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Abstract—Software implementations of mathematical func-
tions often use approximations that can be either polynomial or
rational in nature. While polynomials are the preferred approx-
imation in most cases, rational approximations are nevertheless
an interesting alternative when dealing with functions that have
a pronounced “nonpolynomial behavior” (such as poles close to
the approximation domain, asymptotes or finite limits at ±∞).

The major challenge is that of computing good rational
approximations with machine number coefficients (e.g. floating-
point or fixed-point) with respect to the supremum norm, a key
step in most procedures for evaluating a mathematical function.
This is made more complicated by the fact that even when dealing
with real-valued coefficients, optimal supremum norm solutions
are sometimes difficult to obtain. Here, we introduce flexible and
fast algorithms for computing such rational approximations with
both real and machine number coefficients. Their effectiveness
is explored on several examples.

I. INTRODUCTION

While software and hardware evaluation of mathematical
functions in floating-point (FP) arithmetic is often done using
polynomial approximations, rational functions can sometimes
be a viable alternative, especially when dealing with spe-
cial functions whose behavior is not easily captured by a
polynomial proxy. An example of this is the SPECFUN [1]
FORTRAN package, which used rational approximations in
the computation of exponential integrals, error, and gamma-
related functions on the real line.

Evaluating a function using FP arithmetic is usually reduced
to determining a set of approximations on (small) compact
domains. For each domain B and function f to compute with
a target accuracy ε > 0, the task is to find an implementation f̃
such that

∥∥∥(f − f̃)/f∥∥∥
B

⩽ ε, where ∥g∥B = maxx∈B |g(x)|
is the L∞ norm of g on B. This process is typically handled
in two steps: (a) approximation, and (b) evaluation.

In the first step, an approximation r (polynomial or rational)
is searched for, with coefficients that are representable in a
certain target format (such as IEEE-754-2019 [2] binary32
and binary64, or unevaluated sums of terms in these
formats) and approximation error that is below a threshold
εapprox, either in an absolute ∥f − r∥B ⩽ εapprox or a relative
∥(f − r)/f∥B ⩽ εapprox sense. Depending on the evaluation
scheme chosen, one must then ensure that the computed value
r̃ satisfies ∥r − r̃∥B ⩽ εeval or ∥(r − r̃)/f∥B ⩽ εeval, for a

given threshold εeval. This is usually certified a posteriori, with
various methods and tools being available [3]–[5].

Despite their potential, rational approximations seem to
be relied on less and less in the design of mathematical
libraries (libms). There are several reasons for this. Whereas
polynomial approximations use only low latency floating-
point addition (+) and multiplication (×) operations, rational
function evaluation requires division (/), whose latency can
be up to ten times larger on modern processors [6, Table
3.5] with respect to + and ×. Polynomials also benefit from
powerful tools such as Sollya [3] and its fpminimax algo-
rithm [7] for generating machine-coefficient approximations
(see also [8], [9] for other methods), whereas equally flexible
and general tools for rational functions have been missing
in the community. The fpminimax approach in particular
was only adapted to rational approximations with bounded
magnitude coefficients [10], [11]. Determining such rational
approximations is more difficult than in the polynomial case.

The problems start in the real-coefficient setting. While
the Remez algorithm [6, Ch. 3.6] and its generalizations
(e.g. the Remez-Stiefel version from Sollya [12, Ch. 2.2])
have good convergence properties (usually guaranteed and
quadratic [13]), rational L∞ approximation can be hindered
by degeneracy [14] problems. This makes rational extensions
of the Remez algorithm more fragile (see [15] and references
therein), with no guarantee of convergence in all cases. To our
knowledge, there are no implementations that are sufficiently
robust to handle the kind of problems that would need to be
solved in a libm context. Existing codes (e.g. the minimax
commands in Maple and Chebfun [15]) are restricted to
full monomial basis approximations and/or cannot produce
approximations with errors smaller than machine precision.

The availability of tools such as Sollya have also made
possible the development of powerful automatic code genera-
tors for function implementations that are primarily based on
polynomials [16], [17], giving even less incentive to the libm
designer to explore the use of rational approximations.

Our goal is therefore two-fold. On the algorithmic side,
we introduce a highly robust method that is capable of
producing generalized real-coefficient rational approximations
(e.g. with incomplete monomial bases that frequently occur
in practice). The result of this algorithm serves as input to an
fpminimax-like approach for generating machine-coefficient



approximations. On the practical side, we have developed a
C++ library that should make experimenting with rational
function approximations in a libm context much easier and
close to par with polynomial-based offerings. We showcase its
capabilities on several examples and discuss certain limitations
and directions for future work.

II. AN OVERVIEW OF L∞ APPROXIMATION PROBLEMS

We start with a general presentation (using notation intro-
duced in [18]) of the kind of problems we want to solve and
the various approaches that have been devised to address them.

A. The problem

Let (X, ∥ · ∥X) be an N -dimensional normed linear space
and let A be a nonempty subset of X . For a compact set
B ⊂ Rs, s ⩾ 1, let C(B) be the space of all real-valued
continuous functions on B. Given f ∈ C(B) and a family
T (A) of functions for the approximation of f defined by an
operator T : A→ C(B) that maps A continuously into C(B),
we want to solve problems of the form

P [D] : minimize {∥f − Ta∥D,a ∈ A}
for D ⊆ B. We denote with µ(D) = mina∈A ∥f − Ta∥D the
L∞ error associated with a solution a to P [D].

The most prevalent use cases that interest us here, for s = 1
and a closed interval domain B = [a, b], are:
(a) linear approximations of the form

Ta =

N∑
i=1

aiϕi,

where ϕ1, . . . , ϕN ∈ C(B) are linearly independent and
a = [a1, . . . aN ] ∈ A = RN . The monomial basis of
RN−1[x] is a classic example and is the default basis for
polynomial approximations of elementary functions.

(b) rational approximations of the form

Ta =

∑m
i=1 piϕi∑n
i=1 qiψi

,

where N = m + n,a = [p1, . . . , pm, q1, . . . , qn] ∈
A = RN and {ϕi}mi=1, {ψi}ni=1 are families of linearly
independent functions from C(B). Again, the default ex-
amples are the monomial bases of Rm−1[x] and Rn−1[x],
respectively.

B. The algorithmic landscape

Iterative methods that discretize the approximation domain
are generally used to approach a (global) solution to P [B].

A first family of algorithms (see [19] and the references
therein) successively solves discrete problems P [Bk], where
{Bk}k⩾0 is a sequence of grids in B with density tending to
zero. While they can work well under mild constraints, the
discretizations can grow quite large, making them slow and
prone to numerical issues.

A second family of methods, of so-called Remez-type,
require only the solution of relatively small discrete prob-
lems, but with the added complexity of having to determine

the global extremum of the error function over B at each
iteration, which can be hard to do (e.g. in multivariate ap-
proximation contexts). There are two main flavours of Remez
algorithms [20, Ch. 3.8], first and second. Algorithms of the
first type increase the size of Bk at each iteration k with points
where the extremum of P [Bk] is attained, whereas methods
of the second kind keep the size of Bk constant, exchanging
the elements of Bk at each iteration. While fast (quadratic
convergence is frequently attainable [13], [21]), the use of such
exchange algorithms is usually dependent on an alternation
theorem [20, p. 75], which for linear T states that there exist
N + 1 distinct points in B where the error function f − T â
attains its extremum µ(B) with alternating sign. In the linear
case, recent highly scalable implementations of the Remez
exchange algorithm are described in [22], [23].

When working with rational approximations, this alternating
error result can be degenerate [20, p. 161] (i.e., the error some-
times equioscillates at strictly less than N points), causing the
algorithm to fail in such scenarios. Failure can also occur in
the rational case if the starting approximation is too far from
an optimal one.

C. A general method

To cope with such failures and have a more generalizeable
approach, over the years there have been attempts to combine
the two families of methods. In particular, Reemtsen [18,
Sec. 2] derived a modified version of the first Remez algorithm
that does not necessarily require the computation of global
extrema over B. It considers that A is a closed subset of X .
Taking the closed level sets Lα(D) = {a ∈ A, ∥Ta∥D ⩽ α}
for a compact D ⊆ B and α ⩾ 0, it assumes:
(A1) {Bk}k⩾0 is a given sequence of finite sets in B, with

Bk ⊆ Bk+1 ⊆ B, ∀k ⩾ 0, and limk→∞ h(Bk, B) = 0,
where h(Bk, B) = supx∈B infy∈Bk

∥x−y∥∞ and ∥·∥∞
is the infinity norm in Rs;

(A2) For α0 = ∥f −Ta0∥B+∥f∥B , where a0 is an arbitrary
element of A, the level set Lα0

(B0) is bounded (and
hence compact) in X .

Defining the set of extremal points of g ∈ C(B) on a
compact D ⊆ B to be

E(g,D) = {x ∈ D, |g(x)| = ∥g∥D},
the algorithm is as follows:

Algorithm 1 Generalized First Remez Algorithm [18]
Step 1. k ← 0 and D0 = B0.
Step 2. Find µ(Dk) and a solution âk ∈ A of P [Dk]. Set

ek = f − T âk.
Step 3. Compute xk ∈ E(ek, Bk+1) and a set Dk+1 ⊆

Bk+1 with Dk+1 ⊇ Dk ∪ {xk}.
Step 4. k ← k + 1 and go to Step 2.

The choice of B0, how Steps 2 & 3 are performed, and
stopping criteria are generally dependent on the family of
approximations T (A) and on the dimension of B. We address
these aspects for the rational case in Sec. III.



While in the classic setting of the first Remez algorithm
xk ∈ E(ek, B) must be determined, this relaxed algorithm
only requires the evaluation of ek on Bk+1 at each iteration.
Provided (A1) and (A2) hold, we know [18, Thm. 1] that (a)
both P [B] and P [Dk], k ⩾ 0 possess solutions â, âk ∈ A, (b)
µ(Dk) ⩽ µ(Dk+1) ⩽ µ(B) and limk→∞ µ(Dk) = µ(B), (c)
{âk}k⩾0 has at least one accumulation point in A that solves
P [B] and (d) if â ∈ A is the unique solution of P [B], then
limk→∞ ∥â− âk∥X = 0. This result is also true if Step 3 is
replaced with the established version

Step 3’. Compute xk ∈ E(ek, B) and a set Dk+1 ⊆ B with
Dk+1 ⊇ Dk ∪ {xk}.

and without requiring (A1).
For linear operators T , it can be shown that (A2) corre-

sponds to the classic condition of the first Remez algorithm
that the M × N system matrix [ϕj(xi)]i=1,...,M,j=1,...,N has
rank N , where B0 consists of the M ⩾ N pairwise distinct
points {xk}Mk=1. The monomial basis of RN−1[X] satisfies
this condition1 for any B0 ⊆ B with M ⩾ N .

In the rational T case, (A2) is not necessarily true for any
B0 ⊆ B, even in the case where P [B] has a unique solution.
This can be restrictive. Nevertheless, the above algorithm can
converge even when (A2) is not satisfied. In some cases,
it is possible to ensure convergence if certain assumptions
regarding T (A) hold [18, Thm. 2]:

(A3) P [B] has a solution â ∈ A;
(A4) There exists ε > 0 such that the set Λ = {Ta,a ∈ A

and ∥T â− Ta∥B ⩽ ε} is compact;
(A5) There is a δ > 0 such that for every finite set D ⊆ B

with h(D,B) ⩽ δ, P [D] has a solution aD ∈ A and
TaD ∈ Λ. In particular, we assume that h(B0, B) ⩽ δ.

Examples of nonlinear T (A) families that satisfy these
properties are derived in [25] for the case where B = [0, 1].

III. A GENERALIZED FIRST REMEZ ALGORITHM TAILORED
FOR RATIONAL APPROXIMATION PROBLEMS

A particular problem in practice can be the non-existence
of a best approximation (i.e., (A3) does not hold). One simple
example, taken from [26], is that of approximating f(x) =
x over [0, 1] by the family p1x/(q1 + q2x). To avoid it, we
consider approximation spaces T (A) such as

RL(B) =

{
P

Q
:=

p1ϕ1 + . . .+ pmϕm
q1ψ1 + . . .+ qnψn

∣∣∣∣Q ⩾ L > 0 on B,
max
1⩽i⩽n

|qi| ⩽ 1.

}
,

where L ∈ C(B) is strictly positive over B. Besides ensuring
existence of a best approximation [27, Thm. 1], L also limits
the magnitude in the denominator from becoming too small
and, together with the normalizing condition max1⩽i⩽n |qi| ⩽
1, Q from having a large dynamic range over B, which other-
wise might incur numerical issues (at both the approximation
and evaluation levels). For L sufficiently small over B, the
result will be practically indistinguishable from the case with

1The notion attached to this condition is that of a Haar system [24, Ch. 3.3].

positive denominator Q > 0. In this work, we take L to be a
constant function, namely 10−20.

The solution to P [D] in this setting (with D a finite set
like in Step 2 of Algorithm 1), can be determined using a
version of the so-called differential correction (DC) algorithm.
It consists of a sequence of linear programming (LP) calls [27,
Sec. 4], as shown in Algorithm 2. Convergence is guaranteed
and is usually quadratic [27, Thm. 9]. Stopping in practice
occurs when the relative change in ∆k is sufficiently small
(e.g. in our case when (∆k −∆k+1)/∆k < 10−16).

Algorithm 2 Differential Correction (DC) [27]
Step 1. k ← 0 and choose P0/Q0 ∈ RL(D).
Step 2. Given Pk/Qk ∈ RL(D) and ∆k = ∥f −Pk/Qk∥D,

find Pk+1 = P,Qk+1 = Q that minimizes

max
x∈D

|f(x)Q(x)− P (x)| −∆kQ(x)

Qk(x)
,

with max1⩽i⩽n |qi| ⩽ 1 and Q(x) ⩾ L(x),∀x ∈ D.
Step 3. k ← k + 1 and go to Step 2.

Algorithm 3 Adaptive Differential Correction (ADC) [28]
Step 1. k ← 0, ∆−1 ← 0, choose S0 ⊆ D s.t. |S0| ⩾ m+n.
Step 2. Solve P [Sk] using Algorithm 2, getting ∆k = µ(Sk)

and the solution Rk ∈ RL(Sk). Set ek = f −Rk.
Step 3. Compute the following sets (Tk and Ak):

Tk = {x ∈ Sk, |ek(x)| ⩾ ∆k(1− εtol)},
Ak ⊆ D by searching for local extrema of ek over
D starting from all the elements of Sk s.t. |ek(x)| ⩾
∆k(1 + εtol),∀x ∈ Ak.

Step 4. if Ak is empty then terminate else k ← k + 1.
Step 5. if k = 1 then S1 = T0(R0) ∪A0 else

Xk =

{
Sk, ∆k ⩽ max(∆k−1,∆k−2)(1 + εtol)

Tk, otherwise

Sk+1 =

{
Xk ∪Ak, ∆k ⩾ ∆k−1

Xk ∪Ak ∪ Sk−1, otherwise

k ← k + 1 and go to Step 2.

If the size of D is too big, then the LP calls cost during
the DC algorithm can be quite large. We can however reduce
runtime drastically in this case. The idea [28], [29] is, as part
of an iterative procedure, to construct a small active subset
S ⊆ D with |S| = O(m + n) and apply DC on it. Based on
the obtained result, either S gets updated (see Algorithm 3) for
a new iteration or we stop if the solution over S is sufficiently
close to the one over D (controlled with εtol > 0, which we
take in practice as 10−8). This adaptive procedure generally
executes much faster than applying DC over D when |D| ≫
|S| (see [28, Sec. 3] for convergence results).

To derive an RL(B) solution to P [B], we have devised
the following variant of Algorithm 1 (see Algorithm 4). At
each inner iteration of the DC algorithm during the overall
procedure (in Step 2), the problem is solved only on a small



subset of the current Dk. Taking D0 to be sufficiently dense
in B (we start with 100(m+n) scaled Chebyshev nodes [30,
Ch. 2]) usually leads to fast convergence in practice (2 to
5 iterations) and reasonable runtime, ranging from a couple
of seconds to several minutes on complicated functions. The
stopping criterion used in practice is similar to the one for
Algorithm 2: when (|ek(x∗)| − µ(Dk)) /|ek(x∗)| < 10−4,
where x∗ = argmaxx∈Ek

|ek(x)|.

Algorithm 4 Generalized Rational Approximation Algorithm
Step 1. k ← 0 and D0 ⊆ B a finite set with |D0| ⩾ m+ n.

Initialize active subset S ⊆ D0 s.t. |S| = m+ n.
Step 2. Solve P [Dk] using Algorithm 3, with solution Rk ∈

RL(Dk) and let S ⊆ Dk now be the final active
subset. Set ek = f −Rk.

Step 3. Compute Ek = {x ∈ B, x local extrema of ek over
B with |ek(x)| > µ(Dk)} and let Dk+1 = Dk∪Ek.

Step 4. k ← k + 1 and go to Step 2 with starting active
subset S.

Compared to Algorithm 1, at each iteration k we take
Bk = B and do not consider successively finer discretizations
of B. This is due to the fact that we can determine accurate
approximations of Ek in Step 3 quite fast using Chebyshev-
proxy rootfinding methods (see [30, Ch. 18] and [23, Sec. 6]).
Using discretizations Bk is nevertheless important in multi-
variate approximation contexts, where finding all local extrema
over B is usually more challenging.

Algorithm 4 converges under the same conditions as Algo-
rithm 1. While not true for any approximation space T (A),
due to the restricted denominator condition we are imposing
(which ensures existence of a best approximation), we have not
had any convergence issues with the choice of basis functions
{ϕi}mi=1 and {ψi}ni=1 that occur in practice.

IV. RATIONAL APPROXIMATIONS WITH MACHINE-NUMBER
COEFFICIENTS

The RL(B) solution r(x) =
∑m

i=1 piϕi(x)∑n
i=1 qiψi(x)

to P [B] has real-
valued coefficients, but the evaluation in a libm context will
require FP coefficients. Obtaining these values in a naive way,
for instance through rounding, can degrade the approximation
error significantly. To obtain a better approximation in this
setting, we adapt the method presented in [7], [10], [11] based
on central algorithms in the study of Euclidean lattices. We
review it in Sec. IV-A and discuss the challenges of applying
it in the nonlinear setting. We then propose changes needed
to address them in Sec. IV-B and Sec. IV-C.

A. A Closest Vector Problem formulation

Up to multiplying both P and Q by a constant such that
max1⩽i⩽n |qi| = 1 and reordering {ψi}ni=1 such that q1 = 1,
we want to find

r̂(x) =

∑m
i=1 p̂iϕi(x)

ψ1(x) +
∑n
i=2 q̂iψi(x)

(1)

with coefficients {p̂i}mi=1 and {q̂i}ni=2 in some desired FP
format(s) that minimizes ∥f − r̂∥B . Actually minimizing this

error is difficult even in the polynomial case except for small
degrees [8], which is why we use a fast heuristic that will
hopefully still give a good result.

Each coefficient will be of the form I2e, with bounded
I, e ∈ Z (and bounds defined by the FP format the coefficient
is stored in). Following [7, Sec. 3], we tentatively set the
exponent e to coincide with the exponent of the corresponding
coefficient of r and update it if necessary later.

Equipped with a set of integer exponents {ui}mi=1 and
{vi}ni=2, we now need to determine m + n − 1 integers
ai(= p̂i2

−ui) and bi(= q̂i2
−vi) such that

r̂(x) =

∑m
i=1 aiϕ̂i(x)

ψ1(x) +
∑n
i=2 biψ̂i(x)

,

with ϕ̂i(x) = 2−uiϕi(x) and ψ̂i(x) = 2−viψi(x), is a good
approximation to r (and f ), i.e., ∥r − r̂∥B is small.

To address this new problem, we discretize and linearize it
as follows: (a) choose Nr ⩾ m+n−1 distinct points {xk}Nr

k=1

from B and (b) find integers ai and bi such that

m∑
i=1

ai


ϕ̂i(x1)

ϕ̂i(x2)
...

ϕ̂i(xNr )


︸ ︷︷ ︸

αi

+

n∑
i=2

bi


−r(x1)ψ̂i(x1)
−r(x2)ψ̂i(x2)

...
−r(xNr )ψ̂i(xNr )


︸ ︷︷ ︸

βi

and

r =
[
r(x1)ψ1(x1) r(x2)ψ1(x2) · · · r(xNr

)ψ1(xNr
)
]T

are as close as possible to one another with respect to the
∥ · ∥∞ norm (∥x∥∞ = max1⩽i⩽Nr

|xi|), i.e.,∥∥∥∥∥
m∑
i=1

aiαi +

n∑
i=2

biβi − r

∥∥∥∥∥
∞

(2)

is minimized. The solution is hopefully also good over B.
Solving (2) exactly, which is a type of Closest Vector

Problem (CVP) in the theory of Euclidean lattices, CVP∞,
is in general hard from a complexity-theoretic point of view.
Both it and its ℓ2 equivalent, CVP2, are known to be NP-hard.
Fast approximate algorithms exist for CVP2. While they have
an exponential worst case approximation factor, when applied
to lattices appearing in function approximation (especially
using polynomials) they tend to be extremely well behaved.
The overall use of these algorithms is identical in the rational
case and we point the reader to [7], [31] for details. Concretely,
we search for integers ai and bi that minimize the quantity∥∥∥∥∥

m∑
i=1

aiαi +

n∑
i=2

biβi − r

∥∥∥∥∥
2

. (3)

B. Discretizing the approximation domain

How to choose the Nr points is also a nontrivial matter. In
the polynomial case, the suggestion [7, Sec. 3.1] is to take Nr
close to N (an interpolation-like problem), either the points



where the error f − r vanishes or Chebyshev nodes. Since in
RNr , ∥·∥∞ ⩽ ∥·∥2 ⩽

√
Nr ∥·∥∞, the larger Nr is, the more

the ℓ2 solution of (3) can differ from the ℓ∞ and L∞ ones. On
the other hand, for nonlinear r (or r̂), we have no guarantee
that the error will vanish at N points. Even if that happens,
there is always the risk that spurious poles appear inside B.
These can be both mathematical (discontinuous dependence
of parameters on the data in some cases) and numerical. They
frequently come with a corresponding close by zero and are
known as Froissart doublets.

A denser grid of points tends to alleviate this problem
to a considerable extent when dealing with real coefficient
solutions of (3) (see [30, Ch. 26] for a discussion regarding
this). We apply a similar approach in the machine-coefficient
setting, taking around 10N points in B, with good choices
being Chebyshev nodes or points that follow the distribution
of the zeros of f−r. It nevertheless remains an open question
how to best discretize B and guarantee pole-free machine-
coefficient L∞ solutions.

C. Searching for an optimized normalization factor
One may also wonder about the normalization choice in (1).

While it has no impact on the approximation error of a real
coefficient solution r, it does change the approximation error
of r̂ and can potentially impact the evaluation error as well.
We introduce an optional sampling-based heuristic to optimize
the choice of the normalization factor. It consists of:
(a) scale (1) such that the coefficient of ψ1 takes machine-

representable values between [1, 2) (e.g. 128 equidistant
points starting at 1);

(b) solve the CVP2 problem (3) in each case;
(c) take the approximation with smallest ∥f − r̂∥B .

This can significantly increase runtime, and in the future we
plan to investigate optimizations to this part of the process.

V. EXAMPLES

Two examples highlight the behaviour of our algorithms
in practical situations. The first one comes from the CORE-
MATH project [32], where our approach has already been used
to produce the implementation of the binary32 version of
the arctan function, showcasing excellent results at both the
approximation and evaluation steps. The second example is on
the inverse Langevin function, which has uses in fields such as
polymer science, magnetism and biomechanics. While rational
approximations are suitable here and our algorithms are able to
produce quality approximations, the use of monomial bases is
highly ill-conditioned, significantly degrading evaluation error.
Evaluations for both examples are performed in binary64
arithmetic, without the use of fused multiply-add operations.
Since we are targetting errors below machine precision, we had
to use multiprecision arithmetic (200 bits here) in the compu-
tations done in Algorithm 4 and the lattice-based approach of
Sec. IV.

Our method is implemented in C/C++ as an open source
project2, having been tested on Linux and MacOS-based

2See https://gitlab.inria.fr/sfilip/rminimax for details.
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systems. It can be used as a library, but we also provide an
executable that parses command line arguments to compute
generalized rational approximations.

A. An example from the CORE-MATH project
The CORE-MATH project intends to provide a collection of

mathematical functions implementations with correct rounding
(i.e., given a function f and a floating-point input x, the
correct rounding of f(x) is the floating-point value y that is
closest to f(x) according to the rounding mode in use) in both
binary32 and binary64 contexts.

The binary32 arctangent function (atanf) in CORE-
MATH is evaluated using a rational approximation for inputs
x with |x| ∈ B = [2−13, 1]. Since f(x) = arctan(x) is an odd
function, we consider rational approximations of the form

r(x) :=

∑m
i=1 piϕi(x)∑n
i=1 qiψi(x)

=

∑m
i=1 pix

2i−1/f(x)∑n
i=1 qix

2i−2

such that ∥1−r(x)∥B is minimized. Using our approach from
Sec. III on a slightly larger domain B = [0.000127, 1] and
m = n = 7, we obtain an approximation with error 2−57.26

(the minimax error curve in Fig. 1). Taking the rounded ver-
sion of this approximation with binary64 coefficients gives
a 2−54.54 error (the rounding error curve in Fig. 1), which
proves to be insufficient for a correct rounding implementation.
The fpminimax-like approach from Sec. IV with the default
normalization choice gives a much better 2−57.09 error (the
fpminimax error curve in Fig. 1).

This is still not sufficient to ensure correct rounding in
all situations however (one hard to round case remains for
|x| =0x1.1ad646p-4 and rounding to nearest), but slightly
reducing the value of q0 eliminates the issue. Performing a
normalization search as presented at the end of Sec. IV also
eliminates the problem, resulting in a smaller 2−57.10 error.

A polynomial approximation (n = 1) with similar error
requires at least degree 20 (m = 21), resulting in a possible
tradeoff of 6 additions and 6 multiplications for one division.

B. Rational approximations to the inverse Langevin function
The Langevin function is defined by

y = L(y) = coth(y)− 1/y

https://gitlab.inria.fr/sfilip/rminimax
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Fig. 2. Plot of the inverse Langevin function L−1(x) between [0, 0.99]. It
has two simple poles at x = ±1, each with residue −1.

for y ∈ R and has a removable singularity at y = 0. Its
inverse is defined by y = L−1(x) for x ∈ (−1, 1). Both of
these are odd functions and can thus be studied in the restricted
case where x and y are positive. While the Langevin function
is well-behaved and can be easily handled both numerically
and algebraically, L−1 does not have a similar closed-form
expression in terms of elementary functions. It has simple pole
singularities at x = ±1 (see Fig. 2) and an infinite number
of complex singularities with moduli tending to 1 (see [33,
Sec. 6]), making it a challenging candidate for numerical
computation.

There have been several attempts in recent years to pro-
vide reliable approximations to this function using various
techniques with different target accuracies. For example, [34]
presents a method for computing the Taylor series of L−1 up
to 500 terms, which has the form

L−1(x) = 3x+
9

5
x3 +

297

175
x5 +

1539

875
x7 + · · ·

and radius of convergence 0.904643679 . . ., making it unus-
able close to 1. Rational functions are the most widely used
form of approximating L−1, with several authors introduc-
ing Padé-based [35], [36], multipoint Padé [37], and L∞-
approximations [38]. The relative error in these aforemen-
tioned works never descends below 10−6.

Nevertheless, having fast access to a highly accurate (close
to machine precision) approximation is desirable in prac-
tice [39]. There seems to be little work in this direction.
Piece-wise cubic splines at 10000 points in [40] enable a
maximum relative error of around 10−11, but require 320KB
for coefficient storage which could make it difficult to store
them all in L1 level cache on many processors. A different
approach is taken in [41], which (iteratively) uses linearization
and error approximation to generate high accuracy proxys
of L−1 with stated relative errors that go as low as 10−46,
but computational complexity (in terms of number of basic
operations) and IEEE-754 finite precision arithmetic impact
on evaluation error are not explored.

To compute high accuracy rational approximations of L−1,
we take advantage of its asymptotic behavior and Taylor
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Fig. 3. Relative errors between the inverse Langevin function and approxi-
mations of the form R17,17 on the interval [0, 1).

expansion to remove the pole at x = 1 and focus on

f(x) =


L−1(x)(1− x)

x
, x ∈ (0, 1),

3, x = 0,

1, x = 1,

using rational approximations from the sets

Rm,n =

{
r(x) :=

∑m+1
i=1 pix

i−1∑n+1
i=1 qix

i−1

}
and

Jm,n =

{
r(x) :=

∑m+1
i=1 pix

2i−2∑n+1
i=1 qix

i−1

}
such that ∥r/f − 1∥[0,1] is minimized. This translates back
to L∞-approximations to L−1 using rational functions of the
form xr(x)/(1− x).

The set Rm,n corresponds to ordinary rational functions.
This proves to be a highly ill-conditioned choice. Using the
algorithm of Sec. III, a type (m,n) = (17, 17) approximation
is required in order to reach an error level of 4.0 · 10−15 (the
minimax error curve in Fig. 3). By contrast, a polynomial
approximation of degree 70 or more is required to reach a
similar target error. Rounding the coefficients to binary64
values leads to an unusable approximation with 1.14 · 10−2

relative error. This sensitivity also manifests itself in the
fpminimax-like approach, with the default result having
two spurious poles close to x = 0.9. Normalization search
removes them, but the final error is on the order of 1.15·10−13

(the fpminimax error curve in Fig. 3). Evaluating this last
approximation using Horner’s rule in binary64 arithmetic
is still ill-conditioned, especially in the hard to evaluate region
[0.8, 1) where the relative error jumps to at least 1.5 · 10−3.

The numerator basis in Jm,n was chosen because it leads
to better conditioned approximations. Taking again (m,n) =
(17, 17) we obtain a real coefficient L∞-approximation with
error 3.5 · 10−14 (the minimax curve in Fig. 4). If the
coefficients are rounded to binary64 values, the error drops
to 1.07 · 10−9, whereas the fpminimax approach greatly
reduces the error to 4.05 ·10−14. Normalization search further
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Fig. 4. Relative errors between the inverse Langevin function and approxi-
mations of the form J17,17 on the interval [0, 1).
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Fig. 5. Relative errors between the inverse Langevin function and binary64
evaluations of J17,17 approximations using Horner’s rule. The evaluations are
done at 20000 equispaced points inside [0, 1).

improves this to 3.81 · 10−14 (see fpminimax error curve in
Fig. 4). The evaluation error (see Fig. 5), while better than in
the R17,17 setting, is still quite large on [0.8, 1).

To improve evaluation error in this setting, one can use
extended precision arithmetic (using extended double
formats, or double-double and triple-double formats con-
sisting of unevaluated sums of two or three regular binary64
values). Another alternative is to use a better conditioned rep-
resentation. For instance, barycentric forms have been shown
to be a robust and well-conditioned choice for evaluating
rational functions (see for instance [15], [42]), but they come
at the cost of a large number of divisions, which might be
unacceptable in an optimized implementation. Factoring the
numerator and denominator into eight degree 2 and one degree
1 irreducible components each, and rounding their coefficients
to binary64 is another option that is better conditioned and
faster (but still at the cost of more floating-point multiplica-
tions with respect to the monomial representation). This is
shown in Fig. 6, where the quality in evaluation error seems
greatly improved, especially for the J17,17 approximation.

Interval subdivision with polynomial approximations is an-
other alternative that might be worth considering, but the
appeal of global rational approximations such as the ones
produced here is that they are relatively compact, fast, and
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Fig. 6. Relative errors between the inverse Langevin function and binary64
evaluations for factorizations of R17,17 and J17,17. The evaluations are done
at 20000 equispaced points inside [0, 1).

straightforward to vectorize.

VI. CONCLUSION AND FUTURE WORK

We have introduced two new algorithms for computing
efficient generalized rational approximations with real and
machine-number coefficients (such as floating-point values),
respectively. The real-coefficient method builds on several
results [18], [28] that have been proposed in the approxima-
tion theory literature over the years, whereas the machine-
coefficient method extends a Euclidean lattice basis reduction
approach that has been succesfully used in polynomial approx-
imation [7]. A robust open-source C++ implementation makes
it easy to experiment with these algorithms.

While not shown here, both methods can be adapted to
incorporate additional constraints such as fixed coefficient
values for some of the terms in the numerator and denominator.

If the resulting real-coefficient rational approximation is not
too ill-conditioned (e.g. highly sensitive to perturbations of the
coefficient values), the generated machine number coefficient
approximation tends to be almost as accurate, with a good
evaluation error as well (see the example in Sec. V-A).

In case of extremely poor conditioning, spurious poles can
sometimes appear and for the moment we have no guaranteed
approach to avoid them in the Euclidean lattice-based results.
Even if no spurious poles appear, the quality of the results in
such cases can still be significantly degraded compared to the
real-coefficient baseline.

This leads to several interesting directions for future work.
The value of the coefficient normalization parameter can
significantly impact accuracy. The grid-based search we pro-
posed at the end of Sec. IV could stand to be improved
using a mathematical optimization-based method. Exploring
various rewritings that are better conditioned (e.g. like (par-
tial) factorization in irreducible terms of both numerator and
denominator or having an approximation with both a polyno-
mial and rational part) is also relevant, but optimizing their
coefficients seems to require different tools from the ones
used here, possibly stemming from the nonlinear mixed integer
optimization literature. Finally, exploring a way to generate
rational approximations whose machine number coefficients



are jointly optimized for minimizing the sum of evaluation and
approximation errors (similar to [43] in the polynomial case)
could lead to even better results, but looks complicated due to
the nonlinear nature of the rational approximation problem.

In theory, the algorithmic ideas discussed in this paper
are not restricted to univariate problems. Multivariate rational
approximations seem to be good surrogate models for high-
energy physics applications [44] and it would be interesting
to investigate if and how the methods introduced here extend
in practice to such problems.
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[40] J. M. Benı́tez and F. J. Montáns, “A simple and efficient numerical
procedure to compute the inverse Langevin function with high accuracy,”
J. Non-Newton. Fluid Mech., vol. 261, pp. 153–163, 2018.

[41] R. M. Howard, “Analytical approximations for the inverse Langevin
function via linearization, error approximation, and iteration,” Rheol.
Acta, vol. 59, no. 8, pp. 521–544, 2020.
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