GN = FN − F and εN = N−α∂tF − (∂2u − ∆̃N)F . Then GN satisfies
N−α∂tG

N(t, x
N

) + ∆̃NG
N(t, x

N
) = −εN(t, x

N
), x ∈ {1, . . . , N − 1}, 0 < t < T,

GN(t, 0) = GN(t, 1) = 0,

GN(T, ·) = 0.

(31)
Multiply the first line of last display by GN and sum over x ∈ {1, · · · , N − 1}. Since GN

satisfies Dirichlet boundary conditions, we have that

N−1∑
x=1

GN(t, x
N

)∆̃NG
N(t, x

N
) = −N2

N−1∑
x=0

(
GN(t, x

N
)−GN(t, x+1

N
)
)2
.
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Performing a summation by parts and integrating in time between 0 and T , we get

1

2Nα

1

N

N−1∑
x=1

[
GN

(
0, x

N

)]2
+

∫ T

0

1

N

N−1∑
x=0

[
N
(
GN

(
t, x+1

N

)
−GN

(
t, x
N

))]2
dt

=

∫ T

0

1

N

N−1∑
x=1

εN
(
t, x
N

)
GN

(
t, x
N

)
dt.

(32)

Now let EN : [0, T ]×
{

0, 1
N
, . . . , 1

}
→ R be the function defined by

EN
(
t, x
N

)
=

1

N

x∑
y=0

εN
(
t, x
N

)
.

Performing a summation by parts, we have that

1

N

N−1∑
x=1

εN
(
t, x
N

)
GN

(
t, x
N

)
= −

1

N

N−1∑
x=0

EN
(
t, x
N

) [
N
(
GN

(
t, x+1

N

)
−GN

(
t, x
N

))]
. (33)

Above we used again the fact that GN satisfies Dirichlet boundary conditions. Since F is
smooth, we have for any x ∈ {0, · · · , N − 1}, that

|εN
(
t, x
N

)
| . N−α +N−2,

and consequently,

lim
N→∞

∫ T

0

1

N

N−1∑
x=0

[
EN
(
t, x
N

)]2
dt = 0.

Hence by Cauchy-Schwarz inequality and (32) we conclude that

lim
N→∞

∫ T

0

1

N

N−1∑
x=0

[
N
(
GN

(
t, x+1

N

)
−GN

(
t, x
N

))]2
dt = 0.

Since F is smooth this implies (30). Using this information in (32) we get that

lim
N→∞

1

Nα

1

N

N−1∑
x=1

[
GN

(
0, x

N

)]2
= 0,

and since F is bounded, we have

lim
N→∞

1

Nα

1

N

N−1∑
x=1

[
FN

(
0, x

N

)]2
= 0.

�
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3.2. Tightness. We recall that T > 0 is some fixed finite time horizon. The sequence
{ψn,z ; n ∈ Z, z ∈ N∗} of functions on [0, T ]× [0, 1], defined by

ψn,z(t, u) =
√

2 exp
(
2iπn t

T

)
sin
(
πzu

)
, t ∈ [0, T ], u ∈ [0, 1], (34)

forms an orthonormal basis of L2([0, T ] × [0, 1]) and for any f ∈ L2([0, T ] × [0, 1]) we

denote f̂(n, z) = 〈f, ψn,z〉 the Fourier coefficients of f in this basis. Above 〈·, ·〉 is the inner
product in L2([0, T ]× [0, 1]). For m, k ∈ R, let Hm,k be the Hilbert space obtained as the
completion of C∞(ΩT ) endowed with the inner product1

〈f, g〉m,k =
∑
n∈Z
z∈N∗

(n2 + 1)mz2kf̂(n, z)ĝ∗(n, z).

The corresponding norm is denoted by ‖ · ‖m,k. Then for m, k ≥ 0 we have

H−m,−k ⊃ L2([0, T ]× [0, 1]) ⊃ Hm,k

and H−m,−k can be identified with the dual of Hm,k with respect to the inner product of
L2([0, T ]× [0, 1]). The inner product in H−m,−k is given by

〈F,G〉−m,−k =
∑
n∈Z
z∈N∗

(n2 + 1)−mz−2kF̂ (n, z)Ĝ∗(n, z). (35)

and we denote the corresponding norm by ‖ · ‖−m,−k.

Lemma 2. For m, k > 1/2, the sequence {YN ; N ≥ 1} is tight in H−m,−k.

Proof. We need to show that

lim
A→+∞

lim sup
N→+∞

PµN (‖YN‖−m,−k > A) = 0.

Recall from (35) the definition of the ‖ · ‖−m,−k-norm. From Chebychev’s inequality the
proof ends as long as we show that

sup
N≥1

EµN (‖YN‖2−m,−k) = sup
N≥1

∑
n∈Z
z∈N∗

(n2 + 1)−mz−2k EµN
(
|YN(ψn,z)|2

)
<∞. (36)

Observe that from (34) we have

∆̃Nψn,z(t,
x
N

) +N−α∂tψn,z(t,
x
N

) =
[
2iπ n

T
N−α − 4N2 sin2

(
πz
2N

)]
ψn,z(t,

x
N

).

Applying (17) with G = ψn,z we get

YN(ψn,z) =
1

2iπ n
T
N−α − 4N2 sin2

(
πz
2N

)YN
(

∆̃Nψn,z +N−α∂tψn,z

)
=

1

2iπ n
T
N−α − 4N2 sin2

(
πz
2N

) [ 1

Nα/2

{
YN
T (ψn,z)− YN

0 (ψn,z)
}
− 1

Nα/2
MN

T (ψn,z)

]
.

(37)

1Here, w∗ denotes the complex conjugate of the complex number w.
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From (19), we see that the quadratic variation of the martingale 1
Nα/2M

N
T (ψn,z) is given by

8N sin2
(
πz
N

)
cos2

(
πzx
N

+ πz
2N

)∫ T

0

N−1∑
x=0

(
ηtN2+α(x)− ηtN2+α(x+ 1)

)2
dt . N2 sin2

(
πz
N

)
.

We note that from Lemma 4.3 in [9] and from (9) we get that

sup
N≥1

max
x,y∈IN ,x 6=y

N |ϕN
(
x
N
, y
N

; t, t
)
| . 1. (38)

Above we used the proof of [9] that can be adapted to our case, since our correlation
function ϕN(u, v; t, t) (see (8) with s = t) also satisfies an equation similar to (4.5) in [9].
By following exactly the same steps as in the proof of Lemma 4.3 of [9] we conclude (38).
We leave these details to the interested reader.

From this we conclude that, following similar argument as in (23),

E
[{

YN
T (ψn,z)− YN

0 (ψn,z)
}2] ≤ 4E

[
|YN

0 (ψn,z)|2
]
. 1. (39)

Collecting the previous bounds together we get that

E
(
|YN(ψn,z)|2

)
.

N2 sin2
(
πz
N

)
+N−α

n2N−2α +N4 sin4
(
πz
2N

) . (40)

At this point we need to estimate∑
n∈Z
z∈N∗

1

(n2 + 1)m
1

z2k
N2 sin2

(
πz
N

)
+N−α

n2N−2α +N4 sin4
(
πz
2N

) .
By symmetry, we split the sum in two cases depending on whether n = 0 or n 6= 0:

S1 :=
∑
z∈N∗

1

z2k
N2 sin2

(
πz
N

)
+N−α

N4 sin4
(
πz
2N

) .

and

S2 := 2
∑
n,z∈N∗

1

(n2 + 1)m
1

z2k
N2 sin2

(
πz
N

)
+N−α

n2N−2α +N4 sin4
(
πz
2N

) .
First we observe that for m > 1/2 we have that

S2 .
∑
n∈N∗

1

(n2 + 1)m

∑
z∈N∗

1

z2k
N2 sin2

(
πz
N

)
+N−α

N4 sin4
(
πz
2N

) . S1,

therefore it is enough to estimate S1. Note that by writing z = 2Np + q and using the
periodicity of the function sin(·) we have

S1 :=
+∞∑
p=0

2N−1∑
q=1

1

(2Np+ q)2k
N2 sin2

(
πq
N

)
+N−α

N4 sin4
(
πq
2N

) .
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Now we split last sum into

SA1 :=
+∞∑
p=0

N∑
q=1

1

(2Np+ q)2k
N2 sin2

(
πq
N

)
+N−α

N4 sin4
(
πq
2N

) .

SB1 :=
+∞∑
p=0

2N−1∑
q=N+1

1

(2Np+ q)2k
N2 sin2

(
πq
N

)
+N−α

N4 sin4
(
πq
2N

) .

We start with SB1 . We do the change of variables r = q−N and use a trignometric identity,
to get

SB1 =
+∞∑
p=0

N−1∑
r=1

1

(2Np+ r +N)2k
N2 sin2

(
πr
N

)
+N−α

N4 cos4
(
πr
2N

) .

Now we use the fact that for x ∈ [0, π
2
] it holds that cos(x) ≥ x− π

2
, to get the bound

SB1 .
+∞∑
p=0

N−1∑
r=1

1

(2Np+ r +N)2k
N2 sin2

(
πr
N

)
+N−α

(r −N)4
.

From the change of variables v = r − N and using again the periodicity of the function
sin(·), we can bound the last display from above by

SB1 .
+∞∑
p=0

−1∑
v=−N+1

1

(2N(p+ 1) + v)2k
N2 sin2

(
πv
N

)
+N−α

v4

Now, we bound last display from above by a constant times

+∞∑
p=0

N−1∑
v=1

1

(2Np+ 1)2k
v2 +N−α

v4
. 1 +

+∞∑
p=1

1

(2Np)2k
< +∞

where we used the fact that k > 1/2. Finally note that

SA1 .
+∞∑
p=0

N∑
q=1

1

(2Np+ q)2k
q2 +N−α

q4
. 1 +

+∞∑
p=1

N∑
q=1

1

(2Np)2k
q2 +N−α

q4
< +∞.

This ends the proof.
�

4. Generalization and discussion

Theorem 1 can be adapted without difficulties to the case of periodic boundary conditions
at equilibrium, i.e. by considering the dynamics evolving on the discrete torus (without
reservoirs) TN = {0, 1, . . . , N − 1} starting from its equilibrium state. Since the mass
of the system is conserved we have to restrict the space of test functions f that satisfy∫
T f(t, u)du = 0 for any t ∈ [0, T ]. Here T denotes the one-dimensional torus. In this case

the sequence {YN ; N ≥ 1} converges to a field Y white in time and correlated in space
according to the kernel ρ(1− ρ)(−∂2u)−1, where ρ is the limit average density.
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In fact, in the case of periodic conditions, at equilibrium, Theorem 1 can be proved
similarly for various interacting particle systems: the Kipnis-Marchioro-Presutti model [8],
the symmetric Ginzburg-Landau dynamics with harmonic potential [7, 12], the Symmetric
Inclusion Process [4], independent random walks (i.e. the Symmetric Zero-Range Process
with linear rate) and Generalized Exclusion Process [3].

In the sequel we see briefly how to extend our main theorem in the case of generic
symmetric Zero-Range processes at equilibrium. Our result is however limited to a time
scale tN2+α with α < 4. More precisely we consider a Zero-Range process {ηtN2+α ; t ≥ 0}
with state space ΩN = NTN with generator L acting on a test function f : ΩN → R as

(Lf)(η) =
∑

x,y∈TN
|x−y|=1

g(η(x)) [f(ηx,y)− f(η)] .

Here g : N → N has to satisfy some technical assumptions listed in [6] in order to assure
the validity of the second order Boltzmann-Gibbs bound (44). We refer the reader to [6]
for details. We denote by νρ the equilibrium probability measure with density ρ. Let us
consider the dynamics at equilibrium under νρ.

We define

YN(f) = Nα/2

∫ T

0

YN
t (f)dt

where the random fluctuation field {YN
t ; t ≥ 0} acts on a space-time function f :

[0, T ]× T→ R satisfying
∫
T f(t, u)du = 0 for any t ∈ [0, T ], as

YN
t (f) :=

1
√
N

∑
x∈TN

f(t, x
N

)(ηtN2+α(x)− ρ).

Let

Vg(η(x)) = g(η(x))− g̃(ρ)− g̃′(ρ)(η(x)− ρ).

By Dynkin’s formula it follows that the process {MN
t (F ) ; t ≥ 0} defined by

MN
t (F ) = YN

t (F )− YN
0 (F )

−
∫ t

0

1
√
N

∑
x∈TN

∂sF (s, x
N

)(ηsN2+α(x)− ρ)ds

−Nα−1/2
∫ t

0

∑
x∈TN

g̃′(ρ)(∆̃NF )(s, x
N

) [ηsN2+α(x)− ρ] ds

−Nα−1/2
∫ t

0

∑
x∈TN

(∆̃NF )(s, x
N

)Vg (ηsN2+α(x)) ds

(41)

is a martingale w.r.t. the natural filtration of {ηtN2+α ; t ≥ 0}.
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Let T = [0, 1) be the unit torus. Consider now f : (t, u) ∈ [0, T ] × T → f(t, u) ∈ R be
a function satisfying

∫
T f(t, u)du = 0 for any t ∈ [0, T ] and consider, for any N ≥ 1, the

function FN : (t, u) ∈ [0, T ]× 1
N
TN → FN(t, u) ∈ R satisfying the equation

N−α∂tF
N(t, x

N
) + g̃′(ρ)∆̃NF

N(t, x
N

) = f(t, x
N

), x ∈ {1, . . . , N − 1},
FN(T, ·) = 0.

(42)

We have then

YN (f) = − 1

Nα/2
YN

0 (FN)− 1

Nα/2
MN

T (FN)

+N (α−1)/2
∫ T

0

∑
x∈TN

(∆̃NF
N)(s, x

N
)Vg (ηsN2+α(x)) ds

(43)

By adapting Remark 11 in [5] we have that for any ` ≥ 1

E

(∫ T

0

∑
x∈TN

(∆̃NF
N)(s, x

N
)Vg (ηsN2+α(x)) ds

)2


.

[
`

N2+α
+
T

`

] ∫ T

0

∑
x∈TN

[
(∆̃NF

N)
(
s, x

N

)]2
ds.

(44)

By taking ` = N1+α/2 and using (42) we get

E

(∫ T

0

∑
x∈TN

(∆̃NF
N)(s, x

N
)Vg (ηsN2+α(x)) ds

)2


. N−(1+α/2)
∫ T

0

∑
x∈TN

[
(∆̃NF

N)
(
s, x

N

)]2
ds

. N−(1+α/2)

{∫ T

0

∑
x∈TN

[
f
(
s, x

N

)]2
ds+N−2α

∫ T

0

∑
x∈TN

[
∂sF

N
(
s, x

N

)]2
ds

}
.

(45)

Hence the square of the L2-norm of the third term on the right-hand side of (43) is
bounded above by Nα/2−2. It goes to 0 if, and only if, α < 4. This ends the proof.
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