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Abstract
We investigate the long-time dynamics of a SIR epidemic model with infinitely many pathogen variants infecting

a homogeneous host population. We show that the basic reproduction number R0 of the pathogen can be defined
in that case and corresponds to a threshold between the persistence (R0 > 1) and the extinction (R0 ≤ 1) of the
pathogen. When R0 > 1 and the maximal fitness is attained by at least one variant, we show that the systems
reaches an equilibrium state that can be explicitly determined from the initial data. When R0 > 1 but none of
the variants attain the maximal fitness, the situation is more intricate. We show that, in general, the pathogen
is uniformly persistent and any family of variants that have a fitness which is uniformly lower than the optimal
fitness, eventually gets extinct. We derive a condition under which the total pathogen population converges to
a limit which can be computed explicitly. We also find counterexamples that show that, when our condition is
not met, the total pathogen population may converge to an unexpected value, or the system can even reach an
eternally transient behavior where the total pathogen population between several values. We illustrate our results
with numerical simulations that emphasize the wide variety of possible dynamics.

1 Introduction
In this article we investigate the large time behavior of the SIR epidemic model

d
dtS(t) = Λ− θS(t)−

+∞∑
k=0

βkS(t)Ik(t), t > 0,

d
dtIn(t) = βnS(t)In(t)− γnIn(t), t > 0, n ∈ N,

(1.1a)

with the initial data
S(0) = S0 ∈ (0,+∞), (In(0))n∈N = (I0

n)n∈N ∈ `1+, (1.1b)

where `1+ denotes the space of non-negative summable sequences.
This model describes the evolution of a population of hosts that can be, at any time t > 0, either free of infection and

immunity (S(t), the susceptible population), or infected by a pathogen of type n ∈ N (In(t), the infected population
of type n). The parameter Λ > 0 models a constant influx of susceptible hosts, θ > 0 the death rate of the hosts
in the absence of infection, βn the transmission parameter of the pathogen of type n, and γn the recovery rate of a
pathogen of type n. Both βn and γn are bounded sequences. SIR models are ubiquitous in the literature concerning
mathematical epidemiology and have been extensively studied. Without the pretention of reconstructing the entire
history of the model, let us cite the works of Kermack and McKendrick (1927) that might well be its first occurrence
in the literature, and was immediately applied to a plague outbreak in the island of Bombay.

In this article we consider that many variants of the pathogen (possibly inifinitely many) compete to infect suscep-
tible hosts. All of the possible genotypes are listed in an infinite sequence indexed by n ∈ N, and for each genotype
we denote (βn, γn) the associated phenotype composed of the transmission coefficient βn and the recovery rate of the
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infection γn. We do not specify the particular mechanisms that link the underlying variable n ∈ N and the phenotype
(βn, γn) but focus on the dynamics of the population under (1.1) conditionally to the knowledge of these mechanisms.
We do not take mutations into account and consider that the pathogen is asexual; therefore, (1.1) can be considered
a pure competition model where the pathogens compete for a single resource (the susceptible hosts).

When I0
n is zero except for a finite number of indices, our problem is reduced to a system of ordinary differential

equations: 

d
dtS(t) = Λ− θS(t)− S(t)

(
β1I1(t) + β2I2(t) + . . .+ βnIn(t)

)
d
dtI1(t) = β1S(t)I1(t)− γ1I1(t)

...
d
dtIN (t) = βNS(t)IN (t)− γNIN (t),

(1.2a)

with the initial data

S(0) = S0 ∈ (0,+∞), I1(0) = I0
1 ∈ (0,+∞), . . . , IN (0) = I0

N ∈ (0,+∞). (1.2b)

In this context, Hsu, Hubbell, and Waltman (1977) and Hsu (1978) showed for a similar system of ordinary differential
equations that the solution eventually converges to an equilibrium which may not be unique but is always concentrated
on the equations that maximize the fitness βn/γn. Here we extend these results to an infinite-dimensional dynamical
system (we consider infinitely many variants) and prove that, for some well-chosen coefficients, the system stays
eternally in a transient state and never converges to a single equilibrium. Thieme (2011) considers a related model
in which a continuous distribution of host classes is infected by a pathogen that can be transmitted across classes;
he proves, among other results and under very general assumptions, the global stability of the endemic equilibrium.
While his model is different in nature and in behavior from ours, we consider it as an inspiration for future works.

The problem of several species competing for a single resource has received a lot of attention in the literature. In
this context, the “Competitive exclusion principle” states that “Complete competitors cannot coexist”, which means
that given a number of species competing for the same resource in the same place, only one can survive in the long
run. This idea was already present to some extent in the book of Darwin, and is sometimes referred to as Gause’s law
(Hardin 1960). This problem of survival of competitors has attracted the attention of mathematicians since the ’70s
and many studies have proved this property in many different contexts – let us mention the seminal works of Hsu,
Hubbell, and Waltman (1977) and Hsu (1978) followed by Armstrong and McGehee (1980), Butler and Wolkowicz
(1985), Wolkowicz and Lu (1992), Hsu, Smith, and Waltman (1996), Wolkowicz and Xia (1997), and Li (1999), to cite
a few – and also disproved in other contexts, for instance in fluctuating environments, see Cushing (1980) and Smith
(1981). Ackleh and Allen (2003) study the competitive exclusion in an epidemic model with a finite number of strains,
and describe how different species can coexist in some cases.

In our model, the fitness of a variant with genotype n is given by the formula Rn0 = Λβn
θγn

= Λ
θ αn, where αn := βn

γn
;

the competitive exclusion principle implies that the only genotypes that eventually remain are the ones that maximize
Rn0 . We prove that this is correct - asymptotically, only the genotypes that maximize the fitness survive - but
incomplete. Indeed it does not suffice to describe the asymptotic behavior of the population, especially when there are
equality cases in the fitness of the variants (i.e. βn1

γn1
= βn2

γn2
with n1 6= n2, and possibly γ1 6= γ2), of the maximal fitness

is not reached by any genotype, or both. In the latter case we can even observe an alternation of the prevalent variant
and eternal oscillations in the total number of infected, see the second example in section 3.2. Similar behaviors have
been observed in the literature for related models (among others, Hsu (1978) already gives a similar description).
For example in the epidemiological context of Day and Gandon (2007), it has been observed that a strain 1 with a
higher value of γ and a slightly lower R0 value than a strain 2 may nevertheless be dominant for some time. These
borderline cases shed light on our understanding of transient dynamics, see also Burie, Djidjou-Demasse, and Ducrot
(2020) where estimates for the transient dynamics for a related evolutionary model are provided based on the local
flatness of the fitness function.

Quantitative traits such as the virulence or the transmission rate of a pathogen, the life expectancy of an individual
and more generally any observable feature such as height, weight, muscular mass, speed, size of legs, etc. are naturally
represented using continuous or discrete variables. Such a description of a population seems highly relevant and has
been used mostly in modelling studies involving some kind of evolution (Magal and Webb 2000; Magal 2002; Barles
and Perthame 2007; Desvillettes et al. 2008; Barles, Mirrahimi, and Perthame 2009; Bouin et al. 2012; Jabin and Raoul
2011; Raoul 2011; Lorz and Perthame 2014; Griette 2019; Ducrot et al. 2022). In many of those models, mutation is
considered as a process that is continuously occurring through time. That assumption may or may not be realistic
depending on the context. It may also be realistic to model mutation as discrete events in time; in that case, the
behavior of the population between such mutation events is correctly described by pure competition equations like
(1.1). In the same spirit, our work also provides a precise description of what happens in the vanishing mutation
limit, and the trajectories of a model with a small but non-zero mutation operator are expected to be close, at least
transiently, to those of the limit.
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The structure of the paper is as follows. In section 2 we present our main results. In section 3 we provide some
examples and numerical simulations that present different asymptotic behaviors. In section 4 we propose a discussion
of our results. Finally in section 5 we prove the results we claimed in section 2.

Data availability Data sharing not applicable to this article as no datasets were analyzed during the current study.

Conflict of Interest. The authors declare no conflict of interest.

2 Main results
In this article we study the solutions of (1.1a) supplemented with the initial data (1.1b). Before starting, let us precise
that we use the notation `1 to denote the Banach space of absolutely summable real sequences equipped with the
norm

‖(an)n∈N‖`1 :=
+∞∑
n=0
|an|,

and `1+ is the positive cone of `1, that is to say the set of non-negative summable sequences. Similarly, `∞ denotes the
Banach space of bounded sequences equipped with the norm

‖(an)n∈N‖`∞ := sup
n∈N
|an|.

We will make the following assumption on the parameters arising in (1.1).

Assumption 2.1. The constants Λ > 0 and θ > 0 are given. The sequences
(
βn
)
n∈N ∈ `

∞ and
(
γn
)
n∈N ∈ `

∞ are
bounded and we assume that there exist constants 0 < β0 < β∞ and 0 < γ0 < γ∞ such that

0 < β0 ≤ βn ≤ β∞ and 0 < γ0 ≤ γn ≤ γ∞, for all n ∈ N.

As a consequence of this assumption, the sequence (βn/γn)n∈N is bounded. We let α∗ be the maximal fitness defined
by

α∗ := sup
k∈N

βk
γk
.

Our next assumptions ensures that the maximal fitness α∗ is effectively attained (possibly at infinity) by a non-
neglibile population of infected. In other words, our model (1.1) is not equivalent to another model with a strictly
lower maximal fitness.

Assumption 2.2. We let S0 > 0, (I0
n)n∈N ∈ `1+ be given and assume that there exists a sequence of indices nk ∈ N

with
I0
nk
> 0 and lim

k→+∞

βnk
γnk

= α∗.

Let us precise that the sequence nk in Assumption 2.2 can be eventually stationary; in particular we do not assume
that the set of positive components is infinite.

We define the basic reproductive number R0 by

R0 := Λ
θ
α∗. (2.1)

Finally, we make a technical assumption to avoid unnecessary theoretical discussions.

Assumption 2.3 (Finite ω-limit sets). We assume that the ω-limit sets of the sequences γn and αn := βn
γn

, defined
by

ω ((γn)n∈N) :=
⋂
n∈N
{γk : k ≥ n} and ω ((αn)n∈N) :=

⋂
n∈N
{αk : k ≥ n},

are finite.

2.1 The Cauchy problem: existence and uniqueness
Our first result concerns the existence and uniqueness of the solution to the Cauchy problem (1.1). We show that the
system (1.1) is well posed in the sense of Hadamard.
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Proposition 2.4 (The Cauchy problem). Let Assumption 2.1 hold, and S0 > 0 and (I0
n)n∈N ∈ `1+ be given. Then the

system (1.1) has a unique global mild solution
(
S(t), (In(t))n∈N

)
∈ C0([0,+∞),R

)
×C0([0,+∞), `1+

)
, which is also a

classical solution:
S(t) ∈ C1([0,+∞),R

)
and (In(t))n∈N ∈ C1([0,+∞), `1+

)
.

Moreover for all t > 0 the map(
S0,
(
I0
n

)
n∈N

)
∈ R× `1+ 7−→

(
S(t),

(
In(t)

)
n∈N

)
∈ R× `1+

is continuous.

As an important consequence of Proposition 2.4, we note that each component of (In(t)) can be computed from
S(t). More precisely, if we set

S(t) := 1
t

∫ t

0
S(s)ds,

then we have the following formula for In(t):

In(t) = et(βnS(t)−γn), for all n ∈ N and t ≥ 0. (2.2)

We will use equation (2.2) repeatedly in the proofs of our results.

2.2 Persistence and asymptotic behavior
Next we investigate the asymptotic behavior of the solutions to (1.1) when t→ +∞. We first show that the population
of pathogens gets extinct if R0 ≤ 1.

Proposition 2.5 (Extinction). Let Assumption 2.1 hold, and S0 > 0 and (I0
n)n∈N ∈ `1+ be given. Suppose that either

R0 < 1, or R0 = 1 and Assumption 2.3 holds true. Then we have

lim
t→+∞

+∞∑
n=0

In(t) = 0.

When R0 > 1, on the contrary, we can show that the pathogen survives in large time.

Theorem 2.6 (Persistence). Suppose that the Assumptions 2.1, 2.2 and 2.3 hold true, and assume that R0 > 1. Then
we have

S(t) −−−−→
t→+∞

1
α∗

and S′(t) −−−−→
t→+∞

0.

Concerning the behavior of In(t), we distinguish two cases.

i) Suppose that there is some i ∈ N such that βi
γi

= α∗, possibly for multiple indices. Then In(t) converges in `1 to
the following asymptotic stationary state

I∞n =
{

0 if βn
γn

< α∗,

eτγnI0
n if βn

γn
= α∗,

for all n ∈ N,

where the constant τ ∈ R is the unique solution of the equation:∑
{n∈N : βnγn =α∗}

γnI
0
n e

τγn = θ

α∗
(R0 − 1).

ii) Suppose that for all n ∈ N, we have βn
γn

< α∗. Then one has In(t)→ 0 for all n ∈ N as t→∞, while

lim inf
t→+∞

∑
n∈N

In(t) > 0. (2.3)

Moreover if (nk)k∈N is a sequence of integers such that

sup
k∈N

βnk
γnk

< α∗,

then we have
lim sup
t→+∞

∑
k∈N

Ink(t) = 0. (2.4)
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The proof of Theorem 2.6 will be given in section 5.3.
Let us explain in a few words the content of Theorem 2.6. Our basic assumption is that the basic reproduction

number R0 is greater than one, because the infected population gets extinct otherwise. There are two typical situation.
Case i) corresponds to the case when the maximal fitness is attained by at least one variant; in this case, the behavior of
the infinite system is similar to the one of the finite system: we observe the unconditional convergence to an equilibrium
state, that can be computed from the initial data. The case ii), when none of the variants attain the maximal fitness,
is more intricate. In general, we can only draw two conclusions: the first is that the pathogen persists in large time as
a whole (that’s (2.3)), and the second is that any family of variants whose fitness is uniformly dominated, eventually
gets extinct (that’s (2.4)). In section 3 we will give a counterexample showing that, in some cases, the total pathogen
population does not converge to a limit.

To go deeper in our analysis, we can be somewhat more precise on the behavior of the total pathogen population
at the expense of a slightly stronger assumption on the coefficients. When the phenotypic values βn and γn are in
some sense uniformly represented in the initial state, the pathogen strains that win the competition are the ones that
maximize βn

γn
first, and then γn, as we will show in Proposition 2.9. We precise now what we mean by “in some sense

uniformly represented in the initial state”. First we properly define the notion of “maximal reachable recovery rate”.

Definition 2.7 (Maximal reachable recovery rate). Let Assumptions 2.1 and 2.3 hold. Then the maximal reachable
recovery rate is

γ∗ := sup
{
γ ∈ ω ((γn)n∈N) : (α∗, γ) ∈ ω

((
(αn, γn)

)
n∈N

)}
,

wherein ω
((

(αn, γn)
)
n∈N

)
is the ω-limit set of the joint sequence

(
(αn, γn)

)
n∈N. In other words, γ∗ is the maximal

limit value of a subsequence of γn such that βnk
γnk
→ α∗.

In the following assumption we impose that the initial mass of pathogens is never negligible around the maximal
value γ∗.

Assumption 2.8. Suppose that the Assumptions 2.1, 2.2 and 2.3 hold true, and let γ∗ be the maximal reachable
recovery rate as in Definition 2.7. We assume that for each ε > 0 sufficiently small, there exist constants δ > 0 and
m > 0 such that for each value α ∈ [α∗ − δ, α∗] such that there exists n ∈ N with βn

γn
= α, we have∑

{n : βnγn=α and γn≥γ∗−ε}
I0
n

∑
{n : βnγn=α}

I0
n

≥ m.

In other words, the probability of “picking” a pathogen with γn close to γ∗ conditionally to the fact that αn = α with
α close to α∗ has a uniform positive lower bound.

Let us give a few examples of initial data that do or do not satisfy the assumption 2.8. If γn converges to
its limit, then the limit is necessarily γ∗ and assumption 2.8 holds independently of the initial data I0

n > 0. If
ω
(
(γn)n∈N

)
= {γ1, γ2} has exactly two elements γ1 < γ2, we have to look at the equality cases An := {k : αk = αn}.

For simplicity, suppose that γ2n → γ1 and γ2n+1 → γ2 and An = {2n, 2n+ 1}, then Assumption 2.8 is satisfied if, and
only if, there is m > 0 such that

I0
2n+1

I0
2n + I0

2n+1
≥ m.

When Assumption 2.8 is satisfied, we can prove the following result.

Proposition 2.9. Suppose that Assumption 2.8 holds and that βn
γn

< α∗ for all n ∈ N. Then the total pathogen
population converges to a positive limit

lim
t→+∞

+∞∑
n=0

In(t) = θ

α∗γ∞
(R0 − 1). (2.5)

Moreover if nk ∈ N is a sequence of integers such that

sup
k∈N

βnk
γnk

= α∗ and sup
k∈N

γnk < γ∗, (2.6)

then we have
lim sup
t→+∞

∑
k∈N

Ink(t) = 0. (2.7)

The proof of the results of this Section will be given in section 5. First we present some particular choices for
which the replacement dynamics of the variants can be analytically understood.
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3 Examples
In this section we provide examples of explicit choices of the coefficients for which the asymptotic dynamics can be
understood analytically. We also provide numerical simulations of the corresponding set of ODEs, with a particular
attention to the dynamics of variants replacement.

We subdivide further the section in two subsections: in section 3.1 we deal with examples for which γn ≡ γ is a
constant sequence, while in section 3.2 we deal with examples for which γn takes alternatively two values.

3.1 Replacement dynamics 1: Monovalent γn

In this section we investigate the asymptotic transition time between the prevalence of two given variants, depending
on their characteristics. We place ourselves in the case when γn is monovalent, that is to say, γn ≡ γ > 0 is independent
of n ∈ N. We also assume that βn < β∗ for all n ≥ 0, so that we already know that the mass converges thanks to
Proposition 2.9:

I(t) :=
+∞∑
n=0

In(t) −−−−→
t→+∞

I∞. (3.1)

Now let us observe that the total mass rewrites as
+∞∑
n=0

In(t) =
+∞∑
n=0

I0
ne
βnS(s)−γnt =

+∞∑
n=0

I0
ne

(βn−β∗)S(t)t+(β∗S(t)−γ)t = e(β∗S(t)−γ)t
+∞∑
n=0

I0
ne
−(β∗−βn)S(t)t,

and in particular:
+∞∑
n=0

In(t) = et(β
∗S(t)−γ)F

(
tS(t)

)
, (3.2)

where F is the function defined by

F (ξ) :=
+∞∑
n=0

I0
ne
−(β∗−βn)ξ. (3.3)

Notice that, since βn < β∗ for all n ≥ 0, by (3.3) we have

lim
ξ→+∞

F (ξ) = 0.

so that, using the fact that
∑
In(t) = I∞ + o(1) > 0, we get

lim
t→+∞

e(β∗S(t)−γ)t = +∞.

Moreover, we have

ln
(+∞∑
n=0

In(t)
)

= t
(
β∗S(t)− γ

)
+ ln

(
F (tS(t))

)
so that thanks to Theorem 2.6 we have

1
t

ln
(
F (S(t))

)
= −

(
β∗S(t)− γ

)
+ 1
t

ln
(+∞∑
n=0

In(t)
)
−−−−→
t→+∞

0.

These algebraic remarks will serve to estimate the replacement speed of the variants. In particular, we will use the
key relation

S(t) = γ

β∗
− 1
tβ∗

ln
(
F (tS(t))

)
+ 1
tβ∗

ln
(+∞∑
n=0

In(t)
)
. (3.4)

3.1.1 Monovalent example 1: the algebraic-algebraic case.

In this subsection we assume the following framework.

Assumption 3.1. We let γn ≡ γ > 0 be a constant sequence and assume that the initial data is algebraic and the
convergence of the fitness to its maximum is algebraic :

I0
n = 1

(n+ 1)A with A > 1 while βn = β∗ − 1
n+ 1 for all n ≥ 0. (3.5)
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Claim 3.2. Under assumption 3.1, there exist constants C > 1 and t̂ > 0 large enough such that for all t ≥ t̂ and for
all n ≥ 0 one has

1
Ct
f

(
(n+ 1)

γt+ (A− 1) ln t

)
≤ In(t) ≤ C

t
f

(
(n+ 1)

γt+ (A− 1) ln t

)
,

where the profile function f is given by

f(X) = exp
(
−A lnX − 1

Xβ∗

)
. (3.6)
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Figure 1: Plots of the solution In(t) in the monovalent case 1. Colors are chosen at random so that each variant has
a different color. The bottom figure suggests that the diversity of variants increases with time, since there are more
and more lines with a noticeable width. Top figure: Value of In(t). Bottom figure: Relative frequencies of the
variants as a function of time. This is the proportion of each variant in the global population. Parameters: Λ = 1,
θ = 1, S0 = 1, γ = 1

2 , A = 2, β∗ = 1. We used a total of N = 300 variants for this simulation. For interpretation of
the colors in the figure(s), the reader is referred to the online version of this article.

We start with a technical lemma.

Lemma 3.3. The function F (ξ) defined by (3.3) satisfies

lnF (ξ) = −(A− 1) ln ξ +O(1) as ξ →∞.

Proof. Let un(ξ) := exp
(
−A ln(n+ 1)− ξ

n+1

)
so that

F (ξ) =
∞∑
n=0

un(ξ).

For ξ > 0 we define x(ξ) > 0 and n(ξ) ∈ N by

x(ξ) + 1 = ξ

A
and n(ξ) = bx(ξ)c the integer part of x(ξ).

Next we have for p ∈ N and ξ > 0:

un(ξ)+p(ξ)
un(ξ)(ξ)

=
(

n(ξ) + 1
n(ξ) + 1 + p

)A
exp

(
ξ

p

(n(ξ) + 1)(n(ξ) + 1 + p)

)
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Hence we get
∞∑
p=0

un(ξ)+p(ξ)
un(ξ)(ξ)

≤
∞∑
p=0

(
n(ξ) + 1

n(ξ) + 1 + p

)A
exp

(
ξ

(n(ξ) + 1)

)

≤ (n(ξ) + 1)A exp
(

ξ

(n(ξ) + 1)

) ∞∑
k=n(ξ)+1

1
kA

.

Since
+∞∑

k=n(ξ)+1

1
kA
≤
∫ +∞

n(ξ)+1

1
yA

dy = 1
A− 1(n(ξ) + 1)−(A−1),

we obtain that there exists some constant C > 0 and ξ0 large enough such that
∞∑
p=0

un(ξ)+p(ξ)
un(ξ)(ξ)

≤ Cn(ξ) exp
(

ξ

(n(ξ) + 1)

)
∀ξ > ξ0.

This also rewrites as
∞∑
p=0

un(ξ)+p(ξ) ≤ Cn(ξ)un(ξ)(ξ) exp
(

ξ

(n(ξ) + 1)

)
∀ξ > ξ0.

On the other hand we have
n(ξ)∑
k=0

uk(ξ)
un(ξ)(ξ)

=
n(ξ)∑
k=0

(
n(ξ) + 1
k + 1

)A
exp

(
ξ

n(ξ) + 1
k − n(ξ)
k + 1

)
.

Next due to the definition of n(ξ) we have

n(ξ) ≤ x(ξ) = ξ

A
− 1 < n(ξ) + 1,

so that
An(ξ)
n(ξ) + 1 ≤

ξ−A
n(ξ) + 1 ≤ A.

Hence there exists ξ1 > 0 large enough so that

A ≥ ξ

n(ξ) + 1 ≥
A

2 , ∀ξ > ξ1.

As a consequence for all ξ > ξ1 we have

n(ξ)∑
k=0

uk(ξ)
un(ξ)(ξ)

≤
n(ξ)∑
k=0

(
n(ξ) + 1
k + 1

)A
exp

(
A

2
k − n(ξ)
k + 1

)

≤
n(ξ)∑
k=0

(
n(ξ) + 1
k + 1

)A
exp

(
A

2

(
1− n(ξ) + 1

k + 1

))
and similarly

n(ξ)∑
k=0

uk(ξ)
un(ξ)(ξ)

≥
n(ξ)∑
k=0

(
n(ξ) + 1
k + 1

)A
exp

(
A

(
1− n(ξ) + 1

k + 1

))
.

Now using Riemann sums with the continuous function

x 7→

{
0 if x ≤ 0
1
xA

exp
( 1

2A
(
1− 1

x

))
if x > 0,

let us observe that we have

n

n∑
k=0

(
n+ 1
k + 1

)A
exp

(
1

2A

(
1− n+ 1

k + 1

))
→
∫ 1

0

1
xA

exp
(

1
2A

(
1− 1

x

))
dx as n→∞.

As a consequence, there exists some constant, still denoted by C > 1 large engou and ξ2 > 0 large enough such that

C−1n(ξ)un(ξ)(ξ) ≤
n(ξ)∑
k=0

uk(ξ) ≤ Cn(ξ)un(ξ)(ξ), ∀ξ > ξ2.
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Coupling the two above estimates ensures that there exists C > 1 and ξ̂ � 1 large enough so that

F (ξ) ≤ Cn(ξ)un(ξ)(ξ) ≤ Cξ1−A, ∀ξ > ξ̂,

while

F (ξ) ≥
n(ξ)∑
k=0

uk(ξ) ≥ C−1n(ξ)un(ξ)(ξ).

The completes the proof of the lemma.

Proof of Claim 3.2. As before the proof relies on Lemma 3.3 and (3.4). Indeed using these we have

S(t) = γ

β∗
− 1
tβ∗

ln
(
F (tS(t))

)
+ 1
tβ∗

ln
(+∞∑
n=0

In(t)
)

= γ

β∗
+ A− 1

β∗
ln(t)
t

+O
(

1
t

)
.

As a consequence we obtain

In(t) = I0
n exp

((
β∗ − 1

n+ 1
)( γ

β∗
+ A− 1

β∗
ln(t)
t

+O
(

1
t

))
t− γt

)
= I0

n exp
(

(A− 1) ln(t)− 1
n+ 1

(
γ

β∗
+ A− 1

β∗
ln(t)
t

)
t+O(1)

)
= exp

(
−A ln(n+ 1) + (A− 1) ln(t)− 1

n+ 1

(
γ

β∗
+ A− 1

β∗
ln(t)
t

)
t+O(1)

)
.

This rewrites uniformly for n ≥ 0 as follows

In(t) = eO(1) 1
t

exp
(
−A ln (n+ 1)

γt+ (A− 1) ln t −
1
β∗

γt+ (A− 1) ln t
n+ 1

)
.

Recalling the definition of the function f in (3.6), the above equality becomes

In(t) � 1
t
f

(
(n+ 1)

γt+ (A− 1) ln t

)
with f(X) = exp

(
−A lnX − 1

Xβ∗

)
,

that completes the proof of the lemma.

3.1.2 Monovalent example 2: the exponential-exponential case.

We work under the following assumption.

Assumption 3.4. We assume that γn ≡ γ > 0 is a positive constant, I0
n = e−An and βn = β∗ − Be−Cn for some

constants A > 0, B > 0, and C > 0. In other words, the initial data is exponential and the convergence of the fitness
to its maximum is also exponential.

In this case we can show that the function F (ξ) behaves like ξ−AC and that In(t) eventually reaches a fixed shape
shifting toward +∞ like 1

C ln(t). More precisely In(t) behaves asymptotically like E
(
n − n0(t)

)
as t → +∞, where

n0(t) := 1
C ln(t) and

E(ν) := exp
(
− γ

β∗
Be−Cν −Aν

)
. (3.7)

Claim 3.5 (Asymptotic behavior). Let Assumption 3.4 hold and E be defined by (3.7). Let n0(t) := 1
C ln(t) and

µ(t) := µ0
ln
(

ln t
)

ln t for µ0 > max(C, 1) and t > 1. Then there exists a constant K > 0 such that for all n ≥ µ(t)n0(t)
we have

1
K
E
(
n− n0(t)

)
≤ In(t) ≤ KE

(
n− n0(t)

)
.

and
bµ(t)n0(t)c∑

k=0
Ik(t) −−−−→

t→+∞
0 (where bµ(t)n0(t)c is the biggest integer smaller than µ(t)n0(t)).
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Figure 2: Plots of the solution In(t) in the monovalent case 2. Colors are chosen at random so that each variant has
a unique color. The top figure suggests that each variant has a similar behavior in time. The bottom figure suggests
that the diversity of variants remains approximately constant in time (more precisely, the number of non-negligible
variants in the population is uniformly greater than a positive constant). Top figure: Value of In(t). Bottom
figure: Relative frequencies of the variants as a function of time. Parameters: Λ = 10, θ = 10, S0 = 1, γ = 2,
β∗ = 4, A = 1, B = 1, C = 1. We used a total of N = 14 variants for this simulation. For interpretation of the colors
in the figure(s), the reader is referred to the online version of this article.

We begin with the asymptotic expansion of F .

Lemma 3.6. Let Assumption 3.4 hold and let F (ξ) be defined by (3.3). Then

F (ξ) = ξ−
A
C × eO(1) as ξ →∞.

Proof. We claim that F satisfies the functional equation:

F (ξ) = e−Bξ + e−AF (e−Cξ).

Indeed,

F (ξ) =
+∞∑
n=0

e−Bξe
−Cn−An =

+∞∑
n=0

e−An
+∞∑
k=0

(−Bξ)k

k!
(
e−Cn

)k =
+∞∑
k=0

(−Bξ)k

k!

+∞∑
n=0

e−(A+kC)n

=
+∞∑
k=0

(−Bξ)k

k! · 1
1− e−A−kC =

(+∞∑
k=0

(−Bξ)k

k!

)
+

+∞∑
k=0

(−Bξ)k

k!

(
1

1− e−A−kC − 1
)

= e−Bξ +
+∞∑
k=0

(−Bξ)k

k!
e−A−kC

1− e−A−kC = e−Bξ + e−A
+∞∑
k=0

(−Be−Cξ)k

k! = e−Bξ + e−AF
(
e−Cξ

)
.

We deduce that

F (eCξ) = e−Be
Cξ + e−AF (ξ),

F (e2Cξ) = e−Be
2Cξ + e−AF (eCξ) = e−Be

2Cξ + e−A−Be
Cξ + e−2AF (ξ),

F (e2Cξ) = e−Be
3Cξ + e−AF (e2Cξ) = e−Be

3Cξ + e−A−Be
2Cξ + e−2A−BeCξ + e−3AF (ξ),

...
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F (enCξ) = e−nAF (ξ) +
n∑
k=1

e−(n−k)A−BekCξ = e−nA

(
F (ξ) +

n∑
k=1

ekA−Be
kCξ

)
.

For ξ ∈
[
1, eC

)
, we let X = ξenC so that

n =
⌊

1
C

ln(X)
⌋

and ξ = Xe−Cbln(X)/Cc.

We get:

F (X) = 1
exp

(
A
⌊ 1
C ln(X)

⌋) (F (ξ) +
n∑
k=1

ekA−Be
kCξ

)
,

and finally, as X → +∞,
F (X) = X−

A
C × eO(1).

Proof of Claim 3.5. Thanks to Claim 3.6 we have, recalling (3.4)

S(t) = γ

β∗
− 1
tβ∗

ln
(
F (tS(t))

)
+ 1
tβ∗

ln
(+∞∑
n=0

In(t)
)

= γ

β∗
+ A

Cβ∗
ln(t)
t

+O
(

1
t

)
.

Therefore,

In(t) = I0
n exp

((
β∗ −Be−Cn

)( γ

β∗
+ A

Cβ∗
ln(t)
t

+O
(

1
t

))
t− γt

)
= I0

n exp
(
A

C
ln(t)−Be−Cn

(
γ

β∗
+ A

Cβ∗
ln(t)
t

)
t+O(1)

)
= exp

(
−Be−Cn+ln(t)

(
γ

β∗
+ A

Cβ∗
ln(t)
t

)
+ A

C
ln(t)−An+O(1)

)
= exp

(
−
(

1 + A

Cγ

ln(t)
t

)
γ

β∗
Be−C(n− 1

C ln(t)) −A
(
n− 1

C
ln(t)

)
+O(1)

)
= exp

(
−
(

1 + A

Cγ

ln(t)
t

)
γ

β∗
Be−C(n−n0(t)) −A

(
n− n0(t)

)
+O(1)

)
with n0(t) = 1

C ln(t). Thus for (n, t) ∈ {(ñ, t̃) : ñ ≥ µ(t̃)n0(t̃)} we have

In(t)
E
(
n− n0(t)

) = exp
(
− A

Cγ

ln(t)
t

γ

β∗
Be−C(n−n0(t)) +O(1)

)
= eO(1),

since
0 ≤ ln(t)

t
e−C(n−n0(t)) ≤ eln(ln t)−ln(t)−(µ(t)−1) ln(t) = e(1−µ0) ln(ln t) −−−−→

t→+∞
0.

On the other hand if n ≤ µ(t)n0(t) then

In(t) = exp
[
− γ

β∗
Bte−Cn − A

Cβ∗
ln(t)e−Cn −An+ A

C
ln(t) +O(1)

]
≤ exp

[
−
(
γ

β∗
Bt− A

C

)
e−Cn −An+ A

C

(
ln(t)− e−n

)
+O(1)

]
≤ e−An+O(1),

because n ≤ µ(t)n0(t) = µ0
C ln(ln t) with µ0 > C implies e−n ≥ ln(t) 2

C ≥ ln(t) for t large, whence

bµ(t)n0(t)c∑
n=0

In(t) −−−−→
t→+∞

0

by Lebesgue’s dominated convergence Theorem. This proves Claim 3.5.
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3.1.3 Monovalent example 3: the Gaussian-exponential case.

Assumption 3.7. Assume that the initial data is Gaussian and the convergence of the fitness to its maximum is
exponential:

I0
n = e−An

2
while β∗ − βn = Be−Cn for all n ≥ 0, (3.8)

with A > 0, B > 0 and C > 0 given constants.

Under this Assumption we can prove that the dynamics of the entire family of variants is actually guided by only
three variants at a time at most (and most of the times by only one variant at a time) provided C is sufficiently small.
We let W0 be the principal branch of the Lambert-W function, that is to say the smooth real function satisfying
W0(x)eW0(x) = x for all x ≥ e−1 and limx→+∞W0(x) = +∞; see Corless et al. (1996) for details. We define:

Y (t) = 1
C
W0

(
BC2

2A tS(t)
)
. (3.9)

Claim 3.8. Let Assumption 3.7 hold. If C is sufficiently small, then there exists δ > 0 small enough such that:

∞∑
n=0

In(t) ∼


IN(t)−1(t) + IN(t)(t) for t� 1 and −1/2 ≤ R(t) ≤ −1/2 + δ,

IN(t) for t� 1 and −1/2 + δ ≤ R(t) ≤ 1/2− δ,
IN(t)(t) + IN(t)+1(t) for t� 1 and 1/2− δ < R(t) ≤ 1/2,

where N(t) =
⌊
Y (t) + 1

2
⌋
, R(t) = Y (t)−N(t) and Y (t) is defined in (3.9).
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Figure 3: Plots of the solution In(t) in the monovalent case 3. Colors are chosen at random so that each variant has
a unique color. The bottom figure suggests that the diversity of variants diminishes in time since the steepness of the
separation between variants is slowly increasing (and our theoretical predictions show that only one variant remains
at carefully chosen times). Top figure: Value of In(t). Bottom figure: Relative frequencies of the variants as a
function of time. Parameters: Λ = 10, θ = 10, S0 = 1, γ = 2, β∗ = 1, A = 0.1, B = 1, C = 0.03. We used a total
of N = 100 variants for this simulation. For interpretation of the colors in the figure(s), the reader is referred to the
online version of this article.

We define for ξ > 0, x(ξ) > 0 at the solution of the so-called transcendental Lambert equation

xeCx = BC

2A ξ.
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Remark that x(ξ) can be expressed thanks to the principal branch of the Lambert-W function, W0(z). More precisely,
x(ξ) = 1

CW0

(
BC2

2A ξ
)

.
We denote by n(ξ) the integer which is the closest of x(ξ), that is

x(ξ) = n(ξ) + r(ξ) with n(ξ) =
⌊
x(ξ) + 1

2

⌋
∈ N and r(ξ) ∈ [−1/2, 1/2). (3.10)

Lemma 3.9. The function F defined in (3.3) satisfies the following asymptotic behavior

F (e−Cr(ξ)ξ) ∼ e−An(ξ)2−Bξe−Cx(ξ)
= e−An(ξ)2− 2A

C x(ξ) as ξ →∞.

Proof. We define the function G : R2 → R by

G(x, ξ) = Ax2 +Bξe−Cx, ∀(x, ξ) ∈ R2. (3.11)

Now we first claim that we have:
∞∑

n=n(ξ)+1

e−G(n,e−Cr(ξ)ξ) = o
(
e−G(n(ξ),e−Cr(ξ)ξ)

)
as ξ →∞. (3.12)

To prove this property, observe that for p ≥ 1 we have

G(n(ξ) + p, e−Cr(ξ)ξ)−G(n(ξ), e−Cr(ξ)ξ) = Be−C(n(ξ)+p)e−Cr(ξ)ξ +A(n(ξ) + p)2 −Be−Cn(ξ)e−Cr(ξ)ξ −An(ξ)2

= B
(
e−Cp − 1

)
e−Cx(ξ)ξ +A

(
2n(ξ)p+ p2)

= B
(
e−Cp − 1

) 2A
BC

x(ξ) +A
(
2n(ξ)p+ p2)

= x(ξ)
[
−
(
1− e−Cp

) 2A
C

+ 2Ap
]

+A (p− r(ξ))2 −Ar(ξ)2

≥ 2A
C
x(ξ)

[
−
(
1− e−Cp

)
+ Cp

]
+A (p− 1/2)2 −A/4.

From the above estimate we obtain
∞∑

n=n(ξ)+1

e−G(n,e−Cr(ξ)ξ)+G(n(ξ),e−Cr(ξ)ξ) ≤ e−
2A
C x(ξ)[C−(1−e−C)]

∞∑
p=1

e−A(p−1/2)2+A/4 → 0 as ξ →∞, (3.13)

which proves (3.17).
Next we claim that we have

n(ξ)−1∑
n=0

e−G(n,e−Cr(ξ)ξ) = o
(
e−G(n(ξ),e−Cr(ξ)ξ)

)
as ξ →∞. (3.14)

To see this, note that for 1 ≤ p ≤ n(ξ) we have

G(n(ξ)− p, e−Cr(ξ)ξ)−G(n(ξ), e−Cr(ξ)ξ) = Be−C(n(ξ)−p)e−Cr(ξ)ξ +A(n(ξ)− p)2 −Be−Cn(ξ)e−Cr(ξ)ξ −An(ξ)2

= B(eCp − 1)e−Cx(ξ)ξ +A[(n(ξ)− p)2 − n(ξ)2]
= B(eCp − 1)e−Cx(ξ)ξ −A[2px(ξ)− p2 − 2pr(ξ)]

= 2A
C
x(ξ)[eCp − 1− Cp] +A(p2 − 2pr(ξ))

≥ 2Ax(ξ)[eC − 1− C] +A(p2 − p).

Therefore we get

n(ξ)−1∑
n=0

e−G(n,e−Cr(ξ)ξ)+G(n(ξ),e−Cr(ξ)ξ) ≤ e−
2A
C x(ξ)[eC−1−C]

n(ξ)∑
p=0

e−A(p2−p) → 0 as ξ →∞. (3.15)

Coupling (3.17) and (3.14) yields

F
(
e−Cr(ξ)ξ

)
= e−G(n(ξ),e−Cr(ξ)ξ)(1 + o(1)) as ξ →∞.

That completes the proof.
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When C is sufficiently small we obtain a more refined estimate that is useful to understand the large time behavior
of the sequence (In(t))n≥0.

Lemma 3.10. Fix C > 0 small enough such that

e−C/2(e2C − 1)− 2C > 0 and C − eC/2
(
1− e−2C) > 0. (3.16)

Then the function F defined in (3.3) satisfies

F (ξ) =
∑

p=−1,0,1
e−A(n(ξ)+p)2−Bξe−C(n(ξ)+p)

+ o
(
e−An(ξ)2−Bξe−Cn(ξ)

)
as ξ →∞.

Proof. Recall the definition of the function G in (3.11), let us show that we have:
∞∑

p=n(ξ)+2

e−G(p,ξ) = o
(
e−G(n(ξ),ξ)

)
as ξ →∞. (3.17)

To prove this property, observe that for p ≥ 2 we have

G(n(ξ) + p, ξ)−G(n(ξ), ξ) = Be−C(n(ξ)+p)ξ +A(n(ξ) + p)2 −Be−Cn(ξ)ξ −An(ξ)2

= B
(
e−Cp − 1

)
e−Cx(ξ)eCr(ξ)ξ +A

(
2n(ξ)p+ p2)

= eCr(ξ)B
(
e−Cp − 1

) 2A
BC

x(ξ) +A
(
2n(ξ)p+ p2)

= x(ξ)
[
−eCr(ξ)

(
1− e−Cp

) 2A
C

+ 2Ap
]

+A (p− r(ξ))2 −Ar(ξ)2

≥ 2A
C
x(ξ)

[
−eC/2

(
1− e−Cp

)
+ Cp

]
+A (p− 1/2)2 −A/4

Now the map p 7→ −eC/2
(
1− e−Cp

)
+ Cp is increasing for p ≥ 1 so that

∞∑
n=n(ξ)+2

e−G(n,ξ)+G(n(ξ),ξ) ≤ e−
2A
C x(ξ)[2C−eC/2(1−e−2C)]

∞∑
p=1

e−A(p−1/2)2+A/4. (3.18)

Finally thanks to (3.16) we have

2C − eC/2
(
1− e−2C) > 0 for C > 0 small enough

so that
∞∑

p=n(ξ)+2

e−G(p,ξ)+G(n(ξ),ξ) ≤ e−
2A
C x(ξ)[2C−eC/2(1−e−2C)]

∞∑
p=1

e−A(p−1/2)2+A/4 → 0 as ξ →∞, (3.19)

that is
∞∑

p=n(ξ)+2

e−G(p,ξ) = o
(
e−G(n(ξ),ξ)

)
as ξ →∞. (3.20)

Next we claim that we have
n(ξ)−2∑
p=0

e−G(p,ξ) = o
(
e−G(n(ξ),ξ)

)
as ξ →∞. (3.21)

To see this, note that for 2 ≤ p ≤ n(ξ) we have

G(n(ξ)− p, ξ)−G(n(ξ), ξ) = Be−C(n(ξ)−p)ξ +A(n(ξ)− p)2 −Be−Cn(ξ)ξ −An(ξ)2

= B(eCp − 1)e−Cx(ξ)eCr(ξ)ξ +A[(n(ξ)− p)2 − n(ξ)2]
= B(eCp − 1)e−Cx(ξ)eCr(ξ)ξ −A[2px(ξ)− p2 − 2pr(ξ)]

= 2A
C
x(ξ)[eCr(ξ)eCp − 1− Cp] +A(p2 − 2pr(ξ))

= 2A
C
x(ξ)[e−C/2eCp − 1− Cp] +A(p2 − 2pr(ξ))

≥ 2Ax(ξ)[e−C/2(eC − 1)− C] +A(p2 − p).

Now the map p 7→ e−C/2eCp − 1− Cp is increasing for p ≥ 1 so that

G(n(ξ)− p, ξ)−G(n(ξ), ξ) ≥ 2Ax(ξ)[e−C/2(e2C − 1)− 2C] +A(p2 − p).
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Thanks to (3.16) we have
e−C/2(e2C − 1)− 2C > 0,

so that we obtain
n(ξ)−2∑
p=0

e−G(p,ξ)+G(n(ξ),ξ) → 0 as ξ →∞,

and the result follows.

Now let us prove that when C is small enough, when the time becomes large, at most three variants can survive
at the same time. Our precise lemma reads as follows.

Corollary 3.11. Fix C satisfying (3.16) and let Assumption 3.8 be satisfied. Define for t � 1, N(t) and R(t) the
closest integer part and the fractional part of Y (t) the solution of

Y (t) = 1
C
W0

(
BC2

2A tS(t)
)
.

Then the following holds true:

N(t)−2∑
p=0

Ip(t) +
∞∑

p=N(t)+2

Ip(t) = o
(
IN(t)(t)

)
as t→∞.

Note that using the notations introduced above (see (3.10)) we have

N(t) = n
(
tS(t)

)
and R(t) = r

(
tS(t)

)
.

Remark 3.12. The above corollary means that, at least for C small enough, at most three variants can simultaneously
survive in the large time, the variants N(t)− 1, N(t) and N(t) + 1.

Proof. The proof is a direct consequence of on estimates (3.20) and (3.21). Indeed we have for all n ≥ 0 and t > 0

In(t)
IN(t)(t)

= e−A(n2−N(t)2)−B(e−Cn−e−CN(t)))tS(t) = e−G(n,tS(t))+G(N(t),tS(t)),

and the result follows from these two estimates.

Proof of Claim 3.8. Now let us show that most of the time, only one variants can survive. To see this, using the same
notations as above, note that we have

IN−1(t)
IN(t)+1(t) = e−A((N(t)−1)2−(N(t)+1)2)−B(e−C(N(t)−1)−e−C(N(t)+1)))tS(t)

= e−A(−4N(t)−Be−CN(t)−CR(t)eCR(t)(eC−e−C))tS(t)

= e4AN(t)−2A/CY (t)eCR(t)(eC−e−C))

= e2AN(t)(2−1/CeCR(t)(eC−e−C)))+O(1),

while

IN−1(t)
IN(t)(t)

= e−A((N(t)−1)2−N(t)2)−B(e−C(N(t)−1)−e−CN(t)))tS(t)

= e2AN(t)(1−1/CeCR(t)(eC−1)))+O(1),

and

IN+1(t)
IN(t)(t)

= e−A((N(t)+1)2−N(t)2)−B(e−C(N(t)+1)−e−CN(t)))tS(t)

= e−2AN(t)(1+1/CeCR(t)(e−C−1)))+O(1).

As a consequence, setting

X1(C) = 1
C

ln C

sinh(C) , X2(C) = 1
C

ln C

eC − 1 and X3(C) = − 1
C

ln 1− e−C

C
,
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for all δ > 0, we have
lim
t→∞

X1(C)+δ≤R(t)

IN−1(t)
IN(t)+1(t) = 0, (3.22)

lim
t→∞

R(t)≤X1(C)−δ

IN+1(t)
IN(t)−1(t) = 0, (3.23)

and
lim
t→∞

X2(C)+δ≤R(t)

IN−1(t)
IN(t)(t)

= 0 and lim
t→∞

X3(C)−δ≥R(t)

IN+1(t)
IN(t)(t)

= 0. (3.24)

To understand the meaning of the above limits, observe that

X1(C) = −C/6 +O(C2), X2(C) = −1
2 +O(C) and X3(C) = 1

2 +O(C) as C → 0.

As a consequence, using (3.24), if C is sufficiently small then for some δ > 0 small enough we have

IN(t)−1(t) = o
(
IN(t)(t)

)
for t� 1 and − 1

2 + δ ≤ R(t) ≤ 1
2 ,

IN(t)+1(t) = o
(
IN(t)(t)

)
for t� 1 and − 1

2 < R(t) ≤ 1
2 − δ.

This means that most of the time (when R(t) is close to −1/2, only the variant N(t) and N(t)− 1 can survive. Using
(3.23), if C is sufficiently small then then for some δ > 0 small enough we have

IN(t)+1(t) = o
(
IN(t)−1(t)

)
for t� 1 and R(t) ∈

[
−1

2 + δ,−δ
]
.

For C > 0 is small enough, there exists δ > 0 small enough such that the following picture for the survival of the
variants holds

∞∑
n=0

In(t) ∼


IN(t)−1(t) + IN(t)(t) for t� 1 and −1/2 ≤ R(t) ≤ −1/2 + δ,

IN(t) for t� 1 and −1/2 + δ ≤ R(t) ≤ 1/2− δ,
IN(t)(t) + IN(t)+1(t) for t� 1 and 1/2− δ < R(t) ≤ 1/2.

This proves Claim 3.8.

3.2 Replacement dynamics 2: bivalent γn

We place ourselves in the case when the sequence γn takes only two values, an more precisely we assume that there
exist two constants 0 < γ1 < γ2 such that γ2n+1 ≡ γ1 > 0 and γ2n ≡ γ2 for all n ∈ N. Our goal is to give examples
of possible behaviors when Assumption 2.8 is not satisfied; in particular, we will not assume that the total mass
converges.

Recalling that α∗ := supn∈N
βn
γn

, we can write the total mass as

+∞∑
n=0

In(t) =
+∞∑
n=0

I0
ne
βnS(s)−γnt =

+∞∑
n=0

I0
ne

( βnγn−α∗)γntS(t)+α∗(γn−γ∗)tS(t)+α∗γ∗tS(t)−(γn−γ∗)t−γ∗t

= eγ
∗t(α∗S(t)−1)

+∞∑
n=0

I0
ne
γn( βnγn−α∗)tS(t)+(γn−γ∗)(α∗S(t)−1)t

= eγ
∗t(α∗S(t)−1)

+∞∑
n=0

I0
ne
−γn(α∗− βnγn )tS(t)−α∗(γ∗−γn)(S(t)− 1

α∗ )t

= eγ1t(α∗S(t)−1)F
(
t, S(t)

)
, (3.25)

where

F
(
t, S(t)

)
:=

+∞∑
n=0

I0
ne
−γn(α∗− βnγn )tS(t)−α∗(γ∗−γn)(S(t)− 1

α∗ )t. (3.26)

Since γ2n+1 = γ1 and γ2n = γ2, we set

β1
n := β2n+1, I0,1

n := I0
2n+1, β2

n := β2n, and I0,2
2n := I0

2n,

so we can rewrite (3.26) as

F
(
t, S(t)

)
=

+∞∑
n=0

I0,1
n e

−γ1

(
α∗− β

1
n
γ1

)
tS(t)

+
+∞∑
n=0

I0,2
n e

−γ2

(
α∗− β

2
n
γ2

)
tS(t)−(γ1−γ2)(α∗S(t)−1)t

16



= F1
(
tS(t)

)
+ e−(γ1−γ2)(α∗S(t)−1)tF2

(
tS(t)

)
, (3.27)

where

F1(ξ) :=
+∞∑
n=0

I0,1
n e

−γ1

(
α∗− β

1
n
γ1

)
ξ

and F2(ξ) :=
+∞∑
n=0

I0,2
n e

−γ2

(
α∗− β

2
n
γ2

)
ξ
. (3.28)

To go a bit further, we notice that taking the logarithm of (3.25) leads to

γ1
(
α∗S(t)− 1

)
t = − lnF

(
t, S(t)

)
+ ln I(t),

so (3.27) becomes

F
(
t, S(t)

)
= F1

(
tS(t)

)
+
(
F(t, S(t)

)
I(t)

) γ1−γ2
γ1

F2
(
tS(t)

)
. (3.29)

In the sequel we will assume γ1 = 2γ2. In that case, (3.29) is a second-order polynomial equation in
√
F
(
t, S(t)

)
which can be inverted to give the following expression of F :

F
(
t, S(t)

)
= 1

4I(t)

(
F2
(
tS(t)

)
+
√
F2
(
tS(t)

)2 + 4F1
(
tS(t)

)
I(t)

)2
. (3.30)

3.2.1 Bivalent example 1: unexpected selection

First let us explain the title of the subsection. Given Proposition 2.9, we can prove that the phenotype that is
eventually selected by competition (after the selection for fitness) is the one that maximizes γn (in our case, γ1). In
this section we will prove that, for some carefully chosen initial data, selection can make all pathogen expressing the
γ1 phenotype disappear. This strikes us as an unexpected result. We work under the following assumption.

Assumption 3.13. We assume that γ1 = 2γ2, β1
n = γ1α

∗ − B1e
−C1n, I0,1

n = e−A1n
2 , β2

n = γ2α
∗ − B2e

−C2n and
I0,2
n = e−A2n.

Our claim is as follows.

Claim 3.14. Under Assumption 3.13, we have

lim
t→+∞

+∞∑
n=0

I1
n(t) = 0 and lim

t→+∞

+∞∑
n=0

I2
n(t) = θ

γ2α∗
(
R0 − 1

)
> 0,

wherein I1
n(t) = I2n+1(t) and I2

n(t) = I2n(t).
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Figure 4: Plots of the solution In(t) in the Bivalent case 1. The family In(t) is divided in two groups:I2n+1(t) = I1
n(t)

associated with γ1 which are plotted in a family of cold colors (blue to green), and I2n(t) = I2
n(t) associated with

γ2 which are plotted in a family of warm colors (red to yellow). Both figures (top and bottom) suggest that the γ1
family becomes prevalent at first, but the γ2 family eventually wins the competition (after t ≈ 102). Top figure:
Value of the density of variants In(t). Bottom figure: Relative frequencies of the variants as a function of time.
Parameters: Λ = 10, θ = 10, S0 = 1, α∗ = 2, γ1 = 10, γ2 = 10, A1 = 1, A2 = 3, B1 = B2 = 10, C1 = C2 = 1

2 .
We used a total of N1 = 10 variants for the family 1 and N2 = 20 variants for the family 2. For interpretation of the
colors in the figure(s), the reader is referred to the online version of this article.

Proof of Claim 3.14. We rewrite (3.30) as:

F
(
t, S(t)

)
=
F2
(
tS(t)

)2
4I(t)

1 +

√√√√1 + 4I(t)
F1
(
tS(t)

)
F2
(
tS(t)

)2
2

.

We know that I(t) � 1, that F1
(
tS(t)

)
= O

(
e−

A1
2C1

ln(tS(t))2)
by Lemma 3.9 and that F2

(
tS(t)

)
�
(
tS(t)

)−A2
C2 by

Claim 3.6. In particular, we obtain

4I(t)
F1
(
tS(t)

)
F2
(
tS(t)

)2 = O
(
e−

A1
2C1

ln(tS(t))2+A2
C2

ln(tS(t))
)
−−−−→
t→+∞

0,

so that

F
(
t, S(t)

)
=
F2
(
tS(t)

)2
4I(t)

(
1 + o(1)

)
and by (3.25)

γ1(α∗S(t)− 1)t = −2 ln
(
F2(tS(t))

)
+O(1).

Finally we obtain
+∞∑
n=0

I1
n(t) = eγ1(α∗S(t)−1)tF1

(
tS(t)

)
= O

(
F1
(
tS(t)

)
F2
(
tS(t)

)2
)
−−−−→
t→+∞

0.

Next we show the convergence of
∑
I2
n(t) to a positive constant. We know that

∑
I1
n(t)→ 0 and, by Theorem 2.6,

S(t)→ 1
α∗ and S′(t)→ 0. Using the first equation in (1.1a) we have:

−S
′(t)− Λ + θS(t)

S(t) =
+∞∑
n=0

βnIn(t) =
+∞∑
n=0

β1
nI

1
n(t) +

+∞∑
n=0

β2
nI

2
n(t) =

+∞∑
n=0

β2
nI

2
n(t) +O

(+∞∑
n=0

I1
n(t)

)
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=
+∞∑
n=0

γ2

(
β2
n

γ2
− α∗

)
I2
n(t) +

+∞∑
n=0

γ2α
∗I2
n(t) + o(1) = γ2α

∗
+∞∑
n=0

I2
n(t) + o(1),

where we used the fact that
∑(

βn
γ2
− α∗

)
I2
n(t)→ 0, which will justify below. Admitting this fact temporarily, let us

finish the argument. We have now

+∞∑
n=0

I2
n(t) = − 1

γ2α∗

(
S′(t)− Λ + θS(t)

S(t)

)
+ o(1) = θ

γ2α∗

(
Λ
θ
α∗ − 1

)
+ o(1) = θ

γ2α∗
(R0 − 1) + o(1),

which is exactly the second part of Claim 3.14.
There remains to show that

∑(
βn
γ2
− α∗

)
I2
n(t)→ 0 as t→ +∞. Fix ε > 0 arbitrarily. Let I∞ := 2Λ

min(θ,γ0) so that
by Lemma 5.3 we have

∑
I2
n(t) ≤ I∞ for t sufficiently large. Let Nε be the set of indices defined by

Nε :=
{
n ∈ N :

∣∣∣∣β2
n

γ2
− α∗

∣∣∣∣ ≤ ε

2I∞

}
.

Then ∑
n∈Nε

(
βn
γ2
− α∗

)
I2
n(t) ≤ ε

2I∞
+∞∑
n=0

I2
n(t) ≤ ε

2 ,

for t sufficiently large. On the other hand, for n ∈ N c
ε := N\Nε, we have α∗ − βn

γ2
≥ ε

2I∞ so that

I2
n(t) = I0,2

n e
γ2
(
βn
γ2
−α∗
)
S(t)t+γ2(α∗S(t)−1)t ≤ I0,2

n e−
γ2ε
2I∞ S(t)t+γ2(α∗S(t)−1)t ≤ I0,2

n exp
(
− γ2ε

8I∞α∗ t
)
,

whenever S(t) ≥ 1
2α∗ and |α∗S(t)− 1| ≤ ε

8I∞α∗ , which is true for t sufficiently large. Thus

∑
n∈N cε

I2
n(t) ≤ e−

γ2ε
8I∞α∗ t

∑
n∈N cε

I0,2
n −−−−→

t→+∞
0,

and finally
+∞∑
n=0

I2
n(t) =

∑
n∈Nε

I2
n(t) +

∑
n∈N cε

I2
n(t) ≤ ε,

for t sufficiently large. This finishes the proof of Claim 3.14.

3.2.2 Bivalent example 2: alternating persistence

In this subsection we provide an example which shows a very particular asymptotic behavior: the types γ1 and γ2
are both asymptotically persistent as t→ +∞, and become alternatively prevalent in the population. This causes the
total mass of infected

∑
In(t) to fluctuate between two distinct values. This shows, in particular, that an additional

assumption (like, for instance, Assumption 2.8) is really necessary to obtain the asymptotic behavior of the mass and
that the conclusions of Theorem 2.6 are, in some sense, sharp.

We work under the following assumption.

Assumption 3.15. We assume that γ1 = 2γ2, β1
n = γ1α

∗ − Be−Cn, I0,1
n = I1

0e
−An2 , β2

n = γ2α
∗ − B

2 e
−C3 n and

I0,2
n = I2

0e
− A

18n
2 for some positive constants A > 0. B > 0 and C > 0.

Our claim is as follows.

Claim 3.16. Under Assumption 3.15, there exist two sequences t1k → +∞ and t2k → +∞ as k → +∞, such that

lim
k→+∞

+∞∑
n=0

I1
n(t1k) = θ

γ1α∗
(
R0 − 1

)
> 0 and lim

t→+∞

+∞∑
n=0

I2
n(t1k) = 0,

and

lim
k→+∞

+∞∑
n=0

I1
n(t2k) = 0 and lim

k→+∞

+∞∑
n=0

I2
n(t2k) = θ

γ2α∗
(
R0 − 1

)
> 0,

wherein I1
n(t) = I2n+1(t) and I2

n(t) = I2n(t).
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Figure 5: Plots of the solution In(t) under Assumption 3.15. The family In(t) is divided in two groups:I2n+1(t) = I1
n(t)

associated with γ1 which are plotted in a family of cold colors (blue to green), and I2n(t) = I2
n(t) associated with

γ2 which are plotted in a family of warm colors (red to yellow). The top figure suggests that the total pathogen
population fluctuates in time. The bottom figure suggests that the γ1 and γ2 families become alternatively prevalent.
Top figure: Value of the density of variants In(t). Bottom figure: Relative frequencies of the variants as a function
of time. The family associated with γ1 (blue to green) and the family associated with γ2 (red to yellow) become
alternatively dominant. Parameters: Λ = 5, θ = 5, S0 = 1, α∗ = 2, γ1 = 10, γ2 = 5, I1

0 = 1, I2
0 = 0.1, A = 36,

B = 2, C = 3. We used a total of N1 = 6 variants for the family 1 and N2 = 15 variants for the family 2. For
interpretation of the colors in the figure(s), the reader is referred to the online version of this article.

Proof of Claim 3.16. Recalling (3.28) and Lemma 3.9, we have in this case:

F1(e−Cr1(ξ)ξ) ∼ e−An1(ξ)2− 2A
C x1(ξ),

F2(e−C3 r2(ξ)ξ) ∼ e− A
18n2(ξ)2− A

3C x2(ξ),

where
x1(ξ) := n1(ξ) + r1(ξ) = 1

C
W0

(
BC2

2A ξ

)
and x2(ξ) := n2(ξ) + r2(ξ) = 3

C
W0

(
BC2

2A ξ

)
,

n1(ξ), n2(ξ) ∈ N and r1(ξ), r2(ξ) ∈
[
− 1

2 ,
1
2
)
. In other words, with x(ξ) := 1

CW0

(
BC2

2A ξ

)
, we have

n1(ξ) =
⌊
x(ξ) + 1

2

⌋
, n2(ξ) =

⌊
3x(ξ) + 1

2

⌋
,

r1(ξ) = x(ξ)− n1(ξ) ∈
(
−1

2 ,
1
2

)
, r2(ξ) = 3x(ξ)− n2(ξ) ∈

(
−1

2 ,
1
2

)
.

Let ξ1
n and ξ2

n be defined by the relation

ξ1
n := 2A

BC

(
n− 1

3

)
eC(n− 1

3 ) and ξ2
n := 2A

BC

(
n+ 1

3

)
eC(n+ 1

3 ),

so that we have, by definition,

x(ξ1
n) = n− 1

3 , n1(ξ1
n) = n, r1(ξ1

n) = −1
3 , n2(ξ1

n) = 3n− 1, r2(ξ1
n) = 0,

x(ξ2
n) = n+ 1

3 , n1(ξ2
n) = n, r1(ξ2

n) = +1
3 , n2(ξ2

n) = 3n+ 1, r2(ξ2
n) = 0.
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Since W0(X) = ln(X)− ln lnX + o(1) (see Corless et al. 1996, (4.19) p.349), we have for n sufficiently large:

x
(
eCr1(ξ1

n)ξ1
n

)
= 1
C

ln
(
BC2

2A eCr1(ξ1
n)ξ1

n

)
− 1
C

ln ln
(
BC2

2A eCr1(ξ1
n)ξ1

n

)
+ o(1)

= r1(ξ1
n) + 1

C
ln
(
BC2

2A ξ

)
− 1
C

ln ln
(
BC2

2A ξ

)
− 1
C

ln
(

1 + Cr1(ξ1
n)

ln
(
BC2

2A ξ
))+ o(1)

= x(ξ1
n) + r1(ξ1

n) + o(1) = n− 1
3 −

1
3 + o(1) = n− 2

3 + o(1),

thus for n sufficiently large,

n1

(
eCr1(ξ1

n)ξ1
n

)
=
⌊
x
(
ξeCr1(ξ1

n)
)

+ 1
2

⌋
= n− 1.

Similarly, for n sufficiently large, we have

x
(
ξ2
ne
Cr1(ξ2

n)
)

= n+ 2
3 + o(1) and n1

(
eCr1(ξ2

n)ξ2
n

)
=
⌊
x
(
ξeCr1(ξ2

n)
)

+ 1
2

⌋
= n+ 1.

Thus, for n sufficiently large, we have

F1(ξ1
n)

F2(ξ1
n)2 ∼ exp

[
−An1

(
eCr1(ξ1

n)ξ1
n

)2
+A

(
n2(ξ1

n)
3

)2

− 2A
C
x1

(
ξ1
ne
Cr1(ξ1

n)
)

+ 2A
3Cx2(ξ1

n)
]

= exp
[
A

(
n2(ξ1

n)
3 − n1

(
eCr1(ξ1

n)ξ1
n

))(n2(ξ1
n)

3 + n1

(
eCr1(ξ1

n)ξ1
n

))
+ 2A

C

(
x2(ξ1

n)
3 − x1

(
eCr1(ξ1

n)ξ1
n

))]
= exp

[
A

(
n− 1

3 − (n− 1)
)(

n− 1
3 + n− 1

)
+ 2A

C

(
n− 1

3 + r2(ξ1
n)

3 −
(
n− 1 + r1

(
ξ1
ne
Cr1(ξ)

)))]
= exp

[
4A
3

(
n− 2

3

)
+O(1)

]
−−−−−→
n→+∞

+∞,

and similarly,

F1(ξ2
n)

F2(ξ2
n)2 ∼ exp

[
−An1

(
eCr1(ξ2

n)ξ2
n

)2
+A

(
n2(ξ2

n)
3

)2

− 2A
C
x1

(
ξ2
ne
Cr1(ξ2

n)
)

+ 2A
3Cx2(ξ2

n)
]

= exp
[
A

(
n2(ξ2

n)
3 − n1

(
eCr1(ξ2

n)ξ2
n

))(n2(ξ2
n)

3 + n1

(
eCr1(ξ2

n)ξ2
n

))
+ 2A

C

(
x2(ξ2

n)
3 − x1

(
eCr1(ξ2

n)ξ2
n

))]
= exp

[
A

(
n+ 1

3 − (n+ 1)
)(

n+ 1
3 + n+ 1

)
+ 2A

C

(
n+ 1

3 + r2(ξ2
n)

3 −
(
n+ 1 + r1

(
ξ2
ne
Cr1(ξ)

)))]
= exp

[
−4A

3

(
n+ 2

3

)
+O(1)

]
−−−−−→
n→+∞

0.

Now we conclude the proof. Let t1n be a sequence of times such that t1nS(t1n) = ξ1
n. Clearly t1n → +∞ as n→ +∞.

Then, recalling (3.30), we have:

F(t1n, S(t1n)) = F1(t1nS(t1n))
I(t1n)

 F2(t1nS(t1n))√
F1(t1nS(t1n))

+

√
I(t1n)F2(t1nS(t1n))2

4F1(t1nS(t1n))
+ 1

2

= F1(t1nS(t1n))
I(t1n)

(
1 + o(1)

)
,

and by (3.25),
γ1t

1
n

(
α∗S(t1n)− 1

)
= − lnF1

(
(t1nS(t1n)

)
+O(1).

Finally,
+∞∑
n=0

I2
n(t1n) = I2

0e
γ2
γ1
γ1(α∗S(t1n)−1)F2

(
t1nS(t1n)

)
= I2

0e
1
2 (− lnF1(t1nS(t1n))+O(1))F2

(
t1nS(t1n)

)
= O

(
F2(ξ1

n)√
F1(ξ1

n)

)
−−−−−→
n→+∞

0,

and by using (1.1a) together with Theorem 2.6 we obtain

lim
n→+∞

+∞∑
n=0

I1
n(t1n) = θ

γ1α∗
(R0 − 1) ,
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as we did in the proof of Claim 3.14. The first part of the Claim 3.16 is proved. Proceeding similarly, let t2n be a
sequence of times such that t2nS(t2n) = ξ1

n. Clearly t2n → +∞ as n→ +∞. We have

F(t2n, S(t2n)) = F2(t2nS(t2n))
4

(
1 +

√
1 + 4F1(t2nS(t2n))
I(t2n)F2(t2nS(t2n))2

)2

= F2(t2nS(t2n))2

4
(
1 + o(1)

)
,

so
γ1t

2
n

(
α∗S(t2n)− 1

)
= −2 lnF2

(
t2nS(t2n)

)
+O(1),

and
+∞∑
n=0

I1
n(t2n) = I1

0e
γ1(α∗S(t2n)−1)F1

(
t2nS(t2n)

)
= I1

0e
−2 lnF1(t2nS(t2n))+O(1)F1

(
t2nS(t2n)

)
= O

(
F1(ξ2

n)
F2(ξ2

n)2

)
−−−−−→
n→+∞

0,

so finally

lim
n→+∞

+∞∑
n=0

I2
n(t2n) = θ

γ2α∗
(R0 − 1) .

This is the second part of Claim 3.16, and the proof is finished.

4 Discussion
It is a classical result in evolutionary epidemiology (Ewald 1983; Alizon et al. 2009) known as the ‘trade-off hypothesis’
that evolution favors variants that maximize the basic reproductive numberR0; here we show once again the robustness
of this prediction by considering an infinite number of variants competing for the hosts. Yet, we also go beyond the
standard prediction and show that a complexity persists in the asymptotic behavior of the epidemic even in our
simplistic model, with many possible outcomes ranging from the simple convergence to a global equilibrium (the case
of finite system as in Hsu (1978), or case i) of Theorem 2.6) to an eternal transient state (the example given in Section
3.2.2).

Our examples in section 3 shed light on the variety of dynamics that can be observed for the diversity of pathogen
variants in the host population. It is likely to be dependent not only on the distribution of the parameters γn and
αn = βn

γn
, but also on the initial number of infected corresponding to these parameters; depending on the choices we

make, we can observe an enhancement, preservation or erosion of the diversity of variants in the population. Example
1 shows the case of an algebraically converging fitness function with an algebraically decreasing initial data. Figure
1 (bottom) shows the numerical computation of the relative frequencies of the variants; the number of variants with
non-negligible proportion seems to be increasing with time, hence in this case the diversity seems to be increasing
with time (enhancement of diversity). In Figure 2 (bottom) we show the numerical computations for the case of a
fitness function converging exponentially fast with an exponentially decreasing initial data; here the diversity seems
to be approximately constant in time, with a constant number of variants that dominate the others (preservation
of diversity). Figure 3 (bottom) shows a similar fitness function but with Gaussian initial data; here the transition
between variants becomes steeper with time, and our analysis in Claim 3.8 suggests that only one variant dominates
all the other for increasingly large periods asymptotically (although this may happen in a larger time frame than the
one presented in Figure 3). Thus in this case we observe an erosion of the diversity of variants. Those three different
types behaviors can be proved analytically, see Claim 3.2, Claim 3.5 and Claim 3.8.

While Figure 1, Figure 2 and Figure 3 focus on the case when γn is a constant, in Figure 4 and Figure 5 we
investigate the case when γn oscillates between two values and we show that surprising behaviors may occur then.
Figure 4 illustrates that, when Assumption 2.8 does not hold, we cannot hope to generalize the results of Proposition
2.9: indeed the family of variants with the highest value of γn (in blue to green) gets extinct and the family of
variants with the lowest value of γn (in red to yellow) dominates in this case. This is proved in Claim 3.14. Figure 5
illustrates that in some particular cases, neither family uniformly dominates the population asymptotically, but they
both dominate the population alternatively. Claim 3.16 shows moreover that, in this situation, the total population
of infected does not converge to a limit but oscillates between two distinct values.

The assumption that an infinite number of variants exist at the same time corresponds to a creative simplification
of reality that allows us to describe possible behaviors occurring in nature. The classical theory for finite systems gives
us access to a single type of dynamics: convergence to a unique equilibrium. Yet practical observations in real-life
epidemics such as the COVID-19 epidemic suggest that it is not the case (Brüssow 2022). In the end, a description of
the succession of infinitely many variants might give a more realistic description of the observed phenomenon than a
finite model.

We predict that, when there is equality between different types, the variants that are associated with a fast dynamics
are favored in the long run. This may seem counterintuitive since the parameter that is maximized, γ, incidentally
corresponds to the inverse of the infection period; however, we conjecture that the behavior that it selected is the one
associated with a fast transmission rather than low infection period. This could be checked by splitting the different
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coefficients associated with recovery, host mortality, and transmission in (1.1). We leave such a refined description for
future work.

Our work could be extended in several directions. An important addition would be to account for the influence of
the age of infection in our model, as in the original article of Kermack and McKendrick (1927) (see also Demongeot
et al. (2023)). We consider it an exciting motivation for future works.

5 Proof of the mathematical results
5.1 Proof of Proposition 2.4
We prove that problem (1.1) is well posed. Thanks to Assumption 2.1 we observe that the map F : R× `1 → R× `1
defined by the right hand side of the system of equations (1.1a) is locally Lipschitz on the Banach space R × `1.
Therefore problem (1.1) admits a unique maximal solution

(
S(t), (In(t))n∈N

)
∈ C1([0, Tmax),R

)
× C1([0, Tmax), `1

)
for some Tmax > 0 possibly infinite. Moreover, formula (2.2) holds, i.e.

In(t) = et(βnS(t)−γn)I0
n,

in particular In is a non-negative function for all n ∈ N and
(
I0
n

)
n∈N ∈ `

1
+ 7−→

(
In(t)

)
n∈N ∈ `

1
+ is continuous for all

t > 0.
Next, the following a priori estimate proves that the solution

(
S(t), (In(t))n∈N

)
is uniformly bounded in R× `1+ so

that Tmax =∞:

Lemma 5.1. Suppose that Assumption 2.1 holds true. For all t ∈ [0, Tmax),

0 ≤ S(t) ≤ S0e
−θt + Λ

θ

(
1− e−θt

)
≤ max

(
S0,

Λ
θ

)
, (5.1)

0 ≤ S(t) +
∑
n∈N

In(t) ≤ Λ
min(θ, γ0) +

(
S0 +

∑
n∈N

I0
n −

Λ
min(θ, γ0)

)
e−min(θ,γ0)t. (5.2)

Proof. Using the first equation of (1.1a), we have S(t) ≥ 0 and due to the positivity of In(t) we readily prove the
Lemma inequalities for S(t).

Next, adding equations of (1.1a) we remark that

d
dt

(
S(t) +

∑
n∈N

In(t)
)
≤ Λ− θS(t)− γ0

∑
n∈N

In(t),

which yields the inequality for S(t) +
∑
n∈N In(t). The Lemma is proved.

5.2 Proof of Proposition 2.5
We first assume that R0 < 1. Let ε > 0 such that

m = 1−R0

(
1 + ε

θ

Λ

)
> 0,

there exists t0(ε) > 0 such that

S(t) ≤ Λ
θ

+ ε.

Recall that the equations of (1.1a) for In write for all n ∈ N

d
dtIn(t) = βnInS(t)− γnIn(t),

or, by definition of R0, as
d
dtIn(t) ≤ γn

(
R0

θ

ΛS(t)− 1
)
In(t).

For all n ∈ N and t ≥ t0(ε)
d
dtIn(t) ≤ −mγnIn(t),

therefore
0 ≤

∑
n∈N

In(t) ≤ e−mγ0(t−t0(ε))In(t0(ε)),
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which proves that limt→+∞
∑+∞
n=0 In(t) = 0.

Next, as S(t) is bounded, we consider S := lim inft→+∞ S(t). Let (tk)n≥0 be a sequence that tends to∞ as k →∞
and such that limk→∞ S′(tk) = 0 and limk→+∞ S(tk) = S. Since (βn) is bounded, from the following equality for all k

d
dtS(tk) = Λ− θS(tk)−

+∞∑
n=0

βnS(tk)In(tk)

passing to the limit, we obtain lim inft→∞ S(t) = Λ
θ . Similarly, lim supt→∞ S(t) = Λ

θ , therefore

lim
t→+∞

S(t) = Λ
θ
,

which concludes the first part of the proof of the proposition. The second part of Proposition 2.5 will be proved in
section 5.5, because we need more tools to prove it.

5.3 Proof of Theorem 2.6
Before we start the proof of Theorem 2.6, we introduce a few notions that will be useful along this Section. Indeed,
in order to get a compactness of the orbits, we need to include our dynamical system in a larger space. We define the
distance on N:

d(n,m) :=
∣∣∣∣ 1
1 + n

− 1
1 +m

∣∣∣∣+ |αn − αm|+ |γn − γm|, for all n,m ∈ N.

We let N be the topological completion of N for the distance d. It is essentially the smallest closed set for the distance
d containing N. Because of Assumption 2.3 the sets ω(α) and ω(γ) are finite and we have, up to a topological
isomorphism which we will omit in the rest of the proof,(

N, d
)

=
(
[−K,+∞) ∩ Z, d

)
,

wherein we have set K := #ω(α)×#ω(γ),

ω(α)× ω(γ) =: {(α−i, γ−i), i = 1, . . . ,K},

and
d(n,m) :=

∣∣∣∣ 1n≥0

1 + n
− 1m≥0

1 +m

∣∣∣∣+ |αn − αm|+ |γn − γm|, for all n,m ∈ Z ∩ [−K,+∞).

In particular N is Hausdorff and countable, which implies that the Borel σ-algebra is the set of all parts of N, and
therefore any Borel measure µ ∈M

(
N
)

can be represented by a summable sequence:

µ =
+∞∑
n=−K

µnδn,

where δn is the Dirac mass concentrated on n ∈ N and (µn)n≥−K is a summable sequence of real numbers. Finally, N
is compact for the topology generated by d.

In what follows we will obtain the compactness of the orbit by using the weak-∗ topology on the space of measures
M
(
N
)
. To mark the difference, we will write M∗(N), M∗+(N) instead of M

(
N
)
, M+(N) when the space is equipped

with the weak-∗ topology. Recall the topology on M(N) is generated by the norm

‖(µ)n∈N‖M(N) :=
∑
n∈N

|µn|,

and that the topology onM∗(N) is that of the weak-∗ convergence: convergence of a sequence µn ⇀ µ for this topology
holds if, and only if,

+∞∑
k=−K

ϕkµ
n
k −−−−−→

n→+∞

+∞∑
k=−K

ϕkµk,

for all (ϕn) ∈ C
(
N
)

the space of continuous sequences over N, which is characterized by

[
(ϕk) ∈ C

(
N
)]
⇐⇒

[
lim

j→+∞
ϕkj = ϕ−i whenever αkj → α−i and γkj → γ−i with kj → +∞ and i > 0

]
.

In what follows we will consider equation (1.1) with an initial data (In)n∈N ∈M+
(
N
)
. Because of our construction

of N, Assumptions 2.1 and 2.3 need not be adapted to the new framework. Assumption 2.2, however, does. Let us
the replace Assumption 2.2 with the following:
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Assumption 5.2. We let S0 > 0, (I0
n)n∈N ∈ M+(N) be given and assume that there exists a sequence of indices

nk ∈ N with
I0
nk
> 0 and lim

k→+∞

βnk
γnk

= α∗.

As before the sequence of indices (nk) need not be strictly monotone and can be eventually stationary.
The following lemma holds true.

Lemma 5.3. Suppose that Assumption 2.1 holds true. Then we have

0 < min(θ, γ0)
θΛ min(θ, γ0) + β∞

≤ lim inf
t→+∞

S(t) ≤ lim sup
t→+∞

S(t) ≤ Λ
θ
< +∞,

lim sup
t→+∞

∑
n∈N

In(t) ≤ Λ
min(θ, γ0) < +∞.

Proof. The upper bounds are proved as in Lemma 5.1. Next we return to the S-component of equation (1.1) and let
ε > 0 be given. We have, for t0 sufficiently large and t ≥ t0,

St = Λ−

θ +
∑
n∈N

βnIn(t)

S(t) ≥ Λ−
(
θ + β∞

Λ
min(θ, γ0) + ε

)
S(t),

therefore

S(t) ≥ e−
(
θ+ Λβ∞

min(θ,γ0) +ε
)

(t−t0)
S(t0) + Λ min(θ, γ0)

(θ + ε) min(θ, γ0) + Λβ∞

(
1− e−

(
θ+ Λβ∞

min(θ,γ0) +ε
)

(t−t0)
)
,

so that finally by letting t→ +∞ we get

lim inf
t→+∞

S(t) ≥ min(θ, γ0)Λ
(θ + ε) min(θ, γ0) + Λβ∞ .

Since ε > 0 is arbitrary we have shown

lim inf
t→+∞

S(t) ≥ min(θ, γ0)Λ
θmin(θ, γ0) + Λβ∞ .

The Lemma is proved.

Lemma 5.4. Suppose that the Assumptions 2.1 and 5.2 hold true. Let
(
S(t), Ii(t)

)
be the corresponding solution of

(1.1). Then

lim sup
T→+∞

1
T

∫ T

0
S(t)dt ≤ 1

α∗
.

Proof. Let us remark that the second component of (1.1) for any n ∈ N can be written as

In(t) = In0 e
βn
∫ t

0
S(s)ds−γnt,

= In0 exp
(
γn

∫ t

0
S(s)ds

[
βn
γn
− t∫ t

0 S(s)ds

])
. (5.3)

Assume by contradiction that the conclusion of the Lemma does not hold, i.e. there exists ε > 0 and a sequence
Tn → +∞ such that

1
Tn

∫ Tn

0
S(t)dt ≥ 1

α∗
+ ε for all n ∈ N.

Then
Tn∫ Tn

0 S(t)dt
≤ 1

1
α∗

+ ε
≤ α∗ − ε′,

for some ε′ > 0. Since α∗ = supn
βn
γn

there exists some k ∈ N with I0
k > 0 such that βk

γk
− α∗ + ε′ > 0, and

∑
i∈N

Ii(Tn) ≥ Ik0 exp
(
γk

∫ Tn

0
S(s)ds

[
βk
γk
− Tn∫ Tn

0 S(s)ds

])
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≥ Ik0 exp
(
γk (αk − α∗ + ε′)

∫ Tn

0
S(s)ds

)
.

Since
∫ Tn

0 S(t)dt→ +∞ when n→ +∞, we have therefore

lim sup
t→+∞

∑
i∈N

Ii(t) ≥ lim sup
n→+∞

∑
i∈N

Ii(Tn) = +∞,

which is a contradiction since In(t) is bounded inM+(N) by Lemma 5.3. This completes the proof of the Lemma.

Remark that, in the Lemma above, Assumption 5.2 is essential. Indeed, were this assumption not true, we could
not guarantee that the index k defined in the proof corresponds to a strictly positive I0

k , hence the contradiction would
not be guaranteed either.

The following weak persistence property holds.

Lemma 5.5. Suppose that Assumptions 2.1 and 5.2 hold true. Let
(
S(t), In(t)

)
be the corresponding solution of (1.1).

Then
lim sup
t→+∞

∑
n∈N

In(t) ≥ θ

β∞
(
R0 − 1

)
> 0. (5.4)

Proof. Let us recall that we made the hypothesis that

R0 = Λ
θ
α∗ > 1.

Assume by contradiction that for t0 sufficiently large we have∑
i∈N

Ii(t) ≤ η <
θ

β∞
(
R0 − 1

)
for all t ≥ t0,

with η > 0.
As a consequence of Lemma 5.4 we have

lim inf
t→+∞

S(t) ≤ lim sup
T→+∞

1
T

∫ T

0
S(t)dt ≤ 1

α∗
. (5.5)

Let S := lim inft→+∞ S(t). Let (tn)n≥0 be a sequence that tends to∞ as n→∞ and such that limn→+∞ S′(tn) = 0
and limn→+∞ S(tn) = S. As

∑
i∈N Ii(tn) ≤ η for n large enough we deduce from the equality

S′(tn) = Λ− θS(tn)− S(tn)
∑
i∈N

βiIi(tn),

that
0 ≥ Λ− θS − Sβ∞η

so that
S ≥ Λ

θ + β∞η
>

Λ
θ + β∞η

= Λ
θR0

= 1
α∗
,

which contradicts (5.5).

Proposition 5.6 (Compactness of the orbit and concentration). Suppose that Assumptions 2.1, 5.2 and 2.3 hold true.
Then, the map t 7→

(
S(t), (In(t))n∈N

)
∈ R×M∗+

(
N
)

is continuous and the corresponding orbit,

O
(
S0, (I0

n)n∈N
)

:=
{(
S(t),

(
In(t)

)
n∈N

)
: t ≥ 0

}
⊂ R×M∗+

(
N
)
,

is precompact for the weak-∗ topology. Moreover if R0 > 1 and if tk → +∞ is an arbitrary sequence along which

lim inf
k→+∞

+∞∑
n=−K

In(tk) > 0,

then one can extract from (tk) a subsequence (tki) such that the shifted orbits

t 7→
(
S(t+ tki), (In(t+ tki))n∈N

)
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converge pointwise in R×M∗+
(
N
)

to a complete orbit
(
S∞(t),

(
I∞n (t)

)
n∈N

)
that satisfies the following properties:

+∞∑
n=−K

I∞n (t) > 0 and S∞(t) > 0 for all t ∈ R, (5.6)

and ∑
{n :αn<α∗}

I∞n (t) = 0 for all t ∈ R. (5.7)

Finally, the convergence S(tki + t)→ S∞(t) is locally uniform in C1(R).

Proof. First of all let us remark that

In(t) = e
βn
∫ t

0
S(s)ds−γntI0

n = e
γn
(
αn
∫ t

0
S(s)ds−t

)
I0
n.

Since αn and γn are in C
(
N
)
, the map t 7→ e

γn
(
αn
∫ t

0
S(s)ds−t

)
is continuous from R+ to C

(
N
)
, and therefore t 7→

(In(t))n∈N is continuous from R toM∗+
(
N
)
. Thus t→

(
S(t), (In(t))n∈N

)
is indeed continuous from R+ to R×M∗+(N).

Since S(t) is uniformly bounded and (In(t))n∈N is uniformly bounded in total variation norm by Lemma 5.3, it follows
from the Prohorov Theorem (Bogachev 2007, Vol. II Theorem 8.6.2 p. 202) that the orbit is precompact in R×M∗+

(
N
)
.

Let tk be a sequence such that tk → +∞. Because
∑
n∈N In(tk) is bounded, we can extract from (tk) a subsequence,

still denotes tk, along which
S(tk)→ S∞0 and (In(tk))n∈N ⇀ (I∞,0n )n∈N.

We remark that S′(t+ tk) is bounded thanks to Lemma 5.3 and

S′′(t+ tk) = −θS′(t+ tk)− S′(t+ tk)
∑
n∈N

βnIn(t+ tk)− S(t+ tk)
∑
n∈N

βn (βnS(t+ tk)− γn) In(t+ tk)

is also bounded, locally uniformly in t. Thus up to a further extraction and diagonal extraction process, the shifted
orbit S(t+ tk) converges locally uniformly in C1(R). Because

In(tk + t) = e
γn

(
αn
∫ t
tk
S(tk+σ)dσ−(t−tk)

)
In(tk), n ∈ N,

we can pass to the weak-∗ limit in the above formula and we get

I∞n (t) := e
γn
(
αn
∫ t

0
S∞(σ)dσ−t

)
I∞,0n , n ∈ N, t ∈ R, (5.8)

so that (S∞(t), (I∞n (t))n∈N) is a solution of (1.1) with starting from the initial data (S∞0 , (I∞,0n )) and with t ∈ R: a
complete orbit. That S∞(t) > 0 is a consequence of Lemma 5.3. Since the constant function n 7→ 1 ∈ C

(
N
)

we have∑
n∈N

I∞,0n =
∑
n∈N

1 · I∞,0n = lim
k→+∞

∑
n∈N

1 · In(tk)

so if
lim inf
k→+∞

∑
n∈N

In(tk) > 0,

then we have ∑
n∈N

I∞,0n > 0,

and thanks to (5.8), (5.6) is proved.
Next we show the concentration property (5.7). Recalling that lim inft→+∞

1
t

∫ t
0 S(s)ds ≥ S for a positive constant

S > 0 and lim supt→+∞
1
t

∫ t
0 S(s)ds ≤ 1

α∗ , we have for tk sufficiently large 1
tk

∫ tk
0 S(s)ds ≤ 1

α∗ + εS
2α∗ and thus

∑
{n :αn<α∗−ε}

In(tk) =
∑

{n :αn<α∗−ε}

I0
n exp

[
γnt

(
α∗

1
tk

∫ tk

0
S(σ)dσ − 1−

(
α∗ − αn

) 1
tk

∫ tk

0
S(σ)dσ

)]

≤
∑

{n :αn<α∗−ε}

I0
n exp

[
γnt

(
α∗
(

1
α∗

+ εS

2α∗

)
− 1− εS

)]
= e−γ0

ε
2St
∑
n∈N

I0
n −−−−−→

k→+∞
0,

Since ε > 0 is arbitrary, (5.7) is proved.
This finishes the proof of Proposition 5.6.
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We are now ready to state our uniform persistence result.

Proposition 5.7 (Uniform persistence). Suppose that Assumptions 2.1, 5.2 and 2.3 hold true, and that R0 > 1.
Then,

lim inf
t→+∞

∑
n∈N

In(t) > 0. (5.9)

Proof. Let us show the uniform persistence property. We adapt the argument of Magal and Zhao (2005, Proposition
3.2) in our non-metric context. Assume by contradiction that (5.9) does not hold. Then, there exists a sequence
tk → +∞ such that

lim
k→+∞

+∞∑
n=−K

In(tk) = 0. (5.10)

By Lemma 5.3 we have infk S(tk) > 0. Because of (5.4), for eack k sufficiently large and up to replacing tk by a
subsequence, there exists sk with tk−1 < sk < tk such that

+∞∑
n=−K

In(sk) = 1
2 ·

θ

β∞
(
R0 − 1

)
and sup

σ∈[sk,tk]

+∞∑
n=−K

In(σ) ≤ 1
2 ·

θ

β∞
(
R0 − 1

)
. (5.11)

By Proposition 5.6, there exists a subsequence of sk, still denoted sk, such that S(sk + t)→ S∞0 (t) and (In(sk + t)) ⇀(
I∞n (sk + t)

)
, and moreover (5.6) and (5.7) hold for the limit orbit.

Next we show that (S∞(t), (I∞n (t))) satisfy the assumptions 2.1, 2.2 and 2.3. The assumptions 2.1 and 2.3 are
readily checked since the values of the coefficients αn and γn have not changed (neither have βn := γnαn). We deduce
from (5.7) that

∑
{n :αn=α∗}

I∞,0n =
+∞∑
n=−K

I∞,0n −
∑

{n :αn<α∗}

In(sk) =
+∞∑
n=−K

I∞,0n = 1
2 ·

θ

β∞
(
R0 − 1

)
> 0,

thus in particular the set {n ∈ N : I∞,0n > 0 and αn = α∗} is nonempty. Hence, up to removing the terms for which
I∞,0n = 0, we have

sup
{n : I∞,0n >0}

βn
γn

= sup
{n : I∞,0n >0}

αn = α∗,

Assumptions 2.2, 2.1 and 2.3 are still satisfied along the subsequence I∞,0n > 0. In particular we can apply Lemma
5.5 and thus

lim sup
t→+∞

+∞∑
n=−K

I∞n (t) ≥ θ

β∞
(
R0 − 1

)
. (5.12)

Now we conclude the argument. Let Tk := tk − sk. There are two possibilities.
• Tk is bounded. In that case, we further extract a subsequence so that Tk → T . Then we have

+∞∑
n=−K

I∞n (T ) = lim
k→+∞

+∞∑
n=−K

In(tk) = 0,

and by the uniqueness of the solution to (1.1), we have I∞n (t) ≡ 0 for all t ≥ T . This contradicts (5.12).
• Tk is unbounded. In that case, we further extract a subsequence so that Tk → +∞. But since

sup
σ∈[sk,tk]

+∞∑
n=−K

In(σ) ≤ 1
2 ·

θ

β∞
(
R0 − 1

)
,

we have

sup
σ∈[0,+∞)

+∞∑
n=−K

I∞n (σ) ≤ 1
2 ·

θ

β∞
(
R0 − 1

)
and this, again, contradicts (5.12).

These contradictions prove that (5.10) cannot hold, hence (5.9) holds. The proof of Proposition 5.7 is finished.

Lemma 5.8. Suppose that Assumptions 2.1, 5.2 and 2.3 hold true and let
(
S(t), (In(t))

)
be the corresponding solution

of (1.1). Assume that R0 > 1. Then

lim inf
T→+∞

1
T

∫ T

0
S(t)dt ≥ 1

α∗
,

with α∗ given in (2.1).
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Proof. Assume by contradiction that the conclusion of the Lemma does not hold, i.e. there exist ε > 0 and a sequence
tk → +∞ such that

1
tk

∫ tk

0
S(t)dt ≤ 1

α∗
− ε.

Then ∑
n∈N

In(tk) =
∑
n∈N

I0
ne
βn
∫ tk

0
S(s)ds−γnt =

∑
n∈N

I0
ne
γntk

(
βn
γn

1
tk

∫ tk
0

S(s)ds−1
)
≤
∑
n∈N

I0
ne
γntk( βnγn ( 1

α∗−ε)−1)

≤
∑
n∈N

I0
ne
−εβntk ≤ e−εβ0tk

∑
n∈N

I0
n −−−−−→

k→+∞
0.

Therefore
lim inf
t→+∞

∑
n∈N

In(t) ≤ lim
k→+∞

∑
n∈N

In(tk) = 0,

which is in contradiction with Lemma 5.7. This proves the Lemma.

Next we give a Lyapunov functional that works for a special case in our model. It is close to the Lyapunov
functional given for the Lotka-Volterra case of Hsu 1978, although in our case it is not possible to factorize S(t) in
the first equation of (1.1a), which makes the computations intractable when βn

γn
is not a constant.

Proposition 5.9 (Lyapunov functional). Let Assumption 2.1 hold true and assume that R0 > 1. Let (S∗, I∗n)n∈N be
a stationary solution of (1.1a), i.e. S∗ := 1

α∗ and (I∗n)n∈N satisfies

∑
n∈N

γnI
∗
n = θ

α∗
(R0 − 1) .

Assume furthermore that βn
γn
≡ α∗ is constant whenever I∗n > 0 and let N+ be the set of indices for which In0 > 0,.

Define g(x) = x− ln(x), and let

D(V ) :=
{

(S, (In)n) : S > 0, In = 0 whenever I∗n = 0, and inf
n∈N+

In
I∗n

> 0
}
⊂ R× `∞

(
(I∗n)−1),

where `∞
(
(I∗n)−1) is equipped with the norm ‖(ϕn)n‖

`∞
(

(I∗n)−1
) := supn∈N

∣∣∣ϕnI∗n ∣∣∣. Then the functional

V (S, (In)) := S∗g

(
S

S∗

)
− S∗ +

∑
n∈N+

[
I∗ng

(
In
I∗n

)
− I∗n

]
. (5.13)

is well-defined and continuous on the open set D(V ) for the topology induced by R× `∞
(
(I∗n)−1).

Moreover, if
(
S(t), (In(t))n∈N

)
is a solution of (1.1) such that

(
S(0), (In(0))

)
∈ D(V ), then

(
S(t), (In(t))n

)
∈ D(V )

for all t ≥ 0, t 7→ V (S(t), (In(t))n) ∈ C1 and we have

d
dtV

(
S(t), (In(t))n∈N

)
= − (S(t)− S∗)2

S(t)

−θ − ∑
n∈N+

αγnI
∗
n

 . (5.14)

Proof. First we check that (S∗, (I∗n)n∈N) is a stationary solution of (1.1). Indeed,

d
dt (I

∗
n) = 0 = γn(α∗S∗ − 1)I∗n,

and
d
dt (S

∗) = 0 = Λ− θS∗ − S∗
∑
n∈N

α∗γne
τγnI0

n.

Let
(
S(t), (In(t))n∈N

)
be such that

(
S(0), (In(0))

)
∈ D(V ), we check that

(
S(t), (In(t))

)
∈ D(V ) for all t ≥ 0.

That S(t) > 0 is a consequence of Lemma 5.3. Then, we remark that

In(t) = In(0)eβn
∫ t

0
S(s)ds−γnt ≥ In(0)eβ0

∫ t
0
S(s)ds−γ∞t,

therefore
inf
n∈N+

In(t)
I∗n
≥ eβ0

∫ t
0
S(s)ds−γ∞t inf

n∈N+

In(0)
I∗n

> 0,
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and we have proved that
(
S(t), (In(t))

)
∈ D(V ) for all t ≥ 0. The continuity and continuous differentiability of

t 7→ V
(
S(t), (In(t))

)
follow from classical arguments.

Next, writing V1(t) = S∗g
(
S(t)
S∗

)
and V2(t) =

∑
n∈N I

∗
ng
(
In(t)
I∗n

)
, we have

V ′1(t) = S∗
S′(t)
S∗

g′
(
S(t)
S∗

)
=

Λ− θS(t)− S(t)
∑
n∈N

βnIn(t)

(1− S∗

S(t)

)

=

Λ− θS(t)− S(t)
∑
n∈N

βnIn(t)− Λ + θS∗ + S∗
∑
n∈N

βnI
∗
n

(1− S∗

S(t)

)

= −θ (S(t)− S∗)2

S(t) +

S∗∑
n∈N

βnI
∗
n − S(t)

∑
n∈N

βnIn(t)

(1− S∗

S(t)

)
,

= −θ (S(t)− S∗)2

S(t) + S(t)− S∗

S(t)
∑
n∈N

α∗γn
(
I∗nS

∗ − In(t)S(t)
)
,

and

V ′2(t) =
∑
n∈N

I∗n
I ′n(t)
I∗n

g′
(
In(t)
I∗n

)
=
∑
n∈N

γn (α∗S(t)− 1) In(t)
(

1− I∗n
In(t)

)
=
∑
n∈N

γn (α∗S(t)− 1) (In(t)− I∗n)

=
∑
n∈N

γnα
∗ (S(t)− S∗) (In(t)− I∗n) .

Recalling S∗ = 1
α∗ , we have therefore

d
dtV (S(t), (In(t))n) = d

dtV1(t) + d
dtV2(t)

= −θ (S(t)− S∗)2

S(t) + S(t)− S∗

S(t)
∑
n∈N

α∗γn (I∗nS∗ − In(t)S(t) + In(t)S(t)− I∗nS(t))

= −θ (S(t)− S∗)2

S(t) −
(
S(t)− S∗

)2
S(t)

∑
n∈N

α∗γnI
∗
n.

Proposition 5.6 is proved.

Lemma 5.10. Suppose that Assumptions 2.1, 5.2 and 2.3 holds true and assume that there exists an index i ∈ N such
that I0

i > 0 and

α∗ = sup
n∈N

βn
γn

= βi
γi
.

For s < t, let

η(t; s) := (t− s)
(
α∗S(t; s)− 1

)
, where S(t; s) := 1

t− s

∫ t

s

S(σ)dσ. (5.15)

Then there exists a constant η > 0 such that for any 0 ≤ s < t one has

− η ≤ η(t; s) ≤ η < +∞. (5.16)

If moreover
(
S(t), (In(t))n

)
∈ R×M+(N) is a uniformly bounded complete orbit such that lim inf

t→−∞

∑
{k :αk=α∗}

In(t) > 0,

then for any s < t one has
− η ≤ η(t; s) ≤ η < +∞. (5.17)

Proof. Let us write In(t) as

In(t) = In(s) exp
[
γn(t− s)

((
α∗S(t; s)− 1

)
−
(
α∗ − βn

γn

)
S(t; s)

)]
= In(s)eγnη(t;s)−(α∗−αn)S(t;s).
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We claim that η(t; s) is uniformly bounded in t, s. Indeed, recalling αn = βn
γn

, we have by Jensen’s inequality

exp

 ∑
{n :αn=α∗}

γnη(t; s) In(s)∑
{k :αk=α∗}

Ik(s)

 ≤ ∑
{n :αn=α∗}

eγnη(t;s) In(s)∑
{k :αk=α∗}

Ik(s)
,

hence

η(t; s) ≤

∑
{k :αk=α∗}

Ik(s)

∑
{k :αk=α∗}

γkIk(s)
ln

 ∑
{n :αn=α∗}

eγnη(t;s) In(s)∑
{k :αk=α∗}

Ik(s)



=

∑
{k :αk=α∗}

Ik(s)

∑
{k :αk=α∗}

γkIk(s)
ln


∑

{n :αn=α∗}

In(t)

∑
{k :αk=α∗}

Ik(s)

 .
Applying Lemma 5.3, the total mass

∑
n∈N In(t) is bounded above, and by Proposition 5.7 the sum

∑
{k :αk=α∗}

Ik(s) is

bounded below when s→ +∞; therefore there exists η < +∞, independent of s, such that

η(t; s) ≤ η.

If
(
S(t), (In(t))n

)
∈ R×M+(N) is a complete orbit and lim inf

t→−∞

∑
{k :αk=α∗}

In(t) > 0, then there exists an upper bound

valid for all t, s ∈ R.
On the other hand, we claim that lim inf

t→+∞
η(t; s) ≥ η for a constant η. Indeed, assume by contradiction that there

exists a sequence tk → +∞ and sk ≥ 0 such that η(tk; sk)→ −∞. Then∑
n∈N

In(t) =
∑
n∈N

In(sk)eγnη(tk;sk)−(α∗−αn)S(tk;sk) ≤ eγ0η(tk;sk)
∑
n∈N

In(sk) −−−−→
t→+∞

0,

which contradicts Proposition 5.7. We have proved (5.16). (5.17) is proved by identical arguments.

Next we derive a kind of LaSalle principle (LaSalle 1960) that shows that complete orbits concentrated on the set
βn
γn

= α∗ are “almost” stationary.

Lemma 5.11. Let Assumption 2.1 and 2.3 hold true and assume that (I0
n)n∈N is non-trivial. Assume furthermore

that βn
γn
≡ α∗ is constant whenever I0

n > 0 and that R0 > 1. Let
(
S(t), (In(t))n

)
be a complete orbit of (1.1) passing

through (S0, I
0
n) at t = 0 and suppose that

lim inf
t→−∞

∑
n∈N

In(t) > 0. (5.18)

Then we have
S(t) ≡ 1

α∗
for all t ∈ R.

Proof. Because of our assumption we have

lim inf
t→−∞

∑
n∈N

In(t) = lim inf
t→−∞

∑
{n :αn=α∗}

In(t) > 0. (5.19)

therefore Lemma 5.10 implies that η(t; s), as defined by (5.15), is uniformly bounded. Let η(t) := η(t; 0). We define
the distribution:

I∗n :=
{

0 if βn
γn

< α∗,

eτγnI0
n, if βn

γn
= α∗,

where τ ≥ 0 is the unique solution of the equation∑
n∈N

γne
τγn1αn=α∗I

0
n = θ

α∗
(R0 − 1) .
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Then (I∗n) is a stationary distribution with inf
n∈N

I0
n

I∗n
≥ e−|τ |γ0 , therefore Proposition 5.9 implies that V

(
S(t), (In(t))n

)
defined by (5.13) is well-defined along the orbit and decreasing.

We claim that V
(
S(t), (In(t))n

)
is constant along the orbit. Indeed, let tk → −∞ be an aribtrary sequence; since

S(t) and η(t) are uniformly bounded, we extract from tk a subsequence, still denoted tk, such that S(tk)→ S−∞ and
η(tk)→ η−∞. Then, we have

In(tk) −−−−−→
k→+∞

I−∞n := I0
ne
γnη
−∞

, in M+(N) and `∞((I∗n)−1).

Moreover t 7→ V (S(t), (In(t))) is decreasing and bounded so there exists V∞ such that

lim
t→−∞

V (S(t), (In(t))) = V∞.

The shifted orbits (S(t+tk), (In(t+tk))n) converge, up to a further extraction, to a complete orbit (S−∞(t), (I−∞n (t))n);
we have V (S−∞(t), (I−∞n (t))n) ≡ V −∞ for all t ∈ R, therefore V ′(S−∞(t), (I−∞n (t))n) = 0 and, by (5.14),

S−∞(t) ≡ 1
α∗
, (S−∞)′(t) ≡ 0, for all t ∈ R,

and by the second line in (1.1a),∑
n∈N

I−∞(t) = Λ− θ

α∗
⇐⇒

∑
n∈N

γne
γnη
−∞

I0
n = θ

α∗
(R0 − 1). (5.20)

Since η 7→
∑
n∈N γne

γnηI0
n is strictly increasing, the equation (5.20) has a unique solution which is η = τ ; therefore

η−∞ = τ , I−∞n ≡ I∗n and
V (S−∞, (I−∞n )n∈N) = min

(S,(In))∈D(V )
V (S, (In)) = 0.

Back to the original complete orbit, by the continuity of V in R× `∞((I∗n)−1) we have that

lim
k→+∞

V (S(tk), (In(tk))n) = V (S−∞, (I−∞n )n∈N) = min
(S,(In))∈D(V )

V (S, (In)),

and since V (S(t), (In(t))n) is decreasing this means that

S(t) ≡ 1
α∗
.

Lemma 5.11 is proved.

We are now in the position to prove Theorem 2.6.

Proof of Theorem 2.6. Recall that (In)n∈N ∈ `1+ is given as a sequence over N; without loss of generality, we set

ω(α)× ω(γ) =: {(α−i, γ−i) : i = 1, . . . ,K},

as described as the beginning of Section 5.3, and I0
−i = 0, so that (In)n∈N is well-defined as a member of M+(N) and

the new system is strictly equivalent to the original system for all t ≥ 0.

We start by dealing with case i) and assume that there is n0 ∈ N such that βn0
γn0

= α∗. Thanks to Lemma 5.10 we
know that

In(t) = I0
ne
γnη(t;0)−(αn−α∗)S(t;0)

and η(t; 0) is uniformly bounded for t ∈ [0,+∞). Let tk be a sequence such that tk → +∞ and η(tk; 0)→ η∞ ∈ [0, η].
Then

In(tk) = I0
ne
γntk(α∗S(tk)−1)−γn(α∗−αn)tkS(tk) =⇒ I∞n (0) =

{
0 if αn < α∗,

I0
ne
γnη
∞ if αn = α∗.

By Proposition 5.6, we can extract from (tk) a subsequence, still denoted (tk), such that (S(t+ tk), I(t+ tk)) converges
in R×M∗+(N) to a complete orbit (S∞(t), (I∞n (t))) with S∞ > 0, and by Proposition 5.7 the limit I∞n is non-trivial.
By Proposition 5.6, we have that I∞n (t) ≡ 0 whenever αn < α∗; thus βn = α∗γn whenever I∞n > 0. Hence we can
apply Lemma 5.11 to show that

S∞(t) ≡ 1
α∗

and (S∞)′(t) ≡ 0.

Thus
0 = Λ− θS∞ − S∞

∑
n∈N

βnI
∞(0) =⇒

∑
n∈N

βnI
∞(0) = θ

(
Λ
θ
α∗ − 1

)
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and finally ∑
n∈N

γn1αn=α∗e
γnη
∞
I0
n = θ

α∗
(
R0 − 1).

This equation has a unique solution τ ≥ 0, since the left-hand side is a strictly increasing function of η∞. Thus we
have proved that η(t; 0) converges to this value τ ≥ 0 and, finally,

lim
t→+∞

In(t) = lim
t→+∞

I0
ne
γnt(α∗S(t)−1)−γn(α∗−αn)tS(t) =

{
0 if αn < α∗,

I0
ne
γnτ if αn = α∗.

This finishes the proof of Theorem 2.6 case i).

Next we deal with case ii) and assume that for all n ∈ N we have βn
γn

< α∗. Let tk → +∞ be arbitrary. By
Proposition 5.6 we can extract from tk a subsequence, still denoted tk, such that the shifted orbits

(
S(t+ tk), (In(t+

tk))n∈N
)

converge pointwise in R ×M∗+(N) to a complete orbit
(
S∞(t), (I∞n (t))n∈N

)
and the limit (I∞n )n∈N is non-

trivial by Proposition 5.7. Because of our assumption that βn
γn

< α∗ we have I∞n = 0 for all n ≥ 0 therefore βn
γn

= α∗

whenever I∞n (0) > 0. Hence we can apply Lemma 5.11 and get

S∞(t) ≡ 1
α∗
, (S∞)′(t) ≡ 0, for all t ∈ R.

Because the original sequence is arbitrary, we have proved that

S(t) −−−−→
t→+∞

1
α∗
, S′(t) −−−−→

t→+∞
0, In(t) −−−−→

t→+∞
0 for all n ∈ N,

the fact that the mass does not vanish is a consequence of Proposition 5.7 and the concentration property is a
consequence of (5.7) in Proposition 5.6. This finishes the proof of item ii) and ends the proof of Theorem 2.6.

5.4 Proof of Proposition 2.9
Now under the additional assumption 2.8, we prove Proposition 2.9.

Proof of Proposition 2.9. We decompose the proof in several steps. We let S(t) := 1
t

∫ t
0 S(s)ds. Our method is the

following: we fix ε > 0 and show that the set of indices Cε := {n : αn ≥ α∗ − ε and γn ≥ γ∗ − ε} concentrates
asymptotically all the mass.

Step 1: We show that
+∞∑
n=0

1αnS(t)<1In(t) −−−−→
t→+∞

0. (5.21)

Indeed since S(t)→ 1
α∗ , the function 1αnS(t)<1In(t) converges pointwise to 0 as t→ +∞ because of our assumption

that βn
γn

= αn < α∗ for all n (in fact, this function is asymptotically stationary equal to 0 for all fixed n ∈ N). Moreover
we have 1αnS(t)<1In(t) = 1αnS(t)<1e

tγn(α∗S(t)−1)I0
n ≤ I0

n, so the sequence is uniformly dominated by
(
I0
n

)
n∈N ∈ `

1
+.

By the Lebesgue dominated convergence Theorem, we have therefore

lim
n→+∞

+∞∑
n=0

1αnS(t)<1In(t) = 0,

which proves (5.21).

Step 2: We show that for any ε > 0,

lim sup
t→+∞

+∞∑
n=0

1αnS(t)≥1e
t(γ∗−ε)(αnS(t)−1)I0

n < +∞. (5.22)

Indeed let (An)n∈N be a strictly increasing enumeration of the set {αn : n ∈ N}. We remark that, by changing
the order of summation, we have

+∞∑
n=0

1αnS(t)≥1In(t) =
+∞∑
n=0

∑
{k :αk=An}

eγnt(AnS(t)−1)I0
k ,

so that, according to Step 1, we have for t sufficiently large∑
{n : γn≥γ∗−ε}

In(t) =
∑

{n : γn≥γ∗−ε}

(
1αnS(t)<1 + 1αnS(t)≥1

)
In(t)
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= o(1) +
∑

{n :An≥ 1
S(t)
}

∑
{k :αk=An and γk≥γ∗−ε}

eγkt(AnS(t)−1)I0
k

≥ o(1) +
∑

{n :An≥ 1
S(t)
}

∑
{k :αk=An and γk≥γ∗−ε}

e(γ∗−ε)t(AnS(t)−1)I0
k

= o(1) +
∑

{n :An≥ 1
S(t)
}

e(γ∗−ε)t(AnS(t)−1) ∑
{k :αk=An and γk≥γ∗−ε}

I0
k

= o(1) +
∑

{n :An≥ 1
S(t)
}

e(γ∗−ε)t(AnS(t)−1)

∑
{k :αk=An and γk≥γ∗−ε}

I0
k∑

{k :αk=An}

I0
k

∑
{k :αk=An}

I0
k

≥ o(1) +m
∑

{n :An≥ 1
S(t)
}

∑
{αk=An}

e(γ∗−ε)t(AnS(t)−1)I0
k ,

wherein m > 0 is the constant provided by Assumption 2.8 and the error term o(1) collects terms going to 0 as
t→ +∞. Thus ∑

{n :αn≥α∗−ε}

1αnS(t)≥1e
t(γ∗−ε)(αnS(t)−1)I0

n =
∑

{n :An≥ 1
S(t)
}

∑
{αk=An}

e(γ∗−ε)t(AnS(t)−1)I0
k

≤ o(1) + 1
m

∑
{n : γn≥γ∗−ε}

In(t) = O(1).

This proves (5.22).
Step 3: We show that, for all ε > 0, ∑

{n :αn≥α∗−ε and γn≤γ∗−ε}

In(t) −−−−→
t→+∞

0. (5.23)

Indeed, we have for t sufficiently large

∑
{n :αn≥α∗−ε and γn≤γ∗−ε}

1αnS(t)≥1In(t) =
+∞∑
n=0

1AnS(t)≥1

∑
{αk=An}

eγnt(AnS(t)−1)
1γk≤γ∗−εI

0
k

≤
+∞∑
n=0

1AnS(t)≥1

∑
{αk=An}

et(γ
∗−ε)(AnS(t)−1)

1γk≤γ∗−εI
0
k

≤
+∞∑
n=0

1AnS(t)≥1e
−t ε2 (AnS(t)−1)

 ∑
{αk=An}

I0
k

 et(γ
∗− ε2 )(AnS(t)−1)

=
+∞∑
n=0

e−t
ε
2 (αnS(t)−1)

1αnS(t)≥1e
t(γ∗− ε2 )(αnS(t)−1)

1γn≤γ∗−εI
0
n.

Reducing ε if necessary we may assume that 2γ∗−ε
ε > 1. Hence by Hölder’s inequality we have:

∑
{n :αn≥α∗−ε and γn≤γ∗−ε}

1αnS(t)≥1In(t) ≤
(+∞∑
n=0

(
e−t

ε
2 (αnS(t)−1)

) γ∗− ε2
ε
2

1αnS(t)≥1e
t(γ∗− ε2 )(αnS(t)−1)I0

n

) ε
2

γ∗− ε2

×

(+∞∑
n=0

1αnS(t)≥1e
t(γ∗− ε2 )(αnS(t)−1)I0

n

) γ∗−ε
γ∗− ε2

≤

(+∞∑
n=0

1αnS(t)≥1I
0
n

) ε
2γ∗−ε

(+∞∑
n=0

1αnS(t)≥1e
t(γ∗− ε2 )(αnS(t)−1)I0

n

) 2(γ∗−ε)
2γ∗−ε

.

Since 1αnS(t)≥1I
0
n is uniformly bounded by a summable sequence and converges to 0 for each n ∈ N, we have by

Lebesgue’s dominated convergence Theorem:
+∞∑
n=0

1αnS(t)≥1I
0
n −−−−→

t→+∞
0,
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and in Step 2 (with ε replaced by ε
2 ) we proved that

lim sup
t→+∞

+∞∑
n=0

1αnS(t)≥1e
t(γ∗− ε2 )(αnS(t)−1)I0

n < +∞,

hence ∑
{n :αn≥α∗−ε and γn≤γ∗−ε}

1αnS(t)≥1In(t) −−−−→
t→+∞

0.

We have shown (5.23).

Step 4: We show the convergence of the mass. To do so, we consider the equivalent system set on N by setting I0
−i = 0

for i ∈ {−K, . . . ,−1}, as in the beginning of Section 5.3. Let (tk) be any sequence such that tk → +∞. Thanks to
Proposition 5.6 we can extract a subsequence, still denoted tk, such that (S(tk + t), (In(tk + t))n∈N) converges to a
complete orbit (S∞(t), (I∞n (t))n∈N). Thanks to Theorem 2.6 we know that I∞n (t) ≡ 0 whenever αn < α∗ and thanks
to Step 3 we know that I∞n (t) ≡ 0 whenever γn < γ∗. By Lemma 5.11 we have then S∞(t) ≡ 1

α∗ hence

d
dtS

∞(t) = 0 = Λ− θS∞(t)− S∞(t)
+∞∑
n=0

γnαnI
∞
n (t)⇐⇒ 1

α∗

+∞∑
n=−K

γ∗α∗I∞n (t) = Λ− θ

α∗
,

from which we deduce
+∞∑
n=−K

I∞n (t) = θ

α∗γ∗
(R0 − 1) .

Moreover for sequence of indices (nj) satisfying (2.6), the omega-limit set of the sequence
(
(αnj , γnj )

)
j∈N is the set

{(α−i1 , γ−i1), . . . , (α−iN , γ−iN )} for some N < K and with γij < γ∗, i = 1, . . . , N . Thanks to Step 3, we have then

+∞∑
j=0

Inj (tk + t) −−−−−→
k→+∞

N∑
j=1

I∞−ij (t) +
+∞∑
j=0

I∞nj (t) ≡ 0 for all t ∈ R.

Since the sequence (tk) is arbitrary, we have indeed proved that
∑+∞
n=0 In(t) converges and that the limit is given by

(2.5), and that for any sequence of indices (nk) satisfying (2.6), (2.7) holds. Proposition 2.9 is proved.

5.5 Extinction in the case R0 = 1
We continue the proof of Proposition 2.5 in the limit case R0 = 1 and we shall show that the infection dies out in this
situation.

Proposition 5.12. Let Assumption 2.1 and 2.3 be satisfied. Then for all initial data (S0, (I0
n)n∈N), the solution

(S(t), (In(t))n∈N) satisfies

lim
t→∞

S(t) = Λ
θ

and lim
t→∞

∞∑
n=0

In(t) = 0.

Proof. To prove this proposition, as in Subsection 5.3, we extend the system with n ∈ N = {−K,−K+1,−K+2, · · · }.
Fix an arbitrary sequence (tk) with tk → ∞ as k → ∞. Then, up to extraction, the sequence of functions (S(t +
tk), (In(t+ tk))n∈N) converges to a complete orbit (S∞(t), (I∞n (t))n∈N) locally uniformly in t with values in R×M(N).
Now recall that due to Lemma 5.3 one has

S∞(t) ≤ Λ
θ
, ∀t ∈ R,

and t 7→
(
S∞(t), (I∞n (t))n∈N

)
is solution of

d
dtS

∞(t) = Λ− θS∞(t)− S∞(t)
∞∑

i=−K
βiI
∞
i (t)

d
dtI
∞
n (t) = γn (αnS∞(t)− 1) I∞n (t), ∀n ≥ −K

Now to complete the proof of the proposition, let us show that∑
n≥−K

I∞n (t) = 0, ∀t ∈ R.

To that aim consider the quantity
` = sup

t∈R

∑
n≥−K

I∞n (t)
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and assume by contradiction that ` > 0. Next consider a sequence (sp) ⊂ R such that

` = lim
p→∞

∑
n≥−K

I∞n (sp).

As above consider the sequence of functions (S∞(t + sp), (I∞n (t + sp))n∈N) and assume that, possibly along a sub-
sequence, it converges to a complete orbit (Ŝ(t), (În(t))n∈N) locally uniformly in t ∈ R with values in R ×M(N).
Hence it becomes a solution for t ∈ R of

d
dt Ŝ(t) = Λ− θŜ(t)− Ŝ(t)

∞∑
i=−K

βiÎi(t)

d
dt În(t) = γn

(
αnŜ(t)− 1

)
În(t), ∀n ≥ −K

together with
` =

∑
n≥−K

În(0) = sup
t∈R

∑
n≥−K

În(t).

Now observe that for all n ≥ −K one has

d
dt În(t) ≤ γn

(
αn

Λ
θ
− 1
)
În(t), ∀t ∈ R.

Hence, since R0 = 1 we have Λ
θ = 1

α∗ and În(t) ≡ 0 for all n ≥ −K such that αn < α∗. Now set J = {n ≥ −K : αn =
α∗} and the above system of equations reduces to

d
dt Ŝ(t) = Λ− θŜ(t)− Ŝ(t)

∑
j∈J

γjα
∗Îj(t)

d
dt În(t) = γn

(
α∗Ŝ(t)− 1

)
În(t), ∀n ∈ J.

Now summing-up the În−components, we get∑
n∈J

d
dt În(0) = 0 = (α∗Ŝ(0)− 1)

∑
n∈J

γnÎn(0),

so that, since Ŝ(t) ≤ Λ
θ for all t, we obtain:

Ŝ(0) = 1
α∗

= Λ
θ

and d
dt Ŝ(0) = 0.

Substituting t = 0 into the Ŝ−equation yields

0 = d
dt Ŝ(0) = Λ− θΛ

θ
− Λ
θ

∑
n∈J

γnα
∗I∞n (0).

This ensures that
α∗
(

inf
n≥0

γn

)
` ≤

∑
n∈J

γnα
∗I∞n (0) = 0,

a contradiction that proves that ` = 0 and completes the proof of the proposition.
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