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ARTICLE OPEN

Epigenomic mapping identifies an enhancer repertoire that
regulates cell identity in bladder cancer through distinct
transcription factor networks
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Elodie Guyon1,8, Cle ́mentine Krucker1,2,3, Florent Dufour1,2, Elodie Chapeaublanc 1,2, Audrey Rapinat9, Daniel Jeffery10,
Laura Tanguy1,2, Victoria Dixon1,3, Yann Neuzillet4,11, Thierry Lebret4,11, David Gentien9, Irwin Davidson 12, Yves Allory1,3,4,
Isabelle Bernard-Pierrot 1,2,15 and François Radvanyi 1,2,15
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Muscle-invasive bladder cancer (BLCA) is an aggressive disease. Consensus BLCA transcriptomic subtypes have been proposed, with
two major Luminal and Basal subgroups, presenting distinct molecular and clinical characteristics. However, how these distinct
subtypes are regulated remains unclear. We hypothesized that epigenetic activation of distinct super-enhancers could drive the
transcriptional programs of BLCA subtypes. Through integrated RNA-sequencing and epigenomic profiling of histone marks in
primary tumours, cancer cell lines, and normal human urothelia, we established the first integrated epigenetic map of BLCA and
demonstrated the link between subtype and epigenetic control. We identified the repertoire of activated super-enhancers and
highlighted Basal, Luminal and Normal-associated SEs. We revealed super-enhancer-regulated networks of candidate master
transcription factors for Luminal and Basal subgroups including FOXA1 and ZBED2, respectively. FOXA1 CRISPR-Cas9 mutation
triggered a shift from Luminal to Basal phenotype, confirming its role in Luminal identity regulation and induced ZBED2
overexpression. In parallel, we showed that both FOXA1 and ZBED2 play concordant roles in preventing inflammatory response in
cancer cells through STAT2 inhibition. Our study furthers the understanding of epigenetic regulation of muscle-invasive BLCA and
identifies a co-regulated network of super-enhancers and associated transcription factors providing potential targets for the
treatment of this aggressive disease.

Oncogene (2023) 42:1524–1542; https://doi.org/10.1038/s41388-023-02662-1

INTRODUCTION
Bladder cancer is the tenth most common cancer worldwide,
accounting for nearly two thousand cancer-related deaths globally
in 2018 [1]. Urothelial carcinoma is classified as non-muscle-
invasive bladder cancer (NMIBC comprising carcinoma in situ, and
the pTa and pT1 stages) or the aggressive muscle-invasive bladder
cancer (MIBC, stages pT2 to pT4), depending on the level of
invasion into the bladder wall [2]. Molecular classifications of
bladder carcinomas have been established using mainly gene
expression profiling studies [3–8]. A recent consensus classifica-
tion of MIBC presents six subtypes, from which tumours can be
coarsely divided into two subgroups: the Luminal and the non-
Luminal subgroups. Luminal subgroup comprises three Luminal

subtypes (LumU, LumNS and LumP), whereas Basal-Squamous
subtype (Ba/Sq) constitutes the major part of the non-luminal
subgroup [3]. Luminal tumours, accounting for about 50% of
MIBCs, present high expression of urothelial differentiation
markers (GATA3, FOXA1, KRT20, uroplakins) and are enriched in
activating mutations of FGFR3 [3]. Basal tumours, also called Basal/
Squamous, are particularly aggressive and account for ~35% of
MIBCs [3]. They are characterized by the overexpression of
markers of the basal layer of the urothelium (including KRT5,
KRT6), the under-expression of markers of luminal differentiation
and activation of EGFR [9]. Concerning the NMIBC tumours, the
recent UROMOL studies group them into 4 classes including Class
1 associated with luminal differentiation and good prognosis, and
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a Class 2a comprising high risk tumours [7, 8]. One hypothesis to
explain the establishment of the different subtypes and their
potential plasticity, is that each subtype harbours a regulatory
network in which various upstream genomic and epigenomic
alterations lead to the activation of a core set of master
transcription factors (TFs) that then determine a transcriptomic
downstream program. While transcriptional regulators of urothe-
lial differentiation, such as FOXA1, GATA3 and PPARG, have been
established as key regulators of the Luminal phenotypes, the
essential transcription regulators driving the Ba/Sq subtype have
not been elucidated [10–14].
Recent studies have demonstrated that altered enhancer

activity drives changes in cell identity and oncogenic transforma-
tion, notably through large clusters of highly active enhancers
called super-enhancers (SEs) [15–17]. While the specific functional
characteristics of SE are still unclear [18], it has been demonstrated
that super-enhancers are more significantly associated with
tumor-specific genes and genes playing a prominent role in cell
identity [17, 19, 20]. Indeed, targeting SE-driven oncogenesis has
become a novel therapeutic approach with the advent of BRD4
inhibitors, which inhibit SE activation [21]. By regulating the
expression of a small number of master TFs, SEs can orchestrate
cell- or cancer-specific transcriptional programs. H3K27ac enrich-
ment has been widely utilized as a surrogate for identifying SEs
[17] and H3K27ac signal and derived SEs have been demonstrated
to classify various types of cancer [22–25]. The ENCODE roadmap,
that profiled histone marks in normal and cancer cell lines, has
become a valuable source of information to uncover chromatin
organisation, alteration, and subsequent regulation of master
regulators but did not include bladder models [26]. Recently, two
studies provided new insights with the profiling of particular
histone marks in bladder cancer samples and cell lines [27, 28].
Here, we further characterized bladder cancer epigenetics by
integrating transcriptomic and epigenomic profiling of multiple
histone marks in human bladder tumours, bladder cancer cell
lines, and primary cultures from normal urothelia to produce a
comprehensive bladder cancer epigenetic map. With this map, we
demonstrated the link between molecular subtype and the
underlying epigenetic landscape. Through H3K27ac analysis, we
established a repertoire of SEs that are specific to distinct
subgroups (Luminal, Ba/Sq subtypes, as well as Normal primary
cells), highlighting SE-associated genes with subgroup-specific
clinical relevance. From there, we identified the core SE-regulated
networks of master TFs that distinguish luminal and basal
subgroups, including known and new candidate master TFs.
Finally, through functional knock-down and knock-out experi-
ments, we revealed that one of these master TFs (FOXA1) is a key
factor in subtype determination antagonized by ZBED2, and that
both FOXA1 and ZBED2 present the ability to dampen inflamma-
tory response. Overall, this work provides new data characterizing
epigenetic regulation in bladder cancer. We reveal important
genes that can be essential for maintenance of bladder cancer cell
identity and present potential new targets to treat aggressive
bladder cancers.

RESULTS
Integrated bladder cancer chromatin landscape
To elucidate the contribution of chromatin landscape in bladder
cancer biology, we generated ChIP-seq for active (H3K27ac) and
repressive histone marks (H3K27me3, H3K9me3) in 24 bladder
samples (Fig. 1). In order to distinguish features of the non-
cancerous stromal cells and of normal urothelial cells, we used not
only human primary tumours (n= 15) from the CIT (Carte d’Identité
des Tumeurs) cohort [9, 29], but also cellular models (7 bladder
cancer cell lines) and patient-derived Normal Human Urothelium
in proliferation (NHU, n= 2). Of note, tumours were macrodis-
sected to enrich for bladder cancer content (Figs. 1, S1A). Of the

15 primary tumours, we included 13 MIBCs and 2 NMIBCs to assess
the stage-dependence of our results (Figs. 1, S1A, and Table S1).
With the aim of identifying subtype-specific epigenetic altera-
tions/characteristics, we coupled our ChIP-seq with RNA-seq from
the same extraction and classified them according to the current
consensus subtypes [3]. Of the 13 MIBCs, 2 classified as stroma-
rich, 5 classified as basal/squamous (Ba/Sq) and 6 as luminal,
including 1 luminal papillary (LumP), 3 luminal unstable (LumU)
and 2 luminal non-specified (LumNS). Of the 7 cell lines, 3 were
classified Ba/Sq, 3 LumP and one could not be classified (Table
S1A, B, see methods) [30]. Using the recent UROMOL classifier, the
two NMIBC samples classified as class 3 [7, 8]. Further analysis
using subtype deconvolution (WISP [31]), and previously
described regulatory signatures [3, 7], revealed that one of the
tumours originally classified as Ba/Sq (T391) was composed of a
mixed population of LumP and Ba/Sq cells (Fig. S1B, C).
We also assessed molecular subtypes using immunohistochem-

istry (IHC) with luminal (GATA3 and CK20) and basal (CK5/6)
markers in our primary tumours (n= 13) and bladder cancer cell
lines (n= 7). We added p16 to distinguish LumU samples from the
other luminal subtypes [32]. As expected, the majority of Ba/Sq
tumours in the consensus classification scheme showed a typical
CK5/6+ /GATA3-/CK20- expression phenotype (Fig. S1D). In
contrast, all tumours of Luminal consensus subtypes showed the
opposite immunophenotype, and most LumU samples addition-
ally highly expressed p16. Interestingly, the IHC analysis confirmed
our subtype deconvolution (WISP) and transcriptomic signature
analyses (Fig. S1B, C) by showing a co-expression of luminal and
basal markers in T391. Given its mixed phenotype, tumour T391
was excluded from differential analyses between subgroups. Four
cell lines showed similar concordant results according to mRNA
subtype. Among the 3 remaining cell lines, one Ba/Sq and one
LumP consensus subtype cell line showed atypical immunophe-
notypes, and the non-classified KK47 cell line was negative for all
markers but p16 (Fig. S1D).
Peak calling using MACS showed that ChIP-seq for H3K27ac

gave the most homogeneous and highest number of peaks across
the 24 samples (Fig. S2A–C).
We integrated our multi-factorial ChIP-seq profiles using

ChromHMM [33], reporting the first integrated epigenetic map
in bladder cancer in both primary tumour samples and cell lines
(Fig. 2A). Six chromatin states (E1–E6) were assigned according to
histone mark enrichments, as previously described (ENCODE,
Roadmap project [26]), where H3K27ac-enriched regions corre-
spond to active promoters and enhancers (E2), H3K27me3 and
H3K9me3-enriched states associate with repression (E4) or
heterochromatin (E6), and regions enriched in both active and
repressive marks define bivalent enhancers or promoters (E3).
Regions without any marks or only weak H3K9me3 enrichment
were designated as quiescent/no marks (E1) or quiescent/weakly
repressed (E5), respectively (Figs. 2A, S3A, B). Analysis of
associated RNA-seq data confirmed that gene expression corre-
lates with the expected chromatin states (Figs. 2B, S3C). Briefly,
genes with transcription start sites (TSSs) in E2 states (active
enhancers / promoters) have the highest expression levels,
followed by those in E3 states (bivalent enhancers / promoters).
Minimal expression was noted for genes with TSSs in the
remaining states.

Chromatin states classify bladder cancers by transcriptomic
subgroups
Next, we sought to classify our samples based on chromatin states
for comparison with molecular subtypes. To do this we first
performed an unsupervised analysis to select the most distin-
guishing features from the chromatin profiles (see methods,
Fig. S3D) and plotted all samples by multiple correspondence
analysis on the most varying regions (MCA, Fig. S3E). Similar to
Principal Component Analysis (PCA), but adapted for categorical
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data, this method of dimensionality reduction separates samples
in 2D space by proximity according to the primary (Dim 1) and
secondary (Dim 2) dimensions. Thus, greater differences in
chromatin profiles are represented by greater distances in the
2D plot. Dim 1 distinguished primary tumour samples from cell
lines, which could be indicative of chromatin changes associated
with cell culture or stroma content. Interestingly, Dim 2
distinguished Non-basal from Basal subgroups. To confirm this
distinction of molecular subtypes, we re-assessed the data with an
alternative dimensionality reduction method (MDS), coupled to a
batch effect-like correction (MNN), which eliminated most of the
cell line vs primary tumour differences while maintaining and
strengthening the distinction between Non-Basal and Basal
subgroups along Dim 2 (Fig. 2C). Therefore, we identified two
clusters derived from differences in chromatin state that are
associated with molecular subtypes; a “basal cluster” containing all
Ba/Sq samples (except the mixed T391), and a “non-basal cluster”
including all luminal, stroma-rich and NMIBC samples (Fig. 2C).
Interestingly, NHU cells were located at the border between the
two groups (Fig. 2C). To explore the biological pathways
associated with the chromatin profiles that could distinguish
Luminal from Basal bladder cancers, we ranked genes based on
the MCA outputs for Dim 2 and performed Gene Set Enrichment
Analysis (GSEA [34, 35], Fig. 2D). As expected, for the basal cluster,
we found that active chromatin (E2) was strongly enriched at

genes involved in decreased Luminal differentiation, while
repressive chromatin (E4) was strongly depleted for these genes
(Fig. 2D). Interestingly, genes involved in increased tumour
aggressiveness, stemness, extracellular matrix, epithelial-
mesenchymal transition and invasion were also enriched in active
chromatin and depleted for repressive chromatin in the basal
cluster (Fig. 2D). Taking an alternative approach, we derived Basal
and Luminal gene signatures from an independent publicly
available scRNA-seq dataset (GSM4307111 [36]) and compared
these genes with the chromatin states associated with the basal
and non-basal clusters identified in Fig. 2C (Fig. 2E, see methods).
Luminal signature genes were enriched in active state in the non-
basal chromatin cluster while Basal signature genes were enriched
in active state in the basal chromatin cluster, suggesting
epigenetic regulation of signature genes involved in urothelial
differentiation. We further illustrate this relationship with two well-
described example markers of bladder cancer subtypes: FOXA1
and KRT6A (Fig. 2F). FOXA1 expression is higher in Luminal than
Basal tumours [9, 11, 14, 37–40]. In agreement, our results showed
that FOXA1 was marked with active (E2) chromatin in most
Luminals (including LumP, LumNS and LumU), NMIBC samples,
and even NHU cells. Interestingly, 3 out of 4 Ba/Sq primary tumors
harbored repressive chromatin (E4), suggesting polycomb-
mediated repression (Fig. 2F). Active enhancer regions upstream
of FOXA1 gene, inside MIPOL1 gene, appeared specifically active in
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Fig. 1 Methodology/Workflow.Macrodissected BLCA Primary Tumours, Normal Proliferating NHU as well as cell lines were subjected to ChIP-
seq for Histone H3K27ac, H3K27me3 and H3K9me3 as well as RNA-seq. Integrated analyses were used to establish an epigenetic map and
identify Master regulators of major BLCA subgroups.
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Fig. 2 Chromatin states classify bladder cancers by subgroups. A ChromHMM principle example and emission order dividing genome in
6 states based on combination of H3K27ac, H3K27me3 and H3K9me3 marks. B Gene-expression level by chromatin state at transcription start
site. C Two chromatin state clusters revealed by unsupervised analysis of top 1% varying regions using MDS for dimension reduction plus
MNN for batch effect correction. D GSEA functional enrichment analysis of the genes mapped to the MCA Dim2 contributing features. A
negative NES indicates significant enrichment in lower Dim2 coordinates (Basal direction), and the reverse is in higher Dim2 coordinates
(Luminal direction). E Luminal versus basal tumour cell signature genes identified with single cell RNA-seq analysis showing concordant
enrichment in chromatin state clusters. F Genome Browser view of chromatin states at FOXA1 and KRT6 loci with corresponding RNA-seq (VST
normalized scaled expression). Regulatory regions of interest are highlighted with dashed-line rectangles.
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NMIBC and Luminal samples, correlating with FOXA1 expression
level (Fig. 2F). On the other hand, KRT6A, commonly expressed in
Basal tumours [3], had active chromatin marks in seven out of
eight Ba/Sq samples, as well as NHU, whereas most luminal
samples showed no mark or quiescent/weak repression states.
Taken together, these results demonstrate the importance of both
active and repressive histone marks in the regulation of gene
expression driving cell identity in bladder cancer.

Identification of the bladder enhancer repertoire and subtype
specificities
To determine if chromatin profiles identify enhancers that could
control bladder cancer subtype, we determined and annotated
enhancer and particularly large clusters of enhancers. We applied
the ROSE algorithm (Table S2), which calls and stitches enhancers
in close proximity (using the 12.5 kb default parameter), then
ranks enhancers according to H3K27ac signal. These large clusters
of stitched enhancers (mean size =101 967 pb) were hereafter
termed super-enhancers, a terminology initially defined by the
developers of the algorithm [21, 41]. Despite signal correction
using input, the number of called SEs by ROSE was notably lower
in samples with gene amplifications, owing to very high H3K27ac
signal in amplified regions, thus creating a bias in the ranked
enhancer plot (Fig. S4A, B). To correct for the copy-number bias,
we adapted the final step of the ROSE pipeline, as previously
described by Aldiri et al. [42], setting a threshold and defining the
top 1000 ranked ROSE enhancer regions in each sample as SEs for
all downstream analyses, approximately representing the mean
number of ROSE SEs per sample (mean= 956 SEs, Table S2,
Fig. S4C) [42].
To gain insight into subtype-specific enhancer alterations and

assess sample similarity based on these SE profiles, we determined
the global repertoire of SEs in bladder by extracting a consensus
set of SEs. The number of consensus SE highly varied when
filtering SE regions detected in a minimum of samples (Fig. S4D).
Therefore, to avoid potential artefacts driven by only one sample,
we focused on 2887 consensus SEs present in at least 2 of our
24 samples (Table S3). Using PCA of H3K27ac signal corresponding
only to the consensus SE regions, we again found that samples
were grouped according to molecular subgroup, separating Basals
from Luminals, NMIBC segregating with differentiated tumours
and NHU with Basal cells as a reflection of their dedifferentiated
and proliferative state (Fig. 3A). This reveals that the variability in
SE profiles reflects the differences in Basal and Luminal transcrip-
tional programs. The same PCA performed on the unfiltered 4313
SE set show a very similar pattern, revealing that our filtering
retained the majors SE contributing to subtype differences
(Fig. S4E).
We sought to further explore the functional pathway enrich-

ment of SE-regulated genes. We first assigned SEs to their closest
and most transcriptionally correlated genes (see methods). For
example, a large SE mapped close to KLF5, whose expression was
correlated with SE activity mostly in Luminal samples, as
previously reported [43] (Fig. 3B). In contrast, KLF7 was regulated
by a SE mostly active in Basal samples (Fig. 3B). We then
performed pairwise differential analyses between subtypes
(Figs. 3C, S3E). The comparison between Basal and Luminal
samples identified 379 subgroup-specific SEs (Fig. 3C, Table S3). By
comparing the differential SEs to RNA-seq differential expression
analysis, we confirmed that luminal-gained SEs showed signifi-
cantly higher activation levels in Luminal samples relative to Basal
samples and vice-versa for basal-gained SEs (Fig. 3D). We then
validated the subgroup-specific SE-associated genes identified in
our samples in a larger dataset, leveraging the gene expression
profiles of the TCGA-BLCA MIBC cohort across molecular subtypes
(n= 406) [40, 44]. Hierarchical clustering of TCGA samples using
the genes associated to the most differentially regulated SEs in
our consensus repertoire recovered the molecular classification

(Fig. S4F, Table S3). Strikingly, differential analysis between Basal
and Luminal SEs revealed that Luminal-specific SEs were
attributed to known transcriptional drivers of the luminal
phenotype, namely GATA3, PPARg, FOXA1 [14, 29]. Luminal-
gained SEs were associated with “Signaling by TGF-beta family
members”, notably due to SEs annotated close to negative
regulators of TGF-beta signaling such as the E3 Ubiquitin ligase
SMURF1 or SMAD6 (Fig. 3C, E, Table S4). In contrast, SE regions
significantly bound at higher levels in the Basal tumours were
associated with genes known to contribute to Basal cancer
biology such as EGFR, but also less characterized genes with
regards to bladder cancer biology, such as genes related to
inflammation and FOXO signaling (IL7R, FBX032), signaling by
Interleukin or signaling by MET, the activation of which is often
correlated with BLCA progression [45] (Fig. 3E). We also identified
genes encoding membrane receptors (IL7R, OSMR, EGFR) and
transcriptional regulators (BNC2, BNC1, HMGA2, KLF7, NR3C1) as
enriched in Basal tumours (Fig. 3C, Table S3). Taking advantage of
the NHU samples in our cohort, we extracted differential SEs in
three comparisons (Ba/Sq vs NHU vs Luminals, Figs. S4E, 3F, Table
S3). This analysis validated the identification of genes that could
be specific to cancer biology, such as IL7R, JUN, NR3C1 in Ba/Sq
subtype, NPAS2, FOXQ1, GRHL3 in Luminal samples, or CDKN2C,
FOXJ1, MEIS2, FGFR3 in both subtypes (Fig. 3F, Table S3). Overall,
we established a first SE repertoire for bladder cancer, highlighting
subgroup-specific, cancer-specific SE activation coupled with gene
expression.

Super-enhancers regulate a network of candidate master
transcription factors for bladder cancer subgroups
SEs often regulate the expression of master TFs, forming
autoregulatory loops and correlated networks [46, 47]. Having
established the SE landscape in bladder cancer, we next sought to
determine which master regulators control the subtype-specific
transcriptional programs. To this end, we overlaid the genomic
coordinates of subgroup-specific peaks inside SEs with publicly
available ChIP-seq datasets [48, 49]. Our analysis revealed that
Luminal-specific SEs were significantly enriched in several TF
binding sites (Fig. 4A, Table S5), including known regulators of
Luminal subtypes FOXA1, GATA3, and ESR1 [3, 14, 40]. Basal-
specific SEs were enriched in binding sites of a different set of
regulators, including components of the AP-1 complex (FOSL1,
FOSL2, JUND, JUNB), as well as SMAD2/3, NFkB, and STAT3.
Further DNA motif enrichment analysis comparing Basal differ-
ential peaks inside subgroup-specific SEs over Luminal ones, again
identified AP-1 as a potential regulator of Basal enhancers, as well
as FOXA1, FOXA1:AR, GATA, and GRHL1/2/3 for Luminal enhancers
(Fig. 4B, Table S5, Homer [50]).
However, motif binding and ChIP-seq data are not available for

all known TFs. To overcome this issue, we designed a method to
identify subgroup-associated TFs and their co-regulated networks
based on our differential SEs and the large transcriptomic cohort
from the TCGA [40] (Fig. 4C). We selected TFs that were regulated
by differential SEs (Basal vs Luminal), according to annotations
from Lambert et al. [51], and that were differentially expressed in
TCGA Ba/Sq vs Luminal subgroups. To identify and evaluate the
regulons (group of genes regulated in response to one transcrip-
tional regulator) of the 75 resulting TFs, we inferred the protein
activity of these selected TFs using the VIPER algorithm [52]. VIPER
infers the protein activity score for each TF based on the
expression of a set of genes/targets that are most directly
regulated by the given TF, which was obtained from the gene
regulatory network inferred by the ARACNe-AP algorithm on the
TCGA-BLCA expression dataset [53]. Hierarchical clustering of the
resulting TF regulons clustered scores into three groups, which
were respectively associated with Luminal, Ba/Sq or Stroma-Rich
subtypes (Fig. 4D, E). Since master TFs form interconnected
networks with highly correlated levels of expression, we selected
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only TFs whose expression was correlated with that of at least one
of the other TFs in TCGA-BLCA data (Pearson correlation
coefficient ≥ 0.5, n= 55), and built the top correlated network
based on subtype-specific SE-associated TFs (Fig. 4F) (see
methods). This strategy identified a large module of Luminal
TFs, including known Luminal-associated TFs (e.g., FOXA1/GATA3/
PPARG), as well as TFs with yet unexplored roles in Luminal
bladder cancer biology (e.g., HES1, FOXQ1, ZBTB7C, MECOM,
GRHL2/3, and TBX3). Unlike for Luminals, few TFs have been
characterized as key regulators of Basal tumours. Our analysis
revealed a network of TFs whose activity could be essential to
Basal bladder cancer biology, including HMGA2, KLF7, NR3C1 and
ZBED2. Notably, ZBED2 has recently been associated with basal
identity in keratinocytes [54] and regulation of inflammation in
pancreatic cancer [55].
Combining analyses of tumour and cell line SEs should avoid the

identification of master TFs expressed by the stroma. In fact, we
found that TFs associated with the Luminal network showed strong
expression correlation in our dataset, TCGA-BLCA and in CCLE
bladder cell cohorts [56] (Fig. S5A–C) while expression correlations
of Stroma-Rich or Basal-associated TFs (e.g., ZEB1, SPI1) were lower
for urothelial cell lines in the CCLE [57] compared to those found in
primary tumours (Fig. S5A–C). This indicates that expression of
those TFs could be dependent on growing conditions and/or
interactions with the tumour microenvironment.
To validate our Luminal- and Basal-specific TF networks, we

analyzed public single-cell RNA-seq data of a tumour presenting
both a Luminal and a Basal cell population (GSM4307111 [36],
Fig. S5C). The Luminal-associated TFs FOXA1, GATA3 and PPARG
were mostly expressed in the Luminal cell cluster, whereas ZBED2,
HMGA2, and KLF7, newly identified as part of the Basal TF
network, were mostly expressed in the Basal cell clusters (Fig. 4G),
validating our subgroup-specific networks. Together, these
analyses identified a targeted subset of interconnected candidate
master TFs that could represent key regulators of bladder cancer
subgroup identity.

FOXA1 binds subgroup-specific bladder super-enhancers and
correlates with their activation
We identified FOXA1 as one of our candidate master TFs for the
Luminal bladder cancer subgroup. FOXA1 has been shown to
interact with enhancers as a pioneer factor [58] and has a
demonstrated impact on Luminal bladder cancer biology
[5, 14, 27, 38, 40], though the mechanism for how FOXA1
regulates cell identity is unknown. To better assess the role of
FOXA1 in the regulation of bladder cancer SEs, we mapped
FOXA1, CTCF (Insulator/enhancers) and H3K4me3 (Promoter)
binding by ChIP-seq in two bladder cancer cell lines: SD48 (LumP)
and 5637 (Ba/Sq) (Fig. S6A). FOXA1 binding was mostly found
outside promoters (Fig. S6B, C), with 61,083 FOXA1 peaks detected
in SD48 cells and 39,445 in 5637, an expected variation as FOXA1
was more abundant in Luminal cells (Fig. S6A–C). Despite such
differences, we identified three classes of FOXA1 peaks: SD48-
specific peaks, peaks overlapping in the two cell lines, and 5637-
specific peaks (Figs. 5A, S6D), which suggests that FOXA1 has
specific targets in each cell line and subtype. Interestingly, when
analysing TF binding sites from publicly available ChIP-seq data,
SD48-specific FOXA1 peaks were highly enriched not only for
FOXA1 binding sites, but also GATA3 binding sites (Fig. 5B), which
could indicate a functional partnership between FOXA1 and
GATA3 for regulation of the Luminal program, as suggested by
Warrick et al. and described in breast cancer [14, 59]. Surprisingly,
5637-specific FOXA1 peaks were mostly enriched at AP-1 binding
sites and not FOXA1 sites (Figs. 5B, S6D). Both enrichments were
confirmed by Homer motif analysis of SD48-specific peaks versus
5637-specific peaks or vice and versa (Fig. S6E, F [50]). Ontology
comparison of genes associated with the three classes of FOXA1
peaks showed that 5637-specific peaks were enriched in terms

associated with Ba/Sq super-enhancers (e.g. Signaling by Tyrosine
Kinase, Signaling by MET, Signaling by Interleukin), indicating that
FOXA1 might be involved in the regulation of both Luminal and
Basal bladder cancer subtypes (Fig. 5C). Indeed, FOXA1 binding in
the two cell lines overlapped with most (87%) of the total
repertoire of bladder SEs (Fig. 5D) and correlated strongly with
H3K27ac levels at these loci (Fig. 5E, F), in line with a role for its
regulation of these SEs. Notably, FOXA1 bound at SEs associated
with genes involved in regulating urothelial differentiation and
strongly correlated with increased H3K27ac at these loci. This
could clearly be observed for the Luminal-specific SEs associated
with GATA3 or PPARG in the Luminal SD48 cells and in both cell
lines for the non-specific PPARG SE. But we also found FOXA1
binding associated with high H3K27ac at certain Basal-specific SEs
in the Basal 5637 cells, such as TGFB2 (Fig. 5G). This implies that
FOXA1, even if expressed at a low level as in Ba/Sq cells, could play
an important role in BLCA biology, through enhancer/SE regula-
tion. In summary, FOXA1 may regulate bladder cell identity
through binding of subgroup-specific bladder enhancers with
partners such as GATA3 in Luminal cells and AP-1 in Basal cells.

FOXA1 regulates inflammation and cellular identity
To better understand FOXA1 function, we performed short-term
(<72 h) knock-down in both Luminal and Basal models. Knock-
down of FOXA1 by siRNA decreased clonogenicity and prolifera-
tion of both Luminal and Basal cells (Fig. S7A, B) and it reduced
cell viability in both RT112 (LumP subtype) and SCaBER (Ba/Sq)
cells, with a stronger impact in RT112 (Fig. 6A). Furthermore,
FOXA1 knock-down in RT112 and SCaBER cell lines dramatically
altered gene expression (Fig. 6B, Table S6, Fig. S7C). The
downregulated genes were related to cell cycle and checkpoint
pathways, consistent with the reductions in viability and
proliferation upon FOXA1 knock-down. Surprisingly, the upregu-
lated genes in both cell lines were strongly associated with
inflammatory signaling and interferon response (Figs. 6C, S7D).
Notably, FOXA1 knock-down induced upregulation of master
interferon response TFs, STAT1 and STAT2, and key genes involved
in the regulation of inflammation in human cancer, including the
immune checkpoint modulator CD274 (PD-L1) (Fig. 6D), which we
also identified as a downregulated SE in both Luminal and Basal vs
NHU cells (see earlier Fig. 3F). While our FOXA1 ChIP-seq in
Luminal and Basal cell lines showed FOXA1 binding at many
interferon responsive genes, we observed a moderate enrichment
on STAT1, STAT2 or CD274 promoters or enhancers and the FOXA1
peaks detected around those genes did not correlate with their
expression changes (Fig. S7E). This suggests that the upregulation
of these genes upon FOXA1 knock-down is independent of FOXA1
binding of their regulatory elements, in agreement with recent
work showing that FOXA1 directly binds and inhibits the STAT2
protein to dampen inflammation in a chromatin-independent
manner [60]. Interestingly, if FOXA1 knock down triggered
interferon response in both Luminal and Basal models, its
depletion affected the Luminal network of co-regulated TFs only
in RT112 cells and not in SCaBER (Fig. 6E). PCA projection of TCGA-
BLCA transcriptomes together with that of our knock down cells
on our scRNA-seq-derived Basal/Luminal signature space con-
firmed that FOXA1 acute depletion induced a small but consistent
shift from Luminal towards Basal subtype only in RT112 cells
(Fig. S7F, see methods). Therefore, in agreement with a previous
study [14], short-term knock-down of FOXA1 showed a consistent
but mild impact on cell identity, not sufficient to majorly alter the
subtype of the luminal cells.
Altering the epigenetic landscape could indeed take a longer

time. To determine if FOXA1, through its binding to the SE
repertoire, regulates the bladder cancer epigenetic landscape and
subsequently cellular identity, we produced FOXA1 CRISPR mutant
clones allowing long-term FOXA1 inactivation in two Luminal cell
lines (SD48 and RT112, Fig. S7G). Despite fundamental differences
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between RT112 and SD48 cellular models and heterogeneity
between clones due to clonal selection, transcriptomic analysis of
3’ RNA-seq data by PCA distinguished CRISPR FOXA1 mutant
clones from wildtype (WT) (Fig. S6H). Importantly, PCA projection
of TCGA-BLCA transcriptomes together with that of our WT and
mutant clones on the Basal/Luminal signature space showed that
mutation of FOXA1 induced a strong shift from the Luminal cluster
to the Basal cluster (Fig. 6F). GSEA analysis confirmed that FOXA1
mutants were enriched for our Basal signature and depleted for

our Luminal signature (Fig. S7I) [34, 35]. GSVA analysis further
revealed that FOXA1 mutant clones were less differentiated than
WT controls (Fig. 6G [11]) and tended to express higher levels of
TFs associated with the Basal TF network (Figs. 6H, 4F). Differential
gene expression analysis revealed 1040 and 1102 Differentially
Expressed Genes (DEGs) in RT112 and SD48, respectively, when
comparing FOXA1 mutant clones to WT (Fig. S7J). FOXA1 mutant
DEGs were associated with EMT, KRAS signaling and the
inflammatory response pathway (Fig. 6I), all linked to Basal
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phenotypes. Intriguingly, differential analysis of FOXA1 mutants vs
WT revealed increased expression of NR3C1 and ZBED2 in the
mutants, two of the candidate master TFs identified in our Basal TF
network (Fig. 6J, Table S7). Rescue experiment by transient
overexpression of HA-FOXA1 in selected CRISPR mutant clones, as
well as overexpression in wild-type RT112 and SCaBER, inhibited
ZBED2 expression (Figs. 6K, S6K). In summary, our results

demonstrate that loss of FOXA1 promotes a clear shift from
Luminal to Basal cell identity.

ZBED2, a novel Basal-associated TF involved in inflammation
dampening
To further explore the interconnected network of candidate
master TFs, we chose to examine ZBED2 as one of the TFs in the
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Basal network since it was upregulated by FOXA1 CRispR
inactivation, and because of recent work in keratinocytes that
identified a role for ZBED2 in the basal phenotype [54]. ZBED2
expression in the TCGA-BLCA cohort is upregulated in the Ba/Sq
subtype (Fig. 7A) and correlates with poor survival prognosis (Fig.
S8A). ZBED2 expression is negatively correlated with FOXA1
expression in the TCGA cohort (Fig. 7B), but more interestingly
scRNA-seq in CCLE bladder cell lines shows that FOXA1 and ZBED2
expression are often mutually exclusive (Fig. 7C). As little is known
about the ZBED2 TF, we used ARACNE/VIPER algorithms to
identify the ZBED2 regulon based on TCGA-BLCA expression data.
Interestingly, FOXA1 was predicted as a ZBED2 target, with the
most negative weight, whereas two genes associated with Basal-
specific SEs (IL7R and CAV1) were in the top 10 positive ZBED2
regulon weights (Fig. S8B). Using ZBED2 ChIP-seq data from
pancreatic cancer cell lines [55] (the only ZBED2 ChIP-seq reported
so far), we found a high confidence ZBED2 peak in the FOXA1
promoter (Fig. 7D, left). Analysis of the RNA-seq data from the
same study revealed that ZBED2 overexpression triggered down-
regulation of FOXA1 (Fig. S8C, p= 0.004). In our data, we found
that the ZBED2 SE was highly enriched in FOXA1 binding in SD48
luminal cells, whereas FOXA1 binding was significantly decreased
in 5637 Ba/Sq cells, and negatively correlated with ZBED2
expression (Fig. 7D, right). Overall, these findings suggest that
FOXA1 and ZBED2 could negatively regulate each other to
promote or maintain Luminal or Basal identity, respectively.
On the other hand, ZBED2 has been shown to inhibit STAT2 and

dampen inflammation by direct competition with IRF1 for
Interferon Responsive Element binding in the pancreas [55]. We
therefore sought to determine if ZBED2 is involved in the
downregulation of interferon signaling in bladder cancer,
potentially through interfering with FOXA1-activated pathways.
Intriguingly, ZBED2 expression in the TCGA-BLCA cohort positively
correlated with interferon gamma associated gene expression (Fig.
S8D), which could be an indication that ZBED2 increases in
response to inflammation at the cell population level, or vice
versa. We then examined the correlation between ZBED2
expression and different cellular pathways at the single-cell level
using publicly available scRNA-seq data [36]. Our analysis revealed
that ZBED2 expression anti-correlates with interferon response
and positively correlates with cell cycle progression and E2F
targets within the same cell (Fig. 7E), suggesting that the positive
correlation with interferon response in the bulk RNA-seq data
reflects increased levels of ZBED2 expression and interferon
response genes in different subpopulations of cells. To test this
association further, we knocked down ZBED2 by siRNA and
performed bulk 3’ RNA-seq in two BLCA cell lines. Strikingly,
downregulation of ZBED2 increased expression of interferon
response genes and decreased expression of cell cycle progres-
sion and E2F target genes (Fig. 7F). Furthermore, siZBED2 in both
RT112 and SCaBER cells slightly increased gene expression of
STAT2 and CD274 (Fig. 7G) and tended towards decreased cell
viability (Fig. S8E). Therefore, ZBED2 could directly dampen
interferon response in bladder cancer, in agreement with its
reported role in the pancreas [55]. Notably, siRNA of FOXA1

induced strong STAT2 and CD274 expression, while double knock-
down of both FOXA1 and ZBED2 partially dampened this response
compared to siFOXA1 alone (Fig. 7G), suggesting that the
inflammatory response resulting from FOXA1 knock-down is
partially dependent on ZBED2 target genes. In conclusion, both
FOXA1 and ZBED2 inhibit inflammatory response and promote
bladder cancer cell survival.

DISCUSSION
Epigenetic mechanisms are essential for the establishment and
maintenance of cellular identity notably through enhancer
regulation of master transcriptional regulators [17]. Bladder cancer
has been extensively studied at the transcriptomic level, but until
two recent studies, very little was known about its epigenetic
landscape [27, 28].
Here, we report a large epigenetic profiling of both bladder

cancer primary tumours and bladder cancer cell lines representa-
tive of the main molecular subtypes, as well as NHU cultures, using
three histone marks ChIP-seq and paired RNA-seq. Using
integrative analyses of all chromatin marks, we established to
our knowledge the first comprehensive chromatin state map of
bladder cancer using ChromHMM, and showed that Basal and
Luminal subgroups can be distinguished by their chromatin
profiles. This map can be used to identify new genes or regulatory
regions for diagnostic, prognostic or pharmacological targeting.
We characterized the bladder SE repertoire, and through

differential analysis identified subgroup-specific and cancer-
specific SE activation.
Consistent with the two recently reported enhancer landscapes

of bladder cancer [27, 28], Luminal-activated SE were located in
proximity to known key regulators of the Luminal phenotype,
namely FOXA1, GATA3, and PPARG [3, 14, 28], and to new Luminal-
associated genes, such as NPAS2 and GRHL2 – also identified by
Iyyanki et al. [27] – or KLF5, recently characterized as activated
through super-enhancer amplification in various squamous cell
carcinomas [43]. Importantly, based on our data for 7 Ba/Sq
samples, we were able to identify higher enhancer activity
associated with potential key genes in Basal tumour biology,
including cell surface receptors (IL7R, OSMR, EGFR, MET) and
transcriptional regulators (BNC2, HMGA2, KLF7, NR3C1).
In the previous publications (refs. [27, 28]), TF binding motif

analysis in enhancer regions was applied to identify subtype-
specific transcriptional regulators. Here, we further characterized
subgroup-associated master regulators and co-regulated networks
for both Luminal and Ba/Sq subgroups using two complementary
approaches, in order to overcome issues linked to low expression,
unknown binding motifs or multi-partner complexes. First, we
identified TFs with enriched binding sites or DNA motifs in
subgroup-specific enhancers. Second, we combined SE activity in
our cohort with regulon analysis of TCGA data to identify master
regulator networks for Luminal and Basal subgroups. The first
approach, based on public ChIP-seq data, validated the role of TFs
involved in urothelial differentiation in Luminal SE activity, namely
FOXA1 and GATA3, but also revealed that the AP-1 complex

Fig. 6 FOXA1 regulates inflammation and cellular identity. A Cell viability in RT112 and SCaBER under siRNA treatment against FOXA1.
B Venn diagram comparing differentially expressed genes in RT112 and SCaBER FOXA1 KD. C GSEA plot of Msig Hallmark GSEA Analysis of
genes differentially regulated in RT112 and SCaBER cell lines upon FOXA1 siRNA (2 independent siRNA, 2 replicates). D Heatmap of genes in
Hallmark interferon gamma response genes that are differentially regulated in FOXA1 KD vs Ct (min Fold Change= 1,5). E Heatmap of Top
Luminal TFs expression in RT112 and SCaBER cell lines upon FOXA1 KD. F PCA projection of TCGA Tumours and CRispR mutant clones on the
Basal/Luminal signatures. G GSVA analysis of FOXA1 CRispR mutant clones on Urothelial differentiation signature from Eriksson et al. H GSVA
analysis of FOXA1 CRispR mutant clones on Basal TFs identified in Fig. 4F. I Overrepresentation analysis of DEG in FOXA1 mutant vs Controls.
J Volcano plot of Deseq2 RNA-seq analysis comparing pooled CRispR mutant FOXA1 clones in SD48 and RT112 versus controls. K Transient
overexpression of HA-FOXA1 in mutant FOXA1 CRispR clones, wildtype RT112 and SCaBER. qPCR expression of ZBED2 after transfection of
HA-FOXA1 relative to control plasmid, 4 days post transfection including 24 h of Puromycin selection (n= 3 for CrispR clones, n= 2 for WT
RT112 and SCaBER). Significance was calculated using 2way ANOVA test (p-value < 0.05= *).
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regulates Basal SEs. AP-1 has been shown to drive reprogramming
of breast cancer cells from a Luminal to a Basal phenotype during
treatment resistance acquisition through high-order assemblies of
transcription factors [59]. Thus, a role for AP-1 in driving Basal
enhancers and cell identity in bladder cancer suggests AP-1
inhibitors as potential therapeutic options for this aggressive
disease. Interestingly, our mapping of FOXA1 binding sites in two
different cell models indicated that the pioneer factor binds most
bladder-associated enhancers, even if its DNA binding motif is
mostly found in the Luminal-specific SEs. The mapping of FOXA1
binding also confirmed that FOXA1 binding sites in Basal
enhancers are associated with AP-1 localization, suggesting that
AP-1 could play an important role in the regulation of Basal
regulatory regions through FOXA1 recruitment—or trapping—at
discrete chromatin loci. By combining the ChIP-seq approach with
regulon analysis, we were able to highlight new Luminal-
associated TFs, in addition to known Luminal master regulators
(FOXA1, GATA3, PPARG) and the recently identified NPAS2 [27].
Importantly, we also identified a Basal TF network, including
ZBED2, KLF7, HMGA2, and NR3C1 as major regulators, whose
expression was restricted to the basal component of tumours,
according to scRNA-seq data. To our knowledge, the role of these
TFs has not been investigated in bladder cancer biology.
With regards to ZBED2, a scRNA-seq study revealed that it

promotes basal cell identity of keratinocytes [54]. Another study
demonstrated that in pancreatic cancer, ZBED2 represses differ-
entiation and dampens STAT2-mediated inflammatory response
through IRES binding competition with IRF1 [55].
Modulation of master regulators can induce cell identity switch

and resistance to therapy [22, 59]. FOXA1 pioneer factor notably
controls cell identity in multiple models, during development and
through enhancer binding [58, 61–63]. In particular, it has been
shown in breast cancer cells that FOXA1 maintains luminal cell
identity and controls plasticity between basal and luminal cells, not
only by promoting the ER-dependent transcriptional program, but
also by recruiting repressors to inhibit the expression of Triple
Negative/Basal genes [64]. Previous work showed that the three
master Luminal TFs (FOXA1, GATA3, and PPARG) had to be
perturbed simultaneously to induce a cell identity switch from
luminal to basal in bladder cancer cell lines [14]. However, we found
that while short term knock-down of FOXA1 had a mild effect on cell
identity, the long-term inactivation of FOXA1 alone through CRISPR
mutation was sufficient to induce a shift from Luminal to Basal
subgroup in luminal cells, highlighting the role of FOXA1 in the
regulation of cell fate. Moreover, we demonstrated that this major
shift is accompanied by activation of one of our newly identified
Basal network TFs, ZBED2. Despite its known role as an activator of
transcription, FOXA1 has also been associated to direct repression of
transcription [65]. ZBED2 is described as a transcriptional repressor
[55]. Therefore, FOXA1 and ZBED2 could repress each other, defining
a new cell identity regulatory loop. Through functional knock-down
and knock-out experiments, we verified that FOXA1 and ZBED2
have antagonistic but interconnected functions in cell identity.
However, ZBED2 is expressed at a very low level and additional
experiments, including overexpression models are needed to
validate its repressive function on FOXA1, or vice versa, and its
potential role in Luminal to Basal plasticity.
Finally, our work also uncovers a role for both FOXA1 and ZBED2

in the regulation of inflammation in bladder cancer. While they
play antagonistic roles in the regulation of cell identity, we found
that they share a common function in inhibiting inflammation.
Short term loss of either FOXA1 or ZBED2 triggers an inflammatory
response, identified through STAT2 overexpression, in agreement
with the study of ZBED2 function in the pancreas [55]. The low
FOXA1 binding enrichment at STAT2 in our FOXA1 ChIP-Seq
experiments suggest that FOXA1 could have a repressive function
of inflammation presumably independent of its chromatin binding.
These conclusions are in accordance with the recent work of He

et al. [60] characterizing a chromatin independent function of
FOXA1, which, by direct binding of STAT2 protein, inhibited STAT2-
mediated inflammation. This could explain the limited infiltrate of
luminal tumours, expressing high levels of FOXA1.
Therefore, given the dual role of FOXA1 and ZBED2 in the

regulation of cell identity and inflammation, it will be important to
study their link with tumour plasticity and in response to
immunotherapy. Although direct inhibitors do not yet exist,
targeting FOXA1/ZBED2 or the upstream or downstream signaling
pathways, may improve sensitivity to immune-based therapies.
Similarly, it will be worth studying the effect of interferon
treatment on FOXA1 and ZBED2 inhibited inflammation as it
could be used to overcome the inflammation inhibition induced
by these two master regulators.
If FOXA1 and ZBED2 revealed promising features, our study

identified numerous other super enhancers, associated genes and
master regulators that could be explored for pharmacological
targeting.
General targeting of SEs with BRD4 inhibitors has shown efficiency,

in particular in cancers with specific SE single mutation alterations or
with the activation of MYC SE in leukemia or lymphoma [15, 21, 66].
However, those treatments show mild efficiency in solid tumours and
enhancer rewiring has been associated to resistance to treatment.
Identification of major enhancers associated with bladder cancer and
subgroups may pave the way for further research into targeting
activated master regulators, upstream/downstream activated path-
ways or even with the advent of RNA and CRISPR technology, directly
targeting enhancers.

CONCLUSIONS
We provide an integrated epigenomic and transcriptomic map of
bladder cancer constituting a new comprehensive tool to study
epigenetic regulation of muscle-invasive bladder cancer. We
revealed Luminal and Basal coregulated networks of super-
enhancers and associated transcription factors as new potential
targets with important clinical relevance. Our findings and
functional assays on FOXA1 and ZBED2 demonstrate that the
enhancer set and TF networks identified herein represent prime
targets for further pre-clinical investigation for bladder cancer
treatment.

MATERIAL AND METHODS
Cell lines and culture
The human bladder cancer-derived cell lines RT112, 5637, KK47, and
SCaBER were obtained from DSMZ (Heidelberg, Germany). MGH-U3, KK47
and SD48 cell lines were provided by Yves Fradet (CRC, Quebec), Jennifer
Southgate laboratory (previously of Cancer Research Unit, St James’s
University Hospital, Leeds, UK), and Henri Mondor Hospital (Créteil, France),
respectively. The L1207 cell line was derived fromt tumour T1207 [67].
RT112 and 5637 cells were cultured in RPMI medium, L1207 were cultured
in DMEM-F12 and all the other cell lines were cultured in DMEM medium.
All cell media were supplemented with 10% fetal bovine serum (FBS). We
used Normal human urothelium (NHU) cells obtained from normal ureter
urothelium from healthy kidney donors from Foch hospital and were
cultured as previously described [68]. NHU derived from ureter have been
shown to be transcriptionally very similar to NHU derived from bladder
[69, 70]. All cells were cultured at 37 °C in an atmosphere of 5% CO2 and
were routinely tested for mycoplasma contamination.

Patient tumours
Tumours used in this study were previously characterized in our CIT (Carte
d’Identité des Tumeurs) cohort [9, 29]. The characteristics of the tumours
are shown in Table S1.

Resources
Antibodies, Vectors, Oligos, commercial assays and tools used in the study
are detailed in the Supplemental information file.
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Assignment of MIBC and NMIBC subtypes
Gene expression data of the most tumours cases was previously generated
and published [9, 29]. We assigned consensus classes using the previously
generated gene expression data using ConsensusMIBC (v1.1.0) R package
[3] (Table S1). Given potential intra-tumour molecular heterogeneity, we
also to verify the subtype in our ChIP-seq sampled tumour area using RNA-
seq from the same powder using the same ConsensusMIBC (v1.1.0) R
package.
NMIBC samples (n= 2) were classified using classifyNMIBC R Package [7].

Molecular-subtyping classification to BCa cell lines
We designed a tumour-reference similarity-based machine-learning driven
approach to assigning molecular subtypes derived from BCa tumours to
cell lines, to overcome the infeasibility of directly applying Tumour
molecular-subtyping classifiers to cell lines due to intrinsic large difference
in transcriptome profiles between the two different sample types. The idea
is to measure the transcriptome similarity of the cells lines to a panel of
reference tumours of different subgroups and calculate a probability score
to each molecular subtype by k-nearest neighbors (KNN) classification in a
number of randomly generated compressed feature spaces. The analysis
involves a multi-step pipeline that covers data normalization, feature
selection, data fusion with batch-effect correction, random compressed
feature space generation, KNN-based classification, and subtype prob-
ability score calculation.
We applied the approach for molecular classification of BCa cell lines. We

tested the robustness of the method using transcriptome data of
124 samples of 47 BCa cell lines profiled by two different transcriptome
profiling method (mRNA-seq and Affymetrix HuST1.0 exon array) from four
different sources, described as follows: 1. Cancer Cell Line Encyclopedia
(CCLE) dataset, 36 cell lines with one sample for each, RNA-seq,
downloaded from the DepMap Data Portal release19Q4, as transcripts
per million normalized (TPM) counts; 2. MD Anderson (MDA), 30 cell lines
with one sample for each, RNA-seq, downloaded from Gene Expression
Omnibus with an accession GSE97768, as raw counts and then relative log-
expression normalized (RLE); 3. In-house data of our lab team oncologie
moleculaire (OM), 53 samples of 33 cell lines including xenografts (xeno),
Affymetrix HuST1.0 exon array, robust multichip average (RMA) normalized;
4. In-house data of our lab team oncologie moleculaire (OM), 5 samples of 5
cell lines, RNA-seq, RLE normalized. The reference tumours for RNA-seq cell
line samples were TCGA-BLCA RNA-seq tumour transcriptomes (n= 430)
and normalized in accordance with the cell line normalization, namely TPM
for CCLE samples and RLE for MDA samples. The reference tumours for
microarray samples were CIT MIBC tumours profiled with Affymetrix
HuST1.0 exon array (n= 160), which were normalized with RMA. Our
previous MIBC consensus molecular classification framework was applied to
the reference tumour transcriptomes, and the NE-like and Stroma-rich
subtypes were aggregated as ‘double-negative’. The analyses were
performed separately for each dataset. Briefly, the normalized cell line
and reference tumour transcriptomes were first merged by taking the
intersection of the transcriptome features. Then, the top 2000 genes with
largest between-class variances among the reference tumours calculated by
F-test were used as selected subtype-relevant features for subsequent
analysis. One thousand 2-dimension tSNE embedding spaces were then
generated using 1000 random-sequences. For each sample of the cell lines,
KNN-based classification (k= 6) was performed in each tSNE embedding,
and the predicted molecular class with the highest frequency was
considered the molecular class for the cell line sample.
The predicted molecular subtypes were basically consistent across

different profiling method and datasets and were coherent with prior
knowledge. For example, the FGFR3-altered cell lines RT4, UMUC14, and
SW780 were consistently classified as LumP subtype and the squamous
BCa cell line SCaBER was consistently classified as Ba/Sq subtype,
independent of dataset and profiling techniques. The FGFR3-altered
RT112 cell line was basically classified as LumP across samples, with only
one exception which was likely due to culturing or profiling artefact. In cell
lines with samples classified as more than one subtypes, nearly all the
cases were between Ba/Sq and double-negative subtypes. It was rare that
the classifications were either luminal or basal for different samples of the
same cell line (CAL29, UMUC6, and UMUC16). Regarding the 7 cell lines
used for epigenomic profiling in the present work, the SD48, MGHU3, and
RT112 were classified as the LumP subtype, and the SCaBER, L1207, and
5637 were classified as the Ba/Sq subtype, and the KK47 was classified as
the double-negative subtype. No between-sample inconsistency was
noted for these 7 cell lines (Table S1B, sheet 2).

Patient tumour tissue processing
We selected human tumours with an available OCT-compound frozen
block from our CIT (Carte d’Identité des Tumeurs) cohort [9, 29]. Each block
was frozen-sectioned and stained with hematoxylin and eosin. Pathology
review was performed to confirm the tumour stage and to select tumour
areas, in order to enhance neoplastic content (estimated at 30 to 95%,
median tumour cell content= 65%). For tumours with sufficient material,
tumour-enriched areas were macrodissected from the frozen block and
manually finely ground in a mortar. Frozen ground tumour tissue was kept
at −80 °C until further processing.

Chromatin immunoprecipitation and sequencing
Tumour chromatin cross-linking and extraction. In order to obtain
efficiently disrupted tissue, the frozen ground material (15mg) was further
homogenized using a tube pestle or the TissueLyser II system (Qiagen).
Disrupted tissue was then processed using the reagents from the iDeal
ChIP-seq Kit for Histones (Diagenode), according to the manufacturer’s
instructions. Briefly, the tissue was homogenized and washed in 1ml PBS-
protease inhibitor cocktail. DNA-protein cross-linking was ensured with an
8min incubation in 1% formaldehyde then quenched with 0.125M glycine
for 5 min. Cells were then washed and lysed. Centrifuged cell lysates were
resuspended in shearing buffer and sonicated using the Pico Bioruptor
device (Diagenode) for 15min (30 s ON/30 s OFF). Following a centrifuga-
tion at 16,000 g for 10min, an aliquot was reserved to control the
sonication and the remaining supernatant was stored at −80 °C. Sonication
efficiency was controlled for each sample on the aliquot of sheared
chromatin by overnight reverse cross-linking, DNA was purified using the
phenol-chloroform method and 2% agarose gel electrophoresis was used
to determine DNA fragment size.

Tumour ChIP-seq. Tumour samples with optimal chromatin fragment size
(200–500 bp) were immunoprecipitated using the iDeal ChIP-seq Kit for
Histones (Diagenode). Magnetic immunoprecipitation of sheared DNA-
chromatin complexes (500 ng) was performed overnight using a rabbit
polyclonal histone H3K27acetyl ChIP Grade antibody (ab4729, Abcam),
H3K27me3 (Active Motif, ref. 39155), and H3K9me3 (Active Motif, ref.
39161). Magnetic immunoprecipitation beads were washed the following
day. The captured chromatin as well as non-immunoprecipitated input
chromatin underwent elution and reverse cross-linking steps. DNA
purification was performed using iPure magnetic beads. Immunoprecipita-
tion (IP) efficiency was verified by qPCR according to the manufacturer’s
protocol using primers in positive region (GAPDH promoter) and negative
regions. Library preparation from IP DNA and input DNA was performed
using the Diagenode MicroPlex Library Preparation kit v2. The resulting
amplified libraries were assessed using the Bioanalyzer system 2100
(Agilent) and sequenced using the HiSeq 4000 platform (Illumina) as
single-read 50 base reads, following Illumina’s instructions. Reads were
aligned to the reference genome (Hg19) using Bowtie 1.0.0.

Cell line ChIP-seq. Cell lines cultures were crosslinked directly in the
growing medium with formaldehyde 1% for 10min at room temperature.
The reaction was stopped by adding Glycine with a final concentration of
0.125M for 10min at room temperature. Fixed cells were rinsed 3 times
with PBS containing protease inhibitors, pelleted, and resuspended in lysis
buffer (10mM EDTA, pH8, 50 mM Tris-HCl pH8, SDS 1%). After centrifuga-
tion, the ChIP was performed using ChIP-IT High Sensitivity kit (Active
Motif, Carlsbad, CA, USA), following the manufacturer’s instructions.
Chromatin was sonicated in a bioruptor Pico device (Diagenode) for
10min (30 s ON/30 s OFF). Sheared chromatin was immunoprecipitated
using an H3K27ac antibody (Abcam ab4729). Sheared chromatin was used
as input-DNA control.
ChIP-seq libraries were prepared using NEXTflex ChIP-Seq Kit (#5143-02,

Bioo Scientific) following the manufacturer’s protocol (V12.10) with some
modifications. Briefly, 10 ng of ChIP enriched DNA were end-repaired using
T4 DNA polymerase, Klenow DNA polymerase and T4 PNK, then size
selected and cleaned-up using Agencourt AMPure XP beads (#A63881,
Beckman). A single ‘A’ nucleotide was added to the 3’ ends of the blunt
DNA fragments with a Klenow fragment (3’ to 5’exo minus). The ends of
the DNA fragments were ligated to double stranded barcoded DNA
adapters (NEXTflex ChIP-Seq Barcodes - 6, #514120, Bioo Scientific) using
T4 DNA Ligase. The ligated products were enriched by PCR and cleaned-up
using Agencourt AMPure XP beads. Prior to sequencing, DNA libraries were
checked for quality and quantified using a 2100 Bioanalyzer (Agilent). The
libraries were sequenced on the Illumina Hi-Seq 2500 as single-end 50
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base reads following Illumina’s instructions. Sequence reads were mapped
to reference genome hg19 using Bowtie 1.0.0.

ChIP-seq data analysis and integration
Peak detection was performed using MACS2 (model-based analysis for
ChIP-seq v2.1.0.20140616) software under settings where input samples
were used as a negative control. We used a default cutoff and -B option for
broad peaks for histone marks, and narrow peaks option for transcription
factors. Firstly the bedGraph tracks for IP and Input samples were
generated individually using macs2 callpeak (with option --SPMR -B). The IP
signal was then compared with the corresponding Input signal using
macs2 bdgcmp (with option -m FE). Finally, the bedGraph was converted
to bigwig using the UCSC bedGraphToBigWig utility.
To identify enhancer regions in each tumour we used ROSE (Ranked

Ordering of Super-Enhancers) algorithm [21, 41], with the following
parameters: 12.5 kb stitching distance, exclusion of promoter regions
2500 bp around TSS. For each sample, stitched enhancer regions are
normalized, ranked and plotted. The regions above the inflexion point are
considered super-enhancers by the algorithm. However, the number of
called super-enhancers was notably lower in cases with a known amplified
gene. The very high H3K27ac signal in the amplified region likely created a
bias in the plot of ranked enhancers. To correct for this bias, we selected
from each sample ROSE output (AllEnhancers.table.txt ranked table) the
top 1000 ROSE-ranked enhancers as candidate super-enhancer regions.
Heatmaps and PCA of ChIP-seq signal were performed using Diffbind R

package (version 2.16.0) or Easeq [71]. For super-enhancers analysis, the
top 1000 SE regions of either tumours or cell lines were merged for a
consensus using Diffbind. Then, H3K27ac signal was calculated in the
consensus peak for each sample. Differential analysis between molecular
subtypes was performed with Diffbind and DESeq2 default parameters
using both IP and input bam files, and a file containing the consensus
super enhancer regions evaluated for differential analysis as input. Regions
with an p-value < 0.05 were considered differentially bound.
Genomic annotation and pathway enrichment analyses were performed

using ChIPseeker, clusterProfiler and GREAT (28).

Chromatin binding enrichment analysis. Factor binding analyses were
performed using public data available in Cistrome DB Toolkit [48, 49]. DNA
binding motif analysis was performed using HOMER known motif function
[50].

Genomic annotation of the SE regions and cis-regulatory genes. SE activity
and gene expression was jointly analyzed to determine the cis-regulatory
between the SEs and genes on proximity. In brief, genes corresponding to
each SE were annotated using ROSE (ROSE_geneMapper.py, identifying
overlapping and proximal genes), but also with GREAT using “Basal plus
extension parameters”, as the candidate proximal genes regulated by the
SE [41, 72]. The spearman correlation coefficients between SE activity
(H3K27ac read counts, log2RPKM normalized) and the expression of the
candidate genes (RLE normalized) were calculated in the tumours. The
gene whose expression showing the highest correlation with the activity of
the corresponding SE was determined as the gene most likely regulated by
the SE. The SE-gene relationships within the top 1% were also given, not
limited to the proximal genes. The number of germline single nucleotide
polymorphisms (SNPs) within a given SE as well as their association with
bladder cancer (median –log10 p-value) was provided based on the UK
biobank GWAS summary statistics (Neale lab Round 2, ukb-d-C67,
extracted from the MRC IEU OpenGWAS database) [73]. The germline
SNPs falling within the SEs and with published GWAS-level association with
BCa or with –log10P.value > 5 in GWAS summary statistics (PhenoScanner
v2 database) were provided as GWAS SNPs within the SEs [74]. For the
genes most likely regulated by a given SE, we provided their median CERES
dependency score of all and urothelial cancer cells from the Cancer
Dependency Map database [56], as well as the p-value for difference
between the two. We checked if any bias compared to the background in
mutation type (missense, non-sense, synonymous, etc.) for the protein
coding genes by Chi-square test. We checked if they were within the list of
established cancer genes, including the COSMIC Cancer Gene Census and
Network of Cancer Genes 6 [75, 76].

Chromatin state analysis and correlation with expression. ChromHMM was
used to identify chromatin states. The genome was analyzed at 1000 bp
intervals and the tool was used to learn models from the 3 histone marks
ChIP-seq reads files and corresponding Input controls. A model of 6 states

was selected and applied on all samples. The 6 states identified were then
given functional annotation based on histone marks enrichment and
ENCODE published chromatin states.
We checked the genome-wide association between gene expression

and chromatin states of the TSS, in both tumour and cell line samples. In
each tumour/cell line, we classified the genes according to the chromatin
states of the TSS. For genes with multiple TSS, the chromatin states
showing frequency dominance was considered. We then calculated the
median expression of the genes by their TSS categories in each sample,
and assessed the distribution of the median expression by chromatin state
across all tumour and cell line samples.
ChromHMM output files were concatenated using the unionbed

function from BEDTools, by which a consensus sample-by-states matrix
was created, where in each cell the chromatin state corresponding to the
column’s chromosome region in the row’s sample, excluding regions from
sexual chromosomes, with all samples included (n= 24, including 15
tumours and 9 cell lines).
We next performed unsupervised analysis of the integrated chromatin

states in tumour and cell line samples.

Selection of most informative features. We first looked for the most
informative features in the consensus sample-by-states matrix where in
each cell the chromatin state corresponding to the column’s chromosome
region in the row’s sample, excluding regions from sexual chromosomes,
with all samples included (n= 24, including 15 tumours and 9 cell lines).
We excluded genome regions of ‘no mark’ state to enrich our feature
selection with active regions and filtered features with top 1% Shannon’s
entropy. Then to further select informative feature, we signed-rank
transformed the data: For each state, given the constitution of the histone
marks and association with gene expression, we performed a numeric
transformation of the categorical states by assigning numeric values to
categorical states, as 3 to E2 (Active Enhancer / Promoter), -3 to E4
(Repressed Chromatin), 2 to E3 (Bivalent Enhancer / Promoter), -2 to E6
(Heterochromatin / ZNF/ Repeats), 1 to E1 (Quiescent / No mark), and -1 to
E5 (Quiescent / Weak repression). This allow to further increased the
selection power as the top 1% features by variance ranking. We then used
these top 1% variable features for subsequent analysis.

Dimension reduction and functional ontology analysis. We performed
dimension reduction and visualization taking directly the categorical format
of the above described selected features using multiple correspondence
analysis (MCA). To explore the biological significance of the regions that
contributed to the dimension that distinguishes the non-basal and basal
clusters, the chromosome segments’ loading estimates to the Dim 2 were
extracted from the MCA outputs and regions with a p-value < 0.05 for the
loading estimate were included (n= 12,198). Genes mapped to Dim 2
contributing regions were pre-ranked by loading estimates for gene-set
enrichment analysis (GSEA) by which we identified multiple biological gene
sets / ontologies associated with Dim 2. The gene sets collections were
retrieved from the Broad Institute Molecular Signature Database, spanning
the H (hall mark gene sets), C2 (curated gene sets, e.g., pathways), C3
(regulatory target gene sets), C5 (ontology gene sets, e.g., Gene Ontology),
C6 (oncogenic signature gene sets), and C8 (cell type signature gene sets)
categories, using the msigdbr R package [35, 77].
As complementary exploration, we in the meantime performed

dimensional reduction to the numeric transformed data of the selected
features, using MDS. Similar to what was observed in MCA, the Dim 2
represents the dimension that distinguishes the basal versus non-basal
samples, and Dim 1 separates cell lines from tumours, suggesting potential
batch effect and/or in vitro culture-specific effect. We then adjusted for
these latent effects to obtain a refined clustering (basically on Dim 2), using
the MNN algorithm implemented in the fastMNN function of the batchelor
R Bioconductor package [78].
We then calculated for the chromosomal segments (i.e., features of the

consensus sample-by-states matrix), the difference in the numeric
chromatin state scores between basal and non-basal groups, named
chromatin state score difference basal vs non-basal. A negative score
difference indicates stronger activation in the non-basal group, and a
positive one indicates stronger activation in the basal group. For
subsequent function analysis, we performed expression quantitative trait
locus (eQTL) mapping to refine the segments to the ones significantly
linked with associated gene expression, and limited the analysis to the
significant eQTL pairs (p-value < 0.05, n= 4377). We then analyzed the
distribution of the chromatin state score difference of the segments
corresponding to the luminal and basal cell type signature genes.
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RNA extraction and sequencing
Tumour RNA sequencing. Tumour RNA was extracted as described in refs.
[72, 79].
RNA sequencing libraries: Kit Nugen. The pool of libraries was

quantified using a qPCR method (KAPA library quantification kit, Roche).
The sequencing was carried out using paired-end mode (PE100) on an
Illumina Novaseq 6000 instrument, using a custom primer (provided
into the Nugen kit) to initiate the Read 1 sequencing. The target number
of reads was about 50 million paired-reads per sample.

Cell line RNA sequencing. Cell line RNA was extracted using Qiagen
RNeasy kit coupled with DNAse treatment. RNA sequencing libraries
were prepared from 1 µg of total RNA using the Illumina TruSeq
Stranded mRNA Library preparation kit (Illumina) which allows to
perform a strand specific RNA sequencing. A first step of polyA selection
using magnetic beads is done to focus sequencing on polyadenylated
transcripts. After fragmentation, cDNA synthesis was performed and
resulting fragments were used for dA-tailing and then ligated to the
TruSeq indexed adapters. PCR amplification was finally achieved to
create the final cDNA library (12 cycles). The resulting barcoded libraries
were then equimolarly pooled and quantified using a qPCR method
(KAPA library quantification kit, Roche). The sequencing was carried out
using paired-end mode (PE100) on an Illumina HiSeq2000 instrument.
The sequencing configuration was set to reach an average of 100
million paired-reads per sample.

Cell line 3’RNA-seq (Lexogen 3’Seq). RNA sequencing libraries were
prepared from 200 ng of total RNA using the QuantSeq FWD 3’mRNA
Seq LEXOGEN Standard (CliniSciences). Libraries were prepared
according to the manufacturer’s recommendations. The first step
enables the synthesis of double strand cDNA, by revers transcription,
using oligo dT priming. A qPCR optimization step was performed in
order to estimate the most appropriate number of PCR cycles for library
amplification. The resulting amplified and barcoded libraries were then
equimolarly pooled and quantified using a qPCR method (KAPA library
quantification kit, Roche). The sequencing was carried out using single-
read mode (SR100) on an Illumina Novaseq 6000 instrument. The
sequencing configuration was set to reach an average of 10 million
reads per sample.

RNA-seq analysis
RNA-seq reads were aligned on genome hg19 using STAR with default
parameters. Our RNA-seq as well as RNA-seq from public data repository
(MGHU3 RNA-seq bulk data, GSE171129) were integrated using Deseq2
default parameters and VST normalization. 3’RNA-seq were analyzed with
Deseq2 and RPM normalization.

Regulons
The regulatory network was reverse engineered by ARACNe-AP [53] from
human urothelial cancer tissue datasets profiled by RNA-seq from TCGA.
ARACNe was run with 100 bootstrap iterations using all probe-clusters
mapping to a set of 1,740 transcription factors. Parameters used were
standard parameters, with Mutual Information p-value threshold of 10–8.
The VIPER (Virtual Inference of Protein-activity by Enriched Regulon

analysis) [52] (R package viper 1.24), using the regulatory network obtained
from ARACNE on urothelial cancer, and we computed the enrichment of
each regulon on the gene expression signature using different imple-
mentations of the analytic Rank-based Enrichment Analysis algorithm.

SE correlation network
To build SE driven correlation network, we first selected genes regulated
by SEs defined as TFs in Lambert et al. [51]. Next using TCGA regulon VIPER
score, we calculated the mean regulon score by subtype (Luminal, Ba/Sq or
Stroma-Rich and kept TFs with mean regulon > 2 or <−2 (n= 75). We
further restricted the list to TFs with a minimum expression correlation of
0.5 in TCGA to build correlation network using igraph.

Cell proliferation and Soft agar assays
For cell proliferation assays, cells were siRNA reverse transfected with
Lipofectamine RNAi max in 6 well plate. Every 24 h post transfection and
during 4 days, cells were counted using Malassez. Cells were then plated in
soft agar and fixed after 21 days.

Cell treatments, cell viability assay
For siRNA treatments, cells were reverse transfected using Lipofectamine
RNAi max (Invitrogen) using 10 ng of siRNA.
For CRispR mutant cell lines production, RT112 and SD48 cells were

plated at 80% confluence and the day after transfected with vectors
expressing Cas9 an gRNA (VectorBuilder) using Fugene HD transfection
reagent. 48 h post transfection, cells were selected using Puromycin (2 µg/
µL) during 4 days. After 2 weeks, clonal selection was performed using
clonal dilution. FOXA1 mutation was assessed by Western Blot (anti-FOXA1
Abcam ab23738), PCR and genomic DNA sequencing.
For HA-FOXA1 overexpression, cells were plated at 80% confluence and

the day after transfected with empty vector (pEmpty) or a vector
expressing tagged FOXA1 (pHA-FOXA1). 48 h post transfection, cells were
trypsinized and plated in media supplemented with Puromycin (2 µg/µL)
for 24 more hours before RNA extraction.
Cell Viability was assessed in 96 well plates using CellTiter-Glo®

Luminescent Cell Viability Assay (Promega). siRNA and CrispR vectors
used in the study are referenced in the Supplementary information file.

RT-qPCR
Reverse transcription was performed using RT Applied high capacity kit.
qPCR was performed on a Lightcycler 480 using SYBR or Probe Master as
instructed by the manufacturer.

Immunohistochemistry
We performed a multiplex IHC staining combining 2 subtype markers: the
luminal marker GATA3 (L50-823, Diagomics), the basal marker CK5/6 (EP24/
EP67, Diagomics). Single stainings were performed for p16 (IHC116,
Diagomics), CK20 (Ks20.8, Dako). All IHC assays were performed on an
automated stainer.

Public data
TCGA-BLCA MIBC RNA-seq data were downloaded from TCGA data portal
using TCGAbiolinks package (R), raw counts were normalized to account
for different library size and the variance was stabilized with VST function
in the DESeq2 R-package [80]. TCGA-BLCA samples (n= 404) were
classified using the consensus system using consensusMIBC R package.
CCLE urinary tract cell line gene expression was downloaded from the

DepMap portal (https://depmap.org/portal/download/).
MGHU3 RNA-seq bulk data (GSE171129) as well as scRNA-seq from a Ba/

Sq MIBC tumour (GSM4307111 [36]), were downloaded from GEO
database.

Public scRNA-seq and Basal/Luminal signature
We downloaded the log2 TPM normalized gene expression of single cells
from a Ba/Sq subtype MIBC tumour from the GEO database (accession
number, GSM4307111 [36]). Initial quality control excluded genes
expressed in less than 3 cells and cells with less than 200 genes. The
top 2000 variable genes were used as features for subsequent PCA and the
first 9 principal components were used for cell clustering and visualization
by uniform manifold approximation and projection (UMAP) embedding.
The marker genes of the luminal and basal tumour cells were calculated
with Wilcoxon test-based approach. The single cell RNA-seq data analyses
were performed using the Seurat v4 package with default parameters
unless otherwise specified.
Given the single-cell derived luminal and basal tumour cell signature

was based on single-cell sequencing of primary in vivo tumour sample,
and the FOXA1 knock-out perturbation signature is likely limited to the
genes regulated by FOXA1 in an in vitro setting, it is important to adopt
the cell subtype signatures to refine to the marker genes regulated by
FOXA1, as a FOXA1-depdent luminal-basal plasticity signature which
could be then used for further analyses involving in vitro transcrip-
tomes. We first compared the perturbation and single-cell signatures by
GSEA (perturbation DEG effect for ranking, and luminal / basal
signatures as gene sets of interest) and found that in RT112 cell line,
there was both significant enrichment of luminal signature in genes
down-regulated in FOXA1 KO clones and significant enrichment of basal
signature in genes up-regulated in FOXA1 KO clones. We then took the
leading edge genes as the adopted FOXA1-depdent plasticity signature.
As validation, this adopted signature showed similar enrichment in
RT112 FOXA1 KD assays and SD48 FOXA1 KO assays, while the original
cell type signature failed.
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General bioinformatics, statistical analyses
Plots and statistical analyses were performed in R software version 3.6.1,
using ggpubr package, or Graphpad prism. Wilcoxon and Kruskal-Wallis
tests were used to test the association between continuous and categorical
variables, for 2 categories or > 2 categories, respectively. P-values < 0.05
were considered statistically significant. Pairwise correlation of gene
expression was calculated using Pearson coefficient. All gene expression
heatmaps show mean-centered log2-transformed normalized counts of
each represented gene. Heatmaps were produced using complexHeatmap
or pheatmap.

Survival analysis
For Kaplan Meier survival analyses testing the association of gene
expression and overall survival, we used http://tumoursurvival.org/
index.html tool and divided the samples based on mean+ /− sd. Log-
rank P values were calculated to test the association between overall
survival and low vs high expression groups.

DATA AVAILABILITY
The datasets supporting the conclusions of this article are available in the GEO
repository under accession numbers: GSE193889 for Tumours ChIP-seq GSE193886
for Normal and Cancer cell culture ChIP-seq GSE195768 for Tumours RNAseq
GSE195608 for Normal and Cancer cell culture RNA-seq GSE196595 for functional
assays 3’RNA-seq This paper analyzes existing, publicly available data: GSE141606
(ZBED2 ChIP-seq), GSE141605 (ZBED2 Overexpression in PDA cell lines), GSM4307111
(scRNAseq Tumor public data), CCLE (https://depmap.org/portal/download/) and
TCGA (TCGA data portal).
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