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Malware is still a widespread problem and it is used by malicious actors to routinely compromise the security of computer

systems. Consumers typically rely on a single AV product to detect and block possible malware infections, while corporations

often install multiple security products, activate several layers of defenses, and establish security policies among employees.

However, if a better security posture should lower the risk of malware infections, the actual extent to which this happens is

still under debate by risk analysis experts. Moreover, the diference in risks encountered by consumers and enterprises has

never been empirically studied by using real-world data.

In fact, the mere use of third-party software, network services, and the interconnected nature of our society necessarily

exposes both classes of users to undiversiiable risks: independently from how careful users are and how well they manage

their cyber hygiene, a portion of that risk would simply exist because of the fact of using a computer, sharing the same

networks, and running the same software.

In this work, we shed light on both systemic (i.e., diversiiable and dependent on the security posture) and systematic

(i.e., undiversiiable and independent of the cyber hygiene) risk classes. Leveraging the telemetry data of a popular security

company, we compare, in the irst part of our study, the efects that diferent security measures have on malware encounter

risks in consumer and enterprise environments. In the second part, we conduct exploratory research on systematic risk,

investigate the quality of nine diferent indicators we were able to extract from our telemetry, and provide, for the irst time,

quantitative indicators of their predictive power.

Our results show that even if consumers have a slightly lower encounter rate than enterprises (9.8% vs 12.0%), the latter do

considerably better when selecting machines with an increasingly higher uptime (89% vs 53%). The two segments also diverge

when we separately consider the presence of Adware and Potentially Unwanted Applications (PUA), and the generic samples

detected through behavioral signatures: while consumers have an encounter rate for Adware and PUA that is 6 times higher

than enterprise machines, those on average match behavioral signatures two times more frequently than the counterpart.

We ind, instead, similar trends when analyzing the age of encountered signatures, and the prevalence of diferent classes of

traditional malware (such as Ransomware and Cryptominers). Finally, our indings show that the amount of time a host is

active, the volume of iles generated on the machine, the number and reputation of vendors of the installed applications, the

host geographical location and its recurrent infected state carry useful information as indicators of systematic risk of malware

encounters. Activity days and hours have a higher inluence in the risk of consumers, increasing the odds of encountering

malware of 4.51 and 2.65 times. In addition, we measure that the volume of iles generated on the host represents a reliable

indicator, especially when considering Adware. We further report that the likelihood of encountering Worms and Adware

is much higher (on average 8 times in consumers and enterprises) for those machines that already reported this kind of

signatures in the past.
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1 INTRODUCTION

Recent statistics about cyber attacks [17, 18, 30, 38] show that malware is still a widespread phenomenon and

malicious programs created to disrupt and damage computer systems are constantly on the rise, despite the

improvements in anti-malware measures and the growth in cyber-security investments [37, 40]. As a result,

malicious software remains one of the most common threats for both consumer and enterprise machines, although

the hosts in the two groups show substantial diferences in their purpose, installed software, conigurations, and

in the number and sophistication of their security products.

The way in which consumers and enterprises approach security is very diferent: while the former follow

a reactive approach, installing defenses (typically in the form of AV software) to detect and remove possible

malware infections, companies are expected to work more proactively, by relying on articulated risk assessment,

mitigation, and risk transfer methodologies [9]. It is also well-known that consumers invest less in security, often

preferring of-the-shelf, easy-to-use solutions that ofer few customization options. On the contrary, organizations

tend to protect their assets and data by deploying complex and multi-faced solutions that rely on several layers of

defenses, such as irewalls and security proxies, intrusion detection and prevention systems, email protection and

anti-exiltration software, together with measures to prevent insider attacks and to limit the spread of infections.

Consumers and enterprises also difer from a user point of view. In fact, in addition to educating employees on

the best security practices, enterprises may adopt stricter security policies about what software can be installedÐ

thus preventing users from running software of dubious origin that is often a vehicle for malware. For end-users,

this choice is left to the sole user’s security awareness and knowledge.

Each of these factors may afect the risk of experiencing cyber incidents and malware infections. This risk,

known as systemic, is strictly related to the individual security posture and to the adopted counter-measures.

However, there are also other factors to be accounted for, as both consumer and enterprise machines are not

isolated entities. The interconnected nature of our society brings companies to rely on external services and

to outsource computational tasks to third-party subjects, thus exposing the hosts of both parts to a potential

systematic risk Ð which is a form of undiversiiable risk that is independent of how much a subject spends in

security products and from its cyber hygiene.

While these two portions of risk might seem disconnected as they depend upon diferent factors, their

joint analysis and comprehension are fundamental to carry out an exhaustive and holistic risk assessment. A

methodology that tries to measure the risk by focusing only on one risk class might overlook fundamental

indicators and provide as a result an inaccurate estimation that can be dangerous for both users and business

decision makers. The inancial sector is one of the best examples where risk estimations always rely on both

kinds of risk. Indeed the two terms, systematic and systemic, are commonly used in the inancial sector. In

particular, systematic risks (also known as undiversiiable, volatility, or market risk) refer to the risk inherent

to the entire market, that is not speciic to a particular stock or industry and that therefore is impossible to

completely avoid and cannot be mitigated through investment diversiication. On the contrary, systemic risk (also

known as nonsystematic, speciic, or residual risk), is unique to a speciic company, industry, or market segment.

This second type of risk can be reduced by simply redirecting the investment towards multiple companies, stocks,

and markets related to diferent sectors, thus reducing the likelihood that a failure in one of them could inluence

the others. The example related to the inancial sector makes it clear that it is important to account for both

risk classes when performing risk assessment. In the same way, the existence of diferent risk portions must be

considered when evaluating the risks related to security events, in our case represented by malware encounters.

In this work, we want to study how these two forms of risks are applicable in the cyber domain and how

they afect the consumer and enterprise environments. Cyber risk estimation is a very complex and challenging
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problem, that to date was mainly approached from a qualitative perspective [9]. In this paper, we aim instead at

exploring quantitative metrics, obtained by leveraging empirical data. In fact, while it might sound obvious to the

reader that some factors are correlated to higher security risks, (e.g., the fact that machines with higher activity

are more likely to encounter malware, or that a broader and more diverse set of software results in higher attack

surface), the exact relationships that these variables have with the risk of encountering malicious software has

never been measured before. In addition, our study provides numerous insights on the diferent impact these

factors have on consumers and enterprises environments.

It is important to stress that the cyber security risks of consumers and enterprises have never been compared

before. Although it is possible to infer some diferences and similarities by looking at studies that analyzed either

the irst or the second segment in isolation, those studies relied on diferent data sources, focused on diferent

aspects, and were performed over disjoint timeframes, thus making it diicult to compare results. On the contrary,

the internal telemetry information we use for our experiments comes from a single AV sensor, and it has been

collected in the same time period. In addition, the AV endpoint is dispatched with two diferent licence schemes

that allow us to clearly distinguish between corporate and consumer machines. Moreover, while risk assessment

is one of the cornerstones of computer security, the diference among consumer vs enterprise security has never

been experimentally measured before: do enterprise machines encounter less malware because they are protected

by more and more diverse cyber defenses? Are enterprise users more security conscious and, therefore, less

likely to visit risky websites at work? Is there some relevant diference among the malicious iles encountered by

end-users and large companies employees?

To answer these questions, we articulate our work in two parts: 1) an extensive analysis of common aspects and

diferences in malware encounters between the two segments, and 2) an exploratory investigation of systematic

risk indicators. To assess the implications of diferent choices in security investments and policies, the irst part

of the paper quantiies the malware encounter rate in consumers and enterprises and provides evidence of the

most common classes and signatures observed by the two parties. We also look at the reporting frequency and

diferent labels of popular malware families, the diferent incidence that PUA and Adware, and the impact that

behavioral signatures have on corporate and consumer hosts.

In the second part of the paper, we conduct an exploratory study of undiversiiable risk indicators that we

were able to extract from our real-world telemetry. For instance, we assess whether the days and hours of activity

together with the volume of host-generated iles can serve this purpose. We also look at the efect that the number

of installed software vendors has on the malware encounter rate. We assess whether being in a recidivist infected

state can be a good risk predictor, and inally, we verify whether the size of an enterprise or its industrial sector

can provide useful insights on the systematic risk the company encounters.

We hope that our large-scale measurement and the quantitative insights provided in this work can help risk

analysis experts to better understand the role of systemic and systematic risks and their impact on consumers

and enterprise environments. We also believe that our study can provide valuable input for researchers working

on malware detection and reputation systems, as well as for those interested in the cyber-insurance area.

2 RELATED WORKS

To the best of our knowledge, no scientiic work exists that has speciically focused on the diferences between

consumers and enterprises when it comes to the cyber-threat landscape and the risk of malware infections. In

the following sections, we discuss two diferent research areas that relate to ours: at irst, we look at previous

studies that have explored the threat landscape of either consumer or enterprise machines. In the second part, we

cover those works that have correlated indicators extracted from telemetry data to the risk of cyber incidents and

malicious software encounters.

ACM Trans. Priv. Sec.
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2.1 Threat landscape

Many industrial reports published by security companies [5, 13, 14, 38] provide an annual summary of the

malware families observed in the wild, the number of compromised machines, the losses due to data breaches,

and the malicious campaigns that targeted diferent organizations. However, those documents only focus on

statistics, do not carry a detailed analysis, and do not make any distinction between consumer and enterprise

environments.

In the scientiic community, scattered studies leveraged network telemetry or internal logs provided by ad-hoc

software to delineate the status and the evolution of the malware landscape. Kotzias et al. [16] analyzed a

3-year-long collection of internal data from 28K enterprises to shed light on their vulnerability patching behaviors

and existing threats. The investigation carried out by the authors shows a higher prevalence of malware with

respect to potentially unwanted programs (PUP), the presence of more secure and afected industrial sectors, and

the fact that the patching of server applications is much worse than the one on the client-side.

Two studies focused on the trends of malware that spreads through Pay-Per-Install (PPI) Services [2, 15].

Caballero et al. [2] built an infrastructure and deployed it in 15 countries to interact with 4 PPI providers. The

authors found that 12 out of 20 of the most prevalent families of malware employ PPI services and that this

distribution mechanism is more common in richer countries. The follow-up paper narrowed the analysis down

to PUP families that spread through PPI services, performing a systematic study of their prevalence using AV

telemetry. The results indicate that PUPs are installed on 54% of the considered machines and that up to 25% of

them are distributed by a limited number of publishers.

2.2 Risk indicators

In recent years, an increasing number of studies have tried to identify risk indicators i.e., measurable features

collected from external sources or internal telemetry, that can be correlated with the risk of sufering from cyber

incidents. Some of them also applied the features they identiied to train prediction algorithms and assess the

prevalence of those risks in the future.

Yen et al. [42] used internal telemetry logs of a large organization to spot risk indicators that are correlated to

malware encounters. The authors showed that user’s demographic features, as age and job title, together with

network-related features, such as the frequent use of untrusted internet connections and longer browsing sessions,

are efective at predicting which users are more at risk of malware infections. RiskTeller [1] is a prediction tool

that leveraged internal data of 18 enterprises to predict which of their machines will be at risk of being infected by

a broad spectrum of malware classes. Its classiication accuracy reaches 95%, showing that the identiied features

are strongly correlated with the likelihood of malware encounters. Liu et al. [22] studied the extent to which cyber

security incidents can be predicted by using observed malicious activities associated with network entities, such as

spamming, phishing, and scanning. The study shows that the resulting classiier is able to produce fairly accurate

predictions over a forecasting window of 2-3 months. The same authors also attempted to predict the likelihood of

organizations to sufer a cyber incident by using an algorithm that only uses externally observable features [21].

The authors trained a classiier by combining signs of network mismanagement, such as misconigured DNS

or BGP, with malicious activity time series, such as spam, phishing, and scanning activity sourced from these

organizations. Despite 10% of false positives, the prediction reaches 90% accuracy, suggesting the possibility of

forecasting an organization’s breach without internal information. Thonnard et al. [39], discussed organization

and individual-level features that are likely to relect the risk of experiencing targeted attacks. The authors

identify enterprise sizes and public proiles of individuals as potential risk factors and show that there exists a

degree of correlation with receipt of targeted attacks. In a similar way, Sarabi et al. [33] built a predictor using a

set of industry, business and web visibility/population information. The results demonstrate how, and to what
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extent, these externally-observable features can help forecast an enterprise’s relative risk of experiencing diferent

types of cyber incidents.

Fewer prediction studies exist on the consumer side, probably due to the lack of telemetry data for this

segment of users. Lévesque et al. [20], performed a 4-month study by collecting real-usage data of 50 subjects

and monitoring both user behaviors and possible infections. Using neural networks, the authors developed a

predictive model with 80% accuracy at predicting the users’ likelihood of being infected. Canali et al., [4] assessed

to what extent a user’s web browsing behaviors can be used to predict her risk class. The results show how

particular types of user actions, such as browsing the web late at night and during weekends, considerably afect

the risk exposure. Finally, by leveraging mobile users’ browsing patterns and self-reported data, Sharif et al. [35]

tried to predict whether users will encounter malicious pages on a long and short term. With an overall accuracy

of 87% TPR and 20% FPR, this work shows how useful on-the-ly predictions can be in protecting users from

malware distributed on the web.

3 DATASETS

This section provides a detailed description of the diferent data sources we used in this study, as summarized

in Table 1. Our main source of information is the telemetry data of a popular security company, collected on

Windows machines throughout the year 2018 and made of diferent feeds. Activity reports provided a starting

point to list all machines that had the antivirus sensor installed and opted in to share their data, allowing us

to compute the number of hours each machine was active every day. File appearance logs helped us to identify

vendors of installed programs. Using malware encounters logs we identify where, how many times, and which

signatures were triggered for each malware encounter. Finally, we scraped the company website to retrieve a list

of all existing signatures along with their class and description.

The datasets were encoded in pickle iles by using Pandas, a Python open-source data-analysis andmanipulation

tool [29]. Statistics and results were computed by using NumPy, which ofers a comprehensive set of mathematical

functions [28]. When training and testing the models of Section 5, we used Scikit-learn, a library that ofers

eicient tools for predictive data analysis [34]. All the igures have been rendered by using Matplotlib [23].

Table 1. Overview of datasets used

Unique instances

Dataset Info About Consumers Enterprises

Activity Hosts 144.9 M 226.4 M

Enterprises 45.6 - 640 K

Countries 239 235

File appearance Vendors 59.9 K 40.9 K

Encounters Hosts 14.2 M 27.1 M

Enterprises 26.6 - 244.2 K

Records 62.4 M 76.5 M

Signatures 24.0 K 23.3 K

Countries 239 235

Signatures Labels 32.0 K

Subclasses 41

Industrial sectors Sectors 10 - 1215

ACM Trans. Priv. Sec.
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3.1 Consumers vs Enterprises

Our data contains 640 K unique enterprise identiiers. However, since big corporations can span multiple countries

and comprise several subsidiariesÐeach of which may possess a diferent identiierÐ we use a second mapping to

further group those cases to a single organization. In total, we were able to identify 45.6 K (2nd record in Table 1)

unique organizations. We distinguish 6.5 K micro (≤ 10 hosts), 12.3 K small (≤ 50 hosts), 11.9 K medium (≤ 250

hosts) and 14.8 K large enterprises (> 250 hosts), with the biggest of them having 3.4 M machines.

In the period of our experiments, we observed a total of 144.9 M distinct consumer machines and 226.4 M

enterprise machines. Our dataset covers 239 (for consumers) and 235 (for enterprises) of the 249 countries,

territories or areas of geographical interest with an assigned ISO 3166-1 code [12]. The two tables below (grouped

under Table 2) report the geographical breakdown of the machines in our dataset: North America is the most

represented region (38% of the machines), followed by Europe (27%) and Asia (22%). In South America, Africa and

Oceania we measure the lowest concentrations (< 10 % overall).

Table 2. Host distribution per countries (let) and continents (right)

Consumers Enterprises
Country % hosts Country % hosts

United States 33.87 United States 35.52
Japan 7.46 India 6.60
Germany 5.41 China 4.51
United Kingdom 4.60 Brazil 3.39
China 3.74 Japan 3.12
Brazil 3.52 United Kingdom 3.02
Canada 3.45 Germany 2.22
France 3.25 France 2.10
Australia 3.07 Canada 1.90
India 2.61 Australia 1.55
Italy 1.98 Mexico 1.52

Others 27.04 Others 34.55

Consumers Enterprises
Continent % hosts Continent % hosts

North America 38.89 North America 42.55
Europe 27.57 Asia 27.18
Asia 22.32 Europe 19.76
South America 5.49 South America 5.80
Oceania 3.49 Africa 2.57
Africa 2.24 Oceania 2.13

3.2 Host activity and file appearance

All the 371 M machines in our dataset have an anonymized identiier linked to the AV software licence and thus

stable throughout the period under analysis. Each of them routinely queries a centralized system to assess the

reputation of iles that appear on the host. These requests are made possible thanks to the explicit consent of

both consumer and enterprise users, who opted-in to share their data in an anonymized and privacy-preserving

form. We leverage this process for two diferent purposes. First, for each machine and for each day in the time

frame of this study, we computed the number of active hours. We then computed the number of active days per

month by counting the days in which the machine submitted at least one request. On average, consumer and

enterprise hosts are active 6.4 and 7.6 days per month, respectively for 2.9 and 3.7 hours per day. Second, for all

executed applications we extract the vendor name (if the ile is signed), thus identifying more than 40 K distinct

vendor names for enterprises and around 60 K for consumers.

3.3 Malware Encounters

When a ile is lagged as malicious by the host AV sensor, the event (including the hash and the signature identiier)

is reported to the central server. We use these logs to create a register that, for each machine, records the day, the

number of encounters (as the same object can be reported multiple times), and the matching signature name. Our

data do not allow us to perform a retroactive analysis of iles to catch newly identiied threats, but only consider

those reported by existing signatures at the time of detection. In addition, we ilter out all the signatures that were
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matched but that do not appear anymore in the vendor’s list of signatures at the time of the study: the rationale

behind this choice is that we want to limit the impact of wrong signatures and remove those generating false

positives. Over the 140 M collected events, we identiied 14.2 M distinct consumers and 27.1 M distinct enterprise

hosts that encounter at least one malicious ile within the year. Overall, malware was encountered by 58.3% of

the enterprise.

We scraped the website of the AV vendor to obtain the list of available signaturesÐtogether with their

descriptions, years of creation, and subclasses. In this way, we were able to gather information about 18143

labels classiied in 41 subclasses (out of roughly 24 K signatures observed in the dataset). For a more concise

classiication, we decided to merge similar and smaller subclasses into seven broader groups: Adware, PUA, Trojan,

Ransomware,Worms, Viruses, and Others. The full mapping among the diferent classes is reported in Table 3.

Table 3. Malware classes grouping

Class Subclass

Adware Adware

Adware-trojan

Potentiallyunwantedapp (PUA) Misleadingapplication

Misleadingapplication-trojan

Potentiallyunwantedapp

Ransom Ransom

Trojan Trojanhorse

Trojanhorse-macro

Trojanhorse-virus

Trojanhorse-worm

Trojanhorse-worm-macro

Trojanhorse-worm-virus

Trojan-virus

Trojan-worm

Virus Virus

Virus-macro

Worm Worm

Worm-macro

Worm-virus

Class Subclass

Others Dialer

Dialer-adware

Dialer-hacktool

Dialer-trojan

Hacktool

Hoax

Joke

Joke-trojan

Macro

Other

Other-trojan

Other-worm

Parentalcontrol

Remoteaccess

Removalinformation

Securityassessmenttool

Securityassessmenttool-trojan

Spyware

Spyware-trojan

Trackware

Trackware-trojan

3.4 Enterprise industry sectors

For a subset of the anonymized enterprise identiiers, we were provided with a number of additional information;

including their industry sectors and the countries in which their registered oices are based. This industry

classiication is available in diferent granularities, ranging from a ine-grained classiication of up to 1215 distinct

sectors to a coarse version of only 10 macro-sectors. Table 4 shows the number of machines and enterprises per

sector, according to the most concise classiication: information technology is the prevalent industry with more

than 3 M hosts and 4732 enterprises. Globally, our dataset shows good industry coverage, with all sectors having

at least 200 K active machines, and half of the sectors having more than 1 M hosts.
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Table 4. General sector statistics

Sector Enterprises Hosts

Consumer Discretionary 5030 1.99 M

Consumer Staples 1495 912.22 K

Energy 654 210.71 K

Financials 5052 2.96 M

Healthcare 2349 1.96 M

Industrials 7715 2.79 M

Information Technology 4732 3.63 M

Materials 2159 427.00 K

Telecommunication Services 314 307.08 K

Utilities 496 245.59 K

3.5 Ethical considerations

The datasets we analyzed in this work derive from logs and data collected only from consumer and enterprise

users who voluntarily opted-in to share their data. This choice is left to users at installation time, when they are

presented with information about the data collection mechanism and a checkbox to tick if they wish to opt-in.

Speciically, each piece of information is anonymized on the client-side and sent in this form to a central system,

to preserve the customers’ privacy and identity. In our study, we observe enterprises and hosts only through

alphanumeric anonymized identiiers that do not contain any detail or endpoint attribute able to trace back to

their origin. The data analyzed in this study, although it might come from diferent sources, is similar in nature to

what has already been observed in other studies, such as the one of Yen et al. [42], Kotzias et al. [16] and Dambra

et al. [10].

3.6 Selection Bias and Limitations

The dataset we used for our study is the largest ever adopted for risk-based experiments: while the telemetry of

previous works included at most 20 K consumer devices [35], and 82M machines of 28k enterprises [16], the one

used in this work has been collected on more than 226M organization hosts and 144M home-user computers

located in almost 250 countries. However, it is not completely unbiased. For instance, we only analyze consumers

and enterprises that invest in security products: it is reasonable to believe that those without any protection

should have a worse security posture, thus making our results conservative. Moreover, our datasets are obtained

from a single vendor and only from those users who opted-in to share data: although this allows us to better

compare the two classes of machines, software from other vendors may provide diferent security, and users who

opted-out due to privacy concerns could be more security conscious. In addition, our telemetry is only collected

on Windows hosts. Although Windows is still by far the most adopted operating system with 75% of the market

share [36], it is possible that users running other OSes (e.g., macOS, Unix-like) may have a diferent security

posture. Finally, the prevalence of Windows machines can be diferent between the two segments of machines.

Nevertheless, Windows is still the predominant OS in both consumers and enterprises when it comes to common

activities carried by users, such as gaming, document editing and other oice tasks. On the other hand, the

remaining OSes are often used for very speciic purposes and installed on hosts that carry no human-interactive

task, such as servers and machines hosting public-facing services [41].
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Table 5. Most common malware signatures and classes for consumers and enterprises. For each malware class, percentages

represent a normalization to the total number of hosts and organizations that encounter malware. Malware classes are

sorted by the percentage of hosts on which they are detected.

Consumers

Class/Label Hosts
Events
Reported

Labels

Trojan 11.3M (79.5%) 186.7 M 3.4 K
W97M.Downloader 627.3 K 3.1 M
Mdropper 305.8 K 1.1 M
Dromedan 303.6 K 916.8 K
PUA 6.3M (44.4%) 32.6 M 747
InstallCore 699.2 K 1.0 M
DownloadSponsor 509.3 K 1.6 M
OpenCandy 335.4 K 438.6 K
Others 4.6M (32.4%) 12.6 M 820
Jswebcoin 148.5 K 669.8 K
Remacc.Ammyy 101.2 K 155.5 K
Remacc.Radmin 10.9 K 18.9 K
Adware 770.9K (5.4%) 2.4 M 491
Browext 154.0 K 623.3 K
DealPly 54.3 K 87.6 K
DriverUpdater 48.2 K 56.0 K
Worm 559.1K (3.9%) 4.1 M 1.1 K
Silly 125.3 K 353.8 K
Ippedo 64.7 K 206.8 K
Dunihi 53.4 K 1.5 M
Virus 279.5K (2.0%) 15.1 M 589
Sality 56.1 K 2.1 M
Virut 47.8 K 493.1 K
Bursted 34.5 K 154.8 K
Ransom 112.0K (0.8%) 416.1 K 326
Wannacry 51.4 K 299.8 K
Crysis 15.1 K 26.7 K
Cerber 7.5 K 10.3 K

Enterprises

Class/Label Enterprises Hosts
Events
Reported

Labels

Trojan 16.1K (60.5%) 22.7M (83.8%) 217.1M 3.2 K
Dromedan 2.6 K 481.7 K 1.4 M
W97M.Downloader 4.0 K 179.3 K 603.5 K
JS.Downloader 1.5 K 98.9 K 187.7 K
Others 10.9K (41.0%) 2.3M (8.5%) 7.1 M 616
Remacc.Ammyy 985 74.6 K 115.2 K
Jswebcoin 1.6 K 70.2 K 286.0 K
Remacc.Radmin 172 26.5 K 42.2 K
PUA 10.5K (39.5%) 1.9M (7.0%) 3.8 M 548
InstallCore 3.6 K 245.6 K 307.9 K
OpenCandy 3.0 K 186.7 K 231.2 K
DriverPack 1.1 K 105.1 K 149.5 K
Worm 4.1K (15.4%) 692.1K (2.6%) 5.1 M 884
Silly 1.8 K 164.5 K 438.5 K
Ippedo 1.0 K 83.5 K 325.2 K
Dunihi 1.1 K 68.5 K 2.0 M
Virus 2.6K (9.8%) 320.9K (1.2%) 17.6 M 396
Sality 1.1 K 74.8 K 3.2 M
Virut 933 59.2 K 739.5 K
Bursted 639 52.8 K 232.4 K
Ransom 1.2K (4.5%) 160.6K (0.6%) 665.8 K 307
Wannacry 550 109.2 K 546.3 K
Crysis 210 21.5 K 37.2 K
Locky 31 4.0 K 7.8 K
Adware 2.8K (10.5%) 149.5K (0.5%) 444.6 K 429
Browext 1.0 K 30.5 K 121.0 K
Lop 339 16.4 K 20.5 K
Funshion 153 6.9 K 15.5 K

4 MALWARE SPECIFICITY

In this section, we describe similarities and diferences in malware encounters among consumer and enterprise

hosts. We start by analyzing the overall picture of encountered malware signatures and classes in section 4.1.

Considerations about the number of malware classes on each host and the average age of signatures follow

in sections 4.2 and 4.3. In section 4.4, we inally discuss how behavioral signatures, Potentially Unwanted

Applications, and Adware impact consumers and enterprises in a diferent way.

4.1 Overall picture

We start our analysis by measuring malware encounter prevalence in consumers and enterprises. Over the

twelve months observation period at our disposal, we found that the percentage of hosts that encounter malware

slightly difers between the two groups: for consumers, 14.2 M of the 144.9 M active hosts have sufered at least

one encounter (9.80%), while in enterprises 27.1 M out of 226.0 M machines (12.0%) detected malicious software.

We veriied that this diference is statistically signiicant (p<.001) by running a Chi-squared test on a 2-by-2

contingency table obtained by considering infected and clean devices in consumers and enterprises.

It is worth noting that the malware encounter rate we measured in enterprise environments is consistent with

prior works. In fact, in their conservative estimation along three years (from 2015 to 2017), Kotzias et al. [16]

report a prevalence rate of 13%; the same ratio increases to 15% in the study of Yen et al. [42], who consider hosts

of a large enterprise in a four-month time frame in 2013. This shows that, once averaged over a suicient number
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of computers, the malware encounter rate in enterprises remained relatively constant across diferent studies, AV

vendors, and even across multiple years.

No prior study exists instead that speciically focuses on consumer hosts encompassing every class of malware.

Some measured a combined encounter rate Ðtherefore also including enterprise machinesÐ on a global scale [14],

others restricted their analysis to only few malware classes to investigate their distribution vectors [2, 15, 27].

Although in the report published by Microsoft [14] there is no clear distinction between consumer and enterprise

machines, our study reveals an encounter rate that is higher than the 6% assessed by their researchers in the

security bulletin over the same period.

While the overall encounter rates are similar, a closer look at the malware families shows that there are some

relevant diferences between consumer and enterprise encounters. Table 5 summarizes the most common malware

signatures and their corresponding classes in our telemetry data, together with percentages that represent a

normalization to the fraction of devices and organizations that encounter malware. Labels are sorted by the

number of distinct hosts in which they appeared, after removing generic records and those for which we could

not assign a class (as explained in Section 3.3). As a single signature could be triggered multiple times in the same

machine, we also measure and report these occurrences. We complete the picture by counting the total number

of distinct labels for each class and the number of enterprises in which each signature has been observed.

Results show that Trojan is by far the most popular class: these signatures alone represent 47% of total number

of signatures matched for consumers and nearly 80% for enterprises. Although this malware class is also prevalent

in organization environments, home users show higher infection frequency and a more diverse set of labels: on

average, consumer hosts report Trojan detection events 16.46 times during the year and encounter 2.02 distinct

families in the same period. Enterprise frequency and distinct labels are lower (respectively 9.56 and 1.33). Again,

the diferences between the two means are statistically signiicant (Reporting frequency: Welch’s ANOVA F-test

= 5104, p<.001; Families: Welch’s ANOVA F-test = 1709257, p<.001). The most common families are respectively

W97M.Downloader, a well-known set of malicious macros embedded in Microsoft Word document iles, and

Dromedan, a label associated with a Trojan family spread via email attachments.

Table 5 also highlights the completely diferent incidence of PUA and Adware between the two groups.

Although InstallCore Ða large family of bundlers that install Adware and Potentially Unwanted Programs (PUPs)Ð

and Browext Ð malicious software that shows advertisement and slows down the system to frustrate the userÐ

are the most observed labels on both sides, PUA and Adware account upwards 29% for consumers, but not more

than 7.1% for enterprises. In addition, home users report Adware and PUA detections on average 5.18 times per

year, while enterprise machines only 2.05 times (Welch’s ANOVA F-test = 649, p<.001). Since this is an important

diference between the two groups we decided to dedicate Section 4.4 to investigate it in more detail.

On the contrary, Viruses and Worms (respectively 1.1% and 1.2% of all the signatures matched) appear

with similar frequency in both groups. Although we register a statistically signiicant diference in the mere

detection rate between the two segments of machines (Virus: X-squared = 12447, p<.001; Worm: X-squared =

14164, p<.001), we ind no such diference when considering the reporting-event frequency and distinct-label

encounters: Viruses are respectively detected on average 53.92 and 54.99 times during the year on home-user and

organization machines (Welch’s ANOVA F-test = 0.12, p=.12), showing the same average presence of 1.21 diferent

signatures per host (Welch’s ANOVA F-test = 2.88, p=.09). Similarly, Worms are reported 7.40 (consumers) and

7.38 (enterprises) times on average (Welch’s ANOVA F-test = 0.02, p=.90), in the form of 1.24 and 1.21 distinct

labels (Welch’s ANOVA F-test = 1.06, p=.08). Our data reveals that the family of Silly Worms, that replicates

through email attachments and local copies to steal sensitive information and disable other software, is the most

common in its corresponding class. Sality, a popular malware that infects executable iles acting as backdoor or

botnet, dominates instead the scene when it comes to Viruses.
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4.2 Distribution of malware subclasses

Figure 1 shows the cumulative distribution of the number of distinct malware subclasses observed in enterprise

and consumer hosts. For each machine, a subclass is counted if at least one of its signatures is matched by the AV

product. The maximum number of distinct classes (22 for consumers and 21 for enterprises) has been reported by

two machines per group. While at a irst sight the graph might suggest similar behaviors in the two categories, the

Chi-squared tests separately considering up to 20 distinct encountered categories reported signiicant diferences

with � < .001. In particular, substantial diferences are present in the leftmost part of the plot: while nearly 82%

of enterprise hosts have encountered only a single subclass of malware, this percentage drops below 57% for

consumers. This, in turn, reveals that on average consumer machines are more likely to encounter a more diverse

set of malicious iles than enterprise computers. As already discussed in the introduction, a possible explanation

for these diferences can be the adoption of stricter security policies and multiple layers of defenses present in

enterprises but not in consumer environments.
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Fig. 1. Cumulative distribution of the number of distinct subclasses per host

Our measurements show that for most of the malware categories there was no relevant change over the year

in terms of the fraction of hosts that detect them. This supports the hypothesis that diferent malware classes

reach a plateau that they maintain over time despite the efort of security companies to mitigate them. There

were only two exceptions to this rule, which we present in Figure 2. The irst was a slight but steady decrease of

Ransomware families, both in consumer and enterprise data. The second was a rapid increase of Cryptominer

families, followed by a general downward trend. Ransomware and Cryptominers are the last two malware classes

that emerged over the last few years and their curves show that in fact they did not yet reach a stable trajectory.

4.3 Age of encountered malware

We continue our analysis by estimating how old the malware encountered by the hosts in our dataset is, by

looking at the date in which each signature was irst introduced by the vendor. Figure 3 depicts the average age

of matched signatures in our one-year observation period. For each of the 12 months, we group all the labels

based on the year in which they were created. Then, for each of the 29 years (from 1990 to 2018) we average

the number of distinct records over the months and compute the 95% conidence interval. Despite a common

peak of over 300 signatures written in 2014 and a drop for those developed in 2018, the number of matching

signatures present in our dataset is almost constant since 2003. This corroborates what has already been observed

in other studies about the fact that it is still common to encounter today samples belonging to very old malware

families [19]. In fact, about 174 K consumer hosts and 151 K corporate machines (respectively 1.0% and 0.5% of
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Fig. 2. Ransomware and Miner trends for consumers and enterprises

those that sufered at least a malware encounter) report encounters for signatures whose creation even predates

the year 2000. Among those, the most common for consumers (4858 hosts) and enterprises (1990 hosts) is CIH , a

22-year-old signature to identify a computer Virus that targets Microsoft Windows 9x systems.
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Fig. 3. Average number of diferent signatures per year of creation. Error bars provide a 95% confidence interval

4.4 Behavioral signatures, Adware, and PUA prevalence

So far, in this manuscript we have used the word signature to indicate without distinction the set of unique data

that allows an AV software to detect, quarantine, and remove speciic malware. However, two main approaches

exist to create a signature: the older pattern-based methodology in which a model was built to match a particular

family of malware, and the more recent behavioral-based approach in which generic heuristics are used to capture

diferent aspects of malicious behavior. While the irst leverages object attributes to create a unique ingerprint,

the latter typically evaluates an object based on its runtime actions [6].

In our dataset, we identiied 6.7 K behavioral signatures by using their label and report their prevalence for

consumers and enterprises in Figure 4. The reported percentages are obtained by dividing the number of distinct

hosts with at least one behavioral-based detection and the number of distinct hosts that have sufered one or

more encounters of any kind. We verify that all the monthly diferences are statistically signiicant (� < .001)
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Fig. 4. Prevalence of behavioral signatures in consumer and enterprise machines

by running a Chi-squared test on the contingency table obtained by considering devices that trigger behavioral

signatures and those that do not, in consumers and enterprises.
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Fig. 5. Prevalence of PUA and Adware signatures in consumer and enterprise machines

The curve for enterprise hosts lies considerably above the one of consumers, a sign that behavioral signatures

match much more in the former environment (an average of 59% of hosts in enterprise vs 30% in consumer hosts).

This could be due to the presence of less popular software and of custom applications built and compiled on

corporate machines, for which the AV has not been tested against to whitelist or tune its behavioral signatures.

On the contrary, consumer machines mostly run well-known applications that are therefore accounted for by

AV vendors. However, since the totality of behavioral signatures is categorized as Trojan by the AV vendor,

we speculate that this diference could also be due to sophisticated malware that targets speciically certain

enterprises, which could not be easily detected with a traditional pattern-based signature.

In Figure 5, the trends are inverted when considering Adware and PUA. In fact, their prevalence in consumer

hosts is constantly higher (6.06 times on average with a statistically signiicant diference for each month Ð

� < .001) than in enterprises. As already discussed in section 4.2, a very likely explanation can be found in the

freedom that consumer users have to install any kind of software, whereas more rigorous rules are enforced in

enterprises.
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5 UNDIVERSIFIABLE RISK ANALYSIS

In the previous section, we extensively analysed the systemic risks that afect consumers and enterprises when it

comes to malware encounters. As discussed at the beginning of the manuscript, systemic risk takes into account

the diferent use of machines, security posture and policies that characterize the two environments. The analysis

of the telemetry at our disposal revealed that the diferent adoption of security measures and policies implies a

diverse threat landscape in the two segments, with the prevalence of speciic classes of malware in consumers

(e.g., Adware, PUA) and enterprises (e.g., behavioral signatures).

Diferently from the previous one, the portion of risk that we deine as systematic refers to the risk introduced

by objective factors that do not relect any aspect of the security posture, policies or nature of machines. In

the next sections, our goal is to investigate whether this kind of risk exists in the cyber domain, and identify

correlated indicators for consumers and enterprises that can help us to measure its signiicance together with the

diferences between the two classes.

To this end, we employ regression analysis by constructing several models that simultaneously use a combina-

tion of host attributes as regressors, thus controlling for conlicting explanatory variables when modeling the

risk of encountering malware. We detail the model generation in section 5.1 and deeply discuss each risk factor

in the subsequent sections.

5.1 Model generation

We postulate that the monthly risk of encountering malware for one host is inluenced by a combination of the

following seven independent variables: active days and hours, ile-request volume, reputation and number of

installed vendors, geographical location and whether or not malware has already been detected on the machine

the month before.

Our objective is to obtain a Log-Odds distribution for the dependent variable � , that expresses the odds Ðthe

ratio of successes (host encounters malware) and failures (host is clean)Ð as a linear combination of the regression

variables. Since � is monthly given in our telemetry as a boolean value (i.e., host encounters malware or is clean),

we transform it as to obtain a count by bucketing numerical variables (days, hours, iles created, vendor number

and enterprise size) into bins to reduce granularity, grouping all the machines that share the same combination

of values, and counting how many of them are infected or clean.

We then make use of Generalized Linear Models (GLMs) [3], test them in diferent conigurations, and

analyze the outcome of several goodness-of-it quantities (Pseudo R-Squared, Log-Likelihood, Dispersion, and

the estimation provided by the Akaike Information Criterion (AIC)). We achieve the best results when modeling

the risk of malware encounters � as a Binomial distribution using a Logit link function. The analysis of the

pseudo-R-Squared values obtained when modeling the diferent malware classes along the year revealed that, on

average, between 68.4% and 89.9% of variance in the encounter rate is explainable by the chosen control variables.

Once the model has been itted to the data, the extent to which the independent variables inluence the

dependent variable is captured by their regression coeicients. In particular, for each regressor, we select a bin

(e.g., 0-4 days) or categorical value (e.g., North America) as a reference baseline, and express the odds ratios of

other bins or values to derive the attribute’s importance.

We separately model consumer and enterprise machines. We are aware that comparing the magnitude of odds

ratios from models that use diferent samples from diferent populations may introduce an error [26]. However,

our ultimate goal is to analyze the trends within each segment Ðodds ratios increasing, decreasing or luctuatingÐ

and hereinafter we never directly compare the magnitude of the coeicients between consumers and enterprises.

As further evidence of the correctness of our results, we also examined the case of a GLM that combines the two

set of machines (consumers and enterprises) by adding a regressor (machine_type: 0 = consumer, 1 = enterprise).

For the sake of completeness we report the odds ratios obtained in Table 11 of Appendix A.
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Table 6. Odds ratios of encountering malware according to our regression models

Attribute
Host

Category
Bin

family
Malware

Monthly Odds
Consumers

Monthly Odds
Enterprises

� � � �

Ref: [0-4]

Days
Activity

4-8 Any 2.10 0.19 1.44 0.19
8-12 Any 2.78 0.45 1.59 0.30
12-16 Any 3.26 0.67 1.82 0.57
16-20 Any 3.58 0.85 1.91 0.71
20-24 Any 4.01 1.11 1.97 0.75
24-28 Any 4.15 1.25 1.79 0.73
28+ Any 4.51 1.33 1.85 0.48

Ref: [0-3]

Hours
Activity

3-6 Any 1.34 0.09 1.02 0.20
6-9 Any 1.57 0.32 0.95 0.14
12-15 Any 1.25 0.47 0.88 0.21
15-18 Any 1.35 0.38 0.98 0.23
18-21 Any 1.59 0.49 0.99 0.39
21+ Any 2.65 1.67 1.32 0.56
18-21 Adware 1.68 1.32 0.63 1.46
21+ Adware 3.30 2.23 0.08 0.25

Ref: [0-1K]

Activity
File-volume

1K-2K Any 1.05 0.07 1.19 0.26
3K-4K Any 1.64 0.33 1.33 0.54
5K-10K Any 2.21 0.55 1.59 0.90
10K-50K Any 3.19 1.05 1.85 0.79
50K+ Any 4.77 1.23 2.34 1.38

10K-50K Adware 9.67 3.87 2.62 1.77
50K+ Adware 13.52 4,71 9.79 3.76

Ref: [0-20]

Vendors
20-40 Any 1.11 0.04 1.09 0.12
40-60 Any 1.22 0.06 1.30 0.28
60+ Any 1.39 0.09 1.54 0.55
60+ Adware 1.46 0.31 4.86 3.74
60+ PUP 1.56 0.09 3.37 1.06

Ref: No
vendors only
Reputable Yes Any 1.00 0.05 0.99 0.25

Yes PUP 0.98 0.05 0.82 0.06
Yes Virus 0.64 0.04 0.70 0.09

Ref: No

player
Repeat Yes Any 1.77 0.77 1.33 0.49

Yes Adware 8.33 3.15 5.86 1.14
Yes Virus 2.21 1.03 5.50 2.56
Yes Worm 10.56 2.45 8.44 2.82

Ref: NA

location
Geographical

AF Virus 6.35 2.10 12.14 2.49
AS Virus 4.19 0.51 9.72 1.21
AF Worm 20.77 2.61 18.59 4.61
AS Worm 5.39 0.23 9.49 2.31
OC PUP 0.86 0.18 1.25 0.45
OC Trojan 1.04 0.10 0.82 0.22

In our experiments, we consider each month separately, as data are monthly aggregated due to anonymity

constraints. We run a separate model for each month starting from February, by only considering hosts that

have been active all the 12 months (11.7M consumer machines and 2.8M hosts of 33.7K enterprises), as to have

information of the previous-month clean/infected state always available. At irst, we deine one host being targeted

by malware if it encounters any kind of malware in that speciic month. In addition, we separately consider

and model ive diferent malware classes ÐAdware, Trojan, PUP, Virus, WormÐ to explore any variations in

host-attribute importance or diferences between consumers and enterprises when narrowing down the analysis

to a speciic class. In Table 6, we report the average � and the standard deviation � of the odds ratios along

the 11-month period for the most explanatory cases that we discuss in the following sections. We note that all

reported values are statistically signiicant with � < .001 for all the months of the considered period.

ACM Trans. Priv. Sec.



16 • Dambra et al.

We do not include the enterprise size (i.e., number of hosts) and its industrial sector in the previous experiment,

as these regressor variables are not available for consumers. In fact, the odds analysis of models that have been

constructed with diferent variables is statistically unsound [26]. We instead repeat the experiment by isolating

enterprise machines and simultaneously modeling all the 9 attributes at our disposal for this segment of hosts. In

Table 10, we only report the odds ratios of the two features that were added at this step. Also in this case, all

reported values Ðincluding those that are not reported in Table 10Ð are statistically signiicant with � < .001 for

all the months of the considered period.

5.2 Time-based activity

It is reasonable to expect that the longer a machine is active, the more likely it is to encounter malware. Indeed,

the odds of detecting malware for consumers linearly increase with the number of active days, reaching a 4.51

factor with respect to the reference class for those active on average more than 28 days per month. A similar

relationship also exists for enterprises, where the odds reach a peak of 1.97 when considering those hosts active

between 20 and 24 days per month. Activity days represents a stable indicator along the months, as detailed

by the low standard deviation in relative odds. A similar trend exists also with respect to the number of hours

of activity per day but, in this case, both enterprise and consumers show a similar random behavior for those

machines active on average more than 9 hours per day.
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Fig. 6. Disjoint influence of activity days (let) and hours (right) on malware encounters

To better understand this phenomenon, we separately assess the inluence of activity days and hours in Figure 6.

We split the machines based on their average uptime days and, for each of the 31 days, we compute the percentage

of hosts that detect malware. Regardless of the number of days, we repeated the same task for the number of

uptime hours. While for consumers the plot suggests that malware detection rates keep increasing alongside

the number of active days, for enterprises this growth stops at around 20 days (roughly the number of working

days in a month), but then the curve considerably drops for machines that are always running. The same trend is

exhibited by looking at the daily hours of activity. In this case, the growth of the encounter rate stops at around

eight hours for both groups (which again seems to align with the number of working hours in a day). As we

clarify later in the section, these values seem to suggest that the active time changes with the role of the machine,

and diferent roles may have very diferent encounter rates.

With these results in mind, we identiied a set of machines for which the time-to-risk relationship was more

regular. These include machines with up to eight hours of activity per day and, for enterprises, hosts that are

active no more than 20 days per month. This group accounts respectively for 96% of the consumer hosts and for

73% of the enterprise machines. Figure 7 shows the joint inluence that activity time has on the Regular Group:
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for each day � and each hour � , the point on the 3D surface is given by selecting the machines active for � days

and � hours on average, and computing the percentage of those that detect malware. Interestingly, both plots

follow a smooth behavior according to the one of the two control variables, conirming the goodness of time

activity as a risk indicator for this type of machine.
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Fig. 7. Joint influence of activity days and hours on malware encounters for consumers (let) and enterprises (right)

For machines in the regular group, we also computed to what extent each additional day or hour of activity

increases the odds of encountering malware by itting a model that considers days and hours as integer variables,

while keeping unchanged the other regressors. We measure that for any additional day of activity the odds of

encountering malware increases by 4% for consumers and 3% for enterprise machines. An additional hour of

daily activity results instead in an additional 17% and 6% extra risk. At irst, both results suggest that adding more

daily uptime has a stronger impact than adding more days of activity (consumers: 17 > 4; enterprises: 6 > 3), but

we need to keep in mind that machines in the regular group have a maximum of 8 hours of daily activity vs 20

(for enterprise) and 31 (for consumers) days per month. If we repeat the experiment by considering only speciic

classes of malware, in the case of number of active days we ind a consistent behavior with the general case in

both odds magnitude and increasing trends.

The odds related to number of active hours per day deserve instead special attention. In fact, we observe that

for enterprise machines running more than 8 hours per day (i.e., the threshold we identiied for the regular

groups), the odds across all malware classes are lower than for hosts active fewer hours per day. We speculate

that the reason is that those machines are likely dedicated to performing not-interactive tasks (e.g., servers).

This hypothesis is conirmed by looking at the almost-zero odds of encountering Adware in enterprise machines

that are always running: since this particular malware is usually shipped during software installations or web-

browsing activity, very low odds of sufering this kind of infection can be explained by the lack of this kind of

tasks. On the contrary, we observe a decrease-increase behavior for consumers, an indicator that those machines

are probably used in both automated and interactive fashion.

Summary: Time activity can clearly relect the risk of encountering malware only when a subset of "regular

machines" is considered: both uptime days and hours can reliably act as control variables when evaluating

detection rates of machines active less than 8 hours and 20 days for enterprises. However, time activity for

general enterprises is not a good predictor.
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5.3 File-based activity

Aswe already mentioned, the machines in our dataset routinely query a centralized system to assess the reputation

of new objects: by monthly counting the number of these requests, we build a second metric for host activity and

correlate its magnitude to the odds of malicious program detection. We ind that the odds of detecting malware

steadily increase with the level of activity in terms of iles generated for both consumer and enterprise hosts

and across malware families. This relationships does not vary month by month, as conirmed by the very low

standard deviation reported with the mean. While we observe a similar magnitude in the odds of machines that

generate less than 5K iles per month, the efect of a greater ile-volume activity (5K+) more consistently impacts

consumer hosts. At its extreme, we observe that the odds of infection reach twice those of enterprises when

selecting machines that generate a very high ile-volume activity (50K+).

In Figure 8, we provide the reader with a visual representation of the relationship between iles generated and

malware encounters: for a given number � of ile requests, we group the machines that queried the centralized

system exactly � times in a month, and compute the percentage � of those that encounter malware. The orange

curve in the graphs provides an indication of the underlying trend, and it has been obtained by sampling the

percentage every 100 values. The two igures reveal a similar logarithmic trend for both corporate and consumer

machines. While for a low number of queries (up to roughly 5 K for consumers and 2.5 K for enterprises) a rise in

the ile-based activity entails a severe increase in the malware encounter rate, this efect gets weaker as we move

in the right part of the plot.

Summary: The odds of detecting malware steadily increase with the level of activity in terms of iles generated

for both consumer and enterprise hosts and across malware families. The efect of ile-based activity is more

prominent when considering a low number of requests, up to roughly 5 K for consumers and 2.5K for enterprises.
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Fig. 8. File volume influence on malware encounters for consumers (let) and enterprises (right)

5.4 Sotware vendors

We now measure to what extent various machine proiles might have an impact on the overall risk. We achieve

this by looking at the set of software installed on the computers, extracting the vendor name from the publisher

subject that can be obtained from signed binaries. On the vast majority of computers (around 80% for both

groups), we identify software that is signed by between 10 and 15 diferent publishers. The maximum numbers of

publishers identiied on a single machine were 2312 for consumers and 349 for corporations. We irst test whether

an increasing number of software vendors implies a higher risk of detecting malicious programs. The rationale
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behind including the vendor number as a regressor in our model is that the odds of encountering malware śand

in turn sufering from security issuesś may raise according to the number and diversity of software installed in a

system.

Our modeling reveals that a relationship exists between the two variables, and that enlarging the set of software

installed on a machine results in higher odds of encountering malware. For instance, consumer and enterprise

machines with a number of vendors between 20 and 40 are 1.11 and 1.09 times more likely to be targeted by

malware than those with less than 20 signers. Odds increase to 1.22 and 1.30 for hosts with a number of vendors

between 40 and 60, and reach 1.39 and 1.54 for those with more than 60 vendors. Once again we measure a

very low standard deviation, which suggests that results persist for all the considered months. When restricting

to Adware and PUA, we ind that the presence of a very high number of vendors entails higher odds ratios in

enterprises (4.86 and 3.37). This trend is not relected for home users, for which the odds follow the general case.

We further dive into the relationship between a diverse set of programs and malware encounters by dividing

both consumer and enterprise machines into groups based on the number of diferent software vendors installed.

For each group in which we have at least 100 elements, we compute the fraction of hosts that encountered

malware at least once.
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Fig. 9. Relationship between the number of distinct vendors installed and hosts that encounter malware.

In Figure 9 we report these percentages together with straight lines, that represent linear regressions obtained

using the least-squares method with a mean squared error of 1.86 for consumers and 4.75 for enterprises. Again,

the diversity of software installed on the computers positively and linearly correlates with the rate of malware

encounters. This is true both for consumers and enterprises, with the diference that the slope associated with

the consumer trend is steeper than the one of enterprises. This discrepancy is also relected by the higher odds

ratios in the former group. We can justify this behavior with the fact that in enterprise contexts, even if a user

were to install a diverse set of applications, each of them would probably serve the purpose to carry some tasks

related to her job: indeed, with the existence of security policies, users are less likely to install software from

dubious origin on the machines provided by their employers.

As a further insight, we also consider whether the nature of the installed software inluences the odds of

malware encounters and whether that could be used to proile the role of the machines that installed them. We

rank the top 20 vendors in our dataset based on the number of hosts on which they appear and report their list in

Table 7.

Our hypothesis here is that the machines that installed only those could be used as a control group, as they

might belong to regular user proiles who only use common software, such as browsers, document editing
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tools and such. We therefore create two diferent proiles, isolating machines with only top-20 vendors installed

from the rest: while for enterprises this set is composed of around 12% of the active hosts, this percentage rises

above 42% for consumers. In our tests, we found that a higher vendor reputation has a negligible contribution to

lowering the odds of encountering malware. Indeed, we register no changes in odds for consumers (� = 1.00 and

� = 0.05) and a small decrease for enterprises (� = 0.99 and � = 0.25). However, we register a more signiicant

impact when modeling malware classes as PUA (0.98 consumers - 0.82 enterprises) and Adware (0.64 consumers -

0.70 enterprises): in this case, the presence of only reputable vendors is an important factor that contributes in

lowering the odds of encountering particular families that are usually shipped with dubious software.

Summary: The larger and the more diverse the set of applications installed on a machine is, the higher is

its odds to encounter malware. On average, an increase in installed programs entails more risk of malicious

software detections for consumers than enterprises. In addition, software reputation is important in lowering

the likelihood of encountering particular malware classes, as Adware and PUA.

Table 7. Top-20 vendors for consumers and enterprises

Consumers Enterprises

Microsoft Corporation Microsoft Corporation

Symantec Corporation Symantec Corporation

Google Inc Google Inc

Apple Inc Adobe

Adobe Intel

Dell Inc Oracle America Inc

Mozilla Corporation Citrix Systems Inc

Intel Corporation VMware Inc

NVIDIA Corporation ESET

HP Inc Mozilla Corporation

McAfee Inc Cisco Systems Inc

Dropbox Inc Hewlett Packard Company

Hewlett Packard Company Lenovo

OracleAmerica Inc Pulse Secure LLC

ESET Dell

Garmin International Inc Sun Microsystems Inc

Wild Tangent Inc Apple Inc

Valve NVIDIA Corporation

CyberLink LogMeIn Inc

Lenovo CrowdStrike Inc

5.5 Repeat players

We now assess whether being a repeat player has an impact on the odds of encountering malware. When itting

the model for a speciic month, we consider a machine being a repeat player if malicious software was detected on

it the month before. Our hypothesis is that repeated encounters with malware can be a sign of users’ hazardous

behaviors or of their poor security practices during the year under analysis.

In fact, we found a diference (� = 1.77 for consumers and � = 1.33 for enterprises) between the odds that

a recidivist host will encounter malware versus a clean machine. The importance of this risk factor and the
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diferences between home and corporate users increase when considering malware classes as Adware, Worm

and Virus. When looking at consumers and at the irst two cases, repeat players are 8.33 and 10.56 times more

likely to encounter malicious software than machines that were clean the previous month. Odds increase also for

enterprises, where we register factors of 5.86 and 8.44.

Summary: Recidivists hosts have higher odds of encountering malware with respect to clean machines. This

inding is more pronounced when individually considering malware classes as Adware, Worm and Virus.

5.6 Geographical location

Previous works show that the number and types of malware that computers encounter vary greatly across

countries [2, 24, 25]. To verify these indings, we consider the continent in which one host is located as a regressor

variable, and model how the odds of encountering malware vary with the geographical location.

When considering all malware categories, we register the same order of odds magnitude both across countries

and types of machines. On the contrary, geographical location constitutes a considerable risk factor when

restricting to Worms and Viruses. For those classes, we measure comparable odds in North America, South

America, Europe and Oceania, but register a massive increase in continents like Africa (> 18 for Worms, > 6 for

Viruses) and Asia (> 5 for Worms, > 4 for Viruses) for both consumers and enterprises.

In addition to the analysis of the odds ratios, we separately assess the incidence that diferent malware classes

have across continents. We report in Tables 8 and 9 a complete geographical breakdown of the percentage of

hosts that encounter a speciic family.

Table 8. Geographical breakdown of malware classes for consumers

Consumers

Country Trojan PUA OT Worm Adware Virus

Africa 64.01 15.36 7.15 9.3 0.8 3.38

Asia 66.71 14.47 10.94 3.81 1.47 2.61

South America 60.17 23.62 12.49 1.5 1.65 0.57

Europe 56.57 25.51 14.4 0.99 2.22 0.31

North America 58.04 24.8 13.68 0.61 2.59 0.27

Oceania 58.17 22.19 15.67 0.93 2.8 0.25

Table 9. Geographical breakdown of malware classes for enterprises

Enterprises

Country Trojan PUA OT Worm Adware Virus

Africa 77.05 5.80 4.87 9.57 0.34 2.36

Asia 81.76 5.59 6.63 3.28 0.45 2.29

Europe 87.42 4.88 6.21 0.94 0.3 0.26

North America 93.39 2.34 3.53 0.44 0.17 0.12

Oceania 90.88 3.17 4.84 0.72 0.2 0.2

South America 86.64 5.18 5.72 1.42 0.4 0.65
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The results are in line with what reported in a previous study by Mezzour et al. [24], who found a predominant

prevalence of Worms and Viruses in Sub-Saharan Africa and South Asia. In the opposite direction, we ind that

machines in Oceania have lower odds of encountering Trojans and PUA. Here, we ind that the odds home-users

facing PUA are reduced by a factor of 0.86 with respect to those in North America. A similar result holds for

corporate machines whose odds ratio of encountering Trojan is 0.82.

We also tested whether there exist geographical regions where many machines encounter some malware

families that appear very rarely elsewhere. To analyze this aspect, we irst ranked all the signatures in our dataset

based on the number of distinct hosts on which they have been detected. We then isolated the top-100 labels

among behavioral signatures, PUA and Adware, and the remaining set of malware and, for each label, we broke

down the machines that have encountered it across continents (Figure 10).

Although we identiied some diferences, machines located in North America, Europe and Asia encountered

the top-100 signatures with a similar frequency, while Africa and South America follow diferent behaviors.

After discarding generic cases, we observe that the family of the trackware TransitGuide (218 K hosts), developed

to monitor browser activity of the targets, and of the Trojan Kotver (122 K hosts), that performs click-fraud

operations in order to generate revenue for its authors, are almost exclusively detected in consumers located in

North America (97% and 92%). At the same time, the Adware families of KpZip (22 K machines for consumers and

enterprises) and Funshion (19 K consumer and 11 K enterprise machines), both created with the aim of displaying

ads to proit from user clicks, are mostly encountered by computers located in Asia (92%).

Summary: Some categories of malware (e.g., Trojan, PUA, and Adware) afect equally companies and home-

users in all continents. In contrast, the odds of encountering Worms and Viruses are on average from 4.19 to

20.77 times higher in Asia and Africa.

5.7 Enterprise size and industrial sector

We inally focus our analysis on the risk proiles of enterprises with diferent sizes and industrial sectors. As

reported in Table 10, the odds ratios related to small, medium and large organizations slightly difer from the

baseline of micro irms. In addition, we do not observe any trend that relates an increasing number of hosts

to higher or lower odds of malware detection, but instead register a luctuating value when considering any

malware class as well as when narrowing to speciic categories. This suggests that the enterprise size is not

correlated with the likelihood of malicious software encounters.

To get a clearer picture of this relationship, we decide to separately consider the enterprise size as a risk factor.

Figure 11 shows two scatterplots in which each blue dot represents a separate enterprise, and on the axis we

report its size (i.e., number of computers) and the fraction of its machines that encountered malware at least once

in the one-year period of our experiments. Green crosses indicate clean enterprises, i.e., companies whose hosts

do not encounter malware in the considered timeframe. The orange line shows the average among companies

of the same size, considering both clean entities and those that encounter malware. We also plot a dotted line

showing the average consumer rateÐi.e., the ratio of consumer machines that had at least one encounter (9.8%)Ð

with the aim of detecting whether the consumer encounters distribution is more similar to that observed in

enterprises with a particular size.

In line with the insights gathered analyzing the odds ratios, the left igure depicts an almost constant trend,

slightly above the consumer line, with a lexion of the curve for those companies with sizes lower than 50

machines or higher than 100 K hosts. This may seem to suggest that small (<50) and large enterprises (>100 K)

tend, in proportion, to have a smaller number of computers that encounter malware. However, the diference is

very small and the Pearson correlation coeicient for size and the fraction of hosts that encounter malware is

0.01, indicating a negligible relationship between the two. Once again, this is a sign the number of machines in

enterprises is not correlated to how much malware is detected.
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Fig. 10. Breakdown of top 100 behavioral signatures, PUA and Adware, and remaining malware families. Percentages are

sorted according to the number of distinct hosts on which the signatures have been detected.

To further investigate this aspect, we decided to focus our analysis only on those machines that were active for

each of the 12 months of our experiment (2.8 M hosts of 33.7 K distinct enterprises). The rationale behind this

choice is that hosts active only few months have less likelihood of reporting detections, thus lowering the average

encounters rate we are interested in measuring. In the right part of Figure 11, companies are still represented

by blue dots. However, while the x-coordinate indicates the enterprise size (as in the previous case, obtained

considering all machines), the y-coordinate is computed by considering only hosts active 12 months, and thus

dividing those that encounter malware by their total number.
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Table 10. Odds ratios of encountering malware according to our regression models for enterprise size and industrial sector

Attribute

Host

Category

Bin

family

Malware
Monthly Odds

Enterprises

� �

Ref: [0-10]

Size

Enterprise 10-50 Any 1.09 0.20

50-250 Any 1.04 0.19

250+ Any 0.98 0.49

Technology

Ref: Information

Sector

Enterprise

Consumer Discretionary Any 1.55 0.47

Consumer Staples Any 1.02 0.25

Energy Any 1.82 0.51

Financials Any 1.01 0.36

Healthcare Any 0.93 0.30

Industrials Any 1.32 0.28

Materials Any 1.48 0.38

Telecommunication Any 1.37 0.66

Utilities Any 1.56 0.26
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Fig. 11. Relationship between enterprise size and the fraction of hosts that encounter malware, computed for any host (let)

and for those active each of the 12 months of our experiment (right)

Interestingly, the efect of this iltering is more pronounced for consumers, where the percentage of machines

that encounter malware raises to 30.3% (+ 20.4%), while in enterprises we register an average of 21.5% (+9.5%).

We also observe a discrete gap between small organizations (<50) and those with a number of hosts comprised

within 50 and 500 K: while for the former the mean stays around 16%, in the other case it reaches 23%. While

this may indicate the existence of a relationship between enterprise size and malware detection rate, overall we

still observe a very low Pearson correlation coeicient (0.02). In fact, excluding the companies with less than 50

machines, the remaining set of organizations (> 50 and < 500� , i.e., 92% of the total) exhibit an almost constant

trend regardless of their size.

To gather further insights, we verify whether the industrial sector afects the relationship between the size of

enterprises and the malware encounter rate. For this, we compute the Pearson correlation coeicient to measure

the extent to which an increase in enterprise size leads to a higher number of hosts that detect malware. We also

report in Figure 12 a plot for each sector. Again, we do not observe any general correlation, similar to the one
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obtained by looking at all enterprises (0.01), a sign that the number of hosts alone does not play a very important

role in explaining the encounter rate.
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Fig. 12. Relationship between the enterprise size and the fraction of hosts that encounter malware. Each plot represents a

distinct sector.
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In addition, we conduct a test to verify whether a statistically signiicant diference exists among the distribu-

tions in Figure 12 across industrial sectors. We opt for a non-parametric Kruskal-Wallis one-way ANOVA rather

than a parametric one-way ANOVA, as this allows us to relax the one-way ANOVA assumption of data normality,

which is not met in our case. The Kruskal-Wallis test assumes that a) the independent variable (enterprise size)

has two or more independent groups; b) the measurement scale of the dependent variable (ratio between hosts

that encounter malware and enterprise size) is ordinal, ratio or interval; c) the observations within a group and

among groups must be independent. d) no data distribution assumptions if the test is used as a test of dominance,

i.e., to verify whether at least one group stochastically dominates another one. With those assumptions veriied,

we run the test, our null hypothesis being that the samples come from populations with the same distribution.

We obtain a test statistic H = 13.75 (p=.13), values that do not allow us to reject the null hypothesis: we conclude,

once again, that the malware encounter rate based on enterprise size is not inluenced by its industrial sector.

To conclude the study of enterprise environments, we evaluate how the risk of encountering malware varies

across organizations in the diferent ields. In this case, we consider Information Technology (IT) as a baseline for

comparisons when evaluating odds ratios. We measure that machines of irms in the ields of Consumer Staples

and Financials show negligible diferences with those in the IT segment (1.5% higher likelihood of infection).

Overall, we also ind that the Healthcare industry is the best sector with the odds ratio with respect to the

reference segment being 0.93. On the other hand, irms dealing with Energy, Consumer Discretionary, Utilities,

Industrials, Materials and Telecommunications reveal a higher likelihood of encountering malware, We end up to

similar conclusions when narrowing the analysis down to speciic malware classes.

Summary: An increasing number of hosts does not translate into higher odds of encountering malware.

Enterprise size results to be uncorrelated even when narrowing to speciic industrial sectors or malware classes.

In contrast, organizations operating in Consumer Discretionary, Energy, Materials, and Utilities have higher

risk factors than irms related to Information Technology, Healthcare, Financials, Consumer Staples, Industrials,

and Telecommunications.

6 DISCUSSION AND CONCLUSION

Home-computer users and enterprises tend to face malware in two diferent ways: while consumers approach

the problem in a reactive fashion, often relying on a single AV product to detect and block possible malware

infections, corporations act in a proactive manner, installing multiple security products, activating several layers

of defenses, and establishing policies among employees.

In the irst part of our work, we investigate whether the diferent measures in the two environments have

an impact on their risks. In other words, we want to answer the question whether more security products,

tools, policies and restrictions in the enterprise segment are efective to lower the risk of malware encounters.

Globally, we measure for 144.9 M consumer machines and 226.4 M corporate hosts an encounter rate of 9.8% and

12.0% respectively. According to these results, home-machine users encounter slightly less malware than the

counterpart, suggesting, at irst glance, that all the choices that enterprises adopt are not efective in practice.

However, we believe this irst impression to be misleading: when considering all the available hosts in our dataset,

a lot of them have been found to be active for only a few months, or even a few days, and these low-activity

hosts are more prevalent among end-users than corporate machines. When we restrict the two sets of machines

to only those active every month of the year, we ind an opposite result: around 30% of consumer hosts report

malware encounters vs 21% of enterprise machines. If we go one step further and select only those machines

that are active more than 20 days and 15 hours per day, the gap widens as 89% of consumers encounter malware

against 53% of corporate machines. Moreover, we also found that the average consumer machine encounters a

more diverse set of malicious iles compared with its corporate counterpart, and this inding holds for all the

malware classes considered in our study.
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Security policies and restrictions also seem to have a relevant impact on reducing risks. Indeed, when analyzing

the presence of Adware and PUAs, we report a concentration of suchmalware families 6 times higher in consumers,

due to the freedom in installing any kind of software that this group of users has. Since the presence of less

reputable programs is often a vehicle for malware, we believe the same indings apply also when considering

other families. On the opposite, generic behavioral signatures (who might match unknown threats or suspicious

iles) are twice as likely to trigger in enterprise environments than in consumers hosts.

If on the one hand a good security posture and a better cyber hygiene are important to reduce the risk of

malware encounters, on the other hand it is not the only factor to take into account. Indeed, the interconnected

nature of our society, the use of third-party software and the sharing of the same networks expose all the classes

of machines to undiversiiable and systematic risk, regardless of the number and type of security measures and

policies in place.

In the second part of this work, we leverage the data at our disposal to investigate whether this portion of risk

exists and provide quantitative indicators that can be used to measure its signiicance: for this purpose, we extract

seven indicators for each consumer machine and nine for each enterprise host that carry no information about its

security level, and test their correlation with malware encounter risks. Interestingly, we ind that height of them

serve this purpose: host uptime days and hours can act as control variables for the encounter rate of a subset of

regular machines; with a logarithmic relationship, the same holds for ile-based activity; encountering malware

over and over and being recidivist along time represents an important risk factor, which is even more pronounced

when considering malicious categories as Adware, Virus and Worm; for the same classes, host geographical

location can explain the risk of sufering from higher encounter rate; inally, we also verify the efectiveness of

vendor number and reputation; For organization environments, we compare industrial sectors and spot those that

have higher odds of reporting malicious software; we fail, instead, in proving any correlation between enterprise

size and malware encounter rate, even when separately considering each industrial sector.

To our knowledge, no scientiic or empirical work has looked at the systematic nature of cyber risks, although

the topic is largely discussed in other domains. The existence and quantiication of systematic cyber risks is an

emerging problem among risk management experts and cyber-insurance underwriters, as the number of events

that simultaneously afect a large number of hosts across diferent enterprises and countries is increasing every

year. Hypotheses to explain it have also been advanced considering global-scale incidents and the subsequent

market reactions: experts agree that factors and events such as common widespread vulnerabilities, infrastructure

failure cascade, loss of integrity of trusted systems, concentrated dependencies and indirect attacks to central

actors characterize its nature [7, 8, 11, 31].

Despite these conclusions, systematic risks need a deeper understanding for what concerns their underlying

factors and likelihood. An objective analysis of the extent to which these indicators can explain cyber risks would

deinitely be beneicial for particular tasks, such as premium establishment for cyber insurance policies [32].

Indeed, in order to compute premiums, insurance carriers scale a base rate by factors depending on the enterprise

size, industrial sector, and by considering whether or not the company had already sufered cyber security events

(i.e., it is a repeat player). In this respect, our study shows that an assessment done considering the enterprise size

as a factor may not be appropriate - we ind no correlation with malware encounter- and that diferent indicators

are needed to come up with a correct assessment.

Security companies can also beneit from the insights presented in this work. Security vendors can use our

analysis for pre-selecting a scanning aggression level of their tools (low, medium, high) based on the factors

identiied in our work. Currently, end users or companies administrators are asked to make this decision. For

example, our results suggest that a more aggressive scanning of devices that are more active or generate a

higher ile volume is justiiable due to the higher risk. Furthermore, security vendors can adjust the notiication

level/wording and warn the users who undertake riskier behaviors deined by the indicators of our model. While
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currently relying on a reactive approach that tries to match a malicious signature and report it to the user, AVs

could proactively notify users about these risky behaviors.

In this work, we try, for the irst time, to shed light on systematic risk indicators, by shifting the analysis at the

host level and by using real-world data telemetry. With the indings previously discussed in mind, we support

the hypothesis that this portion of risk exists in the cyber scenario Ðin both consumer and enterprise contextÐ

and that the factors we identiied can be used as good indicators to quantify it. We believe these insights can help

both companies and academic researchers to better understand the global picture of malware encounters in the

wild, and that our study can be used as a foundation for future works in the area of systematic risk.
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Table 11. Odds ratios of encountering malware according to our regression models

Attribute
Host

Category
Bin

family
Malware Monthly Odds

� �

Ref: [0-4]

Days
Activity

4-8 Any 2.04 0.17
8-12 Any 2.68 0.40
12-16 Any 3.14 0.59
16-20 Any 3.63 0.84
20-24 Any 3.82 0.98
24-28 Any 3.96 1.10
28+ Any 3.97 1.18

Ref: [0-3]

Hours
Activity

3-6 Any 1.31 0.09
6-9 Any 1.50 0.30
12-15 Any 1.09 0.40
15-18 Any 1.14 0.31
18-21 Any 1.29 0.39
21+ Any 1.89 0.79
18-21 Adware 1.58 1.22
21+ Adware 3.06 2.06

Ref: [0-1K]

Activity
File-volume

1K-2K Any 1.00 0.07
3K-4K Any 1.63 0.32
5K-10K Any 2.13 0.50
10K-50K Any 2.98 0.93
50K+ Any 4.05 0.80

10K-50K Adware 9.52 3.72
50K+ Adware 13.41 4,24

Ref: [0-20]

Vendors
20-40 Any 1.02 0.04
40-60 Any 1.13 0.07
60+ Any 1.41 0.08
60+ Adware 1.40 0.31
60+ PUP 1.60 0.09

Ref: No
vendors only
Reputable Yes Any 1.00 0.04

Yes PUP 0.97 0.05
Yes Virus 0.63 0.03

Ref: No

player
Repeat Yes Any 1.88 0.84

Yes Adware 8.80 3.24
Yes Virus 2.46 0.94
Yes Worm 10.13 2.13

Ref: NA

location
Geographical

AF Virus 13.42 2.07
AS Virus 4.81 0.55
AF Worm 20.52 2.35
AS Worm 5.61 0.20
OC PUP 0.86 0.17
OC Trojan 1.02 0.09
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