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Abstract. In this paper we introduce and study description quivers
as compact representations of concept lattices and respective ensembles
of decision trees. Formally, description quivers are directed multigraphs
where vertices represent concept intents and (multiple) edges represent
generators of intents. We study some properties of description quivers
and shed light on their use for describing state-of-the-art symbolic ma-
chine learning models based on decision trees. We also argue that a con-
cept lattice can be considered as a cornerstone in constructing an efficient
machine learning model. We show that the proposed description quivers
allow us to fuse decision trees just as we can sum linear regressions, while
proposing a way to select the most important rules in decision models,
just as we can select the most important coefficients in regressions.

Keywords: Formal Concept Analysis · Supervised Machine Learning ·
Explainable Artificial Intelligence

1 Introduction

Intents and their generators are important tools of Formal Concept Analysis [9].
This paper introduces generators of difference between comparable intents and
proposes some ways of using them, such as simplifying the lattice visualization
and summation of decision trees.

Formal Concept Analysis (FCA) is a mathematically well-founded theory
aimed at data analysis. One of its tools for analysing data consists in providing
computable representations of a dataset [6]. These are, e.g., intents (the maximal
subsets of attributes describing a specific subset of objects), and their generators
(subsets of intents that describe the same subset of objects as intents). This
paper generalises the notion of generators to difference generators that describe
the same subset of objects as the difference of two comparable intents. Here we
study difference generators and provide some of their use-cases.

First, the difference generators help data analysis by presenting more con-
cise line diagrams of concept lattices given by intents. Intents, being maximal
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subsets of attributes corresponding to a set of objects often make diagrams too
overloaded with text. The well-known solution to this problem is to show only
the “new” (w.r.t. to predecessors intents) attributes of intents, but not any of
its smaller intents. Difference generators allow to present only the key new at-
tributes of an intent. Thus, they require less text on a line diagram of a lattice
of intents and help to highlight the lattice structure.

Difference generators also make it possible to introduce description quiv-
ers as a graph theory-based view of a lattice of intents. A description quiver
is a directed multigraph, also known as a “quiver”, with intents as nodes and
difference generators between intents as edges. This graph-theoretic definition
proposes a useful interface between FCA and graph theory. Moreover, due to a
versatile choice of its edges, description quivers can both copy the “behaviour”
of a lattice of intents, or refer only to a subset of attributes. Therefore, descrip-
tion quivers can be studied as mathematical objects on their own. This paper
introduces the first results of such a study.

Finally, description quivers can be easily applied in a supervised machine
learning scenario, resulting in decision quiver model. This allows us to describe
decision trees [5] and their ensembles (e.g. random forest [4]) in terms of FCA.
The connections between FCA and decision trees were extensively studied in [1],
[2], [3],[7], [10], [11], and [12].

Accordingly, this paper presents a new simpler notation to describe connec-
tions between FCA and decision trees. The notation also presents a simple way
to combine an ensemble of loosely connected decision trees into one intercon-
nected model. This paper continues the work started in [7] and [8]. It merges
these two works and proposes a better mathematical language for describing
relations between FCA and decision trees.

The paper is organised as follows. Section 2.1 recalls basic definitions of For-
mal Concept Analysis (FCA). Then Section 2.2 introduces difference generators
and how to use them for providing more concise visualizations of lattices of
intents. Section 2.3 introduces and studies description quiver: a directed mul-
tidigraph with intents as nodes and difference generators as edges. Section 2.4
introduces decision quivers that allow summation of decision trees. Experimen-
tal results presented in Section 3 provide empirical validation of propositions of
Sections 2.1 and 2.3. Finally, Section 4 concludes the paper.

2 Theoretical Background

2.1 Formal Concept Analysis

This section recalls basic definitions of Formal Concept Analysis to facilitate
their generalizations in the following sections.

As usual, data are given in the form of a formal context K = (G,M, I),
where G is the set of objects, M is the set of (binary) attributes, and I is a
relation between objects and attributes: I ⊆ G×M .

For a given subset of attributes X ⊆ M and an attribute m ∈ M , we often
want to consider the cases when attribute m belongs to X : m ∈ X, when
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attribute m does not belong to X : m 6∈ X, also represented as m ∈ X, and
when the presence of attribute m is irrelevant: m 6∈ X and m 6∈ X. Therefore,
we define a dichotomised set of attributes M± as the union of attributes M and
their negations:

M± = {m,m | m ∈M}. (1)

Standard prime operators are defined as follows: A′ gives the maximal
subset of attributes (i.e. a description) shared by all objects from A ⊆ G;
analogously, B′ gives the maximal subset of objects (that we call an extent)
shared by all attributes from B ⊆M .

A′ = {m ∈M± | ∀g ∈ A : gIm}, A ⊆ G (2)

B′ = {g ∈ G | ∀m ∈ B : gIm}, B ⊆M± (3)

Formal Concept Analysis studies formal concepts and the partial order (lat-
tice) over them. A formal concept if a pair (A,B) of subsets of objects A and
attributes B, such that A is the extent of B : A = B′, and B is the intent (i.e.
maximal description) of A : B = A′. To make the notation of this paper concise
we will ignore the extents and concentrate only on intents. It is well-known that
the set of all intents forms a lattice dual to the lattice of extents:

L = {B ⊆M± | B′′ = B} (4)

Each intent B ⊆ M± : B′′ = B corresponds to many subsets of attributes
D ⊆ M± with the same closure B : D′′ = B. Such subset of attributes D is
called a generator of B. The set of all generators of B gives the equivalence
class of B : [B] = {D ⊆ M± | D′′ = B}. A subset of attributes D ⊆ M± is
called a key (or a minimal generator) if it is the smallest subset of attributes
with closure B: i.e. ∀E ⊂ D : E′′ 6= D′′ = B. Note that for each intent B ⊆M±
there can be multiple (even exponentially many) incomparable keys.

Table 1 presents a formal context that is going to be a running example in the
paper. The purpose for the target column Y (so as the reason for using numbers
0 and 1 instead of crosses) will be covered in section 4. This formal context is
inspired by the classic “Live in water” formal context.

2.2 Difference generators

The previous subsection describes our motivation to study the keys of set dif-
ferences between comparable intents. This subsection defines these differences
mathematically.

Definition 1. Subset of attributes D is called a difference generator between
intents B2, B1, such that B1 ⊆ B2, if its closure is equal to the closed difference
between intents B2 and B1:

D ⊆M± : D′′ = (B2 \B1)′′, where B1, B2 ∈ L, B1 ⊆ B2. (5)
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Attributes M Target Y
l w c h

Objects
G

dog × × × 1
corn × 0

bream × × × 0
egg 0

Test
objects

reed × × 0
sea snake × × × 0

Attr.
names

lives on land lives in water can move has limbs breast feeds

Table 1: Running example of a formal context with additional target column Y
and test objects

A trivial example of a difference generator between intents B2 and B1 is the
difference B2 \B1 itself. In fact, we are not interested in any difference generator
larger than the difference.

Proposition 1. Subset D of the difference between two comparable intents B2

and B1 is a difference generator between these intents if and only if the union
of its closure with B1 is the closure of B2:

∀B1, B2 ∈ L, B1 ⊆ B2, D ⊆ B2 \B1 : D′′ = (B2 \B1)′′ ⇐⇒ B1 ∪D′′ = B2 (6)

Proof. Let us derive prove the proposition in two directions:

– From left to right:
If D′′ = (B2 \B1)′′ then (B2 \B1) ⊆ (B2 \B1)′′ = D′′ and D′′ ⊆ B2

therefore B1 ∪D′′ = B2;
– From right to left:

First, if B1 ∪D′′ = B2 then (B2 \B1) ⊆ D′′;
second, if D ⊆ B2 \B1 then D′′ ⊆ (B2 \B1)′′;
therefore D′′ = (B2 \B1)′′.

Note that any generator D ⊆ M± of an intent B ⊆ M± : D′′ = B can
be represented as a difference generator between B and the minimal intent ∅′′:
D′′ = B ⇐⇒ D′′ = (B \ ∅′′)′′.

Intent differences often used in FCA to shorten the labels of nodes in a line
diagram of lattice of intents. That is, instead of presenting the full intent B
in a lattice L, one only shows the “new” attributes of the intent, that are not
included in smaller intents of the lattice: B \ (

⋃
B̃∈L,B̃⊂B B̃). However, such set

differences can also contain many attributes. So keys, i.e., minimal generators of
the differences, can be used.

Figure 1 presents these three ways to label the nodes on a line diagram. The
left plot labels the nodes with the full intents, the middle plot only shows new
attributes, contained in the intent, and the right plot gives a key of the set of
“new” attributes. The lattice in the figure is based on ten intents having the
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biggest values of stability lower bound for the Zoo dataset (plus the smallest
and the biggest intents). It can be seen that the right plot shows the minimal
set of attributes, thus presenting only the most important ones. A qualitative
comparison of label lengths is presented in section Experiments.

Full intent
(Bruteforce)

21
21, 32 18, 21, 31

3, 9, 21,
32

18, 21, 31,
32

1, 6, 7,
21, 32

1, 6, 7,
18, 21, 

+2 more attr.

3, 9, 16,
18, 21, 

+2 more attr.

11, 18, 20,
21, 23, 

+2 more attr.
2, 3, 5, 8, 9, 

+12 more attr.
0, 1, 2, 3, 4, 

+38 more attr.

New attributes
(Well-known solution)

21
32 18, 31

3, 91, 6,
7

16 11, 20,
23

2, 5, 8, 14, 27, 
+2 more attr.

0, 4, 10, 12, 13, 
+18 more attr.

Keys of the sets of new
attributes

(Proposed solution)

21
32 31

3, 91, 6

16 11

14, 35

Fig. 1: Three ways to denote intents in a lattice. Given lattice represents ten most
stable intents in Zoo dataset (plus top and bottom intents). Numbers stand for
indices of binary attributes. The left subfigure visualizes indices of all attributes
from intents that makes the diagram almost incomprehensible. In contrast, the
right subfigure shows only a few attribute indices that makes it easier to read
the diagram and also allows to increase the font size.

3 Description Quivers for unsupervised setting

In the previous section introduced the basic definitions of FCA, the task we
solve, and the difference keys aimed at connecting the FCA terms of intents and
their keys. This section is devoted to describing description quiver: a graph-like
model that merges intents and difference keys. Description quiver is designed to
balance the length of intents with the redundancy of equivalent keys.

3.1 Description quiver

Definition 2. Description quiver (L,E) is a pair of subset of intents L and
a subset of difference generators E between intents L. If the directed multigraph
(L,E) is weakly-connected, it is called a description quiver:

(L,E) is a description quiver, where

• L ⊆ L : ∅′′ ∈ L
• E = {(B1, B2, D) | B1 ∪D′′ = B2,

B1, B2 ∈ L,B1 ⊂ B2, D ⊆ B2 \B1}

(7)
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An example of a description quiver for the context from Table 1 is given on
Figure 2. Note that a quiver can contain have multiple edges between the same
nodes as there can be multiple difference generators between two intents.

c

h h

c

ll

∅

ch wch

lwch lwch

Description Quiver (L,E) :

L ={∅, ch, lwch, lwch,wch}
E ={(∅, ch, c), (∅, ch, h),

(ch, lwch, l), (ch, lwch, l),

(∅, wch, c), (∅, wch, h)}

Fig. 2: Description Quiver example. Nodes represent a subset of intents of the
contexts. And edges show how to “generate” these intents

3.2 Path in quiver

As for any graph, we can define traversal procedure for a decision quiver. This
subsection introduces paths in quivers adapted to intents and difference gener-
ators (i.e., to decision quivers).

First, let us define a path in quiver (L,E).

Definition 3. Given quiver (L,E), a sequence of k edges 〈ei〉ki=1, ei ∈ E is called
a path in the quiver if each element ei of the path is a difference generator
between intents Bi and Bi−1, and the first element e1 is a difference generator
between B1 and ∅′′:

〈ei〉ki=1 ⊆ E : ∀i = 1, . . . , k : ei = (Bi−1, Bi, Di), B0 = ∅′′ (8)

For example, consider the quiver in Figure 2. Its five intents and six edges
are given on the right of the figure. An example of a path in this quiver would
be the tuple of edges 〈(∅, ch, c), (ch, lwch, l)〉.

Now we can define a set of paths P in quiver (L,E) as follows:

Definition 4. Given quiver (L,E), set of paths P in the quiver is the set of
all possible paths in the quiver:

P = {〈ei〉ki=1 ⊆ E | ∀i = 1, . . . , k : ei = (Bi−1, Bi, Di), B0 = ∅′′, k ∈ N}. (9)

For the quiver in Figure 2, the set of paths P = { 〈(∅, ch, c), (ch, lwch, l)〉,
〈(∅, ch, h), (ch, lwch, l)〉, 〈(∅, ch, c), (ch, lwch, l)〉, 〈(∅, ch, h), (ch, lwch, l)〉, 〈(∅, wch, c)〉,
〈(∅, wch, h〉 }.
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Definition 5. Given quiver (L,E) and description X ⊆ M , the set of paths
PX, following description X, is the set of maximal paths in quiver (L,E)
such that each edge description in a path is a subset of X:

PX,any k = {〈ei〉ki=1 ∈ P | Di ⊆ X,∀i ∈ N : i ≤ k},
PX = {〈ei〉ki=1 ∈ PX,any k | @〈ei〉k+1

i=1 ∈ PX,any k},
(10)

where ei = (Bi−1, Bi, Di).

For the quiver in Figure 2, the set of paths Plwc, following description lwc
would be Plwc = {〈(∅, ch, c), (ch, lwch, l)〉, 〈(∅, ch, h), (ch, lwch, l)〉, 〈(∅, wch, h)〉}.

We are specifically interested in the set of intents LX we can arrive to via
paths PX , and the set of edges we pass EX while traversing the quiver:

Definition 6. Given quiver (L,E) and description X ⊆ M , the subset of the
terminal intents LX in paths, following X, is called the set of targets of X.
The set of maximal targets of X is denoted by LX,max. The set of edges EX
from paths PX is called the set of arrows of X.

LX = {Bk | 〈ei〉ki=1 ∈ PX},
LX,max = {B ∈ LX | @B̃ ∈ LX : B ⊂ B̃}

EX = {e1, . . . , ek | 〈ei〉ki=1 ∈ PX}
(11)

where ei = (Bi−1, Bi, Di).

For the quiver in Figure 2, the targets Llwc of description lwc are Llwc =
{lwch,wch}. The targets are incomparable, therefore the set of maximal targets
of description lwc is the same: Llwc,max = Llwc. The arrows of description lwc
is Elwc = {(∅, ch, c), (ch, lwch, l), (∅, wchh)}.

Definition 7. Description quiver (L,E) is called a description tree if for each
non-top node of the quiver there is only one node leading to it:

(L,E) is a tree ⇐⇒ (L,E) is a quiver, and

∀B2 ∈ L \ {∅′′} :
∣∣{B1 | (B1, B2, D) ∈ E}

∣∣ = 1
(12)

Description tree (L,E) is called dichotomic when each node B ∈ L with
edges, going from this node, {(B1, B2, D) ∈ E | B1 = B} 6= ∅ has exactly
two such edges and their descriptions are dichotomic attributes m,m ∈ M±:
{(B1, B2, D) ∈ E | B1 = B} = {(B,B3, {m}), (B,B4, {m})}, where B3, B4 ∈ L.

4 Decision Quivers for supervised setting

In this subsection we show the connections between description quivers and
decision trees, a basic supervised machine learning model.
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In supervised machine learning setup, we are given a context (G,M, I), the
set of outcomes Y and the mapping τ : G→ Y from (training) objects outcomes.
The set of outcomes is usually defined as Y = {0, 1} for binary classification
task, or as a set of real values R for regression task. Both tasks aims to finding
a function ϕ : 2M → Y that maps each description X ⊆ M to a value from Y .
Prediction function ϕ is chosen w.r.t. prediction quality measures that compare
the outcomes of τ and ϕ on objects G and their descriptions.

In this subsection we study two types of decision quivers: target-based de-
cision quiver Q̇ = (L,E, ϕ̇ : L → Y ), and arrow-based decision quiver ~Q =
(L,E, ~ϕ : D → Y ). The small dots above the signs for Q̇ and ϕ̇ symbolize that
target-based quivers assign predictions to the nodes L. Analogously, arrow-based
quivers assign predictions to the edges E that is highlighted by arrow above the
signs for ~Q and ~ϕ.

Target-based decision quiver

c

h h

c

ll

1/4
∅

1/2 ch 0wch

1lwch 0lwch

Arrow-based decision quiver

+1/4∅

+1/8
c

+1/8
h

−1/8

h

−1/8

c

−1/2
l

+1/2
l

∅

ch wch

lwch lwch

Fig. 3: Two types of Decision Quivers: target-based decision quiver assigns labels
(or predictions) to the nodes, and arrow-based decision quiver assigns labels
to the edges. Here, the numbers represent the probability of an object being
“breast-feeding” (target Y ) based on its attributes M .

4.1 Target-based decision quiver

Definition 8. Target-based decision quiver is a triple (L,E, ϕ̇ : L → Y ),
where the pair (L,E) makes a description quiver and ϕ̇ is a function that maps
intents from L to values from Y . We will denote target-based decision quivers
by Q̇:

Q̇ = (L,E, ϕ̇ : L→ Y ) (13)

To make a prediction Q̇(X) for description X ⊆M with target-based decision
quiver Q̇ = (L,E, ϕ̇), we average the individual predictions of maximal targets
of description X:

Q̇(X) =
1

|LX,max|
∑

B∈LX,max

ϕ̇(B). (14)
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Target-based decision quivers make it easy to define a machine learning model
in the FCA framework. First, we select a subset of intents L based on some
interestingness measure. Second, we define a prediction function ϕ̇ for each intent
B ∈ L (e.g. ϕ̇(B) = 1

|B′|
∑
g∈B′ τ(g)). Third, we select a subset of directed

generators D to connect intents from L.
In fact, decision tree – a basic machine learning model – can be represented

as a target-based decision quiver.

Proposition 2. Decision tree is a target-based decision quiver (L,E, ϕ̇) where
(L,E) forms a description tree.

4.2 Arrow-based decision quiver

Definition 9. Arrow-based decision quiver is a triple (L,E, ~ϕ : E → Y ),
where the pair (L,E) is a description quiver and ~ϕ is a function that maps
directed generators from D to values from Y . We denote arrow-based decision
quivers by ~Q:

~Q = (L,E, ~ϕ : E → Y ) (15)

To make a prediction ~Q(X) for description X ⊆M with arrow-based decision

quiver ~Q = (L,E, ~ϕ), we sum the predictions ~ϕ of all arrows EX following
description X:

~Q(X) =
∑
e∈EX

~ϕ
(
e
)
. (16)

Often the models are required to make nonzero basic prediction. In target-
based decision quivers such predictions are expressed by the prediction of the
top intent ϕ̇(∅′′). In arrow-based decision quivers this can be represented with
the trivial edge (∅′′, ∅′′, ∅): ~ϕ((∅′′, ∅′′, ∅)).

4.3 Summation of arrow-based decision quivers

Let us define a summation operation on arrow-based decision quivers:

~Q1 + ~Q2 = ~QΣ ,

where ~Q1 = (L1, E1, ~ϕ1), ~Q2 = (L2, E2, ~ϕ2)

~QΣ = (L1 ∪ L2, E1 ∪ E2, ~ϕ1 + ~ϕ2)

(17)

Arrow-based decision quivers can be multiplied by scalar:

(L,E, ~ϕ) · k = (L,E, k · ~ϕ), where k ∈ R (18)

Therefore, arrow-based decision quivers allow us to “sum up” many quivers
to one. Thus, they form a vector space.

Let us study how predictions of the sum of quivers relate to the predictions
of the initial quivers. Consider an example of the averaging of two arrow-based
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decision quivers on Figure 4. Figure represents two quivers ~Q1 = (L1, E1, ~ϕ1),
~Q2 = (L2, E2, ~ϕ2) and their average quiver ~Q3 = ( ~Q1+ ~Q2)/2 = (L3, E3, ~ϕ3). For

object bream with description wch the quivers predictions will be ~Q1(wch) =

0, ~Q2(wch) = 0, ~Q3(wch) = 0.

Therefore, the average of two initial quivers predictions ( ~Q1(wch)+ ~Q2(wch))/2

equals the prediction of the averaged quiver ~Q3(wch). This property does not
hold for any description X ⊆ M . Consider object sea snake with description
lwc, the predictions will be ~Q1(lwc) = 1, ~Q2(lwc) = 0, ~Q3(lwc) = 3/4.

In this case, the average of two initial predictions ( ~Q1(lwc) + ~Q2(lwc))/2 is

not equal to the prediction of the averaged quiver ~Q3(lwc). However, the latter

lies between the two initial predictions ~Q2(lwc) < ~Q3(lwc) < ~Q1(lwc).

This problem of keeping predictions the same after the averaging requires an
extensive study. For now, we can formulate the following proposition:

Proposition 3. Given two arrow-based decision quivers ~Q1 = (L1, E1, ~ϕ1), ~Q2 =
(L2, E2, ~ϕ2) with only one common intent: L1 ∩L2 = {∅′′}, the prediction of the

sum ~QΣ(X) = ( ~Q1 + ~Q2)(X) is equal to the sum of predictions ~Q1(X) + ~Q2(X)
for any description X ⊆M .

Proof. Without loss of generality, assume that both initial quivers have the triv-
ial edge et = (∅′′, ∅′′, ∅) with labels ~ϕ1(et), ~ϕ2(et) that can be equal to zero.

Let the sum quiver be ~QΣ = (LΣ , EΣ , ~ϕΣ). Since ∅′′ is the only intent con-
tained in both quivers, the only edge containing in both quivers would be the
trivial edge E1∩E2 = {et}. Therefore, by the definition of the sum operation, any
edge e ∈ E1\{et} of the first quiver would have the same label in the sum quiver:
~ϕ1(e) = ~ϕΣ(e). Analogously for the second quiver, ∀e ∈ E2\{et}, ~ϕ2(e) = ~ϕΣ(e).
And the label of the trivial edge et would be the sum of labels of the initial quiv-
ers: ~ϕΣ(et) = ~ϕ1(et) + ~ϕ2(et).

Predictions of the quivers are computed by equation 16. Now, putting every-
thing together, we can write the sum of predictions as follows:

~Q1(X) + ~Q2(X) =
∑

e∈E1,X

~ϕ1(e) +
∑

e∈E2,X

~ϕ2(e)

=
( ∑
e∈E1,X\{et}

~ϕ1(e) +
∑

e∈E2,X\{et}

~ϕ2(e)
)

+
(
~ϕ1(et) + ~ϕ2(et)

)
=

∑
e∈EΣ\{et}

~ϕΣ(e) + ~ϕΣ(et) = ~QΣ(X), ∀X ⊆M

The requirement of two quiver (L1, E1, ~ϕ1), (L2, E2, ~ϕ2) having only one com-
mon intent L1 ∩ L2 = {∅′′} might seem too restrictive. However, this often
happens in practice for big data machine learning problems as the big datasets
contain massive amount of possible intents L. Much greater than the number of
intents in both quiver: |L1 ∪ L2| � |L|.
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Decision quiver
~Q1

+1/4∅

+1/4
c

−1/4
c

−1/2
l

+1/2
l

∅

ch wch

lwch lwch

Decision quiver
~Q2

+1/4∅

+1/4
h

−1/4
h

−1/2
l

+1/2
l

∅

ch wch

lwch lwch

Averaged quiver
( ~Q1 + ~Q2)/2

+1/4∅

+1/8
c

+1/8
h

−1/8

h

−1/8

c

−1/2
l

+1/2
l

∅

ch wch

lwch lwch

Fig. 4: Example of averaging arrow-based decision quivers.

4.4 Conversion of target-based quivers to arrow-based quivers

The previous subsections introduced target-based and arrow-based decision quiv-
ers. They showed that one can construct target-based decision quivers and one
can sum arrow-based decision quivers. This section introduces “differentiation”
operator δ : Q̇ 7→ ~Q that allows converting target-based decision quivers to
arrow-based ones.

The desirable property of differentiation δ operator is that it should not affect
the training objects predictions of the quivers:

Given Q̇, δ : Q̇ 7→ ~Q, s.t. Q̇(g′) = δ(Q̇)(g′) = ~Q(g′), ∀g ∈ G (19)

It should be noted that, given an arbitrary target-based decision quiver Q̇ =
(L,E, ϕ̇), we cannot define a differentiation δ operator that would not affect the
quiver predictions for any given description X ⊆M . This is due to the fact that
the training data can contain implications that would not hold true for the test
data. And difference generators of the quiver can be reflect such implications.

Example 1. Consider the example of two decision quivers from Figure 3. Specifi-
cally, their intents ∅ and ch, and difference generators (∅, ch, c) and ∅, ch, h). Both
quivers start with prediction ϕ̇(∅) = ~ϕ((∅, ∅, ∅) = 1/4. Then, the target-based
quiver predicts 1/2 for intent ch, that is 1/4 higher than the start prediction:
ϕ̇(ch) = 1/2 = ϕ̇(∅) + 1/4. The arrow-based decision quiver reflects this differ-
ence with the labels for two difference generators: ~ϕ((∅, ch, c)) + ~ϕ((∅, ch, h)) =
1/8+1/8 = 1/4. Now, the description of test object sea snake contains attribute c
but no attribute h. Therefore, while making a prediction, the target-based quiver
will follow the edge (∅, ch, c) and change its prediction by 1/4: from ϕ̇(∅) = 1/4
to ϕ̇(ch) = 1/2. And the arrow-based quiver will only change its prediction by
~ϕ((∅, ch, c)) = 1/8. Thus, two quivers would result in different predictions.

It is impossible to define what implication will be falsified on the test data.
However, decision trees avoid these problem because of their dichotomic and tree
properties.
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Proposition 4. Given a target-based decision tree Q̇ = (L,E, ϕ̇), its differen-
tiated version δ(Q̇) gives the same predictions for any input X ⊆M if differen-
tiation operator δ defined as follows:

For Q̇ = (L,E, ϕ̇), Q̇(X) = δ(Q̇)(X),∀X ⊆M if:

(L,E) is a description tree, and δ(Q̇) = (L,E, ~ϕ), where

~ϕ((B1, B2, D)) =

{
ϕ̇(∅), if B1 = B2 = D = ∅,
ϕ̇(B2)− ϕ̇(B1), otherwise

(20)

Proof. The proof, although in different notation, is given in [8].

Target-based
decision tree

c c

ll

1/4
∅

1/2 ch 0wch

1lwch 0lwch

δ−−→

Arrow-based
decision tree

+1/4∅

+1/4
c

−1/4
c

−1/2
l

+1/2
l

∅

ch wch

lwch lwch

Fig. 5: Differentiation example. The arrow-based decision quiver on the right can
be obtained by “differentiating” the target-based decision tree on the left.

With the introduced differentiation and summation operators we can merge
ensembles of decision trees into a single decision quiver by 1) differentiating all
decision trees of an ensemble, and 2) summing up these differentiated decision
trees.

5 Experiments

5.1 Datasets

For this study we selected 14 real-world binary datasets from LUCS-KDD repos-
itory3.

For all provided datasets we computed concept lattices and then selected
subsets of the most stable concepts of various sizes. We use only a half of the

3 Coenen, F. (2003), The LUCS-KDD Discretised/normalised ARM and CARM
Data Library, http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/,
Department of Computer Science, The University of Liverpool, UK.

http://www.csc.liv.ac.uk/~frans/KDD/Software/LUCS_KDD_DN/
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id context # rows # columns # connections density

|G| |M | |I| |I|
|G×M|

1 zoo 101 43 1717 0.40
2 iris 150 20 750 0.25
3 wine 178 69 2492 0.20
4 glass 214 49 2140 0.20
5 heart 303 53 4236 0.26
6 ecoli 336 35 2688 0.23
7 dematology 366 50 4750 0.26
8 breast 699 21 6974 0.48
9 pima 768 39 6912 0.23

10 anneal 898 74 12847 0.19
11 ticTacToe 958 30 9580 0.33
12 flare 1389 40 15279 0.28
13 led7 3200 25 25600 0.32
14 pageBlocks 5473 47 60203 0.23

Table 2: The description of contexts used in the experiments

datasets from the repository as the omitted ones result in too many concepts,
thus making computation of the whole lattice infeasible. Table 2 provides infor-
mation about the contexts used in the experiments.

5.2 Sizes of difference generators

In practice we often want to visualize the lattice of intents while presenting only
the necessary attributes. In this subsection we measure to what extent difference
keys allow us to shorten the labels of diagrams.

For each dataset from Table 2 we compute the whole concept lattice and
estimate the stability lower bound for each concept. Then we select 10, 30, 100,
and most stable concepts and compute the intent labels for the line diagram.
We consider two types of labels: 1) labels drawn for each intent (i.e. attributes
of an intent, that belong to no smaller intent), and 2) labels drawn between two
connected intents (i.e. attributes of an intent, that do not belong to each of the
preceding intents). Finally, for each label we calculate the cardinality of key of
this label divided by the cardinality of the label itself.

The results are shown in Figure 6. We see that the ratio between the lengths
of the difference key and the difference often lies between 80 and 100 percent.
That is, the keys of difference are not always shorter than the original differences.
However, for some datasets and small number of selected most stable concepts,
the ratio reaches 60 percent. Therefore, replacing intent differences by the keys
of these differences can reduce the total size of attribute subsets given as labels
of diagram edges up to 40 percent.
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Fig. 6: Ratios between the lengths of the keys of differences and the lengths of the
differences themselves. To the left: each difference consists of intent attributes
that do not belong to smaller intents. To the right: each difference consists of
intent attributes that do not belong to one of its preceding intents.

5.3 Summation of decision trees

Decision Quivers allow us to sum many decision trees in one model with no
changes in the overall predictions. Here we test the summation of quivers em-
pirically.

We test experimentally the correctness of summation operation by com-
paring the predictions of a random forest model and the arrow-based decision
quiver constructed from this random forest. Constructing the arrow-based deci-
sion quiver from a random forest consists of three steps: 1) differentiation of all
decision trees of the random forest, 2) summation of differentiated decision trees
into one arrow-based decision quiver; and 3) division of the resulting decision
quiver by the number of trees. That is, when random forest averages predictions
of its decision trees, we “average” the decision trees themselves.

To make experiments closer to practice, we run them on the numerical (non-
binarized) versions of datasets of Table 2 from UCI repository. We only take
classification dataset from the table, therefore the set of outcomes Y for each
dataset represents the list of probabilities of an object belonging to a specific
class. For the sake of efficiency, we only consider the contexts with less than
1000 objects. For each classification dataset from the table, we make 50 random
splits of the dataset to disjoint “train” and “test” subsets, where the test subset
contains 20% of rows. Then, for each train-test split we fit a random forest of 100
decision trees on the train subset of the dataset. We proceed by constructing a set
of arrow-based decision quivers from the first k = 1, 2, 3, . . . , 100 decision trees
of the forest. Finally, we use the test subset of the dataset to compute the mean
average difference between the averaged predictions of the first k decision trees
and the predictions of the arrow-based decision quiver constructed by averaging
these k decision trees.
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Fig. 7: The mean absolute difference between predictions of a random forest and
an arrow-based decision quiver obtained by summing decision trees of the forest.

Figure 7 presents the obtained results. It can be seen that the difference
between the probabilities is not null and grows with the number of decision
trees. However, the difference remains small and does not exceed 5 percent. On
average for our 12 datasets, the class probability predicted by decision quiver
differs from the class probability predicted by the corresponding random forest
by no more than 5%.

The difference in predictions appears because of two factors. First, as it is
shown in Proposition 3, the sum of two quivers can give different predictions if
these quiver have more than one common intent. Rarely, different decision trees
of a random forest find the same intents while fitting. Thus, such decision trees
will not satisfy the conditions of Proposition 3.

The second factor is the use of floating-point numbers. We run the experi-
ments on numerical datasets, therefore each binary attribute used by a decision
tree is constructed by comparing a real value xi of i-th element in description x
with real-valued threshold θ. We cannot perfectly fit to the precision of floating-
point threshold used by sci-kit learn package. Thus, rarely, when the difference
between xi and θ is extremely small (e.g. 10−8), our implementation can con-
sider xi ≤ θ as True, and sci-kit learn implementation would say the opposite.
Overall, this discrepancy is of engineering nature and can be considered as a
measurement error.

6 Conclusion

We have introduced and studied description quivers as compact representation
of concept lattices and respective ensembles of decision trees. We have studied
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some properties of description quivers and tried to justify their use for describing
state-of-the-art symbolic machine learning models based on decision trees.

We have shown that the proposed description quiver allows one to fuse deci-
sion trees, while proposing a way to select the most important rules in decision
models. Computer experiments that we performed justified our expectations
about the usefulness of decision quivers.
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