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We  exploit  the  mirror  and  complementary  symmetries  of  elementary
cellular automata (ECAs) to rewrite their rules in terms of logical opera-
tors.  The  operator  representation  based  on  these  fundamental  symme-
tries  enables  us  to  construct  a  periodic  table  of  ECAs  that  maps  all
unique rules in clusters of similar asymptotic behavior.  We  also expand
the  elementary  cellular  automaton  (ECA)  dynamics  by  introducing  a
parameter  that scales  the pace  with which  operators iterate  the system.
While tuning this parameter continuously,  further emergent behavior in
ECAs  is  unveiled  as  several  rules  undergo  multiple  phase  transitions
between  periodic,  chaotic  and  complex  (class  4)  behavior.  This  exten-
sion  provides  an  environment  for  studying  class  transitions  and  com-
plex  behavior  in  ECAs.  Moreover,  the  emergence  of  class  4  structures
can  potentially  enlarge  the  capacity  of  many  ECA  rules  for  universal
computation. 
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Introduction1.

Elementary  cellular  automata  (ECAs)  are  computational  schemes
defined  by  Wolfram  [1]  to  suggest  a  broad  classification  and  under-
standing  of  dynamical  systems.  These  lattice  models  operate  in  dis-
crete domains and are known to generate large-scale behavior only by
involving  local  interactions  (rules)  between  their  units  [1–4].
Wolfram’s  apprehension  is  that  the  asymptotic  behavior  of  any
dynamical  system  lies  in  one  of  four  possible  classes  of  behavior
(named  classes  1  through  4,  respectively):  homogeneous,  periodic,
aperiodic and complex [5]. As an archetype, ECAs are a set of 256 dif-
ferent  rules  with  a  dynamical  variety  that  comprises  all  these  classes.
Among  many  interesting  features  that  simple  models  like  ECAs  can
possess,  emergence  and  computability  are  the  most  striking  ones  [6].
Emergence,  the  semantic  gap  between  behavior  and  interactions,  is
the hallmark of complex systems, and Turing  computability is a funda-
mental  property  in  information  theoretical  systems.  Indeed,  in  ECAs,
emergence is typically observed in the form of self-organized patterns,
which develop either aperiodically (class 3) or in the form of propagat-
ing  complex  structures  (class  4)  [5,  6].  The  latter  type  of  behavior  is
also necessary for a cellular automaton (CA) rule to perform universal
computation [7, 8].  

Remarkable  efforts  have  been  made  to  acquire  a  general  under-
standing  of  how  several  rules  generate  similar  types  of  asymptotic
behavior.  Many  studies  have  focused  on  bridging  the  observed  spa-
tiotemporal  patterns  in  cellular  automata  (CAs)  (phenotype)  with
their  rule  space  (genotype)  [9–17].  Langton  proposed  a  way  to  map
various  rules  to  a  single  parameter  and  showed  that  as  the  values  of
this parameter range from zero to one, the resulting behavior tends to
follow classes 1, 2, 4 and 3 [13]. This approach suggests that complex
behavior  lies  between  periodic  and  aperiodic  classes,  although  there
are  many  exceptions.  Additional  approaches  have  introduced
entropies  [14,  15],  mean-field  descriptions  [16]  or  network  analyses
[17]  to  capture  the  relation  between  patterns  and  their  respective
rules.  In  ECAs,  there  are  15  unique  rules  in  class  3  and  only  two
unique rules that display class 4 behavior,  yet an exact description of
the difference between these two particular classes remains a big open
challenge. In this paper we try to shed a light on the following related
questions: Why  do certain rules show similar asymptotic dynamics? Is
there more emergent behavior hidden in the symmetries of ECAs? Is it
possible to probe class transitions in ECA rules? 

Based  on  an  intuition  gained  by  visual  inspection  of  ECA  dynam-
ics, we suggest a fundamental approach that helps us understand and
expand the dynamics of these systems. We  redefine the transition func-
tion  in  a  different  notation,  in  the  form  of  logical  operators  that  are
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“distilled”  from  the  global  dynamics  and  the  symmetries  of  the  sys-
tem.  This  approach  provides  an  alternative  framework  that  links  the
similarities  (and  differences)  observed  at  the  phenotype  level  to  the
new  representation  of  the  rule  space.  Moreover,  this  framework
enables us to implement a generalized logistic extension to ECAs  [18]
where a single parameter scales the pace with which operators update
the  cellular  units.  As  a  result,  the  binary  state  space  of  ECAs  trans-
forms  to  a  Cantor  set,  where  in  turn  we  observe  additional  emergent
behavior  and  transitions  between  classes  [6].  There  are  also  cases
where  the  behavioral  difference  between  some  rules  sharing  similar
genetic code is diminished upon the logistic extension. 

Furthermore,  we  reveal  several  instances  of  complex  (class  4)
behavior not present in standard ECA  rules, yet hidden in these mod-
els. We  point out that emergence of complex behavior follows a com-
mon  theme:  as  the  parameter  is  tuned,  spatiotemporally  periodic
regions  start  growing  within  the  chaotic  ones  to  the  point  where
chaotic  regions  are  so  constrained  that  they  “shrink”  into  complex
interacting  propagators.  The  emergence  of  class  4  behavior  is  impor-
tant for two main reasons: to shed a light on the mechanisms of class
transitions  and  to  reveal  further  hidden  symmetries  in  ECA  models.
The  emergence  of  propagators  also  opens  up  new  potential  opportu-
nities  that  might  enlarge  the  capacity  of  ECA  models  for  universal
computation. 

Operator Representation    2.

ECAs  are  time-dependent,  one-dimensional,  infinite  strings  of  sites

St  {sn
t } n-∞

∞
 of  a  binary  state  space  si ∈ {0, 1}.  In  ECAs,  a  rule

defines  how  the  value  of  a  certain  site  is  iterated  si
t+1  fSsi

t
 based  on

its  current  value  and  the  values  of  its  nearest  neighbors,  through  a

transition  function  fS(si-1
t , si

t, si+1
t ).  Given  the  binary  state  space,  there

are  eight  possible  configurations  of  a  three-site  neighborhood,  result-

ing in 28  256 possible mappings, that is, rules. Mapping of rule 30
is  shown  as  an  example  in  Figure  1(a).  The  name  “30”  of  this  rule
comes  from  the  binary  to  decimal  transformation  of  the  string
00011110 obtained from the particular mapping of the eight configu-
rations listed in the order shown in Figure 1(a).  

ECAs  possess  two  important  symmetries:  complementary  and  mir-
ror  [19].  While  mirror  means  flipping  the  string,  complementary
means  replacing  zeros  with  ones  and  vice  versa.  If  rule  A  and  rule  B
are complementary (mirror) symmetric, running rule A  with a certain
initial  string  will  give  the  complementary  (mirror)  image  of  running
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rule  B  with  the  complementary  (mirror)  version  of  that  string.  When
these  symmetries  are  taken  into  account,  the  number  of  unique  ECA
rules reduces to 88. This reduction is explained later by using the oper-
ator representation that we introduce in the following paragraphs. 

Figure 1. (a)  Representation  of  rule  30  in  terms  of  operators.  (b)  Transfor-
mations  needed  to  switch  between  mirror  and  complementary  symmetries  of
a rule. (c) Switching between rule 30 and its symmetries using operator repre-
sentation.  

Exploiting the mirror and complementary symmetries, we suggest a
two-step  grouping  of  the  nearest-neighbor  configurations,
(si-1
t , si

t, si+1
t ).  The  first  step  separates  eight  possible  configurations  by

looking  at  their  mirror  symmetry.  Four  of  them  are  mirror  invariant
(red  and  blue  configurations  in  Figure  1(a))  and  the  remaining  four
(orange and green) are not mirror invariant. We  separate these groups
into  a  symmetric  and  an  asymmetric  set,  respectively.  As  a  second
step, within each set we pair the configurations based on their comple-
mentary  symmetries.  For  instance,  the  complementary  configuration
of 111 is 000 in the symmetric set, and these two make up pair I. Fol-
lowing  this  step,  we  end  up  with  four  pairs,  as  shown  in  the  lower
part of Figure 1(a). 
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Simple  observations  on  ECA  runs  reflect  visual  structures  of  uni-
form,  stable,  oscillatory  or  irregular  patterns.  These  structures  are

prone to a mixture of three types of fundamental iterations si
t  si

t+1,

namely:  decay  [0 1  0],  stability  [0(1)  0(1)]  and  growth
[0 1  1]. On the other hand, each pair in our grouping has configu-
rations with central sites of values 0 and 1 that can be updated in four
possible  ways:  [0  0, 1  0],  [0  0, 1  1],  [0  1, 1  0]  and
[0  1, 1  1].  These  updates  form  a  complete  set  of  logical  opera-
tions  that  can  describe  any  ECA  rule.  Thus,  we  define  their  corre-
sponding  operators  and  conveniently  name  them  as  decay  (D),
stability  (S),  oscillation  (O)  and  growth  (G),  respectively.  Note  that
the  oscillation  operator  is  a  compound  of  decay  and  growth  itera-
tions.  Four  possible  pairs  and  four  possible  operators  cover  all  256

rules (44  28). As  an example, the operator representation of rule 30
becomes  DSOG  (see  Figure  1(a)).  A  full  table  of  operator  representa-
tion  for  all  ECA  rules  is  given  in  Figure  6  of  Supplemental  Material.
This  table  could  be  used  to  easily  determine  the  operator  representa-
tion from the rule number or the other way around. 

Symmetric and complementary counterparts of any rule can be eas-
ily  reached  by  using  the  operator  representation.  As  shown  in  Fig-
ure 1(b),  to  get  the  mirror  symmetry  of  a  rule,  we  need  to  switch  the
operators  in  pairs  III  and  IV.  To  get  the  complement  of  a  rule,  we
need to replace all D operations (if any) with G and vice versa. For a
certain rule, we can obtain all its equivalent rules by carrying out the
transformation  scheme  in  Figure  1(c).  Note  that  rules  with  identical
operators  acting  on  pairs  III  and  IV  have  symmetric  invariance,  and
rules  devoid  of  D  and  G  operators  have  complementary  invariance.
This leads to a reduced number of unique rules. 

If  there  is  no  invariance  between  a  rule  and  any  of  its  symmetric
counterparts, that rule is part of a group of four equivalent rules. An
example of this is rule 30 (DSOG), as shown in Figure 1(c). If a rule,
for  instance,  rule  105  (SSOO),  is  invariant  under  mirror  and  comple-
mentary  transformation,  that  rule  is  unique.  Using  this  argument,  we
can acquire the numbers of 88 unique rules by writing down a combi-
natorial scheme that counts rules with all possible types of invariance.
Note  that  any  transformation  based  on  the  mirror  and  complemen-
tary  symmetries  of  ECAs  can  show  the  existence  of  88  unique  rules.
An equivalent demonstration is provided in [19]. 

These  combinations  are  constructed  based  on  Figure  1(b).  Let  us
consider  a  rule  R,  its  mirror  and  complementary  counterparts  M  and
C,  respectively.  Out  of  256  possible  rules,  the  rules  for  which
R ≡ M ≡ C  are  2221  8.  This  because  in  pairs  I,  II,  III,  only
operators S and O are allowed, and the pair IV has the same operator
with  pair  III.  We  can  also  compute  the  number  of  unique  rules  with
R ≡ M ≢ C,  which  is  28;  with  R ≡ C ≢ M,  which  is  4;  and  with
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R ≢ M ≡ C,  which  is  also  4.  Adding  up  the  number  of  unique  rules
with R ≢ M ≢ C, which is 44, makes a total of 88. 

Periodic Table of Elementary Cellular Automata3.

Using  our  representation,  symmetric  (I  and  II)  and  asymmetric  (III
and  IV)  sets  of  operators  are  decoupled  from  each  other  with  respect
to  both  mirror  and  complementary  transformations.  Hence,  it  can  be
useful  to  arrange  the  ECAs  in  a  “periodic  table”  by  placing  possible
symmetric  set  operators  as  abscissa  and  asymmetric  set  operators  as
ordinate. However,  using all 16 pairs of operations in both axes leads
to  the  display  of  equivalent  rules.  This  can  be  avoided  by  realizing
that, for example, a symmetric set “DO”  becomes “GO”  under com-
plementary  transformation,  while  remaining  the  same  under  mirror
transformation. Omitting one of these pairs erases a whole column of
repetitions.  Continuing  in  this  fashion,  we  can  reach  a  1010  table
that  has  all  the  88  unique  rules  with  only  12  repetitions.  While  con-
structing  this  table,  we  need  to  decide  which  repeating  columns  to
erase  and  how  to  arrange  the  rows  and  the  columns  that  are  left  at
the  end.  The  table  that  we  have  constructed,  after  evaluating  numer-
ous options based on mathematical and aesthetic criteria, is presented
in Figure 2. The  12 repetitions that appear at the corners of the table
are  removed  for  clarity.  Note  that  every  adjacent  row  and  column
share  at  least  one  common  operator,  which  means  that  all  adjacent
rules in the table share at least three common operators. This arrange-
ment  is  not  unique;  however,  it  aims  to  arrange  rules  with  very  simi-
lar genotypes next to each other.   

The periodic table presented in Figure 2 offers a systematic “bird’s
eye” view of all 88 unique rules of ECAs.  Rules dominated by similar
simple  patterns  (homogeneous,  vertical  lines,  diagonal  lines,  horizon-
tal stripes) tend to appear together.  The  rules that show rich behavior
populate  the  “fertile  crescent”  along  the  diagonal  where  simple  rules
with contradicting patterns are expected to overlap. Among  these rich
rules,  the  ones  that  have  common  features  are  also  brought  together.
Rule pairs 18, 146 and 122, 126 are striking examples of this. Despite
the chaotic nature of these rules, starting a run with one of them and
switching to the other rule results in the same pattern that is produced
without  the  switching.  This  is  because  rule  18  (122)  and  rule  146
(126)  share  the  same  mapping,  except  for  the  configuration  111
(010),  which  is  mapped  to  0  in  the  former  and  1  in  the  latter.  This
111  (010)  configuration  is  “washed  out”  in  a  few  steps  and  is  never
visited  again.  This  effect  is  also  present  if  we  start  with  rule  26  and
continue with rule 154, but not the other way around. 
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Figure 2. Periodic  table  of  the  ECAs.  Rules  corresponding  to  operator  repre-
sentations  (in  the  order  I,  II,  III,  IV)  and  their  mirror  and  complementary
counterparts  (if  different)  are  presented  below  each  box  in  increasing  order.
Each box presents a run starting with a random sequence of 100 binary digits
evolved for 100 time steps according to the rule that is named by the smallest
number.  Periodic  boundary  condition  is  used.  Chaotic,  locally  chaotic  and
complex rules are highlighted with red, blue and purple squares, respectively.
Rules  that  acquire  aperiodic  behavior  upon  the  logistic  extension  (described
in Section 4) are highlighted with green squares.  

The  periodic  table  of  ECAs  also  resonates  with  the  findings  of  Li
and  Packard  [16]  in  their  classic  study  on  the  structure  of  the  ECA
rule space. They  found two clusters of chaotic rules (in this context it
includes  the  complex  rules  54  and  110).  Chaotic  A  includes  rules  18,
22, 30, 54, 146 and 150, while chaotic B has rules 60, 90, 106, 110,
122  and  126.  As  seen  in  Figure  2,  they  appear  as  clusters  at  the  bot-
tom  left  and  top  right  of  the  “fertile  crescent,”  respectively.  The
authors  found  rule  45  to  be  separated  from  the  clusters,  but  in  our
table  we  find  it  connected  to  the  cluster  B.  Furthermore,  clusters  A

Operator Representation and Class Transitions  in ECAs 421

https://doi.org/10.25088/ComplexSystems.31.4.415

https://doi.org/10.25088/ComplexSystems.31.4.415


and  B  are  connected  over  a  bridge  of  locally  chaotic  rule  26  in  the
table.  There  are  no  other  chaotic  rules  in  the  row  and  the  column  of
rule 105, which was also found to be isolated by Li and Packard, but
is connected to the cluster B over a bridge of locally chaotic rule 73. 

The  operator  representation  can  further  illuminate  the  studies  on
the  computational  irreducibility  of  ECAs.  In  particular,  it  is  interest-
ing  to  examine  the  rules  that  are  detached  from  the  coarse-graining
network  investigated  by  Israeli  and  Goldenfeld  [20].  They  have
shown that rule 105 can be coarse-grained by rule 150. In the opera-
tor  representation,  these  rules  appear  as  OOSS  and  SSOO,  respec-
tively.  Furthermore,  both  DGDG  (rule  60)  and  DDGG  (rule  90)  can
be  coarse-grained  by  themselves.  Finally,  the  authors  were  unable  to
coarse-grain  four  unique  rules:  30,  45,  106  and  154.  In  the  operator
representation,  they  happen  to  be  DSOG,  OGDS,  OSGD  and  SDOG.
These make up four unique rules that involve all four operators while
avoiding  two  complementary  symmetric  operators  (D  and  G)  in  the
same mirror symmetric set. In other words, the rules that were found
to be irreducible are the ones that appear the most asymmetric in the
operator representation. We  believe that these observations can guide
further studies on this subject. 

Coarse-graining of ECAs was taken further by [21], where the emu-
lation  of  all  ECA  rules  with  each  other  was  searched  exhaustively,
revealing  several  pairings  of  different  classes.  We  noticed  that  when
both rules are rather simple, they tend to share three operators. These
emulating-emulated  pairs  include  168  (SODS),  136  (SDDS);  168
(SODS),  170  (SOOS);  164  (SGDD),  128  (SDDD);  108  (DGSS),  76
(DSSS);  94  (DSGG),  90  (DDGG).  However,  this  pattern  breaks  when
the rule pairs (or the compiler) become more complicated. Finally,  the
authors  provide  the  list  of  the  most-emulated  rules  as  a  measure  of
their  complexity  (the  more  emulated,  the  less  complex).  The  top  10
rules  in  this  list  are  all  composed  of  rules  that  are  represented  by  use
of only one or two distinct operators. 

Logistic Extension of Elementary Cellular Automata   4.

Recently,  we  have  introduced  the  logistic  extension  of  two  outer-
totalistic  CAs:  Game  of  Life  and  rule  90  [18].  This  extension  is
achieved via introduction of a parameter λ that tunes the dynamics of
CAs.  λ  1  corresponds  to  the  original  binary  version  of  the  studied
systems.  As  λ  is  tuned  below  1,  the  logical  operations  become  func-
tional  operations  and  the  binary  state  space  thus  extends  into  a  Can-
tor  set.  As  a  result,  the  systems  expand  their  complexity  through
series of deterministic transitions. In particular,  rule 90, which is aperi-
odic at λ  1, shows complex (or class 4) behavior at λ ∼ 0.6.  
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The  operator  representation  presented  here  enables  us  to
go  beyond  the  outer-totalistic  rules  and  generalize  the  logistic  exten-
sion  to  all  ECAs.  We  first  define  four  regions  of  operation  for  each
pair  (I, II,  III  and  IV)  as  shown  in  Figure  3.  The  coordinates  of
a  configuration  [L, C, R]  (denoting  left,  center  and  right  sites,

respectively)  defined  as  the  sums  x ≡ L +R + 1 / 2 (mod 2)  and

y ≡ L +C + 1 / 2 (mod 2) determine in which operation region the con-

figuration  pair  falls.  As  shown  in  Figure  3,  the  eight  possible  binary
configurations  appear at the centers of the regions that correspond to
their  pair  definitions  shown  in  Figure  1(a).  Hence,  the  configuration
[L, C, R]  determines  the  operation  region,  which  in  turn  determines
the  corresponding  operator  based  on  the  rule  at  hand.  Depending  on
the operator,  the value of a site is updated according to one of the fol-
lowing formulas: 

Decay ⇒ st+1  (1 - λ)st

Stability ⇒ st+1  st

Oscillation ⇒ st+1 

(1 - λ)st + λ, if st ≤
1

2

(1 - λ)st, if st >
1

2

Growth ⇒ st+1  (1 - λ)st + λ.

Figure 3. Definition  of  the  operation  regions  based  on  a  configuration.  L,

C  and  R  correspond  to  the  values  at  the  left,  center  and  right  cells  of  a
configuration.  
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where  st  and  st+1  are  the  values  of  the  central  site  at  the  current  and
the next time step, respectively.  These equations represent the general-
ized  functional  operators,  which  rewrite  the  transition  function  in  a
different  fashion.  However,  the  limit  λ  1  still  generates  the  ECA
rules.  Note  that  this  generalization  is  also  consistent  with  the  special
case of the logistic rule 90 that we have reported earlier [18]. 

Further Emergent Behavior  4.1

Significant  changes  in  dynamics  can  occur  when  x  or  y  passes  over

from  one  region  to  another.  This  happens  when  the  sum  L +C  or
L +R is equal to the critical thresholds 0.5 or 1.5. The  values that L,
C  and  R  can  take  is  dictated  by  the  λ-dependent  Cantor  set.  Hence,
we can expect these changes at the values of λ that mark the equality
of  binary  sums  to  the  critical  thresholds.  As  λ  is  tuned  below  1,  the
first  time  such  a  transition  occurs  is  when  2λ  1.5.  After  this  point,
some of the rules start behaving differently than their original version
because  of  the  changes  in  the  operation  regime.  This  is  similar  to  the
noncausal mapping that emerges from sequential operation of two or
more rules as discussed in [19], which also leads to complex behavior.
However,  in our case only one rule is involved, but there are localized
operation regime changes that depend on the binary sums.  

Accompanied  by  the  collage  in  Figure  4,  in  this  part  we  discuss
several  cases  where  unprecedented  emergent  behavior  appears  from
rules of different classes. Some of the rules that are originally periodic
can acquire aperiodic behavior.  For example, rule 38 becomes locally
chaotic  at  λ ∼ 0.69  and  chaotic  at  λ ∼ 0.61.  Periodic  rules  can  also
become  complex,  for  example,  rules  37  and  46  at  λ  0.72,  also
shown  in  Figure  4.  All  rules  that  gain  aperiodic  behavior  upon  the
logistic  extension  are  highlighted  by  green  squares  in  Figure  2.  Note
that these rules are adjacent to the rules that are originally aperiodic. 

Rules  that  originally  exhibit  chaotic,  locally  chaotic  or  complex
behavior  pass  through  multiple  transitions  while  going  between  these
regimes.  As  seen  in  Figure  4,  chaotic  rule  18  becomes  complex  at
λ  0.73,  mimicking  (but  not  exactly  copying)  the  complex  patterns
seen  in  the  original  rule  54,  which  is  (surprisingly)  next  to  it  on  the
periodic table. Rule 82, which is a locally chaotic rule close by in the
table, also mimics the original rule 54 behavior at λ  0.74. 

Logistic  extension  breaks  the  symmetry  between  mirror  rules
because  of  the  left-right  asymmetry  in  the  sum  L +C.  Indeed,

using  x  C +R + 1 / 2 (mod 2)  would  have  been  more  symmetric,

but  note  that  y  L +C + 1 / 2 (mod 2)  already  enables  us  to  explore

the  “R +C”  side  of  the  mirror  rules.  Hence,  setting
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Figure 4. 150150 cell snapshots at a later stage of a 10001000 simulation
for various rules with given values of λ. The color bar shown at the top maps
the range between the minimum and maximum cell values for each snapshot.
Both  conventional  and  operator  representations  of  the  rules  are  given  below
each panel.
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x  L +R + 1 / 2 (mod 2)  reveals  the  transitions  of  outer-totalistic
nature  as  well.  This  is  clear  in  the  distinct  behavior  of  rule  26  (the
mirror  symmetry  of  rule  82),  which  has  a  mixture  of  chaotic  and
locally chaotic behavior at λ  0.74, as shown in Figure 4. However,
complementary rules behave in the same way under the logistic exten-
sion. For example, the behavior of complementary rules 90 and 165 is
the same at λ  0.6 [18].

Logistic  extension  breaks  the  symmetry  between  mirror  rules
because  of  the  left-right  asymmetry  in  the  sum L +C.  Indeed,

using  x  C +R + 1 / 2 (mod 2)  would  have  been  more  symmetric,

but  note  that  y  L +C + 1 / 2 (mod 2)  already  enables  us  to  explore

the  “R +C”  side  of  the  mirror  rules.  Hence,  setting

x  L +R + 1 / 2 (mod 2)  reveals  the  transitions  of  outer-totalistic
nature  as  well.   This  is  clear  in  the  distinct  behavior  of  rule  26  (the
mirror  symmetry  of  rule  82),  which  has  a  mixture  of  chaotic  and
locally chaotic behavior at λ  0.74, as shown in Figure 4. However,
complementary rules behave in the same way under the logistic exten-
sion. For example, the behavior of complementary rules 90 and 165 is
the same at λ  0.6 [18]. 

Rules  that  originally  have  complex  behavior  may  remain  complex
while  having  noticeable  changes  in  their  dynamics,  for  example,
rule 54  at  λ  0.74.  They  also  can  become  locally  chaotic  like  rule
110  at λ  0.74  or  become  chaotic  like  rule  124  (not  shown  in  Fig-
ure 4),  which  resembles  its  neighboring  chaotic  rule  60  at  λ  0.72.
Rules that are chaotic or locally chaotic can behave in a complex fash-
ion,  as  exemplified  by  rule  86  (mirror  symmetry  of  the  rule  30)  at
λ  0.68 and rule 154 at λ  0.68, respectively.  

Class Transitions   4.2

A remarkable benefit  of our extension is without doubt related to the
emergence  of  complex  structures.  Originally,  ECAs  possess  a  rather
small  set  of  class  4  rules.  Rules  110  and  54  are  well  studied  for  their
abilities  to  perform  computation  [22–24],  yet  they  are  unfortunately
limited  in  providing  a  framework  for  studying  general  properties
of class 4 behavior.  Making use of our λ parameter,  we discuss exam-
ples  that  can  help  us  understand  mechanisms  of  class  transitions  in
one-dimensional CAs.  

We  start to qualitatively analyze the emergence of class 4 behavior
by looking at the dynamics of rules 110 and 54. Among  many shared
similarities,  both  rules  are  characterized  by  large  regions  with
spatiotemporal periodicity.  The periodicity is characterized by oblique
lattice  units  in  spacetime,  as  shown  in  Figure  5(a,  b).  We  name  these
uniform  lattice  regions  “fields.”  Complex  structures  are  correlated
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Figure 5. (a) Period-7 field  of rule 110 for λ  0.8. The  operators are colored
with  respect  to  their  operation  region  in  accordance  with  Figure  1.  The  14
states  with  distinct  values  that  constitute  the  period-7  field  are  denoted  with
numbers. The repeating unit cell is delineated with solid lines. The area of this
unit cell gives the number of distinct states constituting the field.  (b) Period-5

field  of  rule  60  for  λ  0.704.  400250  cell  snapshots  at  a  later  stage  of  a

20002000  simulation  of  (c)  rule  60  and  (d)  rule  37  with  given  values  of  λ.
The  color  bar  maps  the  range  between  the  minimum  and  maximum  cell
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values for each snapshot. As  the value of λ is decreased from 0.706 to 0.704,
the period-5 fields  start growing within the chaotic regions. This  way the sys-
tem makes a transition from class 3 to class 4 behavior while a single parame-
ter  is  tuned.  Similar  transition  is  observed  for  rule  37  when  the  value  of  λ  is
increased from 0.586 to 0.587.  

with  interfaces  between  fields  that  have  some  offset,  or  mismatch.  In
Figure  5(a),  we  have  a  closer  look  at  the  field  that  dominates  the
dynamics of rule 110. At  λ  0.8 the system follows the same behav-
ior  as  the  original  version  because  λ > 0.75.  However,  the  logistic
extension helps us to discern 14 states with distinct values that consti-
tute  the  lattice  of  this  field.  States  1  through  7  are  created  by  cyclic
application  of  the  operator  string  GGDDGSG.  The  final  operation
takes  state  7  back  to  state  1  and  the  process  repeats  with  temporal
periodicity of 7. States 8 through 14 are created by cyclic application
of  a  different  string:  SGDGSDS.  The  two  sets  of  seven  states  arrange
themselves  in  alternating  fashion  along  the  space  with  a  phase  differ-
ence  (time  shift)  and  produce  each  other's  neighborhood.  Together
they  form  an  autocatalytic  set  of  states  (and  corresponding  opera-
tions)  that  sustains  the  growth  of  a  period-7  field  extending  both  in
space  and  time.  We  believe  that  the  size  and  geometry  of  the  lattice
units  in  every  field  might  help  us  understand  the  characteristics  of
their related propagators. 

As  mentioned  earlier,  upon  the  logistic  extension  we  reveal  many
examples  of  class  4  behavior  in  various  rules.  Similar  to  rule  110,
these  systems  are  also  characterized  by  a  dominating  field  or  several
fields, like in the case of rule 106 at λ  0.73 (see Figure 4). The auto-
catalytic sets of states and operations can support a certain field  only
on a limited range of λ. As  λ is tuned within this range, dominance of
that field  can be enhanced or diminished. This can be utilized to make
smooth  transitions  between  class  3  and  class  4  behavior.  Earlier  we
discussed such a possibility in logistic rule 90 [18]. Here we give two
more  examples  using  rule  60  and  rule  37.  Figure  5(b,  c)  shows  the
analysis of rule 60. As  λ is decreased from 0.706 to 0.704, we see an
increase  in  the  dominance  of  the  period-5  field  shown  in  Figure  5(c).
Here  a  single  set  of  five  states  created  by  the  string  DGDGG  is
involved.  As  the  fields  expand,  the  complex  propagators  become
more and more clear.  Transition  in rule 37 is presented in Figure 5(d).
Here  period-3  stripes  take  over  the  system  as  λ  is  increased  from
0.586  to  0.587.  Transition  in  rule  90  also  involves  period-3  stripes
and occurs in a similar range of λ. Furthermore, the propagators that
emerge in these systems resemble each other.  
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Conclusion5.

In summary,  we redefine  the transition function of elementary cellular
automaton  (ECA)  rules  by  introducing  a  notation  based  on  logical
operators.  This  allows  us  to  organize  all  unique  rules  in  a  periodic
table  based  on  their  similarities  in  the  operator  representation.  Rules
with  similar  behavior  appear  clustered  in  the  table.  Hence,  similarity
in  operator  representation  leads  to  similarity  in  global  dynamics.
We  extend the ECA  to its logistic counterpart by introducing a single
parameter that tunes the iteration rate of operators. This  expands the
range of behavior that ECA  models can offer.  In particular,  we reveal
several  instances  of  complex  (class  4)  behavior  in  various  rules  and
corresponding  values  of  a  tuning  parameter.  We  also  show  examples
of transition from chaotic to complex behavior while the parameter is
tuned  continuously.  Here,  autocatalytic  sets  of  states  and  operators
produce periodic spatiotemporal regions, named fields,  that gradually
grow  within  the  chaotic  regions  until  the  latter  become  complex
propagators.  

Alternative  approaches  can  generate  emergent  behavior  using  ECA
rules. Elementary cellular automata (ECAs) can be decomposed into a
smaller  set  of  primary  rules  that  act  in  conjunction  to  generate  a
larger  rule  space  [19].  This  set  of  primary  rules  comprises  all  the
observed dynamic behavior of ECAs  and also serves as an alternative
formulation to observe further emergent structures. 

In terms of computability in ECAs, there are studies that show that
simple  ECA  rules  can  generate  complex  behavior  when  run  with
sophisticated  initial  conditions  [21],  proposing  that  class  3  rules  can
be reprogrammed to perform computation. In contrast, our approach
stands  closer  to  discovering  systems  where  computation  can  emerge
from “attractor” properties of the rules. 

The  class  transitions  upon  tuning  λ  prove  that  ECAs  are  models
that  embed  more  complexity  in  their  structures.  Moreover,  the
emergence  of  class  4  behavior  expands  the  domain  of  rules  that  can
be  studied  for  Turing  computability.  We  believe  that  a  similar
approach  may  be  useful  to  explore  hidden  features  in  other  complex
systems,  such  as  discrete  lattice  models  [25,  26]  and  Boolean  genetic
networks [27]. 
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Supplemental Material

In  Figure  6,  we  present  all  256  ECA  rules  as  a  1616  grid  with
respect  to  a  specific  ordering  of  symmetric  and  asymmetric  operator
pairs. The  order is arranged in such a way that the rules are grouped
in  eight  32-rule  clusters  according  to  their  rule  numbers.  This  could
be used to easily derive the operator representation from the rule num-
ber or the other way around.  

Figure 6. All  256  ECA  rules  are  presented  as  a  1616  grid  with  respect  to  a
specific  ordering  of  symmetric  and  asymmetric  operator  pairs.  The  order  of
the operator pairs is arranged in such a way that the rule numbers are as close
to  each  other  as  possible.  Concomitantly,  rules  are  grouped  in  eight  32-rule
clusters. This figure makes it easy to translate the rule number to operator rep-
resentation and vice versa.  
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