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Abstract 

The impact of tilt-related errors on the positioning of microcantilever-based microelectromechanical 

systems (MEMS) on-wafer electrical probes, having multiple contact pads, is quantified and 

investigated here. A tilt error associated with probe roll results in the probe contact pads not being 

parallel to the approaching surface as a downward overtravel is imposed—this leads to one probe pad 

making contact with the surface before the others. In a MEMS-based probe, the analysis of the impact 

of roll error angle must consider both the bending and the torsion of the flexible cantilever as the 

overtravel is increased—something which eventually results in all pads being in contact with the 

surface, but not with the same contact force. An original mathematical description of the problem is 

presented. By making some assumptions, the analytical modelling enables the derivation of elegant 

equations relating the roll error angle and the cantilever deflection to achieve planarity of the 

cantilever apex with the underlying surface. The modelling predicts probe tip planarity for rectangular 

and trapezoidal shaped probes. The predictions of the modelling are tested by using macroscopic 

cantilevers—excellent agreement between modelling and experiment is demonstrated. The 

macroscopic experimental setup reveals interesting behaviour concerning a bending/twisting, tilted 

cantilever in contact with—and skating across—an underlying surface. The experimental findings also 

indicate the pertinence of the modelling for the potential use with understanding the behaviour of 

microscopic cantilevers—such as MEMS-based probes—similarly in contact with a surface. A flexible 

microcantilever enables a torsional compensation of the roll error angle. It also enables a protocol 

where the roll error angle can be corrected. The design geometry of the probe tip will determine which 

approach is best suited. In principle, the modelling is scalable to MEMS probes composed of silicon-

based cantilevers.  

 

1. Introduction 
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Electrical test probes have been developed in some shape or form for a very long time. Since the 1970s, 

radio frequency (RF) probes have been developed to perform ‘on-wafer’ characterization of the fruits 

of the ongoing microelectronics revolution—both for analogue and digital devices and systems [1–3]. 

Indeed, as both the miniaturization and working frequency of microelectronics has evolved, so have 

electrical probes also evolved to maintain characterization performance—this has involved their own 

miniaturization. As probes and target contact pads on the wafer become smaller, probe placement 

becomes more challenging [4]. The manufacture of smaller probes also becomes more exigent [5], and 

traditional assembly-based fabrication may soon need to be replaced by micro and nanofabrication. In 

this important context, the impact of various position errors on the performance of high frequency 

electrical probes has been studied by a number of authors. Most of these studies concern the 

placement of macroscopic commercial probes [6]—where the potential mechanical flexibility of the 

probe was not considered. For example, the effect of in-wafer-plane probe position error on high 

frequency characterization performance has been studied [7,8]. Chen et al [9] concluded that the 

dominant error source of THz probes is indeed positioning. Position error involving very small signal 

lines has also been investigated [10], pointing to miniaturization position issues. In addition, the effect 

of roll error angle on the electrical properties of the rigid probe/contact pad high frequency behaviour 

has been studied [11,12]—with innovative solutions being proposed [13,14]. 

In terms of miniature probes, automatic positioning to avoid errors has been studied [15–17]. 

Quantifying and controlling tilt errors is essential for optimised automated probing using 

microcantilevers. However, the latter studies did not take into account the mechanical flexibility of 

miniature, potentially MEMS-based, probes. Microcantilevers can be used to make all manners of 

miniaturized electrical probes, including RF probes [18–21]. Microcantilevers are fabricated using 

microelectromechanical systems (MEMS) fabrication techniques—this enables probes to be small, 

mechanically flexible, and compatible with the incorporation, at the fabrication stage, of 

microelectronics’ materials and devices. However, the inherent mechanical flexibility of a 

microcantilever needs to be considered for optimum probing and electrical contacting. In terms of 

microcantilever-based probes, the impact of mechanical flexibility on the probe positioning has been 

described by the author for probes based on both flexible rectangular [22] and triangular 

microcantilevers [23]. Indeed, tip skate itself can be regarded as a positioning error—something that 

can be, in principle, eliminated using skate compensation [22]. The overtravel/skate/contact force 

relationship of such probes was fully described. This analysis resulted in a basic easy-to-use modelling 

toolbox. However, the analysis ignored the effect of potential tilt-related geometrical position errors 

on the tip-surface contacting of such probes—something often encountered in practice. 
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In the case of miniature RF probes, three electrical contacts are required: e.g. a signal contact 

surrounded by two ground contacts—this is true for both coplanar waveguide (CPW) and microstrip 

configurations. The central signal contact is separated from the adjacent ground contacts by a distance 

defined by the microwave design—this separation means that the probe tip has a finite apex length 

(in contrast to, for example, an atomic force microscopy (AFM) probe point). For optimal electrical 

contacting, these three contacts must all be simultaneously in intimate contact with the underlying 

test feature—usually metallic contact pads, lithographically defined on the underlying surface. A 

sufficient contact force must also be present to enable a low resistance electrical contact. Given this 

microcantilever-based probe configuration, let us now look at sources of placement error and see if 

we can quantify them. 

 

2. Definition of pitch, yaw, and roll errors in microcantilever-based electrical probes 

Let us consider Figure 1. Fig.1(a) shows the three principal axes of rotation of a probe based on a 

microcantilever—one can borrow the analogy from aircraft positioning. The ‘pitch error’, shown in Fig. 

1(b), results from an error in—what is commonly known as—the tilt angle ∆𝜃 of the probe. The ‘yaw 

error’, shown in Fig. 1(c), results form a rotation of the probe whilst maintaining the apex edge of the 

cantilever parallel to the underlying surface; the angle 𝛽 is in the plane of the surface. The probe tip 

edge is not perpendicular to a target feature on the surface—this is a visible alignment problem. In 

contrast, the ‘roll error’, shown in Fig. 1(d), originates from a rotation of the probe whereby the edge 

of the apex of the cantilever is not parallel with the underlying surface. In this case, one corner of the 

end of the cantilever is not in contact with the surface upon touchdown; note that the angle 𝜑 is 

perpendicular to the cantilever—see Supplementary Information. 
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Figure 1. The principle axes of a microelectromechanical systems (MEMS) microcantilever-based probe 

and the three potential sources of positioning error associated with these axes. (a) The principal axes 

of rotation: pitch, yaw, and roll. (b) Pitch error, (c) yaw error, and (d) roll error. 

 

Let us now talk about the consequences of these errors. First, the pitch error can influence the 

skating and the contact force of the probe. Second, the visible yaw alignment error is easily corrected 

by rotation of the surface or the probe to enable alignment—this will not be discussed here. The roll 

error is more complicated as, upon lowering the probe, one corner of the probe tip edge will contact 

the surface before the other corner. Roll error angle in small probes can be caused by several factors 

including non-planar probes (intrinsic mechanical stresses, fabrication issues), probe mounting 

precision—this is especially true if manual intervention is part of the assembly protocol, cleanliness 

(debris, dust), and probe holder imperfections and imprecisions (mechanical play). 
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A common practical solution to correct roll error angle with macroscopic probes is to lower 

the probe using excess overtravel, this causes visible skate marks (damage) on contact pad 

metallization present on the surface which are uneven in the presence of roll error. The action is 

repeated until the damage is visibly symmetric. For relatively robust macroscopic probes landing on 

large pads, this technique is acceptable—and damage to contact pads is tolerated. However, for 

miniaturized probes this method could significantly damage small contacts (both on the probe and on 

the wafer) and, in addition, be problematic from an observational point of view—something the author 

has experience in [20]. Here, I try to quantify the roll error for a flexible cantilever-based probe to 

enable the prediction of its impact on the overtravel/skate/contact force relationship of such probes. 

In doing so, probe designers have a modelling toolbox to quantify and predict the impact of roll error 

angle—and perhaps potentially-damaging practical trial and error methods during testing could be 

avoided for valuable probes. 

 

3. Description of the problem 

 

Figure 2. Schematic Illustration of roll error angle in a flexible microcantilever-based MEMS probe. (a) 

Touchdown and (b) apex planarity. The bending and torsion of the microcantilever are considered. 

 

Let us consider Figure 2. We begin with an inclined, straight rectangular cantilever which is tilted at an 

angle 𝜃 relative to the flat surface and has a roll error angle of 𝜑—see Fig. 2(a). An overtravel has been 
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applied until one corner of the cantilever (point 𝐴) comes into contact with the surface. At this point 

the apex angle 𝛼 equals the roll error angle 𝜑. If further overtravel is applied, two things occur. First, 

the corner 𝐴 of the probe will skate over the surface—this is due to bending of the cantilever along 

the direction of its length. Second, a torque will cause twisting and warping of the cantilever. The apex 

angle 𝛼 at the end of the cantilever will reduce—eventually bringing the opposite corner 𝐵 of the end 

of the cantilever nearer the surface—see Fig. 2(b). When the apex angle 𝛼 is zero, the points 𝐴 and 𝐵 

will have reached points 𝐶 and 𝐶’ on the surface. The overtravel required to do this can be defined as 

the ‘planarity overtravel’ 𝛿𝑝 and the resulting skate the ‘planarity skate’ ∆𝑝. At apex planarity, the 

planarity contact force at point 𝐶 on the surface is 𝐹𝑐𝑝, at point 𝐶′ it is zero. At this point, we can 

increase the overtravel further to increase the contact force beyond zero on corner 𝐵. If we do this, 

further tip skating will occur. 

In terms of the contact force, three distinct phases occur as the overtravel is increased once 

the lower corner 𝐴 of the cantilever tip edge is in contact with the surface. First, before planarity is 

achieved, the contact force between the lower contacting corner 𝐴 and the surface increases—this is 

due to bending of the cantilever. This bending force cause torsion of the cantilever. At the precise 

overtravel required for planarity 𝛿𝑝, the whole lower edge of the tip is in contact with the surface. At 

this point, the force varies linearly along the edge to zero at the other corner 𝐵. If the overtravel is 

increased beyond this, the extra bending of the cantilever will generate a force along the whole of the 

edge of the cantilever in contact with the surface. The contact force at opposite corner will thus 

increase. The force increases linearly along the whole edge of the cantilever which is now in contact 

(parallel to) with the surface. 

We can therefore ask ourselves the following questions: For a given set of practical parameters 

(cantilever shape (e.g. rectangular, trapezoidal…), cantilever dimensions, elastic modulus, shear 

modulus, tilt angle, roll error angle), what overtravel is required to achieve tip planarity with the 

surface? What is the resulting planarity tip skate? What is the planarity contact force of the tip of the 

cantilever? For a given roll error, what overtravel needs to be imposed to achieve a certain contact 

force on the upper, initially-higher, corner 𝐵? The latter issue is important if there are several spatially-

separated electrical contacts present on the tip. First, planarity is essential for all pads to be in physical 

contact with the surface. Second, a certain contact force may be necessary to achieve a minimum 

contact (metal-to-metal) resistivity. Let us now develop a simple model to predict this behaviour and 

provide a simple-to-use modelling toolbox for the engineer. 

 

4. Modelling 
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Let us first consider a rectangular cantilever (length 𝐿, width 𝑤, and thickness 𝑡) having an elastic 

modulus 𝐸, a Poisson’s ratio 𝜈, and a shear modulus 𝐺. We assume that the cantilever is tilted (pitch) 

at an angle 𝜃 relative to a flat surface. In terms of friction, forward and lateral skate of the apex corner 

will occur according to the probe tilt angle 𝜃 and the friction coefficient 𝜇 of the two material making 

up the tip and the surface [22]: the corner of the apex skates if tan 𝜃 > 𝜇. We assume that the 

cantilever has a roll error angle 𝜑. The angle the apex makes with the surface is initially 𝛼; this angle 

varies from 𝜑 to zero with torsion. The starting point for the modelling is when the lowest corner of 

the cantilever contacts the underlying surface. At this point there is no bending or torsion warping of 

the cantilever. Following this, we apply a vertical downward overtravel 𝛿 to the cantilever. The effect 

of this is to cause the tip of the cantilever to skate a distance ∆ across the surface, with the lower 

corner of the edge of the cantilever in contact with the surface. The cantilever now begins twisting, 

with a torque 𝑇 generated at the corner in contact with the surface.  

To obtain a simple, approximate analytical model of the system some assumptions can be 

made. First, the bending cantilever can be modelled by a solution of the Euler-Bernoulli equation [24]. 

Second, the roll error angle 𝜑 is considered to be small <10° [12–14], such that the torque acting on 

the corner of the end edge of the cantilever is considered parallel with the contact force which causes 

the cantilever to deflect. Third, the cantilever only bends in the axial direction, there is no bending of 

the cantilever in the transverse direction—only warping—as we consider the transverse stiffness to be 

much greater than the axial/longitudinal direction stiffness. This means that as the torque increases 

due to the axial bending of the cantilever; the end edge (apex) of the cantilever (width 𝑤) remains 

straight and does not curve. 

The value of torque required to twist the cantilever end by the apex angle 𝛼 is given by: 

𝑇 =
𝐺𝐽𝑟𝑒𝑐𝑡𝛼

𝐿
      (1) 

Where 𝐽𝑟𝑒𝑐𝑡 is the torsion constant of the rectangular cantilever. For a rectangular cantilever of 

uniform section, the torsion constant is given by [25]: 

𝐽𝑟𝑒𝑐𝑡 = 𝑤𝑡3 [
1

3
− 0.21

𝑡

𝑤
(1 −

𝑡4

12𝑤4)]    (2) 

The torque force 𝐹𝑇 (orthogonal to the lower end edge of the cantilever) at the corner of the cantilever 

in contact with the surface is given by: 

𝐹𝑇 =
2𝑇

𝑤
      (3) 
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But we also know for a rectangular cantilever that the force 𝐹𝐶  concentrated at the load required to 

obtain a certain cantilever deflection 𝛿𝑦 is given by [22]: 

𝐹𝐶 =
𝛿𝑦𝐸𝑤𝑡3

4𝐿3      (5) 

We can assume that 𝐹𝑇 equals 𝐹𝑐 for small roll error angles (e.g. cos 10 = 0.985); therefore, the 

deflection of the tip (due to bending) required to achieve tip planarity 𝛿𝑦
𝑝

, i.e. 𝛼 = 0 in Fig. 2, is given 

by: 

𝛿𝑦
𝑝

=
8𝐺𝐽𝑟𝑒𝑐𝑡𝜑𝐿2

𝑤2𝐸𝑡3      (6) 

Also, we know that the ratio between the shear and the elastic moduli is given by: 

𝐺

𝐸
=

1

2(1+𝜈)
     (7) 

Where 𝜈 is the Poisson’s ratio. Therefore, we can write: 

𝛿𝑦
𝑝

=
4𝐿2𝐽𝑟𝑒𝑐𝑡𝜑

(1+𝜈)𝑤2𝑡3     (8) 

Interestingly, the deflection required for apex planarity of a tilted rectangular cantilever is independent 

of the absolute values of the elastic and shear moduli—only depending on cantilever dimensions and 

the Poisson’s ratio of the material. 

However, we also know that the tip deflection is related to the vertical overtravel 𝛿 in the following 

way [22]: 

𝛿 = 𝛿𝑦 cos 𝜃 + 𝛿𝑥 sin 𝜃    (9) 

∆ =  𝛿 tan 𝜃 −
𝛿𝑥

cos 𝜃
    (10) 

where ∆ is the tip skate and that the vertical 𝛿𝑦 and lateral 𝛿𝑥  movements of the tip due to bending 

are related by the following formula [22]: 

𝛿𝑥 = 𝑓𝐿 [√
sin−1

𝛿𝑦

𝐿
𝛿𝑦

𝐿

− 1]     (11) 

where 𝑓 is a constant equal to 7.4 for a rectangular cantilever bending according to a cubic polynomial 

solution. Therefore, as the planarity tip overtravel 𝛿𝑝 is a function of the tip 𝑦 displacement 𝛿𝑦
𝑝

, i.e. 

𝛿𝑝 = 𝑔(𝛿𝑦
𝑝

), then the roll error angle can be computed using: 

𝜑 =
(1+𝜈)𝑤2𝑡3

4𝐿2𝐽𝑟𝑒𝑐𝑡𝑔−1(𝛿𝑝)
     (12) 



9 
 

The above equation means that the roll error angle 𝜑 can be computed using a measurement of the 

planarity overtravel 𝛿𝑝. By knowing 𝛿𝑝, 𝛿𝑦
𝑝

 can be found—enabling the value of 𝜑 to be found. 

Along with rectangular cantilevers, triangular-shaped trapezoidal probe shapes are also a 

common shape for probes. Let us now consider a flat trapezoidal cantilever having a uniform thickness 

𝑡, a base width 𝑏, and apex length 𝑎. 

For a trapezoidal cantilever the force 𝐹𝐶, concentrated at the load, required to obtain a certain 

deflection 𝛿𝑦 is given by [23]: 

𝐹𝑐 =
𝛿𝑦𝐸𝑡3

6𝐿3 [(
𝑏2+5𝑎2+6𝑎𝑏

𝑏3+𝑎3+5𝑎𝑏2+5𝑎2𝑏
) − (

2𝑎

4𝑎𝑏+𝑏2+𝑎2)]
−1

   (13) 

As with the rectangular cantilever, the mechanical properties are 𝐸, 𝜈, and 𝐺. The width 𝑤 of 

the trapezoidal cantilever varies according to: 

𝑤(𝑥) = (
𝑎−𝑏

𝐿
) 𝑥 + 𝑏     (14) 

At the end of the cantilever, the torque force is given by: 

𝐹𝑇 =
2𝑇

𝑎
      (15) 

We can consider the torque 𝑇 along the length of the cantilever to be constant. By making the 

assumption that the torsional constant varies along the length of the cantilever, the angle of twist 𝛼 

for a given torque 𝑇 at the apex can be computed using: 

𝛼 =
𝑇

𝐺
∫

1

𝐽(𝑥)

𝐿

0
𝑑𝑥      (16) 

The torsion constant of a trapezoidal cantilever (non-uniform section) can be computed using the 

following relationship: 

𝐽𝑡𝑟𝑎𝑝 = 𝐿 (∫
1

𝐽(𝑥)

𝐿

0
𝑑𝑥)

−1
    (17) 

The last two equations can be solved numerically. Therefore, at apex planarity, the deflection 𝛿𝑦
𝑝

 

required to cause planarity of the end of a trapezoidal cantilever is given by: 

𝛿𝑦
𝑝

=
12𝐿2𝐺𝐽𝑡𝑟𝑎𝑝𝜑

𝐸𝑡3𝑎
[(

𝑏2+5𝑎2+6𝑎𝑏

𝑏3+𝑎3+5𝑎𝑏2+5𝑎2𝑏
) − (

2𝑎

4𝑎𝑏+𝑏2+𝑎2)]   (18) 

Note that setting 𝑎 = 𝑏 = 𝑤, and 𝐽𝑡𝑟𝑎𝑝 = 𝐽𝑟𝑒𝑐𝑡, one reverts back to the purely rectangular cantilever 

case. 

As above we can therefore write: 
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𝛿𝑦
𝑝

=
6𝐿2𝐽𝑡𝑟𝑎𝑝𝜑

(1+𝜈)𝑡3𝑎
[(

𝑏2+5𝑎2+6𝑎𝑏

𝑏3+𝑎3+5𝑎𝑏2+5𝑎2𝑏
) − (

2𝑎

4𝑎𝑏+𝑏2+𝑎2)]   (19) 

Again, as is the case for a rectangular cantilever, for a trapezoidal cantilever the deflection required 

for apex planarity with the surface is independent of the absolute values of the elastic and shear 

moduli, and only depends on the Poisson’s ratio. As the relationship between the apex deflection and 

the overtravel is known [22,23] by using Eq. 9 and Eq. 11 above, it is possible to compute the roll error 

angle from the measured overtravel causing planarity. 

𝜑 =
(1+𝜈)𝑡3𝑎

6𝐿2𝐽𝑡𝑟𝑎𝑝𝑔−1(𝛿𝑝)
[(

𝑏2+5𝑎2+6𝑎𝑏

𝑏3+𝑎3+5𝑎𝑏2+5𝑎2𝑏
) − (

2𝑎

4𝑎𝑏+𝑏2+𝑎2)]
−1

  (20) 

We now have a useful tool box of equations to solve the problem and make some predictions about 

practical examples of probes where roll error may be present. The following section presents 

experimental work to test the modelling. 

 

5. Experimental 

5.1 Fabrication of cantilevers 

Rectangular and trapezoidal shaped cantilevers were fabricated for the study using thin, dense 

polystyrene sheets measuring 200×300 mm (Schulcz GmbH, Germany) and having a nominal thickness 

of 1.5 mm. The details of the fabrication methods can be found in a previous publication [23]. As the 

elastic modulus of dense polystyrene [23] is approximately 100 times less than that of crystalline silicon 

in the <110> directions [26], the stiffness of centimetre-sized polystyrene cantilevers is of the same 

order as the stiffness of micrometre-sized silicon cantilevers. Therefore, macroscopic experimental 

results obtained using dense polystyrene can be used to test mechanical models and also give insights 

into the mechanical behaviour expected when using silicon-based microcantilevers. 
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Figure 3. Dimension of the six dense polystyrene cantilevers fabricated for the experimental part of 

the study. (upper images) Rectangular cantilevers having different lengths: 𝐿 = 150 mm, 200 mm, and 

250 mm, decreasing in mechanical stiffness. (lower images). Trapezoidal cantilevers having different 

base widths: 𝑏 = 100 mm, 150 mm, and 200 mm, increasing in mechanical stiffness. All cantilevers have 

a length of 250 mm and a nominal thickness 𝑡 of 1.5 mm. The polystyrene mechanical properties 

relevant to the study are its elastic modulus 𝐸, its Poisson’s ratio 𝜈, and its shear modulus 𝐺. 

 

A schematic diagram of the cantilever dimensions used for the experimental part of the study 

is shown in Figure 3. The fabrication techniques enabled the cantilever dimensions to be produced 

with relatively good accuracy. The lateral cutting accuracy was estimated to be ±0.5mm. As the 

smallest lateral dimension of the cantilevers is 50 mm, this corresponds to an accuracy of 1%. The 
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thickness of the polystyrene sheets was determined using a commercial precision thickness gauge 

(Mitutoyo, Japan) to be 1.515±0.012 mm.  

 

5.2 Contact planarity overtravel and skate versus roll error 

Figure 4 shows a schematic diagram of the experimental setup used to investigate the relationship 

between the planarity overtravel and skate versus the roll error angle. The cantilever (dark blue) was 

attached to a stable mechanical part (black) which could slide on a level surface (grey) to simulate the 

overtravel. The mechanical part enabled the cantilever to be oriented at 25° relative to the vertical 

surface (green)—this is the tilt angle 𝜃 of the cantilever. The cantilevers were attached to the 

mechanical part using stiff copper strips and G-clamps. The approach angle of the mechanical part 

could be varied to simulate a roll error angle 𝜑. The skate and overtravel were measured using 

professional steel rulers allowing the measurement precision to be evaluated to be (±0.25 mm). For a 

typical overtravel of 50 mm, this corresponds to <1% measurement error. Note that gravity caused a 

slight of bending of the suspended cantilevers in the experimental setup—this was identified as the 

largest potential source of error in the measurements. This error was eliminated by making sure that 

the cantilever was perfectly straight (zero bending) at zero overtravel. A digital camera positioned 

directly above the end of the cantilever enabled both the roll error angle to be verified and for the 

moment of apex planarity to be determined. For a given roll error angle (1-3° were used in the current 

study), the overtravel was increased until contact planarity was observed. At this point, the planarity 

overtravel and skate were recorded for each cantilever. The experiments were performed several 

times to ensure measurement repeatability. 

Note that the precise roll angle was obtained experimentally for each experiment. The precise 

roll angle for a specific set-up was evaluated from the photographic data. The apparent angle 𝜂 the 

apex makes with the surface upon touchdown, when observing the apex of the cantilever using a 

camera that is inclined at an angle 𝜔, is related to the probe tilt angle 𝜃 and the roll error angle 𝜑 by 

the relationship 𝜑 = 𝜂 cos(𝜃 + 𝜔)⁄ . The apparent angle 𝜂 is measured in the experiments using 

photography, thus enabling a precise measurement of the roll error angle in the experimental setups—

the method for this is given in the Supplementary Information. 
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Figure 4. Schematic diagram of experimental setup used to determine the contact planarity overtravel 

and skate versus roll error angle 𝜑. (a) Side view and (b) plan view. The black arrows indicate the 

direction of the overtravel 𝛿. The cantilever (dark blue) is mounted on a sliding mechanical part (black). 

At touchdown 𝛼 = 𝜑. The planarity skate ∆𝑝 and planarity overtravel 𝛿𝑝 are recorded using precision 

rulers when torsion of the cantilever results in 𝛼 = 0. 
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Figure 5. Examples of contact planarity experimental results for the rectangular cantilevers. 

Photographs of cantilever having a roll error angle of 2° in touchdown (upper images) and in apex 

planarity (lower images) for cantilevers having a length 𝐿 of (a) 250 mm, (b) 200 mm, (c) 150 mm. The 

width of the rectangular cantilevers measures 50 mm and their thickness is 1.5 mm. The red arrow 

indicates the apparent roll error angle 𝜂 which is related to the roll error angle  𝜑, see Supplementary 

Information. 
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Figure 6. Examples of contact planarity experimental results for the trapezoidal cantilevers. 

Photographs of cantilever having a roll error angle of 1 degree in touchdown (upper images) and in 

apex planarity (lower images) for cantilevers having a base width 𝑏 of (a) 200 mm, (b) 150 mm, (c) 100 

mm. The apex of the trapezoidal cantilevers measures 50 mm and their thickness is 1.5 mm. The red 

arrow indicates the apparent roll error angle 𝜂 which is related to the roll error angle  𝜑, see 

Supplementary Information. 

 

Figure 5 and Figure 6 show example photographs of the experimental results of the rectangular 

cantilevers—Fig. 5—and the trapezoidal cantilever—Fig.6. Each cantilever was initially brought into 

contact with the surface (upper images) and an overtravel is imposed until apex planarity was observed 

(lower images). 

 

 

Figure 7. Examples of the measurement of the overtravel and the skate at apex planarity. (a) overtravel 

and (b) skate for a trapezoidal cantilever having a base 𝑏 of 150 mm. The roll error angle 𝜑 = 3°, 𝜃 = 

25°, 𝑎 = 50 mm, 𝐿 = 250 mm, and 𝑡 = 1.515 mm. 
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Figure 7 shows photographs of how the planarity overtravel and skate were experimentally-

evaluated. The upper images are taken at cantilever touchdown, the lower images are taken at apex 

planarity. The white arrow in the lower image of Fig. 7(a) indicates the overtravel direction. The black 

arrow in the lower image of Fig. 7(b) indicates the planarity skate. For the example given, the intended 

roll error angle is 2° and measured to be 2.18°. The planarity overtravel in this case is 32.75 mm, and 

the planarity skate is 11.75 mm. 

 

 

Figure 8. Planarity overtravel and skate as a function of roll error angle: comparison of experimental 

results (solid circles) with modelling (dashed lines). (a) and (b) Planarity overtravel and skate of 

rectangular cantilevers of varying length 𝐿. (c) and (d) Planarity overtravel and skate of trapezoidal 

cantilevers of varying base width 𝑏. 

 

Figure 8 shows plots of the experimental results (solid circles) and compares them to results 

of the modelling (dashed lines). There are a number of observations we can make. 
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Let us first consider the rectangular cantilevers. With reference to Fig. 8(a), for a given length 

𝐿, the overtravel required to obtain apex planarity increases with roll angle. For a shorter (stiffer) 

cantilever, the overtravel required for planarity is less for a given roll angle. For a given cantilever 

length, the planarity overtravel versus roll angle appears to be linear. With reference to Fig. 8(b), the 

experimental planarity skate increases with decreasing cantilever base width. The planarity skate also 

increases with increasing roll error angle. However, the relationships do not appear to be linear. 

Let us now consider the trapezoidal cantilevers. With reference to Fig. 8(c), for a given base 

width 𝑏, the overtravel required to obtain apex planarity increases with roll angle. Second, for a wider-

base (stiffer) cantilever, the overtravel required for planarity is less for a given roll angle. For a given 

cantilever base width, the planarity overtravel versus roll angle appears to be linear. With reference 

to Fig. 8(d), the experimental planarity skate increases with decreasing cantilever base width. The 

planarity skate also increases with increasing roll error angle. However, the relationships do not appear 

to be linear. 

In all cases the modelling (the dashed lines in Fig. 8) fits the experimental data very well. All 

numerical values of this part of the study (experimental and the results of the modelling) can be found 

in the Supplementary information. 

Finally, perhaps somewhat counterintuitively, the observations demonstrate clearly that a 

stiffer cantilever requires less overtravel to achieve tip planarity than a more flexible cantilever. This is 

because for a stiff cantilever, a higher contact force is generated at the contact point for a given 

overtravel compared to more flexible cantilever. This higher contact force leads to a higher torque, 

leading to greater torsion and thus obtention of planarity for less overtravel compared to a more 

flexible cantilever, i.e. a longer rectangular cantilever or a shorter-base trapezoidal cantilever. 

 

5.3 Contact force and roll error 

Figure 9 shows the schematic diagram of the experimental setup used to investigate the relationship 

between the contact force of the cantilevers and the surface as a function of roll error angle. A 

precision laboratory scales (Sauter GMbH, Germany) having a precision of ±0.1 g (i.e. ±981 µN) was 

employed to determine the contact force. The cantilever (dark blue) was oriented at a tilt angle 𝜃 of 

25° relative to the surface of the adjustable laboratory table (orange) using a rigid mechanical part 

(black) attached to a laboratory stand (light blue). A layer of polystyrene sheeting (green) was used as 

the contact surface to minimize friction during tip skating. The friction coefficient of dense polystyrene 

on dense polystyrene is reported to be 0.35 [27]; the condition for tip skating [22] is therefore met. As 
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above, gravity causes a slight amount of bending of the cantilevers and is again certainly the largest 

potential source of error in the measurements—this is accounted for by making sure the cantilever is 

perfectly straight (zero bending) and oriented at 25° at zero overtravel. The vertical overtravel was 

imposed on the cantilever by using the adjustable laboratory support—in this setup the overtravel 

accuracy was determined to be ±0.5mm. A suitably-positioned digital camera was used to verify the 

roll error angle 𝜑 and to ascertain when contact planarity was achieved. This setup was also used to 

determine the contact force versus overtravel relationship of all cantilevers. The experiments were 

performed several times to ensure repeatability. 

 

 

Figure 9. Schematic diagram of experimental setup used to determine the contact force at cantilever 

tip planarity versus roll error. (a) Side view and (b) end view. The arrows indicate the direction of the 

overtravel. The cantilever (blue) is attached to a sliding mechanical part (black) which is mounted onto 

a laboratory stand (light blue). The mechanical part enables the cantilever tilt angle 𝜃 to be fixed at 

25°. A roll error angle 𝜑 is imposed on the cantilever. The overtravel is imposed and the apex of the 

cantilever skates across the surface (green) until the apex is planar to the surface. At apex planarity, 

the contact force is recorded using the precision scales (grey). 
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Figure 10. Contact force experimental results. Photographs of cantilever having a roll error angle in 

touchdown (upper images) and in apex planarity (lower images) for cantilevers having a base width 𝑏 

of (a) 50 mm, (b) 100 mm, (c) 150 mm, and (d) 200 mm. The apex of the cantilevers measures 50 mm, 

its thickness is 1.5 mm, and its length is 250 mm. The scale bars indicate 10 mm. 

 

Figure 10 shows photographs of the experimental results. Each cantilever was initially brought 

into contact with the surface (upper images) and an overtravel is imposed until apex planarity was 

observed (lower images). The contact force at apex planarity was deduced as a function of cantilever 

base width.  
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Figure 11. Experimental results. (a) contact force as a function of apex deflection. (b) contact force as 

a function of overtravel. (c) the cantilever stiffness as a function of cantilever base width 𝑏. The dashed 
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lines in (a) correspond to linear fits of the data. The solid lines in (b) and (c) are solutions of the Euler-

Bernoulli equation. 

 

Figure 11 shows plots of the experimental data. First, the contact force increases linearly with 

overtravel and increases with increasing cantilever base width—Fig. 11(a). The overtravel can be 

converted to apex deflection using the formulae above—this is plotted in Fig. 11(b). The solid lines in 

Fig. 11(b) correspond to Equation 13 above, the data fits the theory very well. The slopes of the data 

in Fig. 11(b) enables the cantilever stiffnesses to be deduced—this is plotted in Fig. 11(c) and 

corresponds very well with modelling. The trapezoidal cantilever is 2% stiffer than it should be, but as 

the stiffness varies as 𝑡3 𝐿3⁄ , the maximum dimension errors: 0.5 mm for 𝐿 and 0.012 mm for 𝑡, can 

account for this small discrepancy. 

The experiments using the rectangular cantilever enabled the elastic modulus of the 

polystyrene sheets used here to be determined to be 1.754±0.071 GPa. This value falls in the range of 

published values for ‘dense polystyrene’ 1.6-3.4 GPa, e.g. Cheng et al [28] reported a value of 1.6 GPa 

and 1.8 GPa using two different indentation methods. Valentova and Stejskal reported 1.8 GPa [29], 

Miyake et al [30] measured a value of 2.3 GPa using AFM nanoindentation methods. The value for bulk, 

very dense polystyrene is reported to be in the range 3.2-3.4 GPa [23]. 
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Figure 12. Experimental results and comparison with modelling. The planarity experimentally-

determined contact force (filled circles) as a function of cantilever base width. The dashed black curve 

is the result of the modelling. 

 

Figure 12 plots the experimentally-obtained contact force (filled circles) required to achieve 

apex planarity for four cantilever of varying base width 𝑏. In this case the roll error angle was 3°. The 

planarity contact force increases with increasing base width. The dashed black line shows the result of 

the modelling. This is the best fit of the modelling to the experimental data by using a Poisson’s ratio 

of 0.33. For dense polystyrene, Hughes et al [31] reported a Poisson’s ratio of 0.336. A Poisson’s ratio 

equal to 0.33 enabled a reasonable fit of the experimental data to the model.  This enables the value 

of the shear modulus to be determined to be 659.4 MPa. These values are in comparable with accepted 

published values [32] for dense polystyrene and indicates that the model works well. 

Let us now consider some practical issues of MEMS-based electrical probes where the above 

findings are of some relevance. 

 

6. Compensating for roll error 

This section discusses three methods of roll error compensation in a flexible microcantilever-based 

electrical probe having two or more contacts. First, mechanical torsion of the cantilever can be used 

to bring the whole of the apex of the probe into contact with the surface. In this case an overtravel will 

be necessary to achieve a requited contact force on all contact pads. Second, two cases of probe 

rotation compensation of roll error are considered. These are the case where a fine control of the roll 

angle is possible, and the case where the contact pads do not contact with the substrate on 

touchdown. 

 

6.1 Torsional compensation for roll error 
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Figure 13. Schematic diagram showing torsional compensation of roll error angle in a flexible 

microcantilever-based probe. (a) Vertical downward overtravel. (b) Touchdown of right-hand contact 

pad with surface. (c) Further overtravel leads to bending and torsion of the cantilever to achieve apex 

planarity. (d) Further overtravel increases the contact force to achieve two low resistance contacts. 

The eye inset to (a) shows how one is looking at the apex of the cantilever in the figure. 

 

Figure 13 shows how the natural torsion of the microcantilever can lead to roll error 

compensation. This method is useful if the roll angle of the probe cannot be finely controlled and also 

if the contact pads do not make contact with the surface upon initial probe touchdown. 
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Initially, the probe is not in contact with the surface—Fig. 13(a). A downward overtravel is 

imposed to bring one corner of the right-hand contact pad at the apex of the probe into contact with 

the surface; this is probe touchdown—see Fig. 13(b). At this point an electrical resistance is perhaps 

measurable. The left-hand contact pad of the probe is not in contact with the surface—it is a distance 

of 𝑎 sin 𝜑 above the surface. At this point the cantilever is not bending and the contact force is zero. 

Further downward overtravel is imposed to the probe—see Fig. 13(c). When the left-hand probe pad 

enters into contact with the surface due to bending and torsion, an electrical resistance will be 

measurable. At this point the planarity overtravel is known. By using Equation 20 above, the value of 

the roll error angle is also known. The probe apex has also skated across the surface, the value of which 

can be calculated by the model. The contact force between the right-hand-side pad and the surface is 

greater than zero and given by the model. Next, if further downward overtravel is imposed, several 

things happen—see Fig. 13(d). First, the cantilever bends more. Second, the tip skates further across 

the surface. Third, the contact force increases on both the left-hand and the right-hand pads. This 

results in a reduction of the contact resistance between the pads and the surface. The overtravel can 

be increased until the left-hand pad contact force is sufficient to minimize the contact resistance.  

 

6.2 Rotational correction for roll error angle 
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Figure 14.  Schematic diagram showing roll error angle correction if contact pads make electrical 

contact upon touchdown. a) Vertical downward overtravel. (b) Touchdown of right-hand contact pad 

with surface. (c) rotation of probe to make left-hand contact with surface. (d) reverse rotation by an 

angle of 𝜑 to achieve planarity. (e) Downward overtravel to achieve touchdown. (f) Further overtravel 

increases the contact force to achieve two low resistance contacts. 

 

Figure 14 shows a trivial solution for roll error angle correction in a microcantilever-based 

probe if: (i) the metalized contact pads make contact with the surface on initial touchdown and (ii) the 

roll angle of the probe can be accurately controlled. In this case probe touchdown is made by imposing 

overtravel—Fig. 14(b). The probe is rotated until the other pad makes electrical contact with the 

underlying surface—Fig. 14(c). This rotation corresponds to 2𝜑 degrees. The probe is then reverse 

rotated by 𝜑 degrees—see Fig. 14(d)—to achieve apex planarity. Further overtravel is then imposed 

to achieve touchdown—Fig. 14(e)—and minimum contact resistance—Fig. 14(f)—via bending of the 

cantilever and resulting skate [22,23]. The Supplementary Information shows a figure for the trivial 

case of a rigid commercial probe. 
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Figure 15. Schematic diagram of roll error angle correction if contact pads do not make electrical 

contact upon initial touchdown. (a) Downward overtravel achieves touchdown and (b) planarity of the 

apex of the probe. (c) the probe is raised and (d) rotated by 𝜑 to achieve apex planarity. (e) downward 

overtravel achieves touchdown with planarity. (f) further overtravel achieves minimum contact 

resistance on both pads. 

 

Figure 15 shows a protocol for roll error angle correction if, due to design or fabrication 

constraints, the metallized contacts do not make contact with the surface upon initial touchdown. 

Again, an overtravel brings the probe into touchdown—Fig. 15(a). Further overtravel is then imposed 

to achieve apex planarity—Fig. 15(b). Here, two contact resistance are measurable. Knowing the value 

of the overtravel enables the roll error angle to be computed. The probe can then be raised and rotated 

by 𝜑 degrees to achieve apex planarity—Fig. 15(d). A downward overtravel can now be applied to the 

probe to bring the two probe pads simultaneously into contact with the surface; this is probe 

touchdown—Fig. 15(e). Here the cantilever is not bending and contact force on both pads is zero. 

Further downward overtravel can now be applied to the probe—Fig. 15(f). The effect of this is to cause 

the probe apex to skate over the surface by a known amount given by the model. In addition, the 

contact force between the probe pads and the surface can be increased until a minimum contact 
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resistance is achieved. In the case of miniature probes, rotational compensation of the probe may 

simply not be possible due to the required resolution of the roll angle control. Let us consider a pad 

metallization thickness 𝑚 at a distance 𝑔 from the edge of the cantilever. In this case if the roll error 

angle is greater than tan−1 𝑚 𝑔⁄  then the pad will not be in electrical contact with the surface upon 

probe touchdown. 

 

7. The practical example of a silicon microcantilever-based probe 

Let us now consider specific practical examples where all this could be of some use. Consider two 

flexible trapezoidal-shaped silicon microcantilever-based probes having 2 electrical contact pads—as 

shown in Figure 16. In both cases, the cantilever has a length of 200 µm, an apex length of 15 µm, and 

a thickness of 5 µm. Probe 1 has a base width of 200 µm and probe 2 has a base width of 50 µm. The 

microcantilevers are supported by a thick millimetre-sized silicon support chip. In the current examples 

we will consider the gold thickness to be much less than the cantilever thickness, e.g. 100 nm, meaning: 

(i) potential mechanical damage of the gold pads [20,21] is not considered in a first approximation and 

(ii) the properties of the gold have negligible mechanical impact on the cantilever. The cantilevers are 

fabricated on a (100) silicon wafer and the cantilevers lengths are oriented in the [011] crystal 

direction. In this case, the Poisson’s ratio of silicon is 0.065 [33]. The elastic modulus of silicon for this 

direction [011] is 169 GPa [26], therefore the shear modulus is 79 GPa. 
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Figure 16. Two MEMS-based two-contact probes employing a flexible trapezoidal-shaped silicon 

microcantilever. The right-hand side corner and left-hand side corner of the probes are indicated in 

the figure. 

 

Let us assume we are trying to achieve two low-resistance electrical contacts onto an 

underlying flat metal surface—this could be the electrical contacts of a device targeted for testing. The 

probe is oriented at a tilt angle of 25° relative to the flat underlying surface. As the goal is to have two 

low resistance contacts, e.g. <1Ω. In order to do so, we assume that a minimum contact force of 400 

µN is required for each contact [21]. Let us also consider that the unknown roll error angle 𝜑 is smaller 

than the resolution of the support rotation mechanism. This means that a simple roll error correction 

described above could be problematic. We will therefore use the torsional compensation approach 

also described above. 
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Figure 17. Results of the modelling of two microcantilever-based probes. (a) Probe 1 (𝑏 = 200 µ𝑚); 

skate versus overtravel (upper image) and contact force versus overtravel (lower image). (b) Probe 2 

(𝑏 = 50 µ𝑚); skate versus overtravel (upper image) and contact force versus overtravel (lower image). 

The points ⓪ correspond to touchdown of one corner of the apex of the probe. The points ① 

correspond to apex planarity where the probe apex is planar to the underlying surface. The points ② 

corresponds to when enough excess overtravel has been applied to increase the contact force of the 

left-hand apex corner to the required value to a low resistance contact—400 µN in this case. Rhs = 

corresponds to right-hand side, Lhs corresponds to left-hand side. 

 

With reference to Figure 17, let us first consider probe 1 (𝑏 = 200 µ𝑚).  First, we lower the 

probe until the right-hand corner of the tip apex makes electrical contact with the surface. This is the 

zero overtravel point ⓪, the origin on the graphs shown in Fig. 17(a). Next, the overtravel is gradually 

increased and noted. At point ① in Fig. 17(a) the apex of probe 1 is now planar to the surface. We 

know this as both electrical contacts are conducting. The overtravel to achieve this is measured to be 

2.46 µm. The apex skate at this point is therefore 1.12 µm, calculated via the modelling. The contact 
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force of the right-hand side corner is calculated to be 253.2 µN. At this point the modelling allows us 

to compute the roll error angle to be 0.1°. We are now able to increase the overtravel to achieve a 

required contact for of 400 µN on both contacts. At point ② in Fig. 17(a) the overtravel has been 

increased to 6.38 µm (computed by the model) to create a contact force of 400 µN on the left-hand 

side corner of the apex. The contact force on the right-hand side corner is now 653.2 µN and the apex 

skate is 2.80 µm—also computed by the model. At this point we should measure two low resistance 

electrical contacts between the probe and the surface. 

Now, with reference again to Figure 17, let us now consider probe 2 (𝑏 = 50 µ𝑚).  First, we 

lower the probe until the right-hand corner of the tip apex makes electrical contact with the surface. 

This is the zero overtravel point ⓪, the origin on the graphs shown in Fig. 17(b). Again, the overtravel 

is gradually increased and noted. At point ① in Fig. 17(b) the apex of probe 2 is now planar to the 

surface. We know this as both electrical contacts are conducting. The overtravel to achieve this is 

measured to be 3.36 µm. The apex skate at this point is therefore 1.52 µm, calculated via the 

modelling. The contact force of the right-hand side corner is calculated to be 97.9 µN. At this point the 

modelling allows us to compute the roll error angle to be 0.1°. We are now able to increase the 

overtravel to achieve a required contact for of 400 µN on both contacts. At point ② in Fig. 17(a) the 

overtravel has been increased to 17.51 µm (computed by the model) to create a contact force of 400 

µN on the left-hand side corner of the apex. The contact force on the right-hand side corner is now 

497.9 µN and the apex skate is 6.88 µm—also computed by the model. At this point we should measure 

two low resistance electrical contacts between the probe and the surface. 

One can consider the importance of friction in the skating (forward and lateral) in sliding 

electrical contacts. The situation is complicated by many issues such as force depended friction, 

cycling, and damage [34]. In the example above of gold-on-gold, the friction coefficient of gold-on-gold 

is reported to be both force depended and cycle-dependent [35]:  a value of 0.14 is reported for low 

forces meaning skate should occur. It is well known that probe skating can cause damage to probe 

contacts and pad metals. As a practical solution to skate-induced damage, I have previously proposed 

a zero-skate solution in which friction is irrelevant and tip/pad damage would be reduced [22,23]. 

Finally, the author notes that the integration of stress sensors, e.g. using piezoresistors [36], 

enables bending to be measured electrically and also gives knowledge of bending stress to avoid failure 

due to fracture. 

 

8. Impact of pitch error on the modelling of the probes. 
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Finally, the model an also be used to evaluate the impact of the pitch error—commonly referred to as 

‘tilt error’. let us now see the effect of the pitch error on these results. 

 

 𝜽 = 𝟐𝟒° 𝜽 = 𝟐𝟓° 𝜽 = 𝟐𝟔° 

𝜹𝒑 (µm) 2.48 2.46 2.44 

∆𝒑 (µm) 1.08 1.12 1.16 

𝜹𝒇𝒄 (µm) 6.43 6.38 6.33 

∆𝒇𝒄 (µm) 2.69 2.80 2.91 

Table 1. Impact of pitch error on the modelling of probe 1 (𝑏 = 200 µm). 𝛿𝑝 is the overtravel required 

for apex planarity, ∆𝑝 is the skate at planarity, 𝛿𝑓𝑐  is the overtravel required to achieve enough contact 

force for a low resistance contact (400 µN for the modelling), and ∆𝑓𝑐 is the resulting skate. 

 

 𝜽 = 𝟐𝟒° 𝜽 = 𝟐𝟓° 𝜽 = 𝟐𝟔° 

𝜹𝒑 (µm) 3.39 3.36 3.34 

∆𝒑 (µm) 1.46 1.52 1.56 

𝜹𝒇𝒄 (µm) 17.63 17.51 17.39 

∆𝒇𝒄 (µm) 6.57 6.88 7.18 

Table 2. Impact of pitch error on the modelling of probe 2 (𝑏 = 50 µm). 𝛿𝑝 is the overtravel required 

for apex planarity, ∆𝑝 is the skate at planarity, 𝛿𝑓𝑐  is the overtravel required to achieve enough contact 

force for a low resistance contact (400 µN for the modelling), and ∆𝑓𝑐 is the resulting skate. 

 

We can compare Tables 1 and 2. The main conclusions from this are First the pitch error will 

modify the ultimate overtravel required for a correct contact force. A larger angle resulting in a higher 

skate. Second, pitch error will have a greater consequence in less stiff MEMS. We can see this from 

Table 2 where the skate increases by 600 nm from a tilt angle of 24° to a tilt angle of 26°. 

 

9. Conclusions 

Analytical modelling can describe roll angle position error in microelectromechanical systems (MEMS) 

based probes having two or more electrical contact pads. By taking into consideration the bending, the 

torsion, the tip skate, and the contact force of a given cantilever, elegant equations relating the 
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overtravel required for apex planarity are derived. Interestingly, these equations involve only the 

Poisson’s ratio of the cantilever material, not the absolute values of the elastic or shear moduli. For a 

given roll error angle, the model can predict the overtravel required to achieve probe tip planarity. The 

model also predicts the contact force on each contact pad—and, in principle, can be used to anticipate 

the impact of roll error angle on the quality of electrical contact testing. The model can be tested using 

centimetre-sized cantilevers. This approach is easier than the more-challenging characterization of 

miniature microcantilevers. The methodology of the measurements and the modelling enables the 

mechanical properties (elastic modulus, shear modulus, and Poisson’s ratio) of the material to be 

evaluated. The predictions of the modelling agree reasonably well with the experimental findings. As 

the model is scalable, one can conclude that, at least in principle, it can be used in a first approximation 

to understand roll angle positioning errors in miniature MEMS-based probes based on silicon 

microcantilevers. The findings have permitted protocols for the compensation and correction of roll 

error in flexible microcantilever-based probes to be suggested. A flexible microcantilever enables a 

torsional compensation of the roll error angle. It also enables the roll error angle to be corrected. The 

specific geometry of the probe tip and experimental setup will determine which approach is best 

suited. It is hoped that the ideas and findings presented here are useful for the test engineer and the 

designer of MEMS probes being potentially used for automated probing. 
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