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1. Abstract

Vegetation  structure  influences  landscape  use  and  habitat  quality  for  many  bird

species.  Owing  to  the  difficulties  associated  with  collecting  structural  data  from

traditional  field  measurements,  numerous  studies  have  investigated  the  utility  of

Light  detection  and  ranging  (LiDAR)  for  providing  landscape-scale  structural

information that  may be useful  for  exploring animal-habitat  associations.  Notably,

almost all of these studies have involved the use of LiDAR from airborne rather than

terrestrial  platforms.  However,  vegetation  metrics  that  might  be  important  for

explaining  bird  species  occurrence  and  diversity,  such  as  understory  vegetation

complexity and overall vegetation volume, may be partially obscured from airborne

sensors by tree canopy cover. These challenges might be overcome by terrestrial

and UAV LiDAR sensors that can provide detailed information of understory forest

strata. For the first time, we collected terrestrial LiDAR (TLS) and unoccupied aerial

vehicle LiDAR (ULS) data in a woodland landscape to compare the ability of both

sensors  to  identify  relationships  among  vegetation  structural  metrics  and  bird

species richness and abundance. Overall,  TLS and ULS models provided similar

results based on the sampling methodology we used for LiDAR data collection in an

open  woodland  landscape.  Canopy  roughness,  ground  vegetation  vertical

complexity, total vegetation volume and canopy height derived from these sensors

were among the most common significant variables in explaining avian diversity and

1

1

2

3

4
5
6
7
8
9

10
11
12
13
14
15
16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36



individual species abundance. Individual species abundance models provided better

prediction power (up to R2 = 0.82 (TLS) and R2 = 0.83 (ULS)) than bird community

abundance by functional guilds (up to R2 = 0.40 (TLS), R2 = 0.41 (ULS)) and overall

bird abundance (R2 = 0.10 (TLS), R2 = 0.16 (ULS)), species richness (R2 = 0.14 (TLS),

R2  = 0.14 (ULS)) and diversity (R2  = 0.17 (TLS), R2  = 0.16 (ULS)). Additionally, we

found  that  several  vulnerable  bird  species  are  strongly  associated  with  LiDAR

structural  variables,  which  may  assist  with  habitat  assessment  and conservation

management. 

Keywords: TLS, laser scanning, birds, remote sensing, habitat modelling, Australia,

vegetation structure

2. Introduction

Vegetation structure is the horizontal and vertical arrangement of plants across the

landscape  (Davies and Asner 2014; Verschuyl et al.,  2008). Vegetation structural

complexity and heterogeneity have been shown to have a positive relationship to

biodiversity because they create a greater variety of microclimate and microhabitats

that produce more food and cover for a range of species  (Verschuyl et al., 2008).

Previously,  a number of  studies have identified strong relationships between bird

diversity  and  abundance  and  vegetation  structure  across  different  layers  of

vegetation (Kikkawa 1982; MacArthur 1961; Sekercioglu 2002; Stanley and Herman

1974). However, traditional methods to measure vegetation structure can be very

time consuming and are often limited to point sampling a subset of the landscape

(David et al., 2010; James and Shugart Jr 1970; Zehm et al., 2003).

Light Detection and Ranging (LiDAR) remote sensing technology can provide high-

resolution topographic maps and information on vegetation height,  cover,  volume

and complexity with a high level of detail and accuracy across landscapes (Bergen et

al.,  2009;  Lefsky  et  al.,  2002;  Levick  et  al.,  2019).  Unlike  passive  sensors  that

depend on sun light reflected from objects, LiDAR uses a laser pulse emitted from

the sensor. The reflected light is detected and digitized by the sensor creating a

record of returns that are a function of the distance between the sensor and the

reflected object  (Anderson et  al.,  2016;  Goetz et  al.,  2007;  Lefsky  et  al.,  2002).

LiDAR sensor platforms can be terrestrial (Terrestrial Laser Scanner - TLS), mobile,
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UAV (Unoccupied  Aerial  Vehicle)  laser  scanner  (ULS),  airborne  (Airborne  Laser

Scanner - ALS) or satellite based (Sumnall et al., 2016; Vierling et al., 2008). 

Vegetation structural metrics derived from LiDAR data have been widely used to

investigate animal-habitat relationships, with a particular focus on birds (Bradbury et

al., 2005; Eldegard et al., 2014; Goetz et al., 2007; Müller et al., 2010). Goetz et al.

(2007) found that LiDAR derived canopy height distribution variables were a stronger

predictor of bird species richness in temperate forest ecosystems than a commonly

used vegetation index, Normalized Difference Vegetation Index (NDVI) derived from

Landsat imagery. Various LiDAR-derived vegetation height, complexity and volume

metrics  are  significantly  correlated  to  bird  species  presence,  diversity  and

abundance  in  many  different  forest  environments  (Clawges  et  al.,  2008).  Forest

songbird species richness by different functional guilds also has been predicted from

LiDAR-derived  canopy  and  mid-story  height  and  mid-story  density  in  mixed

hardwood forest (Clawges et al. 2011). A review by Davies and Asner (Davies and

Asner 2014) revealed  that 23 avian studies found a positive relationship between

species  richness  and  abundance  and  canopy  structural  diversity  and  vertical

distribution of vegetation. In particular, vegetation structural heterogeneity appeared

to have a stronger relationship to bird observations than canopy cover alone (Davies

and Asner 2014). 

Notably, most of the studies that used LiDAR to investigate relationships between

vegetation  structure  and  habitat  quality  for  birds  have  used  airborne  LiDAR

(Carrasco et al., 2019; Eldegard et al., 2014; Sasaki et al., 2016). While airborne

LiDAR sensors provide accurate information on canopy structure, they have limited

penetration to the ground and mid layer vegetation because of occlusion from the

upper  canopy  (Bakx  et  al.,  2019;  Crespo-Peremarch et  al.,  2020;  LaRue et  al.,

2020). A recent review analyzed 50 papers on bird species distributions and species

richness in relation to LiDAR‐based vegetation variables (Bakx et al., 2019). It was

found that  most  of  the studies used low density ALS data,  usually  10 points/m2,

which  have  limited  penetration  below  the  canopy,  especially  to  ground  layer

vegetation. The authors recommended that future studies should focus on higher

density point clouds that can capture more details below the canopy, as the lower

strata of vegetation is also important for many bird species (Bakx et al., 2019). They

also suggested that, in addition to the widely used horizontal and height diversity
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vegetation  metrics,  future  research  should  also  consider  vegetation  volume  in

different strata, which can be calculated from voxelized point cloud. Voxelized point

cloud are three-dimensional  grids or  “voxels”  that  are created from one or  more

LiDAR points (Sasaki et al., 2016). 

ULS may be able to overcome some of the limitations of airborne LiDAR sensors,

since it can provide higher point density and still collects data relatively quickly. Fritz

et al. (2018) demonstrated the potential of this technology for identifying important

structural  characteristics  that  help  explain  landscape  use  by  an  alpine  bird

community; however, the use of ULS for modelling bird-habitat associations has not

been widely  explored (Acebes et  al.  2021).  Ground-based TLS is  an  alternative

platform that can provide more detailed information on vegetation below the canopy

of forests because it measures the vegetation from the ground level and typically

with higher resolution than airborne sensors (LaRue et al., 2020). Depending on the

vegetation height and density, TLS can still be limited by occlusions though, where

vegetation or other landscape structural  features block the field of  view  (Crespo-

Peremarch et al., 2020; LaRue et al., 2020). TLS data is typically only applied to

smaller areas (< 1 ha) because collection time is slower than ULS and airborne

LiDAR data (Liang et al., 2016). However, where logistically feasible, TLS may offer

some advantages for measuring some understory vegetation structural metrics that

are known to be important predictors of bird habitat quality and the occurrence and

diversity of bird species (Michel et al., 2008). 

For the first time, we utilized high-density TLS and ULS LiDAR derived vegetation

structural variables for modelling vegetation structural classes and avian abundance

and  diversity  in  an  Australian  woodland.  Incorporating  the  suggestions of  earlier

studies to investigate high-density point clouds and to incorporate vegetation volume

metrics from voxilized point-clouds (Bakx et al., 2019; Sasaki et al., 2016), we used

the data from both sensors to test the following hypotheses: 

 (1) the high-density TLS point clouds will perform better for modelling overall bird

abundance, species richness and diversity than lower density ULS point clouds;  

(2) the relationship between vegetation structural data and particular bird species

and groups will be modelled more accurately from the TLS platform for bird species

4

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131



and guilds that are most associated with ground and mid-story vegetation layers and

ULS for those that primarily use the canopy strata.  

We anticipate that  the outcomes of this study will  be useful for conservation and

management  projects  focused  on  identifying  animal-habitat  associations  and

establishing appropriate habitat structure for wildlife management.

3. Methods

Study area

The study area is in Mulligan’s Flat  (683 ha) and Goorooyarroo (702 ha) nature

reserves  (MFGO)  in  the  north-eastern  corner  of  the  Australian  Capital  Territory

(ACT), Australia (35°09' S - 149°09' E; Fig. 1). These two adjacent reserves were

established  in  1994  and  2006  respectively  to  conserve  and  restore  a  critically

endangered  grassy  woodland  ecosystem  (Manning  et  al.,  2011).  The  dominant

overstory tree species include Blakely’s Red Gum (Eucalyptus blakelyi), Yellow Box

(E. melliodora), Red Stringy Bark (E. machrorhyncha), and Scribbly gum (E. rossii)

with  a relatively  open midstory  of  primarily  acacia  spp.  The grassy ground-layer

vegetation is dominated by Joycea pallida, Austrodanthonia spp., Themeda australis

and Aristida ramose (McIntyre et al., 2014; McIntyre et al., 2010; Shorthouse et al.,

2012). Prior to becoming reserves, MFGO was leasehold grazing land with some

areas of past cropping and pasture improvement (Manning et al., 2011; Shorthouse

et al., 2012). The topography is gently undulating with a few hills and the elevation

ranges from 650 m to 700 m. Average daily temperature in 2018 ranged from a

minimum of 6.9˚C to a maximum of 22.0 ˚C, and mean annual rainfall was 472.0 mm

(Bureau of Meteorology 2019). 

The reserves are the location of a long-term ecological experiment the “Mulligans

Flat – Goorooyarroo Woodland Experiment”  (Manning et al., 2011) As part of this

experiment, restoration treatments have been undertaken in an attempt to restore

the function and biodiversity of the area, and feral predators and grazers have been

excluded  with  fencing  around  the  reserves  (Manning  et  al.,  2013).  To  monitor

ecosystem  recovery  over  time,  animal  and  vegetation  surveys  are  periodically

conducted across 96, 1 ha permanent sites (200 m x 50 m). These sites are stratified

across  the  reserves  in  24  clusters  that  each  include  one  of  the  four  different

vegetation structural classes: 1) high tree cover, high shrub cover (HTHS), 2) high
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tree cover, low shrub cover (HTLS), 3) low tree cover, low shrub cover (LTLS), and

4)  low  tree  cover,  high  shrub  cover  (LTHS)  (Fig  1).  The  clusters  are  the  key

stratifying  unit  of  this  experiment  and  are  defined  as  homogenous  areas  of

vegetation structure and type (Manning et al., 2011). Each site is marked in the field

along the long axis by plastic pegs at the 0 m and 200 m points, and with star pickets

(A and B) at the 50 m and 150 m points (Manning et al., 2011). 

Figure 1. Map of study area in Mulligan’s Flat-Goorooyarroo Woodland Sanctuaries

(right  panel),  which  is  located  in  the  north-east  corner  of  the  Australian  Capital

Territory (ACT), Australia. The green rectangles are 1 ha sites (n = 96) that are

grouped  by  vegetation  classes  (clusters),  which  are  outlined  by  the  multi-color

polygons. HTHS is high tree cover, high shrub cover, HTLS is high tree cover, low
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shrub cover, LTHS is low tree cover, high shrub cover, and LTLS is low tree cover,

low shrub cover.

3.1. Bird data collection

As part of long-term monitoring at MFGO, annual bird surveys have been conducted

since  2005  at  each  site  during  two  separate  visits  in  October  by  different

experienced  bird  observers  using  an  acoustic  and  visual  point  count  method

(Manning et al.,  2011).  During the surveys, observers stand at the A and B star

picket  at  the  50  m and  150  m position  along  the  long  axes  of  each  site.  The

presence and abundance of birds in concentric bands (0 – 25 m, 25 – 50 m, 50 –

100  m  and  over  100  m  and  overhead)  are  recorded  for  ten  minutes.  Detailed

information about bird survey methods are provided in  (Manning et al., 2011). For

this study, we used bird data collected from 2017, 2018, and 2019 because it  is

unlikely that the vegetation structure would have changed substantially in the period

between LiDAR data acquisition in October-November 2018 and the bird counts from

those adjacent years. 

3.2. TLS data collection and post-processing

TLS data was collected in fine weather from 1 to 31  October 2018 with a Topcon

GLS2000  (Topcon  Corporation,  Japan).  The  Topcon  GLS2000  is  a  high-density

laser scanner that emits near-infrared light (1064 nm) laser pulses at up to 120,000

laser  pulses  per  second.  The  field-of-view  of  the  scanner  is  360°  and  270°

(horizontal  and vertical  direction,  respectively).  The  beam diameter  of  the  single

pulse is 4 mm at 20 m. Information on a pilot study conducted to determine the

number  of  TLS scans  to  be  used  for  each  site  is  provided  in  Appendix  1.  We

collected seven individual scans without co-registration in all 96, 1 ha sites for a total

of 672 scans with 6 mm point spacing at 10 m from the scanner. The position of

each scan was measured with a differential GPS (Trimble Geoexplorer 6000 series)

and post-processing was performed using local base station data to improve the

point  location  accuracy to  approximately  50  cm  (Shokirov  2021;  Shokirov  et  al.,

2020). 
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Point clouds from seven individual scan stations were then co-registered during post-

processing  using  Multi-station  Adjustment  (MSA)  plugin  in  RiScan  Pro  software

(RIEGL Laser Measurement Systems GmbH). The MSA uses the iterative closest

points (ICP) algorithm that minimizes the 3D distance between the identical points by

translating and rotating the entire  point  cloud along X,  Y,  Z  axes until  the least

minimum distance between the identical points from two datasets is achieved (Šašak

et al., 2019). The exact procedure we followed is described in detail in Shokirov et al.

(2021).  Next,  the  point  cloud  from  each  site  was  georeferenced  using  DGPS

locations of each scan position measured in the field and clipped to the spatial extent

of each of the 96 sites. Point clouds were then subsampled into 1 cm spacing to

homogenize the point distributions and duplicate points were removed using Cloud

Compare (CloudCompare 2020). 

3.3. ULS data collection and post-processing

We collected  ULS LiDAR data  across  all  of  the  96,  1  ha  sites  in  fine  weather

conditions from 7 to 14 November, 2018. The ULS LiDAR platform consisted of a

quadcopter  integrated  with  RIEGL  miniVUX-1UAV  LiDAR  sensor  (RIEGL  Laser

Measurement Systems GmbH, Austria) and APX INS/GNSS system (Trimble, USA).

The flights were performed at  approximately  80 m above the take off  point  with

approximately 25.2 km/h speed, up to 5 returns per pulse, 100 kHz pulse repetition

rate,  and  up  to  100,000  measurements/second  (Shokirov  2021;  Shokirov  et  al.,

2020). Maximum scan angle of the LiDAR sensor was approximately ±60  with swath⁰
width about 100 m. We used DJI ground station pro V2 to plan the flight missions

(SZ DJI TECHNOLOGY CO. 2018). The ULS LiDAR sensor failed to collect data on

two sites, which were excluded from further analysis of ULS and TLS data. 

Data processing was done in RiPROCESS software suite by RIEGL which allowed

us  to  bring  in  the  trajectory  data  of  the  drone  flight,  align  the  flight  paths,

georeference the point cloud and then export it in LAS format. The trajectory data of

the UAV LiDAR that was fed into RiPROCESS was generated using POSPAC UAV

(Applanix) using the IMU/GNSS data from the drone and RINEX data from the base

station  which  was  obtained  from the  Gungahlin  location  of  Smartnet  global

network. The  ULS  LiDAR  data  collected  over  the  94  sites  were  clipped  by
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corresponding polygons to create a separate point cloud for each site. Point spacing

in ULS data across 94 sites ranged from 5 cm to 17 cm with an average of 10 cm.

For this reason, we homogenized the point cloud with 10 cm spacing and removed

duplicate points using Cloud Compare 2.10.2 (CloudCompare 2020). 

3.4. Canopy height model

Point clouds were cleaned from noise points and classified into ground and non-

ground  points  using  LAStools  (Isenburg  2012). We  normalized  point  clouds  by

converting elevation values to height above ground values with LAStools (Isenburg

2012) (Fig. 2).

Figure 2. Normalized TLS (a) and ULS (b) point clouds of site GO72A-3 colored by

height.

3.5. Calculating vegetation variables from the LiDAR datasets

Canopy  metrics  were  calculated  from  points  above  1.3  m  (Table  1).  Based  on

existing vegetation layer descriptions for eucalypt grassy woodlands (Department of

Environment 2013), we divided the point cloud into three layers representing  the

ground layer (L1, points ≤ 1m), the mid-story (L2, 1m < points ≤ 10m) and the upper

story (L3, points > 10m) (Fig. 3) and calculated additional vegetation metrics for each

layer (Table 1). Vegetation volume was estimated by excluding ground points and
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constructing  0.5  m voxels  (volumetric  pixels)  from point  clouds,  with  each  voxel

made of one or more points. A fraction of woody canopy cover for each site was

calculated by creating 0.25 m grids from points above 1.3 m and dividing the sum of

the areas of all pixels by the size of the total area of the site (200m×50m). A total of

37 metrics were computed with lidR package (Roussel, 2017). List of LiDAR–derived

vegetation variables and descriptions are provided in Table 1.

Figure 3. Vegetation layers: L1 - ground layer (points ≤ 1m), L2 - mid-story layer (1m

<points ≤ 10m), L3 - upper story layer (points > 10m).

Table 1. Description of calculated vegetation structural variables from LiDAR dataset

Name of variable Description

maxH Maximum height of canopy (points > 1.3m). 

meanH Mean height of canopy (points > 1.3m). 

stdH Standard deviation of canopy height (points > 1.3m), which

describes the variation in the canopy height.

skewH Skewness  of  canopy  height  (points  >  1.3m).  Negative

skewness means that the distribution is dominated by higher

points (upper canopy is dominant) but a few extreme lower

points.  Positive  skewness  means  that  the  distribution

dominated by lower points (lower canopy is dominant) but a

few extreme higher points.

kurH Kurtosis of canopy height (points > 1.3m). Negative kurtosis

means the distribution of points centered around the mean

(mid-canopy is dominant). Positive kurtosis means the point
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distribution is heavy on tails and less around the mean (lower

and upper canopy is dominant). 

p_05, p_10, p_25,

p_50, p_75, p_90,

p_95, p_99

Canopy height  percentiles  (points  >  1.3m).  Canopy height

percentiles  are  the  height  below  which  a  specified

percentage of total point clouds were located. For example,

p_05 = 2 m means that 5% of vegetation points are found

below 2 m.

vci_2m,  vci_5m,

vci_10m, vci_15m,

vci_20m

Vertical complexity indexes (VCI) at 2m, 5m, 10m, 15m, 20m

height bins, (points > 1.3m). 

Vertical complexity indexes (VCI) at 2m, 5m, 10m, 15m, 20m

height bins, (points > 1.3m). 

Where  VCI in  a  vertical  complexity  index,  HB is  the  total

number of height bins, and p i is the proportional abundance

of LiDAR returns in height bin i.  

A VCI value close to one indicates that most height bins have

an equal amount of vegetation. VCI value decreases if the

distribution  of  canopy  in  the  height  bin  becomes  more

uneven (van Ewijk et al., 2011).

Cov Fraction of canopy cover, (points > 1.3m). 

height_cv Coefficient of variation of height, (points > 1.3m). Indicates

the canopy height variation.

canopy_roughness Canopy roughness describes complexity/variability of canopy

height (Herrero-Huerta et al., 2020) (points > 1.3 m). Higher

variability  in  the  canopy  height  provides  higher  roughness

index and vice versa.

canopy_shannon Normalized  Shannon  diversity  index  of  canopy  (Pretzsch

2009), (points > 1.3m). Indicates canopy height diversity.

Tvolume Total  vegetation  volume  (m3)  –  number  of  0.5  m3 voxels

divided by 8 (ground points excluded).

vlayer_L1 Vegetation  volume  (m3)  in  1st layer  (points  0-1m¸  ground

points excluded).
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vlayer_L2 Vegetation volume (m3) in 2st layer (points 1m-10m).

vlayer_L3 Vegetation volume (m3) in 3st layer (points 10m and above).

meanH_L1,

meanH_L2,

meanH_L3 

Mean height of 1st, 2nd, 3rd layer.

sdH_L1,  sdH_L2,

sdH_L3

Standard deviation of vegetation height in 1st, 2nd, 3rd layer.

roughness_L1,

roughness_L2,

roughness_L3

Roughness  indexes  of  1st,  2nd,  3rd  layer  (Jenness,  2004).

Horizontal distribution of vegetation across different layers.

vci_L1,  vci_L2,

vci_L3

Vertical complexity indexes of 1st, 2nd, 3rd layer (van Ewijk et

al., 2011). Vertical distribution of vegetation across different

layers.

3.6. Statistical analysis

3.6.1. Bird data 

We  calculated  bird  abundance  (maximum  number  of  individual  birds  counted),

species richness (cumulative total number of species), Shannon diversity index using

“vegan” R package  (Jari Oksanen 2019) and functional diversity indices including

functional richness, functional evenness, functional divergence, functional dispersion

and  Rao's  quadratic  entropy  for  each  site  using  “FD”  package  (Laliberté  and

Legendre 2010) in R language (R Core Team 2020). Shannon diversity index is used

to characterize species diversity in a community  (Morris  et  al.,  2014).  Functional

richness is defined as the amount of niche space occupied by the species within a

community.  Functional  evenness measures  the  regularity  of  the  distribution  of

species abundances and dissimilarities in a functional space. Functional divergence

is the degree to which abundance distribution in niche space maximizes divergence

in  functional  characters  within  the  community  (Mason  et  al.,  2005).  Functional

diversity indices quantify the trait  diversity and act as a surrogate for the diverse

ecological functions performed in the community. Rao's quadratic entropy measures

the  diversity  of  ecological  communities  and  is  based  on  the  proportion  of  the

abundance of species in a community and a measure of dissimilarity between the
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species (Ricotta and Szeidl, 2009). The diversity of trait values within a community is

therefore referred as either trait diversity or functional diversity (FD)  (Karadimou et

al.,  2016).  Bird  guilds  were  assigned  based  on  different  functional  traits  (i.e.,

grassland specialist, water bird, woodland generalist, woodland specialist), nesting

substrate  (i.e.,  arboreal,  ground,  hollow,  opportunistic,  understory),  foraging

substrate  (i.e.,  air,  aquatic,  arboreal,  ground,  opportunistic),  and  dispersion  (low,

partial, high) (Le Roux et al., 2018, Ikin et al., 2012).

3.6.2. Model selection process

A key stratifying unit of the sites established in our study area were the clusters,

which were comprised of one of four vegetation types (HTHS, HTLS, LTLS, LTHS)

(Manning et al., 2011).  Although it was not the primary goal of the study, we first

explored the ability of ULS and TLS data to correctly classify sites according to these

vegetation categories. The outcomes from this classification exercise were used to

select a modelling approach for relating the LiDAR structural data to the animal data.

We used a multinomial regression model by means of “multinom” function in “nnet” R

package (Venables and Ripley 2003) for this analysis. We tested two models, one

based on the first four principle components from the PCA calculated from all TLS

and ULS LiDAR variables (Appendix 2) and a model based on selected TLS and

ULS  LiDAR  variables  (3.6.3)  to  classify  vegetation  types.  We  also  tested  the

performance of the four PCA components model and the selected variable model to

predict overall bird abundance, species richness and diversity. However, we used

the  model  type  that  most  accurately  classified  the  sites  into  their  appropriate

vegetation class for the full analysis of the bird data.  

3.6.3. Variable selection process
For the selected variable model, we chose variables that were not highly correlated

(0.7 maximum threshold), and this is in keeping with other studies (Dormann et al.,

2013;  Sasaki  et  al.,  2016){Sasaki,  2016  #190}{Sasaki,  2016  #190}.  Pearson

correlation  matrices  of  TLS and ULS variables  are  provided in  Appendix  3  and

Appendix 4, respectively. When selecting between two highly correlated variables,

we attempted to select for the most ecologically meaningful variable (e.g. average

height (meanH) and 75th percentile height (p_75) resulted in us selecting average
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height). We also selected at least one variable from each strata of vegetation and

several  canopy  metrics  to  cover  all  layers  of  vegetation  in  the  landscape.  The

variable selection was conducted for each sensor, respectively. However, we gave

preference to variables that were the same across sensors when the above criteria

had been met. Although it was not our intention, our final variables consisted of the

same 12 for each sensor. This was probably due to a combination of our selection

method and the fact that the variables from the two sensors were highly correlated

(Fig. 4), despite these sensors having different viewing geometry and point densities.

All  explanatory  variables  were  standardized  so  that  they  have  a  mean  of  zero

(“centering”)  and  standard  deviation  of  one  (“scaling”)  (Becker  et  al.,  1988).

Additionally, a cross correlation matrix was calculated to examine the relationship

between TLS and ULS variables. 

3.6.4. Modelling  bird  diversity  and  abundance  by  guilds  and  individual
species. 

To evaluate which selected LiDAR based variables had the strongest relationship to

bird abundance, species richness, species diversity, and functional diversity of birds

across sites, we fitted linear mixed effects models. Correlations between individual

bird abundance and bird abundance within functional guilds and vegetation structural

metrics were evaluated using Poisson distribution generalized linear mixed effects

models (GLMM) with glmer function in lme4 R package (Bates et al., 2015). Mixed

models extend the basic linear model such that they recognize grouped or nested

structures in data by random effects (Melin et al., 2018). In these models, predictor

variables were the selected vegetation structural metrics (fixed effects) and twenty-

four  polygons  (random  effects),  with  each  polygon  containing  four  transects

representing one of the four vegetation classes (see Fig.  1).  Response variables

were overall bird metrics, guilds and individual species abundance. 

3.6.5. Examination of model fit

We used Residual Diagnostics for HierARchical Models (DHARMa) package (Hartig

2017) for  examining  the  model  fit,  dispersion  and  zero-inflation.  Marginal  and
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conditional R2 were calculated to evaluate the proportion of variance explained by

fixed and mixed effects for models by species and guilds (Nakagawa et al., 2013).

To avoid model convergence issue, we retained the species or guilds that had at

least 10% count data across the sites. If the model convergence issue persisted, we

were able to resolve this by decreasing the number of  fixed effects by removing

those with the lowest explanatory values. We considered a predictor to be significant

if the absolute value of its z-score was greater than 1.96, corresponding to a p-value

smaller than 0.05.

4. Results

4.1. Bird data

A total  of  12117 bird observations (n = 5540 in Mulligan’s Flat  and n = 6577 in

Goorooyarroo) from 84 bird species were observed from the double surveys each

year across the three-year period from 2017 to 2019. A maximum of 238 birds and

36 species and a minimum of 42 birds and 10 species were counted in any one site

(Table 2). Most of the surveyed birds belong to the woodland specialist habitat class

(WS.HC, n = 8725), nested in hollows (Hol.Nest, n = 4668), foraged in the trees

(Arb.Forage, n = 6649) and displayed low dispersal (Low.Disp, n =8187) (Table 3).

Table 2. Basic statistics from bird data across sites. The table column headings are:

Abundance =  bird  abundance,  SR = species  richness,  Bird_shannon = shannon

diversity, FRic = functional richness, FEve = functional evenness, FDiv = functional

diversity, FDis = functional dispersion, and RaoQ =  Rao’s quadratic entropy.

Statistics Abundance SR Bird_shannon FRic FEve FDiv FDis RaoQ
Maximum 238.00 36.00 3.22 0.09 0.82 0.96 0.29 0.09
Mean 126.22 21.97 2.63 0.01 0.67 0.87 0.24 0.07
Stdev 42.60 5.91 0.35 0.02 0.07 0.04 0.02 0.01
Median 121.50 22.00 2.69 0.01 0.67 0.87 0.24 0.07
Minimum 42.00 10.00 1.68 0.00 0.50 0.78 0.17 0.04

15

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375



Table 3. Basic statistics about bird abundance within functional traits across sites.

Habitat classes (GS.HC = grassland specialist habitat class, WB.HC = water bird

habitat  class,  WG.HC  =  woodland  generalist  habitat  class,  WS.HC  =  woodland

specialist habitat class), nesting substrate (Arb.Nest = arboreal nesting, Hol.Nest =

hollow nesting, Usty.Nest = understory nesting, Opp.Nest = opportunistic nesting),

foraging  substrate  (Air.Forage  =  airial  foraging,  Aqu.Forage  =  aquatic  foraging,

Arb.Forage  =  arboreal  foraging,  Grnd.Forage  =  ground  foraging,  Opp.Forage  =

opportunistic foraging), dispersion (Low.Disp – low dispersion, Partial.Disp – partial

dispersion) groups.

Stats.
GS.
HC

WB.
HC

WG.
HC

WS.
HC

Arb.
Nest

Grnd.
Nest

Hol.
Nest

Opp
Nest

Usty.
Nest

Air.
Forage

Aqu.
Forage

Arb.
Forage

Grnd.
Forage

Opp.
Forage

Low.
Disp

Partial.
Disp

Sum 238 83 2868 8725 6174 44 4668 749 279 165 83 6649 2879 2138 8187 3722
Max 17 14 106 200 148 11 159 31 24 28 14 141 98 71 210 118
Mean 2.53 0.88 30.51 92.82 65.68 0.47 49.66 7.97 2.97 1.76 0.88 70.73 30.63 22.75 87.10 39.60
Stdev 3.14 2.35 20.33 34.72 28.19 1.59 32.00 7.93 4.81 4.08 2.35 27.53 18.98 13.64 34.44 23.14
Median 1.50 0.00 26.50 86.00 62.50 0.00 40.00 6.00 1.00 0.00 0.00 65.00 25.00 19.50 84.50 37.50
Min 0 0 2 28 11 0 5 0 0 0 0 19 5 1 29 3

4.2. Predicting vegetation classes from the LiDAR dataset

Multinomial regression models showed that selected LiDAR variables provided better

accuracy in predicting vegetation classes than the first four PCA variables for both

TLS and ULS data (Appendix 5. Table A5.1 and Table A5.2). Therefore, we decided

to use selected variables over PCA variables as predictors in our models. For both

TLS  and  ULS  datasets,  models  were  better  at  classifying  HTHS  and  LTLS

vegetation classes than HTLS and LTHS vegetation classes.
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4.3. Selected variables

Our variable selection method resulted in 12 out of 37 LiDAR metrics being selected

for the models. The Pearson correlation matrix showed that most of the TLS and

ULS variables are strongly correlated to each other (r > 0.7) (Fig. 4). Only the L1

metrics and lower strata canopy metrics showed a weak correlation (r < 0.3) to each

other. Basic statistics for these TLS and ULS variables are provided in Figure 5.

Figure  4.  Correlation  matrix  of  Terrestrial  Laser  Scanner  (TLS)  and  Unoccupied

Aerial Vehicle Laser Scanner (ULS) variables
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Figure  5.  Boxplots  represent  the  distribution  of  selected terrestrial  laser  scanner

(TLS) and unoccupied aerial vehicle laser scanner (ULS) variables. Upper, mid, and

lower horizontal lines of the box indicate 1th, median, and 3rd quartiles. Whiskers

extend  to  the  highest  and lowest  extreme of  observations,  and the  dots  on  the

whiskers are outliers
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4.4. Overall bird abundance, species richness and diversity

The GLMM for the overall bird abundance did not show a significant relationship with

any  of  the  12  selected  variables  from  the  ULS  or  TLS  data  (Appendix  6,

“Abundance”, Fig. 6). Bird species richness (SR) was positively related to several

TLS-derived variables including  meanH, and  skewH and  height_cv  and negatively

correlated to meanH_L3. However, tvolume was the only significant predictor among

the ULS selected variables for predicting bird species richness (SR). Bird diversity

(Bird_shannon) was positively influenced by TLS and ULS meanH and tvolume, and

negatively influenced by meanH_L3 (Appendix 6, “Bird_shannon, Fig. 6). Among the

functional diversity indexes, functional evenness (FEve) was negatively correlated to

only TLS-based  vci_15m. However,  vci_15m derived from TLS and ULS data was

negatively related to functional divergence. Functional dispersion (FDis) and Rao's

quadratic entropy (RaoQ) were negatively influenced by TLS and UAV – derived

vci_2m and vci_15m, and positively related to ULS – based vci_L1 (Appendix 6, Fig.

6). However, all  these models showed relatively poor performance with explained

variance between 10.0% and 20.0% (Appendix 6).

Figure  6.  Plots  illustrate  the  significance  of  predictor  variables  (by  z  value)  for

predicting overall  bird abundance,  species richness and diversity.  Bars represent

predictor variables. The horizontal orange line shows the significance threshold (z =

1.96, or p < 0.05) of predictors. The abbreviations are: FDis = Functional dispersion,

FDiv = functional divergence, FEve = functional evenness, RaoQ =  Rao’s quadratic

entropy,  SR  =  species  richness,  TLS  =  terrestrial  laser  scanner,  and  ULS  is

unoccupied aerial vehicle laser scanner. 
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4.5. Bird abundance within functional guilds 

All of the 16 functional guilds (Table 3) were significantly correlated to one or more

LiDAR  variables,  and  some  guilds  showed  a  stronger  response  to  vegetation

structure than others (Appendix 7, Fig. 7). Models from TLS data explained between

8.5% and 39.9% (average of 22.6%) variability, and ULS models explained between

6.8%  and  40.8%  (average  of  23.5%)  variability  in  abundance  of  birds  across

functional guilds. 

The most robust TLS-based explanatory models were the water bird habitat class

(R2=0.40)  and  aquatic  foragers  abundance  (R2=0.40),  which  were  positively

correlated to  meanH,  skewH and  vci_5m, and negatively correlated to  maxH and

meanH_L3.  The ground nesting guild model from TLS data explained substantial

variance  (R2 =  0.34),  and  was  negatively  influenced  by  maxH and  positively

influenced by  skewH,  tvolume and  vci_L2.  The TLS-based opportunistic  foraging

model was the third best at explaining variance in the data (R2 = 0.31). That model

was  negatively  correlated  to  maxH,  meanH,  skewH and  height_cv and  strongly

positively correlated to canopy_roughness and meanH_L3 (Appendix 7, Fig. 7). 

The ULS-based models also performed best  for  aquatic  foraging and water  bird

habitat  guilds (R2 = 0.41),  which were positively related to  vci_5m,  vci_15m and

vci_L1.  The next  best  performing  ULS guild  model  was  for  woodland  generalist

abundance (R2 = 0.37) and was positively associated with  maxH and  vci_L1. The

ULS model also explained substantial variance in abundance of ground nesting birds

(R2=0.35), which were positively influenced by  meanH and  skewH,  but negatively

related to maxH (Appendix 7, Fig. 7). 

Canopy roughness (canopy_roughness) was the best predictor variable for the TLS-

based models with a significant correlation to 10 functional guilds followed by skewH,

maxH and  meanH height  of  canopy and  meanH_L3 (Fig.  7).  The best  predictor

variables for ULS-based models were vci_5m, which was significantly correlated to 9

guilds, maxH, canopy_roughness and vci_L1 (Fig. 7).
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Figure  7.  Plots  illustrate the significance of  predictor  variables (by z  value)  from

terrestrial laser scanner (TLS) and unoccupied aerial vehicle laser scanner (ULS) for

predicting bird abundance by functional guilds. Bars represent predictor variables.

Horizontal orange line shows the significance threshold (z = 1.96, or p < 0.05) of

predictors.  The abbreviations are:  habitat  classes (GS.HC = grassland specialist,

WB.HC  =  water  bird,  WG.HC  =  woodland  generalist,  and  WS.HC  =  woodland

specialist), dispersal (Low.Disp = low, and Partial.Disp = partial), nesting substrate

(Arb.Nest = arboreal, Hol.Nest = hollow, Usty.Nest = understory, and Opp.Nest =

opportunistic),  foraging  substrate  (Air.Forage  =  air,  Aqu.Forage  =  aquatic,

Arb.Forage = arboreal, Grnd.Forage = ground, and Opp.Forage = opportunistic).

4.5.1. Individual bird species abundance

Abundance of forty-nine out of fifty-one bird species responded to TLS and ULS –

derived vegetation structural variables (Appendix 8). Only Grey Shrike Thrush and

Pallid  Cuckoo  abundance  showed  no  relationship  to  any  TLS  or  ULS  LiDAR

structural variables. For the TLS-based models, canopy_roughness was significantly

related to the abundance of 16 bird species, followed by tvolume, which was related

to the abundance of 15 bird species (Fig. 8). In the ULS models,  vci_L1 related to

bird species abundance more than any other variable (22 bird species), followed by
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canopy_roughness (17  bird  species)  (Fig.  8).  Explained variance of  TLS models

ranged from 4.2% to 81.7% (average of 31.1%). Similarly, ULS-models explained

4.9% to 83.4% (average of 30.5%) of variation in bird species abundance. 
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Figure  8.  Plot  illustrates the significance of  predictor  variables (by z  value)  from

terrestrial laser scanner (TLS) and unoccupied aerial vehicle laser scanner (ULS) for

predicting  individual  bird  species  abundance.  Bars  represent  predictor  variables.

Horizontal orange line shows the significance threshold (z = 1.96, or p < 0.05) of

predictors.

The model for Nankeen Kestrel abundance was the best performing TLS model (R2

= 0.82), and was strongly correlated to vci_15m, canopy_roughness, meanH_L3 and

vci_L2 and  negatively  related  to  meanH and  tvolume (Appendix  8,  Fig  8).  The

second best TLS model was Spotted Pardalote abundance (R2 = 0.77), which was

correlated  to  maxH,  meanH,  skewH and  tvolume.  White  Throated  Treecreeper

abundance was also strongly related to TLS LiDAR-derived vegetation structure (R2

= 0.74) and had a positive relationship to skewH, vci_15m, tvolume and vci_L2, and

a negative relationship with maxH and vci_5m (Appendix 8, Fig 8).

The best performing ULS model was for Varied Sittela abundance (R2 = 0.83), which

was  explained  by  maxH,  meanH,  skewH and  meanH_L3.  The  White  Throated

Treecreeper  abundance  model  (R2 =  0.78)  showed  significant  correlation  with

meanH,  skewH,  canopy_roughness,  meanH_L3 and  vci_L1.  Likewise, the Sacred

Kingfisher abundance model explained 76.2% variance and was related to  maxH,

meanH, skewH, meanH_L3, vci_L1 and height_cv (Appendix 8, Fig. 8).

Overall, TLS and ULS data produced very similar results in predicting individual bird

species abundance, and this was demonstrated by the linear relationship between

the explained variances of TLS and ULS models (Fig. 9).
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Figure 9. The relationship between explained variance (R2) calculated from TLS and

ULS based Poisson distribution mixed model for predicting individual bird species

abundance. 

5. Discussion  

This is the first study that uses both ULS and TLS data for investigating relationships

between a wide range of bird population data and vegetation structure in a woodland

landscape.  It  is  also  the  first  study  in  Australia  to  model  avian  abundance  and

species richness using LiDAR data. Overall (combined species) bird abundance was

not significantly related to any TLS or ULS LiDAR-derived variables, and this may be

due to the number of different bird species that occupied a wide variety of structural

niches in  the  landscape  (Lesak et  al.,  2011).  Models  for  predicting  bird  species

richness,  diversity  and  abundance  within  functional  guilds  performed better  than

overall bird abundance.

Some individual bird species abundance models were able to explain a very large

amount of variability in abundance of particular species, which is promising for using

this  data  for  habitat  assessments  and  improving  our  understanding  of  habitat

requirements  for  threatened  species  in  particular.  Canopy  roughness,  vertical

complexity of  the first  layer,  total  vegetation volume and canopy height were the
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variables  that  were  most  strongly  associated  with  bird  community  and individual

species abundance. Our assumption that higher density LiDAR point clouds from the

TLS platform would create better models than the lower density, airborne ULS data

was not supported by our data. This was likely influenced by low-lying occlusions in

the  data  that  were  more  substantial  for  the  TLS  than  the  ULS  owing  to  the

positioning  of  the  sensors  and  the  characteristics  of  the  woodland  landscape

(Olschofsky et al., 2016). As a result, the ULS generally provided better results for

predicting the abundance of individual bird species and guilds that forage on the

ground than the TLS based on our methodology. We discuss the overall finding in

more detail below and provide recommendations for future research. 

5.1. Overall bird abundance, species richness and diversity

The lack of significant relationships between TLS and ULS structural metrics and

overall bird abundance may be due to contrasting habitat requirement across the

large suite  of  different  species  included in  the  total  abundance tally  (Wiens and

Rotenberry,  1981).  Models  for  predicting  overall  bird  species  richness  did  find

significant relationships to some variables but these were dependent on the data

source (TLS or ULS). Species richness was positively related to TLS canopy height

diversity  and upper  canopy height.  The only  ULS predictor  that  was significantly

related to bird species richness was the total volume of vegetation. The TLS sensor

may be able to capture more meaningful structural variation below the canopy for

birds than the ULS data owing to the positioning of the sensor under the canopy.

Overall  species diversity models from TLS and ULS data provided similar results

with  canopy  height  and  total  volume  being  strongly  related  to  the  bird  diversity

indices, but height_cv was only significant in TLS-based metrics (Appendix 6). This

further supports the idea that the TLS sensor was able to capture canopy height

variation in a more meaningful way for bird habitat quality, probably owing to the

positioning of the sensor (Ashcroft et al., 2014; Blakey et al., 2017). Nonetheless, the

higher density TLS data did not perform better than the ULS data in terms of overall

ability  to  explain  variance  in  this  data.  Therefore,  our  first  hypothesis  that  high

density  TLS  LiDAR  point  clouds  will  perform  better  for  modelling  overall  bird

abundance, species richness and diversity than lower density ULS point clouds was

not supported with the number of TLS scans per site that we collected. 
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Generally,  our  results  from  species  richness  and  diversity  models  agree  with

relationships identified in previous studies (Clawges et al., 2008; Lesak et al., 2011;

Sasaki et al., 2016). Clawges et al.  ( 2008) found a significant correlation between

ALS LiDAR-derived canopy height diversity and bird species diversity. Similarly, ALS

LiDAR  –  derived  canopy  height  and  mid-story  density  and  height  has  been

associated  with  song  bird  species  richness  (Lesak  et  al.,  2011).  Notably,  these

studies reported relatively low overall explained variance (R2 <= 0.2), which is also in

keeping with our findings. The typically low explained variance for community level

data (e.g., bird species richness and diversity) in these models may be due to a

mismatch in scale, since some of the bird species frequently use landscape areas

beyond  the  site  level  that  have  different  overall  structural  characteristics.  Bird

occurrence and habitat relationships can be scale-dependent  (Seavy et al., 2009;

Weisberg  et  al.,  2014).  Weisberg  et  al.  (2014) investigated  multiscale  habitat

heterogeneity and bird occurrence using LiDAR data, and they found the strongest

associations at a 200 m (4 ha) scale and the weakest associations at a 50 m (0.25

ha) scale. A similar study on multiscale analysis using LiDAR derived canopy height

measurements  (Seavy  et  al.,  2009) found  that  specific  bird  species  responded

differently to vegetation structure at different spatial scales. Future studies should

revisit this dataset at a variety of scales.  

5.2. Modelling bird abundance within functional guilds 

All  of  the  functional  guilds  that  we analyzed  were  significantly  related  to  LiDAR

derived vegetation structural metrics. Generally, TLS and ULS data achieved similar

results in predicting functional guild abundance (average R2 = 0.23). A few earlier

studies  have also  used remote sensing to  investigate  relationships  between bird

functional  guilds  and vegetation  structure,  but  they used species  richness within

guilds, rather than species abundance within guilds  (Lee et al., 2017; Lesak et al.,

2011).  For  example,  ALS-derived  vegetation  measures  have  been  used  for

estimating songbird species richness by nesting, foraging and edge preferring guilds

(Lesak et al., 2011). In that study, models using structural metrics from ALS data

explained between 7.0% and 16.1% of the variance in species richness in nesting

guilds, whereas our study explained between 8.5% and 33.7% (TLS) and 6.8% and

35.5% (ULS) variance in the abundance of birds from various nesting guilds. Another

study  also  found  significant  relationships  between  canopy  height  and  density
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variables and foraging guilds  (Lesak et  al.,  2011).  Our  models showed that  bird

abundance  by  functional  guilds  is  often  influenced  by  canopy  height  variables,

canopy roughness and vertical complexity of vegetation in the ground layer. Notably,

the  ULS  models  found  strong  correlations  between  ground  foraging  guilds  and

ground-layer vegetation structure, but the TLS models did not show this relationship.

This indicates that the ULS may capture more structural heterogeneity due to less

occlusion in the ground-layer  in  an open woodland than the TLS. As a result,  a

portion of our second hypothesis that overall, TLS data from the seven scan stations

per  site  will  perform  better  than  ULS  data  in  predicting  avian  functional  guild

abundance for ground foraging or low nesting species is rejected. 

5.3. Modelling individual bird species abundance

The relationship between specific vegetation structural metrics and the abundance of

certain bird species may be useful for future management and conservation efforts,

particularly for vulnerable species. In many cases, the link between the structural

metrics and specific bird species can be easily explained by their habitat preference,

lending more weight to this relationship. For example, we found that the abundance

of the vulnerable Superb Parrot (Polytelis swainsonii, Nature Conservation Act 2014)

is positively influenced by TLS-derived maximum height of trees and ULS-derived

maximum  height  of  trees  and  the  complexity  of  the  first  layer  vegetation  and

negatively  influenced  by  horizontal  distribution  of  canopy  (canopy  roughness).

Separate studies have found that Superb Parrots use large trees for nesting and

breeding and ground vegetation for foraging (Manning et al., 2004a). In addition to

the Superb Parrot, our LiDAR-derived structural models also performed very well in

predicting the abundance of two other threatened species, the White-winged Triller

(Lalage  tricolor,  Nature  Conservation  Act  2014),  and  the  Varied  Sittella

(Daphoenositta chrysoptera, Nature Conservation Act 2014). 

Some woodland sensitive birds also responded to  the LiDAR derived vegetation

structural metrics. For example, the Brown Thornbill (Acanthiza pusilla) is a species

found in sparse eucalypt woodlands  (Stagoll et al., 2010) and its abundance was

negatively correlated to canopy roughness and mean height of canopy (Appendix 8,

Fig 8).  Prior studies found that Noisy Miners (Manorina melanocephala)  are less

likely to occur in areas with high shrub cover (Crates et al., 2018; Montague-Drake et

al.,  2011;  Val  et  al.,  2018),  and our  noisy  miner  model  also  found a  significant
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negative relationship to shrub layer vegetation (Appendix 8). This finding suggests

that  managing  landscapes  to  increase  shrub  cover  should  reduce  the  negative

impact of this aggressive species, which is native, but often overabundant in human

modified landscapes (Debus 2008). 

On the other end of the extreme, we found no relationship between our site-level

structural  variables  and  the  abundance  of  the  Grey  Shrike-thrush  (Colluricincla

harmonica)  or  Pallid  Cuckoo (Cacomantis  pallidus).  These  common species  are

widely distributed across Australia and use habitat at large spatial scales and across

a wide range of  landscape types  (BirdLife  2020).  If  relationships  between these

species and specific structural variables are to be found, then it is more likely to be at

larger spatial scales than our 1 ha site-level metrics. Overall though, the individual

bird species models from both TLS and ULS performed better than the community-

based models,  and that’s  notable  because habitat  is  a  species  specific  concept

(Betts et  al.,  2014; Manning et al.,  2004b).  In trying to understand the structural

requirements  of  wildlife  using LiDAR data,  it  may be best  to  focus on individual

species  rather  than  overall  abundance  or  diversity  (Manning  et  al.,  2004b).

Contrasting  requirements  from multiple  species  may  frustrate  attempts  to  model

relationships to structural vegetation data (Halstead et al., 2019).   

Out of 51 bird species, ULS ground-layer vegetation structure was important for 22

species,  compared to  13 species  for  the  TLS models  (Appendix  8,  Fig.  8).  The

abundance of  ground foraging birds such as Yellow-rumped Thornbill  (Acanthiza

chrysorrhoa), Yellow-faced Honeyeater (Lichenostomus chrysops), Sulphur-crested

Cockatoo  (Cacatua  galerita),  Superb  Parrot  (Polytelis  swainsonii),  Red-rumped

Parrot  (Psephotus  haematonotus),  Little  Corella  (Cacatua  sanguinea)  were

significantly influenced by ground layer vegetation complexity for ULS but not TLS

data (Appendix 8, Fig 8). This might be related to the occlusion of TLS laser pulses

by ground vegetation (LaRue et al., 2020) and the ability of ULS to capture ground

vegetation structure in an open woodland due to the open canopy architecture of this

landscape (Yebra et al., 2015). As expected though, we did find that some species

that depend on canopy strata such as Buff-rumped Thornbill (Acanthiza reguloides),

Eastern  Rosella  (Platycercus  eximius),  Red-rumped  Parrot  (Psephotus

haematonotus)  and  Red  Wattlebird  (Anthochaera  carunculata)  were  significantly

associated  with  more  ULS  canopy  variables  than  TLS.  For  these  reasons,  our
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second  hypothesis  is  partially  supported  because  the  relationship  between

vegetation structural data and particular bird species was modelled more accurately

from the ULS data for species that primarily use the canopy strata.

5.4. TLS and ULS datasets

Although we compared the performance of TLS and ULS data in modelling bird-

habitat associations, it is important to recognize that we collected 7 scans of TLS

data in each  1 ha site, and this is a relatively low number of scans compared to

recent studies that acquired more than 16 scans in 1 ha sites (Levick et al., 2021;

Wilkes et al., 2017). However, most of those studies collected data over only a few

hectares in total, which makes more scans per ha and associated post-processing

feasible.  Increasing  the  number  of  TLS  scans  across  our  96,  1  ha  sites  would

increase the time required for data collection, making it less comparable in effort to

the ULS data. However, more TLS scans would decrease incident angle (i.e., the

angle between the incoming laser pulse and surface), which would capture dense

vegetation  and  ground  more  completely,  substantially  reducing  occlusions

(Soudarissanane et al., 2009). 

Topcon GLS2000 is a single return LiDAR sensor, and a multiple return TLS sensor

would have been able to penetrated farther into vegetation (Wilkes et al., 2017). The

ability of the ULS sensor to record multiple returns, as well as its smaller incident

angle, provided advantages over the TLS.  Higher point density TLS LiDAR data in

itself does not offer an advantage over lower point density ULS data if the coverage

is less complete and the landscape type allows a ULS sensor to view lower strata

vegetation to successfully model structural associations between plants and animals.

5.5. Conclusions 

Mixed models  showed strong relationships  between vegetation  structural  metrics

derived from TLS and ULS sensors  and the  abundance of  many individual  bird

species and their functional guilds. This type of data can be useful for identifying

habitat  requirements  for  a  variety  of  bird  species  (Graf  et  al.,  2009).  The

performance of ULS models and the speed at  which ULS data can be collected

relative to TLS sensors is particularly promising for this application. Understanding

the  landscape-scale  that  species  use  and  matching  this  to  the  scale  of  LiDAR

29

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694



structural metrics may improve our ability to identify relationships between remotely

sensed vegetation structure and wildlife (Seavy et al., 2009).
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Appendix 1.

We  conducted  a  pilot  study  in  March  2018  to  determine  the  best  method  to

characterize the 96 X 1 ha (50 m X 200 m) experimental sites with TLS data to

achieve the most complete coverage within a timeframe that would allow us to scan

all of the sites within a month. We collected TLS data at 1.7m scanner height with 6

mm point spacing at 10 m distance from the scanner. Data were collected from 5, 6

and 7 scanning stations in a test site (Fig A1). These stations were established in a

zigzag formation with approximately equal spacing between the stations to cover the

200 m x 50 m site. Data collection was performed with and without co-registering the

scanning stations to determine whether co-registration during collection was more

efficient  than later  co-registration during post-processing.  Co-registration allows a

surveyor to tie multiple scans in the same site together using targets directly in the

field. However, this method requires more time to place and scan targets and could

reduce the number of scan points within a site in a given timeframe  (Liang et al.,

2016b, Blakey et al., 2017). We found that data could be co-registered effectively

during  post-processing,  and  that  allowed  us  to  maximize  the  number  of  scans

collected in the field.
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Figure A1. Test scan positions: a) 5 scans, b) 6 scans and c) 7 scans for 200 m by

50 m size sites. 

Appendix 2. Contribution of TLS (left) and ULS (right) LiDAR variables for the
first and the second PCA axis

Appendix 3. Pearson correlation matrix of TLS variables
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Appendix 4. Pearson correlation matrix of ULS variables
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Appendix 5. 

Table A5.1. Confusion matrix for vegetation classes predicted using terrestrial laser

scanner (TLS) LiDAR variables. Vegetation classes are high tree high shrub (HTHS),

high tree low shrub (HTLS), low tree high shrub (LTHS), and low tree low shrub

(LTLS).
Vegetation classes were predicted from the first
four PCA variables calculated from all TLS LiDAR
variables

User's
accuracy
(%)

Vegetation  classes  were
predicted  from 12 selected TLS
LiDAR variables 

User's
accuracy
(%)

  HTHS HTLS LTHS LTLS HTHS HTLS LTHS LTLS
HTHS 21 5 6 4 58.3 26 5 6 3 65.0
HTLS 3 3 1 0 42.9 2 6 0 0 75.0
LTHS 6 5 9 0 45.0 1 3 9 3 56.3
LTLS 0 3 4 24 77.4 1 2 5 22 73.3
Producer's
accuracy (%) 70.0 18.8 45.0 85.7   86.7 37.5 45.0 78.6  
Classification
accuracy (%) 60.6 67.0
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Table  A5.2.  Confusion  matrix  of  vegetation  classes  predicted  using  UAV  laser

scanner  (ULS)  LiDAR  variables.  Vegetation  classes  are  high  tree  high  shrub

(HTHS), high tree low shrub (HTLS), low tree high shrub (LTHS), and low tree low

shrub (LTLS).
Vegetation classes were predicted from the first
four PCA variables calculated from ULS LiDAR
variables

User's
accuracy
(%)

Vegetation  classes  were
predicted from 12 selected ULS
LiDAR variables 

User's
accurac
y (%)

  HTHS HTLS LTHS LTLS HTHS HTLS LTHS LTLS
HTHS 24 4 13 3 54.5 25 3 4 1 75.8
HTLS 3 5 1 2 45.5 3 8 2 1 57.1
LTHS 3 3 1 0 14.3 1 4 11 3 57.9
LTLS 0 4 5 23 71.9 1 1 3 23 82.1
Producer's
accuracy (%) 80.0 31.3 5.0 82.1   83.3 50.0 55.0 82.1  
Classification
accuracy (%) 56.4 71.3
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