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Abstract—We consider a communication system in which the
destination receives status updates from an information source
that observes a physical process. The transmitter performs
semantics-empowered filtering as a means to send only the most
“important” samples to the receiver in a timely manner. As a
first step, we explore a simple policy where the transmitter selects
to encode only a fraction of the least frequent realizations of
the observed random phenomenon, treating the remaining ones
as not informative. For this timely source coding problem, we
derive the optimal codeword lengths in the sense of maximizing
a semantics-aware utility function and minimizing a quadratic
average length cost. Our numerical results show the optimal
number of updates to transmit for different arrival rates and
encoding costs and corroborate that semantic filtering results
in higher performance in terms of timely delivery of important
updates.

I. INTRODUCTION

The evolution of the latest generations of mobile commu-

nication systems has been mainly driven by setting highly

ambitious, often hard to achieve, goals. Although this maxi-

malistic approach may trigger technological advances, it often

comes with inflated requirements in terms of resources to

meaningfully scale. Wireless networks are currently evolving

to cater to emerging cyber-physical and real-time interactive

systems, such as swarm robotics, self-driving cars, and smart

Internet of Things. A fundamental shift in thinking is neces-

sary to satisfy the pressing requirements for timely multimodal

communication, autonomous decision-making, and efficient

distributed processing. Goal-oriented semantic communication

is a new paradigm that aims at redefining importance, timing,

and effectiveness in future networked intelligent systems [1]–

[4]. Leveraging a minimalist design approach, it has the

potential of significantly improving network resource usage,

energy consumption, and computational efficiency. Various

attempts in this direction have been made in the past [5]–

[8] without though leading to an elegant and insightful theory

with immediate practical applications.

In this context, semantics of information is a recently

emerged measure of the significance and the usefulness of

messages with respect to the goal of data exchange. This

composite performance metric appears to be instrumental
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in enabling effective communication of concise information

that is both timely and valuable for achieving end users’

requirements. Age of information (AoI) performance metrics

[9], [10], which describe information freshness in networks,

and value of information (VoI) [11], [12], which quantifies the

information utility or gain in decision making, can be viewed

as simple, quantitative surrogate for information semantics.

In this paper, we consider a communication system in

which a transmitter receives status updates generated from a

known discrete distribution with finite support and seeks to

communicate them to a remote receiver. The updates generated

by the information source may correspond to observations

or measurements of a random phenomenon. The transmitter

performs semantics-aware filtering and sends to the receiver

only the most relevant randomly arriving source symbols in

a timely fashion over an error-free channel. We consider a

simple coding scheme focusing on less frequent events, i.e.,

the transmitter encodes only a fraction of the least frequent

realizations, treating the remaining ones as not informative or

irrelevant, thus providing more information about events that

happen less often. Additionally, the semantics of information is

captured through a timeliness metric for the received updates,

which is a nonlinear function of age of information. Our

objective is to design a coding scheme that optimizes the

weighted sum of a semantics-aware utility function and a

quadratic cost term on the average codeword length.

This work falls within the realm of timely source coding

problem [13]–[15]. These works study the design of lossless

source codes and block codes that minimize the average

age in status update systems under different queuing theo-

retic considerations. The most closely related to our work

is [16], which considers a selective encoding mechanism at

the transmitter for timely updates. The optimal real codeword

lengths that minimize the average age at the receiver are

derived therein. Our paper extends previous results in several

ways. We introduce semantics-aware metrics, which quantify

update packet importance and timeliness of information at the

receiver. The latter is a nonlinear function of age and we

derive the average timeliness expression for three indicative

cases. Furthermore, we add a quasiarithmetic penalty term

related to the average codeword length [17], [18]. We derive

the optimal real codeword lengths that maximize a semantics-

aware utility function and minimize a quadratic average length

cost, highlighting the performance gains of semantics-aware

filtering and source coding.
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Fig. 1. System model of semantics-aware transmission.

II. SYSTEM MODEL

We consider a communication system in which an informa-

tion source X generates status updates in the form of packets

and forwards them to a transmitter in order to send them to a

remote monitor (c.f. Figure 1). The source generates discrete

symbols from a finite set X = {xi | i∈In}, In = {1, 2, ..., n},

each having a probability of realization p̃i = PX(xi) where

PX(·) is a known pmf (probability mass function). Without

loss of generality, we assume p̃i ≥ p̃j , ∀i ≤ j. Furthermore, we

assume that the sequence of observations is independent and

identically distributed and that packets are generated according

to a Poisson distribution with rate λ.

Semantic filtering is performed, where only the k least prob-

able realizations are selected for transmission, while update

packets from the remaining n − k realizations are discarded.

The set of selected update packets’ indices (admitted packets)

is denoted Ik ⊆ In. A first metric of semantic value associates

importance with probability of occurrence of less frequent or

atypical events. The less frequent an event (or the less probable

a realization) is, the more important it is for the remote moni-

tor. The transmitter then encodes an admitted packet from the

i-th realization using a prefix-free code based on the truncated

distribution with conditional probabilities pi = p̃i/qk, ∀i ∈ Ik
(and zero otherwise), where qk =

∑

i∈Ik
p̃i.

The transmitter node is bufferless, hence a newly admitted

packet is blocked when the channel is busy. Assuming an error-

free channel, if an admitted packet arrives at the transmitter

when the channel is idle, it is correctly delivered to the

receiver, then coined as a successive packet. After successfully

delivering the previous packet to the receiver, the transmitter

waits for the next admitted packet arrival. We define ti−1 the

time instant that the i-th packet is received. Hence, the update

interval between the i-th successive arrival and its next one is

modeled as a random variable (r.v.) Yi = ti−ti−1. This interval

consists of the service time Si and the waiting time Wi. Wi is

the time between admitted status updates that are transmitted,

thus the waiting time can be written as Wi =
∑N

k=1 Zk,

where N is an r.v. of the number of admitted arrivals that

are generated before finding the channel idle. Zk is the time

between two admitted arrivals and is exponentially distributed

with mean γ = 1
λqk

, since the admitted arrivals are generated

according to a Poisson process with rate λqk. The transmission

time is proportional to the codeword length, thus, the service

time (transmission time) of realization xi is Si = ℓi time

units, where ℓi is the length of the codeword assigned to xi.
The average transmission time is E[S] =

∑k
i=1 piℓi.

III. PROBLEM STATEMENT

A. Key Metrics of Interest

We introduce a semantics of information (SoI) metric that

measures the importance and usefulness of information at

the receiver’s side. SoI is generally a composite function

S(t) = ν(ψ(I), where ψ : R
m → R

z,m ≥ z is a

(nonlinear) function of m ∈ Z
+ information attributes I ∈

R
m, and ν : R

z → R is a context-dependent, cost-aware

function [2], [19]. In this paper, we consider timeliness, a

contextual attribute defined as a non-increasing utility function

f : R+
0 → R of information freshness, i.e., S(t) = f(∆(t)).

∆(t) = t− u(t) is the instantaneous AoI at the receiver, i.e.,

the difference of the current time instant and the timestamp

u(t) of the most recently received update. S(t) is a time

varying stochastic process and the average SoI in stationary

and ergodic systems for an observation interval (0, T ) is

defined as S̄ = lim
T→∞

1

T

∫ T

0

f(∆(t))dt.

B. Problem Formulation

Our objective is to find the codeword lengths ℓi that opti-

mize a weighted sum of the average SoI and the average length

for a cost function φ(ℓ) : R
+
0 → R

+
0 , i.e.,

∑

i∈Ik
piφ(ℓi).

Maximizing the average SoI is equivalent to minimizing the

average cost (penalty) of lateness

L(∆) = lim
T→∞

1

T

∫ T

0

g(∆(t))dt (1)

where g : R
+
0 → R is a non-decreasing function [10].

Converting the maximization problem into a minimization

one is mainly done for analytical convenience. The average

codeword length term, also known as quasiarithmetic penalty,

is related to Campbell’s coding problem [20]. The optimization

problem is constrained by the integer constraint ℓi ∈ Z
+

and the Kraft-McMillan inequality [21] for the existence of a

uniquely decodable code for a given set of codeword lengths.

Thus, we formulate the problem as

P1 :min
{ℓi}

L(∆) + w
∑

i∈Ik

piφ(ℓi)

s.t.
∑

i∈Ik

2−ℓi ≤ 1,

ℓi ∈ Z
+

(2)

where w > 0 denotes a weight parameter. We employ a

quadratic cost function for the codeword length under binary

alphabetic φ(x) = αx+βx2, α, β ≥ 0 [18]. Since φ is convex,

longer (shorter) codewords are penalized more (less) harshly

than in the linear case (e.g., Huffman coding) [20].

First, we relax the integer constraint in P1 and allow non-

negative real valued codeword lengths. Note that for any set

of real-valued lengths ℓi, we can obtain integer-valued lengths

by using the rounded-off values ⌈ℓi⌉.

Second, in order to explicitly calculate (1), we need to

specify g(∆(t)). Three different instances of the penalty

function are considered in this work. For exposition, in Figure

2 we show a sample path for the case g(∆(t)) = exp(∆(t)).
The calculation of (1) is reduced to calculating the areas Qi

in Figure 2 and then taking the average as follows

L(∆) = lim
T→∞

1

T

{N (T )
∑

i=1

Qi +Q∞

}

= ηE[Q] (3)
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Fig. 2. Sample evolution of the exponential penalty function (5) over time
for ρ = 1.

where η = lim
T→∞

N (T )−1
T is the steady-state time average arrival

rate and N (T ) is the number of admitted packet by time T .

A more detailed and general analysis can be found in [22].

Merging η with w as both being positive constants, we have

P2 :min
{ℓi}

E[Q] + w
∑

i∈Ik

pi(αℓi+βℓ
2
i )

︸ ︷︷ ︸

, JSoI

s.t.
∑

i∈Ik

2−ℓi ≤ 1,

ℓi ∈ R
+.

(4)

IV. SEMANTICS-AWARE SOURCE ENCODING DESIGN

In this section, we determine the semantics-aware optimal

real codeword lengths for three different instances of penalty

function g(·), namely

g(∆(t)) =







exp(ρ∆(t)) EDT case

ln(ρ∆(t)) LDT case

ρ(∆(t))κ PDT case

(5)

where ρ ≥ 0 denotes a constant coefficient and κ ∈ Z
+.

The above cases correspond to an exponentially (E-), loga-

rithmically (L-), and polynomially decreasing timeliness (PDT)

scenario, respectively.

A. Optimal Codeword Design

1) EDT Case: For this case, the area Qi−1 for i ≥ 3 yields

Qi−1 =

∫ ti−1+Si

ti−2

eρ(t−ti−2)dt−

∫ ti−1+Si

ti−1

eρ(t−ti−1)dt

(a)
≈

ρ

2
Y 2
i−1 + ρSiYi−1 + Yi−1

where (α) comes from using the second-order Taylor expan-

sion for the exponential function.

Then, we calculate E[Q] as follows

E[Q] ≈
ρ

2
E[Y 2] + ρE[S]E[Y ] + E[Y ]

(b)
=
ρ

2
E[L2] + ρ(E[L])2 + (1+2ργ)E[L] + ργ2 + γ. (6)

To reach (b), we have E[Y ] = E[L] + γ, E[Y 2] = E[L2] +
2γE[L] + 2γ2, where γ = (λqk)

−1 [16]. Also, E[S] =
E[L] and E[S2] = E[L2], with E[L] =

∑

i∈Ik
piℓi, and

E[L2] =
∑

i∈Ik
piℓ

2
i being the first and second moments of

the codeword lengths, respectively.

Putting (6) into P2, we solve the following problem.

P3 : min
{ℓi∈R+}

{

(
ρ

2
+wβ)E[L2] + ρ(E[L])2

+ (1+2ργ+wα)E[L] + ργ2 + γ
}

s.t.
∑

i∈Ik

2−ℓi ≤ 1.

(7)

Proposition 1. The unique solution of problem P3 (EDT case)

for ℓi, ∀i ∈ Ik, is given as

ℓi = − ln2

(
C1pi

µ(ln(2))2
W0

(
µ(ln(2))2

C1pi
2

C2
C1

))

(8)

where µ ≥ 0 is the Lagrange multiplier, C1 = ρ+ 2wβ,

C2 =
2ρµ ln(2) + C1(1+2ργ+wα)

C1 + 2ρ
, (9)

and W0(.) is the principal branch of Lambert W function.

Proof: We define the Lagrange function

L(ℓi;µ) = (
ρ

2
+wβ)

∑

i∈Ik

piℓ
2
i + ρ

(
∑

i∈Ik

piℓi

)2

+ (1+2ργ+wα)

(
∑

i∈Ik

piℓi

)

+ ργ2

+ γ + µ

(
∑

i∈Ik

2−ℓi−1

)

(10)

where µ ≥ 0 denotes the Lagrange multiplier. Now, we write

the Karush-Kuhn-Tucker (KKT) condition as follows

∂L(ℓi;µ)

∂ℓi
= (ρ+2wβ)piℓi + 2ρpi

(
∑

i∈Ik

piℓi

)

+ (1+2ργ+wα)pi − µ ln(2)2−ℓi = 0, ∀i ∈ Ik. (11)

The complementary slackness condition is

µ

(
∑

i∈Ik

2−ℓi−1

)

= 0. (12)

There exist two conditions, one of which meets (12): (i) µ = 0,

hence
∑

i∈Ik
2−ℓi < 1, or (ii) µ 6= 0, hence

∑

i∈Ik
2−ℓi = 1.

Condition (i) results in ℓi = E[L] = −
(
1+2ργ+wα
3ρ+2wβ

)
< 0 from

(11), which is not feasible. Thus, condition (ii) must satisfy

(12). Thus, the moments of codeword lengths are obtained as

E[L] =

(
µ ln(2)− (1+2ργ+wα)

C1 + 2ρ

)

, (13a)

E[L2] =

(
µ ln(2)− (1+2ργ+wα)

C1 + 2ρ

)2

(13b)

where C1 = ρ + 2wβ. Dividing (11) by pi and after some

algebraic manipulations, we reach the following equation

µ(ln(2))2

C1pi
2−ℓi exp

(
µ(ln(2))2

C1pi
2−ℓi

)

=
µ(ln(2))2

C1pi
2

C2
C1 (14)

where C2 = 2ρµ ln(2)+C1(1+2ργ+wα)
C1+2ρ .

The form of (14) is equal to x exp(x) = y for which the
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solution is x =Wm(y), where m = 0 or m =−1 if y ≥ 0 or

−e−1 ≤ y < 0, respectively.

In order to find the optimal codeword lengths, we start from

a value of µ that satisfies
∑

i∈Ik
2−ℓi = 1. Then, its value is

updated by the use of (13a) and (8).

2) LDT Case: In this case, the area Qi−1 for i ≥ 3 yields

Qi−1 =

∫ ti−1+Si

ti−2

ln(ρ(t−ti−2))dt

−

∫ ti−1+Si

ti−1

ln(ρ(t− ti−1))dt

≈ ρY 2
i−1 + 2ρSiYi−1 − 2Yi,

which results in

E[Q] = ρE[L2] + 2ρ(E[L])2 + 2(2ργ−1)E[L] + 2ργ2 − 2γ.
(15)

Inserting (15) into P2, we obtain the following problem.

P4 : min
{ℓi∈R+}

{

(ρ+wβ)E[L2] + 2ρ(E[L])2

+ 2(2ργ−1+
wα

2
)E[L] + 2ργ2 − 2γ

}

s.t.
∑

i∈Ik

2−ℓi ≤ 1.

(16)

Following the same procedure as (10)–(12) and (14), the

unique solution for ℓi, for fixed k is

ℓi = − ln2

(
C3pi

µ′(ln(2))2
W0

(
µ′(ln(2))2

C3pi
2

C4
C3

))

where µ′ > 0, C3 = 2ρ+ 2wβ, and

C4 =
4ρµ′ ln(2) + 2C3(2ργ−1+ wα

2 )

C3 + 4ρ
.

Besides, the moments of the codeword lengths are given by

E[L] =

(
µ′ ln(2)− 2(2ργ−1+ wα

2 )

C3 + 4ρ

)

,

E[L2] =

(
µ′ ln(2)− 2(2ργ−1+ wα

2 )

C3 + 4ρ

)2

.

3) PDT Case: For this case (considering κ = 1), we obtain

Qi =
ρ
2Y

2
i + ρSiYi−1, whose expected value is given by

E[Q] =
ρ

2
E[L2] + ρ(E[L])2 + 2ργE[L] + ργ2. (18)

The resulting cost minimization problem (inserting (18) into

P2) is then

P5 : min
{ℓi∈R+}

{

(
ρ

2
+wβ)E[L2] + ρ(E[L])2

+ (2ργ+wα)E[L] + ργ2
}

s.t.
∑

i∈Ik

2−ℓi ≤ 1.

(19)

Similarly to other scenarios, the unique solution is

ℓi = − ln2

(
C1pi

µ′′(ln(2))2
W0

(
µ′′(ln(2))2

C1pi
2

C5
C1

))

where µ′′ > 0 and

C5 =
2ρµ′′ ln(2) + C1(2ργ+wα)

C1 + 2ρ
.

The corresponding moments of codeword lengths are

E[L] =

(
µ′′ ln(2)− (2ργ+wα)

C1 + 2ρ

)

,

E[L2] =

(
µ′′ ln(2)− (2ργ+wα)

C1 + 2ρ

)2

.

V. NUMERICAL RESULTS

In this section, we present numerical results in order to find

SoI-optimal codeword lengths and to assess the performance

gains of semantics-aware filtering and source coding. Unless

otherwise stated, we use a Zipf(n, s) distribution with pmf

PX(x) =
1/xs

∑n
j=1 1/j

s
, (21)

with n = |X | = 100 and the exponent s = 0.4. The parameter

s of the Zipf distribution allows us to vary from a uniform

distribution (s = 0) to a “peaky distribution”. We set ρ = 0.5,

α = β = 1 and T = 10 [sec]. For each scenario, the weight

w in the objective function is set in a way that the value

range of average SoI and coding cost penalty terms becomes

comparable.

Figures 3 (a), 3 (b), and 3 (c) show the value of the objective

function JSoI (i.e., cost of lateness and coding penalty term)

versus the number of k realizations for the EDT, LDT,

and PDT cases, respectively. Evidently, increasing the arrival

rate reduces JSoI as well as the optimal k. For infrequent

update arrivals, the transmitter does not filter out most updates

(k 6= 1), whereas no filtering (k → n) results in performance

degradation due to longer transmission times for infrequent

realizations. Among the three sample cases, the PDT (LDT)

scenario offers the lowest (highest) value of JSoI. Comparing

with the linear age scenario g(∆(t)) = ρ∆(t), the optimal k
is 19.3, 13.2, 9.8, 7, and 5.3 for the arrival rates of 0.5, 1,

5, 10, and 20, respectively. Therefore, an exponential penalty

(nonlinear age) results in lower values for optimal k compared

to the linear one (cf. Figure 3 (a)).

To investigate the effect of the pmf and the source charac-

teristics on the performance, in Figure 4 we plot the objective

function JSoI versus k for the EDT case under uniform

distribution. Despite the similarity in the shape, the optimal

k is slightly smaller than the Zipf pmf. The reason is that the

critical point of the objective function versus k, hence qk, is

proportional to the input rate. Thus, for each input rate, there

is an optimal qk yielding an optimal value for k. For instance,

for λ = 10, the Zipf and the uniform distribution results in

optimal k = 5 and k = 3, respectively.

Figure 5 depicts the objective function versus the rate

parameter λ for different values of k. Increasing the input

rate decreases JSoI; however, this decrease diminishes and

saturates at higher rate values. Furthermore, by increasing the

number of selected packets, lower input rates are required to

reduce the penalty terms. For instance, in the EDT scenario,

the lowest attained JSoI value is 60, 57, 71, and 87 for k = n
10 ,
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Fig. 3. The objective function JSoI versus the number of selected packets
k for the (a) EDT, (b) LDT, and (c) PDT scenarios with Zipf(100,0.4)
distribution.

n
4 , n

2 , and n, respectively. For large k, the objective function

gets high values for any input rates. Based on the analytical

expressions derived throughout the paper, in the EDT case, we

find the global optimal values of λ∗ = 19.34, 16.71, 10.12,

and 5.83 for k = n
10 , n

4 , n
2 , and n, respectively.

Figure 6 plots the objective function JSoI versus the number

of selected packets k and the values of the cost parameters

J
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I
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λ=1
λ=5
λ=10
λ=20

0 10 20 30 40 50 60 70 80 90 100
101

102

103

104

105

Fig. 4. The objective function JSoI versus k for uniform probability
distributions under the EDT scenario and n = 100.

TABLE I
OPTIMAL PARAMETERS UNDER THE EDT SCENARIO.

λ k α = β λ k α = β

0.5 20 1.26 10 5 2.5

1 18 1.58 20 2 12.59

5 10 1.99

(i.e., α, β) under the EDT scenario. Herein, the cost pa-

rameters are assumed to have equal values and λ = 1. As

expected, the optimal values of the coding cost parameters

depend on the number of selected packets. The objective

function continuously increases as the cost parameters increase

for small k. However, for large k, an increase of the cost

parameters causes the objective function to first increase and

then decrease. The interplay between the two terms of the

objective function (timeliness penalty and coding cost) and the

number of selected packets k is summarized in Table I, which

shows the optimal values of k, α, and β for different input

rates under the EDT scenario. We observe that increasing the

input rate, hence decreasing the optimal k, the optimal values

of cost parameters increase. When the input rate is high, one

has to assign larger penalties for the codeword length to ensure

transmitting the most important data and allocating them larger

codewords.

VI. CONCLUSION

We studied the problem of timely source coding in status

update systems, where the transmitter selects the packets

generated by an information source based on their impor-

tance prior sending them to a remote receiver. Introducing a

semantics-aware metric that quantifies information timeliness,

we determined the real codeword lengths that optimize a

weighted sum of timeliness and quadratic coding cost penalty.

The main takeaway is that semantic filtering and source coding

can significantly reduce the number of packets that has to be

communicated while providing timely updates.



6

J
S
o
I

Rate (λ)

k=n/10
k=n/4
k=n/2
k=n

0 2 4 6 8 10 12 14 16 18 20

60

80

100

120

140

160

180

200

(a)

J
S
o
I

Rate (λ)

k=n/10
k=n/4
k=n/2
k=n

0 2 4 6 8 10 12 14 16 18 20

100

120

140

160

180

200

(b)

J
S
o
I

Rate (λ)

k=n/10
k=n/4
k=n/2
k=n

0 2 4 6 8 10 12 14 16 18 20

50

100

150

200

(c)

Fig. 5. The objective function JSoI versus rate λ for the (a) EDT, (b) LDT,
and (c) PDT scenarios and Zipf(100,0.4) pmf.
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