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Abstract
We provide a novel neural network architecture that can: i) output R-matrix for a given quantum
integrable spin chain, ii) search for an integrable Hamiltonian and the corresponding R-matrix
under assumptions of certain symmetries or other restrictions, iii) explore the space of
Hamiltonians around already learned models and reconstruct the family of integrable spin chains
which they belong to. The neural network training is done by minimizing loss functions encoding
Yang–Baxter equation, regularity and other model-specific restrictions such as hermiticity.
Holomorphy is implemented via the choice of activation functions. We demonstrate the work of
our neural network on the spin chains of difference form with two-dimensional local space. In
particular, we reconstruct the R-matrices for all 14 classes. We also demonstrate its utility as an
Explorer, scanning a certain subspace of Hamiltonians and identifying integrable classes after
clusterisation. The last strategy can be used in future to carve out the map of integrable spin chains
with higher dimensional local space and in more general settings where no analytical methods are
available.
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1. Introduction

Neural networks and deep learning have recently emerged as a competitive computational tool in many areas
of theoretical physics and mathematics, in addition to their several impressive achievements in computer
vision and natural language processing [1]. In string theory and algebraic geometry for instance, the
application of these methods was initiated in [2–5]. Since then, deep learning has seen several interesting and
remarkable applications in the field, both on the computational front [6–15] as well as towards the
explication of foundational questions [16]. They have appeared in the context of conformal field theory,
critical phenomena, spin systems and matrix models [17–26]. More generally, deep learning has found
interesting applications in mathematics, ranging from the solution of partial nonlinear differential equations
[27, 28], to symbolic calculations [29] and to hypothesis generation [30, 31]. Interestingly, deep learning is
starting to play an increasingly important role in symbolic regression, i.e. the extraction of exact analytical
expressions from numerical data [32]. While it is difficult to pin-point any one solitary reason for this
confluence of several fields into deep learning, there are some important themes that do seem to play a
recurring role. Firstly, deep neural networks are a highly flexible parametrized class of functions and provide
us an efficient way to approximate various functional spaces and scan over them [33–36]. The same neural
network, as we shall shortly see, can learn a Jacobi elliptic function as easily as it does a trigonometric or an
exponential function. Such approximations train well for a variety of loss landscapes, including non-convex
ones. Secondly, over the previous many years, robust frameworks for the design and optimization of neural
networks have been developed, both as an explication of best practices [37–42] and the development of
standardized software for implementation [43–45]. This has made it possible to reliably train increasingly
deeper networks which are optimized to carry out increasingly sophisticated tasks such as the direct
computation of Ricci flat metrics on Calabi Yau manifolds [12–15] and the solution of differential equations
without necessarily providing the neural network data obtained from explicitly sampling the solution.
Further, in recent interesting developments, deep learning has been applied to analyze various aspects of
symmetry in physical systems ranging from their classification to their automated detection [19, 46–50].

The profound role played by symmetry in theoretical physics and mathematics is hard to overstate.
Probably its most compelling expression in theoretical physics is found in the bootstrap program which rests
on the idea that a theory may be significantly or even fully constrained just by the use of general principles
and symmetries without analysis of the microscopic dynamics. For example, the S-matrix bootstrap bounds
the space of allowed S-matrices relying only on unitarity, causality, crossing, analyticity and global
symmetries [51–53]. This provides rigorous numerical bounds on the coupling constants and significantly
restricts the space of self-consistent theories [54–56]. This line of consideration finds its ultimate realization
in two dimensions once applied to integrable theories. Integrable bootstrap complements the
aforementioned constraints with one extra functional Yang–Baxter (YB) equation, manifesting the scattering
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factorization, which allows us to fix the S-matrix completely [57]. The same YB equation appears in the
closely related context of integrable spin chains [58, 59]. Now instead of S-matrix, it restricts the R-matrix
operator whose existence allows one to construct a commuting tower of higher charges and prove
integrability. Practically, one has to solve the functional YB equation in a certain functional space. There is no
known general method to do so, and all existing approaches are limited in the scope of application and fall
into three groups. The first class of methods is algebraic in nature, exploiting the symmetry of R-matrix
[60–66]. The second approach aims to directly solve the functional equation or the related differential
equation [67]. The third alternative utilizes the boost operator to generate higher charges and impose their
commutativity [68–70].

In this paper we shall demonstrate how neural networks and deep learning provide an efficient way to
numerically solve the YB equation for integrable quantum spin chains. On an immediate front, we are
motivated by recent interesting work on classical integrable systems using machine learning [46–48, 71]. The
approach taken in the work [71] of learning classical Lax pairs for integrable systems by minimization of the
loss functions encoding a flatness condition has a particularly close parallel to our approach. However, to the
best of our knowledge, the present work is the first attempt to apply machine learning to quantum
integrability, the analysis of R-matrices and the YB equation.

Our analysis utilizes neural networks to construct an approximator for the R-matrix and thereby solve
functional YB equation while also allowing for the imposition of additional constraints. We look into the
sub-class of all possible R-matrices, namely those that are regular and holomorphic, and incorporate the YB
equation into the loss function. Upon training for the given integrable Hamiltonian, we successfully learn the
corresponding R-matrix to a prescribed precision. Using spin chains with two-dimensional space as a main
playground we reproduce all R-matrices of difference form which was recently classified in [68]. Moreover,
this Solver can be turned into an Explorer which scans the space (or a certain subspace) of all Hamiltonians
looking for integrable models, which in principle allows us to discover new integrable models inaccessible to
other methods. Below we provide the summary of the neural network and its training, as well as an overview
of the paper.

1.1. Summary of neural network and training:
The functional YB equation, see equation (2.3) below, is holomorphic in the spectral parameter u ∈ C and as
such, holds over the entire complex plane. In this paper, we shall restrict our training to the interval
Ω= (−1,1) on the real line, but design our neural network so that it analytically continues to a holomorphic
function over the complex plane. Each entry into the R-matrix is separately modeled by multi-layer
perceptrons (MLPs) with two hidden layers of 50 neurons each, taking as input parameters the variable
u ∈ Ω. More details are available in section 3.2 and appendix B. All the neurons are swish activated [72],
except for the output neurons which are linear activated. Training proceeds by optimizing the loss
functions that encode the YB equations (3.7), regularity (3.12), and constraints on the form of the spin chain
Hamiltonian, for instance via (3.13). Hermiticity of the Hamiltonian, if applicable, is imposed by the
loss (3.15). Optimization is done using Adam [73] with a starting learning rate of η = 10−3 which is annealed
η = 10−8 in steps of 10−1 by monitoring the YB loss (3.7) on validation data for saturation. Adam’s
hyperparameters β1 and β2 are fixed to 0.9 and 0.999 respectively. In the following, we will refer to this
learning rate policy as the standard schedule. We apply this framework to explore the space of R-matrices
using the following strategies:

1. Exploration by attraction: The Hamiltonian loss (3.13) is imposed by specifying target numerical values
for the two-particle Hamiltonian, or some ansatz/symmetries instead (like 6-vertex, 8-vertex, etc). We
also formally include here the ultimate case of general search when no restrictions are imposed on the
Hamiltonian at all. This strategy is predominantly used in our Section 4.1.

2. Exploration by repulsion: We can generate new solutions by repelling away from an ansatz or a given
spin chain. This requires us to activate the loss function (3.17) for a few epochs in order to move from the
specific Hamiltonian. This strategy is employed in section 4.2.

Further, we also have two schemes for initializing training.

1. Random initialization: We randomly initialize the weights of the neural network using He initialization
[74]. This samples the weights from either a uniform or a normal distribution centered around 0 but with
a variance that scales as the inverse power of the layer width.

2. Warm-start: we use the weights and biases for an already learnt solution .
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A brief overview of this paper is as follows. In section 2 we quickly introduce the R-matrix and other key
concepts from the quantum integrability of spin chains relevant to this paper. Particularly in section 2.1, we
review the classification program of 2D spin chains of difference form through the boost automorphism
method [68]. Section 3 contains a review of neural networks with a view towards machine learning the
R-matrix given an ansatz for the two-particle Hamiltonian. Our methodology for this computation is
provided in section 3.2. We then present our results in section 4. Section 4.1 focuses on hermitian XYZ and
XXZ models (section 4.1.1), and prototype examples from the 14 gauge-inequivalent classes of models in
[68](section 4.1.2). The latter sub-section also contrasts training behaviour for integrable and non-integrable
models. Section 4.2 presents a preliminary search strategy for new models which we illustrate within a
toy-model setting: rediscovering the two integrable subclasses of 6-vertex Hamiltonians. Section 5 discusses
ongoing and future research directions.

2. An overview of spin chains and quantum integrability

Quantum integrability, like its classical counterpart, hinges on the presence of tower of conserved charges in
involution, i.e. operators that mutually commute. In this paper, we will consider quantum integrable spin
chains and the goal of this section is to introduce such systems, and provide a brief overview of the R-matrix
construction in their context.

The Hilbert space of the spin chain is a L-fold tensor product V= V1 ⊗ . . .⊗VL of d-dimensional vector
spaces Vi ∼ V= Cd. The Hamiltonian H of a spin chain with nearest-neighbour interaction is a sum of
two-site Hamiltonians Hi,i+1:

H=
L∑

i=1

Hi,i+1 , (2.1)

where we assume periodic boundary conditions : HL,L+1 ≡HL,1. The chrestomathic example of the
integrable spin-chain is spin-1/2 XYZ model :

H=
L∑

i=1

∑
α

JαSαi S
α
i+1 , (2.2)

where α= {x,y,z} and Sαi are Pauli matrices acting in the two-dimensional space Vi = C2 of ith site. In
particular case when Jx = Jy it reproduces XXZ model, while in the case of three equal coupling constants
Jx = Jy = Jz = J the Hamiltonian reduces to the XXX spin chain. These famous magnet models are just a few
examples of integrable spin chains and now we turn to the general construction.

The central element for the whole construction and proof of quantum integrability is the R-matrix
operator Rij(u) which acts in the tensor product Vi ⊗Vj of two spin sites4 and satisfies the YB equation:

Rij (u− v)Rik (u)Rjk (v) = Rjk (v)Rik (u)Rij (u− v) (2.3)

where the operators on the left and right sides act in the tensor product Vi ⊗Vj ⊗Vk. The R-matrix is
assumed to be an analytic function of the spectral parameter u. Further, in order to guarantee locality of the
interaction in (2.1), it must reduce to the permutation operator Pij when evaluated at u= 0, i.e.

Rij (0) = Pij . (2.4)

This condition will be referred to as regularity in the following sections. In principle, one can consider more
general case when Rij(0) is a constant solution of YBE. However, such spin chains with long-range
interactions are beyond the scope of this paper.

We next turn to defining the monodromy matrix Ta(u). This matrix, denoted by
Ta(u) ∈ End(Va ⊗

∏L
i=1⊗Vi)×C, acts on the spin chain plus an auxiliary spin site labeled by a with Hilbert

space as Va ∼ Cd. It is defined as a product of R-matrices Ra,i(u) acting on the auxiliary site and one of the
spin chain sites and is given by

Ta (u) = Ra,L (u)Ra,L−1 (u) . . .Ra,1 (u) . (2.5)

4 In general, the R-matrix R(u,v) is an analytic function of two complex arguments u,v, which can be viewed as momenta of two particles
at the two sites. Here and throughout the paper we shall exclusively focus our analysis to a restricted class of R-matrices of difference
form R(u,v) = R(u− v) depending only on a single complex argument w= u− v. Many R-matrices of non-difference form R(u,v) ̸=
R(u− v) are already known, and particularly appear in the context of AdS/CFT correspondence, but are beyond the scope of the current
paper.
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The transfer matrix T(u) ∈ End(
∏L

i=1⊗Vi)×C is obtained by taking a trace over the auxiliary vector
space Va :

T(u) = tra (Ta (u)) . (2.6)

From the YB equation one can derive the following RT T relation constraining monodromy matrix entries

R12 (u− v)T1 (u)T2 (v) = T2 (v)T1 (u)R12 (u− v) . (2.7)

This condition can be used to prove that the transfer matrices commute at different values of the momenta

[T(u) ,T(v)] = 0 . (2.8)

The above condition implies that the transfer matrix T(u) encodes all the commuting chargesQi as
series-expansion in u :

logT(u) =
∞∑
n=0

Qn+1
un

n!
. (2.9)

Hence we have5

Qn+1 =
dn

dun
logT(u)|u=0 =

dn−1

dun−1

(
T−1 (u)

d

du
T(u)

)∣∣∣∣∣
u=0

. (2.10)

The Hamiltonian density Hi,i+1 introduced earlier in equation (2.1) can be generated from the R-matrix
using

Hi,i+1 = R−1
i,i+1 (0)

d

du
Ri,i+1 (u) |u=0 = Pi,i+1

d

du
Ri,i+1 (u) |u=0 (2.11)

where Pi,i+1 is the permutation operator between sites i, i+ 1. Also, we emphasize that while the charges are
conventionally computed in equation (2.10) at u= 0, this computation can equally well be done at generic
values of u to extract mutually commuting charges. The only difference is we no longer recover the
Hamiltonian directly as one of the commuting charges.

YB equation (2.3) should be supplemented with certain analytical properties of R-matrix. For example,
as was already mentioned, we assume that the R-matrix is a holomorphic function of spectral parameter u
and equal to the permutation matrix at u= 0 (2.4). Furthermore, one can impose extra physical constraints
like braided unitarity

R12 (u)R21 (−u) = g(u) I , g(u) = g(−u) , (2.12)

crossing symmetry6, and possibly additional global symmetries. We shall also impose restrictions on the
form of the resulting Hamiltonian. These restrictions may follow from requirements such as hermiticity and
from symmetries of the spin chain. In addition, given a solution for the YB equation, one can generate a
whole family of solutions by acting with the following transformations :

1. Similarity transformation : (Ω⊗Ω)R(u)(Ω−1 ⊗Ω−1) where Ω ∈ Aut(V) is a basis transformation. It
transforms the commuting charges asQn → (⊗LΩ)Qn(⊗LΩ−1)

2. Rescaling7 of the spectral parameter : u→ cu, ∀ c ∈ C. This leads to a scaling in the charges as
Qn → cn−1Qn

3. Multiplication by any scalar holomorphic function f (u) preserving regularity condition :
R(u)→ f(u)R(u), f(0) = 1. This degree of freedom can be used to set one of the entries of R-matrix to
one or any other fixed function.

4. Permutation, transposition and their composition: PR(u)P, R(u)T, PRT(u)P. They transform the
commuting charges as well. The HamiltonianH is transformed to PHP,PHTP,HT respectively.

5 In practice, numerically it is more stable to work with the second formula on the right hand side than the first.
6 The explicit form of the crossing symmetry varies for the different classes of models.
7 For the general r-matrix of non-difference form R(u,v) there is a reparametrization freedom u→ f(u), however for the difference form
R(u) it reduces just to rescaling.

5
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In general, one should always be careful of these redundancies when comparing a trained solution against
analytic results. Following [68], we shall fix the above symmetries when presenting our results in
section 4.1.2 and appendix A. We look at gauge-equivalent solutions as well, by introducing similarity
transformations in 4.1.2.

2.1. R-matrices of the difference form for spin chains with two-dimensional local Hilbert space
We will illustrate the work of our neural network using spin chains with two-dimensional local space as a
playground. The regular difference-form integrable models in this context have recently been classified using
the Boost operator in [68]. Here, we present a brief overview of the methods and results of this paper. Boost
automorphism method allows one to find integrable Hamiltonians by reducing the problem to a set of
algebraic equations. Let us focus on a spin chains with two-dimensional space V= C2 and
nearest-neighbour Hamiltonian (2.1). One formally defines the boost operator B [75] as

B =
∞∑

a=−∞
aHa,a+1 , (2.13)

which generates higher chargesQn, n⩾ 3, from the HamiltonianQ2 via action by commutation:

Qr+1 = [B,Qr] . (2.14)

This was used in [68] to successfully classify all 2-dimensional integrable Hamiltonians by solving the system
of algebraic equations arising from imposing vanishing conditions on commutators betweenQi, upto some
finite value of i. Surprisingly it turns out that for the considered models, the vanishing of the first non-trivial
commutator [Q2,Q3] = 0 is a sufficient condition to ensure the vanishing of all other commutators. Then
making an ansatz for the R-matrices and solving YB equation in the small u limit, the authors constructed
the corresponding R-matrices and confirmed the integrability of the discovered Hamiltonians. The solutions
can be organized into two classes: XYZ-type, and non-XYZ type, distinguished by the non-zero entries
appearing in the Hamiltonian.

HXYZ type =


a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2

 , Hnon−XYZ type =


a1 a2 a3 a4
0 b1 b3 b3
0 c1 c2 c3
0 0 0 d1

 . (2.15)

Generically, all non-zero entries would be complex valued. Hermiticity, for the actual XYZ model and its
XXZ and XXX limits, places additional constraints. Integrability also imposes additional algebraic
constraints between the non-zero entries, none of which involve complex conjugation in contrast to
hermiticity. Amongst the XYZ type models, there are 8 distinct solutions each corresponding to some set of
algebraic constraints among the matrix elements of H. In particular, there is one 4-vertex model (H4v) which
is purely diagonal (see (A.1)). Next, there are two 6-vertex models (H6v,1, H6v,2) where d1 and d2 are
constrained to vanish, among other conditions (see (A.2) and (A.4)). One of these, namely H6v,1, is a
non-hermitian generalisation of the XXZ model. There are also two 7-vertex models (H7v,1, H7v,2) where
only d2 vanishes (see (A.6) and (A.8)), and three 8-vertex models (H8v,1, H8v,2, H8v,3) where all entries are
non-zero(see (A.10), (A.13) and (A.17)). Here, H8v,1 is the non-hermitian generalization of the XYZ model.
Among these classes the Hamiltonians are distinguished by additional algebraic constraints on the non-zero
elements which we have enumerated in appendix A. The corresponding R-matrices for these models were
obtained in [67]. The non-XYZ models are similarly divided into 6-classes with Hamiltonians
Hclass-1 , . . .Hclass-6 which have been explicitly enumerated in equation (A.19). Among these, the class 1 and
class 2 Hamiltonians have rank less than four. For convenience, we also explicitly write down all of these
R-matrices, both for the XYZ type and non-XYZ type models, in appendix A.

3. Neural networks for the R-matrix

This section reviews several essential facts about neural networks before presenting our own network-design
for deep-learning and the associated custom loss functions. Further details regarding the network
architecture and training schedule can be found in appendix B.

3.1. An overview of neural networks
The central computation in this paper is the utilization of neural networks to construct R-matrices that
correspond to given integrable spin chain Hamiltonians. We therefore furnish a lightning overview of neural

6
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Figure 1. The schematic for a dense neural network, also known as a fully connected neural network. The four-dimensional input(
a
(0)
1 . . .a

(0)
4

)
is fed via the input layer (green) to a series of three fully connected layers (purple) containing four neurons each

and finally feeds into the output layer of three neurons (orange). Every neuron in a given layer receives inputs from all neurons in
the preceding layer, and in turn, its output is passed as input to all neurons in the next layer.

networks in this section, along with the details of our implementation of the neural network solver for YB
equations. We will focus on dense neural networks, also known as MLPs, schematically displayed in figure 1.
These networks consist of an input layer ain ∈ Rn0 , followed by a series of fully connected layers and terminate
in an output layer aout ∈ RnL+1 . Data is read in to the network at the input layer and the output is collected at
the output layer. There are L fully connected layers in this network, where the ℓth layer contains nℓ neurons.

Each neuron a(l)m in a lth fully connected layer receives inputs from all the neurons in the previous (l− 1)th
layer and the output of the neuron is in turn fed as an input to neurons in the succeeding layer:

a(ℓ)1

a(ℓ)2
...

a(ℓ)nℓ

= h




w(ℓ)
1,0 w(ℓ)

1,1 . . . w(ℓ)
1,nℓ−1

w(ℓ)
2,0 w(ℓ)

2,1 . . . w(ℓ)
2,nℓ−1

...
...

. . .
...

w(ℓ)
nℓ,0 w(ℓ)

nℓ,1 . . . w(ℓ)
nℓ,nℓ−1



a(ℓ−1)
1

a(ℓ−1)
2
...

a(ℓ−1)
nℓ−1

+


b(ℓ)1

b(ℓ)2
...

b(ℓ)nℓ


 , ℓ= 1, . . .L+ 1 , (3.1)

where w(l) ∈M(nl,nl−1,R) is a weight matrix, b(l) ∈ Rnl - bias vector, h(z) is in general a non-linear,
non-polynomial function known as the activation function acting component-wise :

h


z1

z2
...
zn

=


h(z1)

h(z2)
...

h(zn)

 . (3.2)

In (3.1) we also identify a(0) = ain and a(L+1) = aout with input and output layers respectively. Introducing
shorthand notation for the affine transformations in equation (3.1) as A(ℓ)(a(ℓ−1))≡ w(ℓ)a(ℓ−1) + b(ℓ), the
neural network aout(ain) : Rn0 → RnL+1 can be expressed as compositions of affine transformations, and
activation functions:

aout = h ◦AL+1 ◦ h ◦AL ◦ . . . ◦ h ◦A1 ◦ ain. (3.3)

The output function of the neural network is tuned by tuning the weights and biases. It is by now well
established that such neural networks are a highly expressive framework capable of approximation of
extremely complex functions, and indeed there exists a series of mathematical proofs which attest to their
universal approximation property, e.g. [33–35, 76, 77]. This property, along with the feature learning
capability of deep neural networks is the key driver to the automated search for R-matrices which we have
implemented here.
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Neural networks learn a target function f (x) of the input data x by optimizing a cost function L which
provides a measure of the discrepancy between the actual and desired properties of the function f. The
parameters w and b are then tuned to minimize this discrepancy. The best known and the most canonical
examples of this are the supervised learning problems where the neural network is supplied with data
D = {(x,y)} consisting of pairs of input vectors x with their expected output values y. The neural network
then tunes its weights and biases to minimize the cost function. Having done so, the output function f thus
learned by the neural network obeys

f(x)≈ y ∀ (x,y) ∈ D , (3.4)

while allowing for the possibility of outliers. A popular class of loss functions are

L({w,b}) =
∑

(x,y)∈D

∣∣y− ypred (x)
∣∣q , ypred (x) = f(x;w,b) , (3.5)

where q= 1 corresponds to themean average error and q= 2 to themean square error, respectively. We will
shortly see that in contrast to the above classic supervised learning set-up, our loss functions impose
constraints on the neural network output functions rather than train on a dataset of input/output values for
the functionsR(u) directly sampleR(u) at various values of u for training.

3.2. Machine learning the R-matrix
We are now ready to describe our proposed methodology for constructing R-matricesR(u) by optimizing a
neural network using appropriate loss functions. An R-matrix has elements Rij (u) at least some of which are
non-zero. In the following, we shall focus solely on the Rij (u) which are not identically zero as functions of u.
We also restrict the training to the real values of spectral parameter u ∈ Ω= (−1,1) and exclusively use
holomorphic activations function in order to guarantee the holomorphy of the resulting R-matrixR(u). The
matrix elementsRij (u) of this R-matrix are modeled by neural networks as

We have decomposed the matrix elementRij(u) into aij(u)+ i bij(u) in order to learn complex-valued
functionsRij while training with real MLPs on the real interval Ω. In this paper, purely for uniformity, we
have modeled each such aij(u) and bij(u) using an MLP containing two hidden layers of 50 neurons each and
one linear activated output neuron. We emphasize that the identification of aij(u) and bij(u) to real and
imaginary parts ofRij(u) is only valid over the real line, and these functions separately continue into
holomorphic functions over the complex plane whose sumRij(u) is holomorphic by construction. Now,
Rij(u) is required to solve the the YB equation (2.3) subject to (2.4). We may also place constraints on the
corresponding two-particle H given by (2.11). These criteria are encoded into loss functions which the
R-matrixRij(u) aims to minimize by training. For example, in order to trainRij(u) to satisfy YB
equation (2.3) for all values of spectral parameter u from the set Ω⊂ C we introduce the following loss
function :

LYBE = ||R12 (u− v)R13 (u)R23 (v)−R23 (v)R13 (u)R12 (u− v) || , (3.7)

where ||. . .|| is a matrix norm defined as ||A||=
∑n

α,β=1 |Aαβ | for an complex-valued n× nmatrix A.
During the forward propagation we sample a mini-batch of u and v values, from which the corresponding
u− v is constructed. Along this paper, the spectral parameters u and v run over the discrete set of 20 000
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points randomly chosen from the interval Ω8. The loss function LYBE is positive semi-definite, vanishing
only whenR(u) solves the YB equation. In principle, one may imagine a scan across the space of all
functions in which case, solutions of the YB equation would minimize the loss (3.7) to zero.

In practice of course, one cannot scan across the space of all functions and is restricted to a hypothesis
class. Here the hypothesis class is implicitly defined by the design of the neural network, the choice of
numbers of layers, number of neurons in each layer, as well as the activation function. Varying the weights
and biases of the neural network allows us to scan across this hypothesis space. While in general the exact
R-matrix may not belong to this hypothesis class, and the loss function would then be strictly positive, deep
learning may allow us to approach the desired functionsR→ R to a high degree of accuracy. In summary, if
we restrict to a hypothesis class which does not include an actual solution of the YB equation then

LYBE ⩾ ϵ= min
{w ′,b ′}

LYBE ({w ′,b ′})> 0 , (3.8)

where ideally ϵ would be small, indicating that we have obtained a good approximation to the true solution.
We expect that scanning across wider and wider hypothesis classes would bring ϵ closer and closer to zero.
Further, while the RTT equation (2.7) follows from the YB equation (2.3), it can also be imposed separately
as a loss function on the network in order to improve the training :

LRTT = ||R12 (u− v)T1 (u)T2 (v)−T2 (v)T1 (u)R12 (u− v) || . (3.9)

Next, we have constraints that must be imposed on the R-matrix at u= 0. Following equation (2.4) and
equation (2.11) in previous section, we require that 9

R(0) = P , P
d

du
R(u) |u=0 =H , (3.11)

where H is the two particle Hamiltonian. They both can be encoded in the loss function as

Lreg = ||R(0)− P||, (3.12)

LH = ||P d

du
R(u) |u=0 −H|| . (3.13)

Here, we should mention that we have some flexibility in the manner in which we implement the
Hamiltonian constraint LH. Firstly, one can fix the exact numerical values for the entries of H and learn
corresponding R-matrix. We will also consider extensions of this loss function where we supply only
algebraic constraints restricting the search space for target Hamiltonians to those with certain symmetries or
belonging to certain gauge-equivalence classes. In general, such Hamiltonian constraints give us the requisite
control to converge to the different classes of integrable Hamiltonians, and we will name such regime as a
exploration by attraction.

In the same spirit, when working with the XYZ spin chain or its XXZ and XXX limits, we also require that
the two-particle Hamiltonian computed from R(u) is hermitian, i.e.

H=H† . (3.14)

We impose this condition by means of the loss function

L† =
∣∣∣∣H−H†∣∣∣∣ . (3.15)

We shall therefore train our neural network with the loss function

L= LYBE +Lreg +λRTTLRTT +λHLH +λ†L† , (3.16)

8 The number of points used during the training bounds the precision which one can reach and in our case it will be of order 10−4.
9 It is tempting to consider a variation of our method which involves residual learning a la the ResNet family of networks [74]. As opposed
to learning deviations from identity, which is typically the approach adopted in the ResNet architecture, we may define

R(u) = P+ R̃(u) , (3.10)

where R̃(u) is the target function of the neural network, whichwe design to identically output R̃(0) = 0.While this is possible in principle,
in practice it turns out that since the neural network is learning a function in the vicinity of P, which trivially minimizes the YB equation
and all other constraints imposed, it almost invariably collapses to the trivial solution and learns R̃(u) = 0 across all u. It would nonetheless
be interesting to identify such architectures that successfully learn non-trivial R-matrices and this is in progress.

9
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where putting the coefficients λα, for α= {RTT,H,†}, to zero removes the corresponding loss term from
being trained.

The loss function (3.16) produces a very complicated landscape and the NN should approach its
minimum during the training. Usually, this search is performed with gradient based optimization methods.
One might be skeptical about being stuck in some local minimum instead of finding the global minimum of
such complicated loss function in a very high dimensional hypothesis space. However, recent analysis
revealed that deep NNs end up having all their local minima almost at the same value as the global one [78,
79]. In other words, there are many different configurations of weights and biases resulting into a function of
similar accuracy as the one corresponding to the global minimum. There are also many saddle points and
some of them have big plateau and just a small fraction of descendent directions, making them practically
indistinguishable from the local minima. However, most of their losses are close to the global minimum as
well. Those with significantly higher losses have a bigger number of descendent directions and thus can be
escaped during the learning [78, 79].

We find that the training converges to yield simultaneously low values for each of the above losses as
applicable. Further, while the hyper-parameters {λ} are tunable experimentally, setting them all to 1 is a
useful default. However, for fine-tuning the training it is also useful to tune these parameters to reflect the
specific task at hand. We provide the requisite details in section 4 where we discuss specific training
methodologies and the corresponding results. We will also discuss there a new loss function

Lrepulsion = exp(−||H−Ho||/σ) , (3.17)

which is useful to fine-tune the training to access new integrable Hamiltonians H in the neighbourhood of
previously known integrable Hamiltonians Ho, we will call such regime as a exploration by repulsion.

As a final observation on the choice of activation functions, we note that at the level of the discussion
above, any holomorphic activation function such as sigmoid, tanh, and the sinh would suffice. In practice
we find that the training converges faster and more precisely using the swish activation [72]. This is given by

swish(z) = zσ (z) , σ (z) =
1

1+ e−z
. (3.18)

We have provided some comparison tests across activation functions in appendix B.2.

4. Results

We present our results for learning R-matrices within the restricted setting of spin chains of difference form
with two dimensional local space. Our analysis will be divided into three parts. First, we will learn hermitian
XYZ model and its well-known XXZ and XXX limits, comparing our deep-learning results against the
analytic plots. Then we remove hermiticity and reproduce all 14 classes of solutions from [68]. The last set of
experiments demonstrates how our neural network in the explorer mode can search for integrable models
exploring the space of Hamiltonians.

4.1. Specific integrable spin chains
In this sub-section we look at specific physical models, by imposing tailored conditions on the Hamiltonian
derived from the training R-matrix. This includes constraints on the Hamiltonian entries at u= 0, and
hermiticity of the Hamiltonian.

4.1.1. Hermitian models: XYZ spin chain and its isotropic limits
Imposing hermiticity on the 8-vertex Hamiltonian, we learn the classic XYZ integrable spin chain and its
symmetric XXZ limit. We start with the following 8-vertex model ansatz for the R-matrix

R(u) =


a 0 0 d
0 b c 0
0 c b 0
d 0 0 a

 (4.1)

and impose the loss functions for YBE, hamiltonian constraint, regularity, and hermiticity (see
equation (3.16)). The target Hamitonians comprise of a 2-parameter family HXYZ(Jx, Jy, Jz) given by

HXYZ

(
Jx, Jy, Jz

)
= JxS

x
1S

x
2 + JyS

y
1S

y
2 + JzS

z
1S

z
2 =


Jz 0 0 Jx − Jy
0 −Jz 2 0
0 2 −Jz 0

Jx − Jy 0 0 Jz

 , (4.2)
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Figure 2. The evolution of training losses for the XYZ model, shown on the log scale. The losses tend to fall in a step-wise manner,
which corresponds approximately to the learning rate schedule the network is trained with.

where we have set Jx + Jy to be equal to 2. The symmetric limit of XXZ model is realised for Jx = Jy = 1. A
useful reparametrisation for these models is in terms of (η,m) [80]

Jx = 1+

√
m sn(2η|m)

2
, Jy = 1−

√
m sn(2η|m)

2
, Jz = cn(2η|m)dn(2η|m) . (4.3)

The analytic solution for the XYZ R-matrix is given in terms of Jacobi elliptic functions as

a(u) =
sn(2η+ωu|m)

sn(2η|m)
exp

(
−cn(2η|m)dn(2η|m)

2sn(2η|m)
ωu

)
,

b(u) =
sn(ωu|m)

sn(2η|m)
exp

(
−cn(2η|m)dn(2η|m)

2sn(2η|m)
ωu

)
,

c(u) = exp

(
−cn(2η|m)dn(2η|m)

2sn(2η|m)
ωu

)
,

d(u) =
√
msn(ωu|m)sn(2η+ωu|m)exp

(
−cn(2η|m)dn(2η|m)

2sn(2η|m)
ωu

)
,

(4.4)

where ω = 2sn(2η|m), andm is the elliptic modular parameter10. Our model consistently learns the
R-matrices for the XYZ model for generic values of the free parameters η,m. Figure 2 gives the time
evolution of the different loss terms during training. Figure 3 plots the R-matrix component ratios with
respect to R12 in terms of the spectral parameter, and compares them with the corresponding analytic
functions for a generic choice of deformation parameters η = π

3 andm= 0.6. Lettingm= 0, we recover the
XXZ models for generic values of η.

4.1.2. Two-dimensional classification
Here, we lift the hermiticity constraint on the Hamiltonian, thus allowing for more generic integrable
models. As we shall see below, the neural network successfully learns all the 14 classes [68] of difference-form
integrable (not necessarily Hermitian) spin chain models with two-dimensional space at each site. The
R-matrices corresponding to each of these classes are written down explicitly in appendix A. Towards the end
of this sub-section, we also present results for learning solutions in generic gauge obtained by similarity
transformation of integrable Hamiltonians from the aforementioned 14 classes. We shall discuss the results
in two parts: XYZ type models, and non-XYZ type models.

10 Usually, these expressions are written in terms of the elliptic modulus k instead of the modular parameter m= k2, e.g. as in [67]. We
have expressed them in terms of the modular parameter following the implementation in both Python and Mathematica.
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Figure 3. (a) XYZ R-matrix as ratios with respect to the (12) component for η = π/3,m= 0.6, (b) Absolute and relative errors
for R-matrix.

Figure 4. (a) Predicted vs actual R-matrix component ratio w.r.t. R00 for XXZ-type model with
a1 = a2 = 0.3,b1 = 0.45,b2 = 0.6, c1 = 0.4, c2 = 0.25, (b) Absolute error between predicted and actual R-matrix component
ratios.

The first set of Hamiltonians under consideration are generalisations of the XYZ model (discussed in the
previous sub-section), with at most 8 non-zero elements in its Hamiltonian density

H8−vertex =


a1 0 0 d1
0 b1 c1 0
0 c2 b2 0
d2 0 0 a2

 (4.5)

where the coefficients can take generic complex values. The XYZ model corresponds to the subset with
a1 = a2,b1 = b2, c1 = c2,d1 = d2. As discussed in section 2.1, these models can be further sub-divided into
four, six, seven and eight vertex models. On the other hand, there are 6 distinct classes of non-XYZ type
solutions. Here we will discuss the training results for one example each from the XYZ and non-XYZ type
models, since the training behaviour is similar within these two types. Rest of the models will be presented in
appendix A. Figure 4 plots the R-matrix components as ratios with respect to R00 for a generic 6-vertex
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Figure 5. (a) Predicted vs actual R-matrix components for the Hamiltonian of class-1, with coefficients
a1 = .5, a2 = .3, a3 = .9, a4 = 1.5, a5 = .4. Note here the R-matrices are automatically normalised since R00 was fixed to the
constant value of 1, (b) Absolute error between predicted and actual R-matrix components.

model with d1 = d2 = 0, and a1 = a2. The figure also includes the absolute and relative errors with respect to
the corresponding analytic R-matrix (see equation (A.2)).

From the non-XYZ classes, we will focus on the following 5-vertex Hamiltonians

Hclass-1 =


0 a1 a2 0
0 a5 0 a3
0 0 −a5 a4
0 0 0 0

 . (4.6)

For integrability, we require the additional condition

a1a3 = a2a4 . (4.7)

Training the Hamiltonian constraint (3.13) for generic values a1 = 0.5,a2 = 0.3,a3 = 0.9,a4 = 1.5,a5 = 0.4
satisfying the above integrability condition, we get over 99.9% accuracy for training over∼100 epochs.
Figure 5 plots the trained R-matrix components and absolute errors with respect to the analytic R-matrices
in equation (A.20), for the above choice of target Hamiltonian.

We have also surveyed more general solutions beyond the representative solutions of the 14 classes a la
[68], by changing the gauge of the R-matrix as well as the corresponding Hamiltonian. As noted earlier in
section 2, we can act with a 2× 2 similarity matrix Ω on the R-matrix:

R(u)→ RΩ (u) = (Ω⊗Ω)R(u)
(
Ω−1 ×Ω−1

)
(4.8)

H→HΩ = (Ω⊗Ω)H
(
Ω−1 ×Ω−1

)
. (4.9)

If R(u) satisfies YB equation, so does RΩ(u). A generic similarity matrix Ω

Ω=

(
v11 v12
v21 v22

)
(4.10)

with non-zero off-diagonal entries v12,v21 ̸= 0, results in conjugated R-matrices and Hamiltonians with all
16 non-zero entries. We trained 16-vertex Hamiltonians resulting from XYZ model in the general gauge and
recovered the corresponding R-matrix with a relative error of orderO(0.1%). Generic XYZ type models, as
well as non-XYZ type models gave similar results for different gauges. Figure 6 plots the learnt R-matrix

components for XXZ model with η = π
3 conjugated by the matrix Ω =

(
0.4 0.5
−1.2 1

)
. For comparison with

analytic formulae, we normalised our results by taking ratios with respect to a fixed component R00, i.e. we
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Figure 6. (a) Predicted R-matrix component ratios w.r.t. R00, for conjugated XXZ model with η = π
3
and similarity matrix

Ω=

(
0.4 0.5
−1.2 1

)
, (b) Absolute error between predicted and actual R-matrix ratios.

plot
Rij

R00
. As a result of starting from the XXZ model, the R-matrix RXXZt in the general gauge has following

highly symmetric form

RXXZg =


R00 R01 R01 R03

R10 R11 R12 −R01

R10 R12 R11 −R01

R30 −R10 −R10 R00

 . (4.11)

Thus we only plot the entries R00,R01,R03,R10,R11,R12,R30. Since there exists overall normalisation
ambiguity, we should only compare ratio of R-matrix entries with the analytic solution written in the same
gauge.

Next we discuss the difference in the training of integrable vs non-integrable models with our neural
network. We will focus on two representative examples : 6-vertex model with Hamiltonian H6v,1, and class 4
models with Hamiltonian Hclass-4. Similar results hold across all the 14 classes.

For 6-vertex models with Hamiltonians following equation (4.5) with d1 = d2 = 0, generic values of the
coefficients ai,bi, ci,di for i = 1,2 leads to non-integrable models, unless

a1 = a2 , a1 + a2 = b1 + b2 . (4.12)

These are the models with Hamiltonian H6v,1, H6v,2 in appendix A. Figure 7(a) compares the training for a
generic Hamiltonian with coefficients satisfying none of the above conditions against the training for
H6v,1-type model. We see that while the Hamiltonian constraint (3.13) saturates to similarly low values in
both cases, the YB loss saturates at approximately one order of magnitude higher.

Similar behavior holds for the non-XYZ type models as well. The training for a generic class-4
Hamiltonian with coefficients a1 = 0.5,a2 = 0.3,a3 = 0.4,a4 = 0.9 (see equation (A.19)) and a
non-integrable deformation is shown in figure 7(b).

One can further discriminate between integrable and non-integrable models by checking the point-wise
values of the YB losses in the two cases. Let us define the metric

L̃=
||R12 (u− v)R13 (u)R23 (v)−R23 (v)R13 (u)R12 (u− v) ||

||R12 (u− v)R13 (u)R23 (v) ||
, (4.13)

which measures the relative error in the approximate solution of the YB equation. This metric is evaluated
for the trained R-matrix for both integrable and non-integrable models in figure 8(for H6v,1 model), and
figure 9(for Hclass-4 model). We see that the normalized error can be up to two orders of magnitude larger for
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Figure 7. Comparing the training history of the Type XYZ and non-XYZ models against corresponding non-integrable
Hamiltonians. There is approximately an order of magnitude difference between the YB losses for the integrable case vs the
non-integrable case after the training saturates, indicated by the gray region in the graph. The step-wise drops in the loss
functions approximately correspond to the learning rate schedule. The presented Hamiltonians are the same as on figures 8 and 9.

Figure 8. (a) The normalized YB error (4.13) plotted in the logarithmic scale at the end of training for the HamiltonianH6v,1 with
a1 = 0.3,a2 = 0.3,b1 = 0.45,b2 = 0.6, c1 = 0.4, c2 = 0.25, and (b) its non-integrable deformation with a1 =−1.3,a2 = 1.3 and
other parameters kept constant. In order to keep all three arguments appearing in YB equation inside the same inteval
|u|, |v|, |u− v|< 0.8 we cut out the area |u− v|> 0.8 with chess-pattern triangles.

the non-integrable case. Note that irrespective of the choice of Hamiltonian, there are two lines along u= v
and v= 0 on which the YB equation is trivially satisfied, due to regularity. This metric also can detect
anomalous situations when the learned solution once satisfied the Hamiltonian constraint at u= 0 quickly
evolves to a true solution of YB equation producing relatively small YB loss (3.7). In this case we will see the
big spike in (4.13) around zero which will indicate the fakeness of the found solution.

The above consideration shows that one can define the metrics which together indicate the closeness of
the given system to the integrable Hamiltonian. However, the final conclusion in the binary form of
‘integrable/nonintegrable’ regarding the given spin chain can be made only asymptotically, namely increasing
the number of neurons, density of points and training time one can get the normalized YB loss (4.13)
uniformly decreasing to zero for integrable Hamiltonians while for nonintegrable case it will be bounded
from below by some positive value. Also let us stress that such problem is specific for the solver mode once
we stick to a given Hamiltonian, while in the case of relaxed Hamiltonian restrictions as we will see in the
next section, the neural network moves to the true solution of the YB equation.

4.2. Explorer: new from existing
In this section we will present two kinds of experiments that illustrate how the neural network presented
above can be used to scan the landscape of spin-chains with two-dimensional space for integrable models.
The training schedule adopted in this section is visualized in figure 10 and relies essentially on two new
ingredients which distinguish it from the previous solver framework. These are warm-start and repulsion. We
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Figure 9. (a) The normalized Yang-Baxter error (4.13) plotted in the logarithmic scale at the end of training for the Hamiltonian
Hclass-4 from (A.19), with a1 = 0.5,a2 = 0.3,a3 = 0.4,a4 = 0.9, (b) Non-integrable deformation with same Hamiltonian
parameters as in the integrable case, except for H13 =−0.9.

Figure 10. Visualizing the Explorer scheme. We start with random initializations, marked by lightning symbols, and perform
solver learning represented by red curve arrows. Once we reach an submanifold of integrable Hamiltonians, we explore it using
repulsion to identify new integrable models.

will illustrate each by an example. In the first case we shall simply use warm-start, and in the second, we shall
combine warm-start with repulsion. Finally, we shall use unsupervised learning methods such as t-SNE and
Independent Component Analysis to identify distinct classes of Hamiltonians within the set of integrable
models thus discovered. Collectively, these strategies make up our explorer framework.

The first key new ingredient is a warm-start initialization. As mentioned previously, the standard solver
framework of the previous section uses He initialization [74] to instantiate the weights and biases of the
neural network. In warm-start initialization, we use the knowledge of integrable systems previously
discovered by the neural network to find new systems in its vicinity. The idea, at least intuitively, is that it
should be possible to find new integrable systems more efficiently than with the random initialization by
exploring the vicinity in weight-space of previously determined solutions using an iterative procedure such
as gradient-based optimization. On doing so, we find a significant acceleration in training convergence, with
new solutions being discovered typically in about 5 epochs of training after warm-start initialization. For
definiteness, we consider the hermitian XYZ model discussed earlier in section 4.1.1. This has a
two-parameter family of solutions, corresponding to independent choices for the parameters η andm of the
Jacobi elliptic function, as seen from equation (4.4). The XXZ model is embedded into this space as the
m= 0 subspace of solutions.

We now describe how the above strategy can be used to quickly generate the cluster of XYZ R-matrices
starting from a particular one which we choose from XXZ subclass. We begin with pre-training our neural
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Figure 11. The convergence to XYZ models from XXZ models trained with different parameters. XXZ was trained for 50 epochs
at η = π

3
andm= 0. Then, it was trained for 5 more epochs at η = π

4
and η = π

6
, still withm= 0. After that, 5 non-zero values

ofm were used for each XXZ model, and we trained for another 15 epochs. Loss spikes occurred when the target hamiltonian
values were reset. The final training was run in parallel for convenience, but it can be run sequentially.

network using the solver mode of the previous section, but with the learning rate of the Adam optimizer set to
10−3. The pre-training is stopped when all losses saturate belowO

(
10−3

)
, which typically requires about 50

epochs of training. We carried out this pre-training setting arbitrary reference values of η, but withm fixed to
zero. The results shown here correspond to η = π

4 . The weights thus obtained correspond to our warm-start
values. Then we shift the target Hamiltonian values to correspond to η → η+ δη, where δη are randomly
chosenO

(
10−1

)
numbers, andm can take on non-zero values as well. We then retrain the model with a

smaller learning rate, 10−4 for a few epochs until all loss terms fall toO (10−4), which typically takes about 5
epochs, upon which we update the target Hamiltonian by updating η andm and continue training. This
strategy generates about 10 XYZ models within the same time-scale (i.e. about 100 to 200 epochs of training)
as we earlier needed for a single model. For best results, while we randomly update η, we systematically
anneal the modular parameterm to upwards of zero. A sample of this training is visualized in figure 11(b).

Our next key new ingredient for the Explorer mode is repulsion, which is added to the previous strategy
of warm-start initialization. In principle, it should allow us to rediscover all 14 classes of integrable spin
chains. However, for sake of simplicity, we will illustrate it now with a toy-model example and return to the
general analysis later [81]. Namely, we consider the class of 6-vertex Hamiltonians with unrestricted a1 and
a2. It includes both integrable 6-vertex classes H6v,1,H6v,2 (A.2) and (A.4) as well as nonintegrable models. In
order to mimic the general situation when all integrable classes intersect at zero, we begin by pre-training the
neural network to a Hamiltonian belonging to the intersection of the classes H6v,1 and H6v,2, i.e. whose
matrix element satisfy the constraints a1 = a2 and a1 + a2 = b1 + b2 simultaneously. The results mentioned
in this paper correspond to setting

a1 = a2 =
b1 + b2

2
; b1 = 0.6, b2 = 0.8, c1 = 0.5, c2 = 0.9 . (4.14)

Having arrived at this model, we would like to navigate to neighboring models not by specifying target values
of the Hamiltonian, but by scanning the neighborhood of the current model. To do so, we employ a two step
strategy. First, we navigate to two11 new 6-vertex integrable Hamiltonians by random scanning the vicinity of
the current model without giving specific target values. We shall use these new models as our warm-start
points. From each of them, we navigate away by using the repulsion loss term (3.17) for 1 epoch, followed by
training for another 5 epochs. Note in this step, we still train within the restricted class of 6-vertex models by
fixing the corresponding entries of the R-matrix to zero. We repeat this schedule 25 times starting from either
of the saved models. This way, we generate fifty 6-vertex integrable Hamiltonians with over 1% accuracy12.
The training curve displaying how the YB loss evolves is shown in figure 12.

11 We stop the scanning once we found a representative from each of two classes because we know that there are only two integrable
families here. In general case one of course should generate sufficiently many points in order to find all classes. We will return to this
subtle point later in [81].
12 If we further train the individual models for more epochs, we can improve the accuracy of the obtained solution to similar levels as
obtained in the examples presented in section 4.1.
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Figure 12. Time evolution of the Yang Baxter loss as the neural network explores the space of integrable Hamiltonians of 6-vertex
models H6v1,6v2 by repulsion. The loss evolves together until the 50th epoch after which it fragments slightly as the training
converges to the two warm-start points on the 60th epoch. For the remaining epochs the losses fragment completely as the neural
network seeks out different new Hamiltonians and is terminated when the loss reaches the neighborhood of 1× 10−4.

Figure 13. Clustering of Hamiltonians from the 2 classes of gauge-inequivalent 6-vertex models obtained by Explorer using
repulsion from solution at intersection of both classes.

The learnt models are classified into two classes using clusterisation methods as shown in figure 13.
Figure 14 plots the trained models in terms of coordinates defined by the integrability conditions of the
Hamiltonians H6v,1,H6v,2. Models lying near the two axes were classified correctly into the two classes in
figure 13 with 100% accuracy.

5. Conclusions and future directions

In this paper we constructed a neural network for solving the YB equation (2.3) in various contexts. Firstly, it
can learn the R-matrix corresponding to a given integrable Hamiltonian or search for an integrable spin
chain and the corresponding R-matrix from a certain class specified by imposed symmetries or other
restrictions. We refer to this as the solver mode. Next, in the explorer mode, it can search for new integrable
models by scanning the space of Hamiltonians.

We demonstrated the use of our neural network on spin chains of difference form with two-dimensional
local space. In the solver mode, the network successfully learns all fourteen distinct classes of R-matrices
identified in [68] to accuracies of the order of 99.9-99.99%. We demonstrated the work of the Explorer
mode, restricting the search to the space of spin chains containing both classes of 6-vertex models as well as
nonintegrable Hamiltonians. Starting from the hamiltonian at the intersection of two classes , Explorer
found 50 integrable Hamiltonians which after clusterisation clearly fall into two families corresponding to
two integrable classes of 6-vertex model. Working in the explorer mode, we find that warm-starting our
training from the vicinity of a previously learnt integrable model greatly speeds up convergence, allowing us
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Figure 14. The 6-vertex models learnt by exploration. The graph visualizes the obtained Hamiltonians by plotting their values
along the a1 + a2 − b1 − b2 and the a1 − a2 axes. The models H6v,1 lie along the y-axis and the models H6v,2 along the x-axis with
an error margin of order 10−3 as shown in the telescoped inset plots.

to identify typically about 50 new integrable models in the same time that random initialization takes to
converge to a single model.

The main focus of this paper was creating the neural network architecture and demonstrating its
robustness in various solution generating frameworks using known integrable models as a testing ground.
However, we expect that this program can be extended to various scenarios such as the exploration and
classification of the space of integrable Hamiltonians with dimensionality of the local Hilbert space greater
than two. This would be of great interest since the general classification of models is currently limited to two
dimensions. Our experiments with exploration and clustering are a promising starting point in this regard.
In our setup the strategy is quite straightforward [81]. Because all integrable families of Hamiltonians can be
multiplied by arbitrary scalar, we should only scan the Hamiltonians on the unit sphere which is compact.
Scanning over sufficiently dense set of points on the sphere will allow us to identify integrable Hamiltonians
from various classes. Then we can use the Explorer to reconstruct the whole corresponding families and
perform clusterisation in order to identify them. We already found various integrable Hamiltonians with 15,
20, 21, 24, 27, 33, 36,... vertices for spin-chains with three-dimensional local Hilbert space and will present
them in our forthcoming paper [81]. On another footing, it would also be interesting to extend our study to
R-matrices of non-difference form as these are particularly relevant to the AdS/CFT correspondence [82–85].

While our network learns a numerical approximation to the R-matrix, it can also be useful for the
reconstruction of analytical solutions using symbolic regression [32, 86]. Alternately, one may try to use the
learnt numerical solution for the reconstruction of the symmetry algebra such as the Yangian and then arrive
at the analytical solution. Remarkably, machine learning is already proving helpful in the analysis of
symmetry in physical systems. In particular, one may verify the presence of a conjectured symmetry or even
automate its search using machine learning [19, 46–50, 87]. It would be very interesting to explicate the
interplay of our program in this broader line of investigation.

In addition, the flexibility of our approach would also allow us to implement various additional
symmetries or other restrictions, both at the level of the R-matrix and the Hamiltonian. It would therefore be
very interesting to develop an ‘R-matrix bootstrap’ in the spirit of the two-dimensional S-matrix bootstrap
and analyze the interplay between various symmetries. For example, all 14 families of R-matrices considered
in this paper satisfy the condition of braided unitarity (2.12) and it would be interesting to rediscover them
from the use of braided unitarity and other symmetries without imposing the YB condition, similar to how
integrable two-dimensional S-matrices have been identified in the S-matrix Bootstrap approach [54, 56, 88].
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With mild modifications, we can adapt our architecture to the analysis of YB equation for the integrable
S-matrices in two dimensions. The only new feature to implement is the analytic structure in the θ-plane. It
can be naturally realized with the use of holomorphic networks.

YB equation and its generalizations appear in the context of quantum information where R-matrix plays
the role of an operator that creates entanglement between qubits [89–92]. It would be very interesting to
apply our technique to the construction of new universal quantum gates.

Learning solutions for different classes with the same architecture, we noticed that the number of epochs
needed to reach the same precision varies for different classes while being roughly the same for the
Hamiltonians from the same classes. Thus, it would be very tempting to use the training of losses to define
the complexity of spin chains. Ideally, we should be able to go beyond the class of integrable models and see
that they sit at the minima of complexity, matching common beliefs that the integrable models are the
‘simplest’ ones.
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Appendix A. Classes of 2D integrable spin chains of difference form

In this appendix, we list the 14 gauge-inequivalent integrable Hamiltonians of difference form and the
corresponding R-matrices. Amongst the XYZ type models, the simplest solution is a diagonal 4-vertex model
with Hamiltonians and R-matrices as follows:

H4v =


a1 0 0 0
0 b1 0 0
0 0 b2 0
0 0 0 a2

 ↔ R4v (u) =


ea1u 0 0 0
0 0 eb2u 0
0 eb1u 0 0
0 0 0 ea2u

 . (A.1)

Figure 15 plots the training curve for R-matrix components as ratios with respect to (00) component, against
the analytic functions for parameters a1 = 0.9,b1 = 0.4,b2 = 0.6,a2 = 0.75.

In 6-vertex models, we have two distinct classes depending on whether the Hamiltonian entries H00 and
H33 are equal or not. In the first case, the R-matrix R6v,1(u) and its associated HamiltonianH6v,1 are given by

H6v,1 =


a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a1

 ↔ R6v,1 (u) =


R00
6v,1 (u) 0 0 0

0 R11
6v,1 (u) R12

6v,1 (u) 0

0 R21
6v,1 (u) R22

6v,1 (u) 0

0 0 0 R33
6v,1 (u)

 (A.2)

where

R00
6v,1 (u) = R33

6v,1 (u) = e(b1+b2)u/2

(
cosh(ωu)+

2a1 − b1 − b2
2ω

sinh(ωu)

)
R11
6v,1 (u) =

c2
ω
e(b1+b2)u/2 sinh(ωu)

R12
6v,1 (u) = eb2u

R21
6v,1 (u) = eb1u

R22
6v,1 (u) =

c1
ω
e(b1+b2)u/2 sinh(ωu) , ω =

√
(2a1 − b1 − b2)

2 − 4c1c2

2
. (A.3)

Figure 4 gives a representative training vs actual plot for this class.
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Figure 15. (a) 4-vertex model, with H2 parameters a1 = 0.9, b1 = 0.4, b2 = 0.6, a2 = 0.75, (b) errors.

For the case H00 ̸=H33, the R-matrix R6v,2(u) is given by

H6v,2 =


a1 0 0 0
0 b1 c1 0
0 c2 b2 0
0 0 0 a2

 ↔ R6v,2 (u) =


R00
6v,2 (u) 0 0 0

0 R11
6v,2 (u) R12

6v,2 (u) 0

0 R21
6v,2 (u) R22

6v,2 (u) 0

0 0 0 R33
6v,2 (u)

 (A.4)

where a2 = b1 + b2 − a1 and

R00
6v,2 (u) = e(a1+a2)u/2

(
cosh(ωu)+

a1 − a2
2ω

sinh(ωu)

)
R11
6v,2 (u) =

c2
ω
e(a1+a2)u/2 sinh(ωu)

R12
6v,2 (u) = eb2u

R21
6v,2 (u) = eb1u

R22
6v,2 (u) =

c1
ω
e(a1+a2)u/2 sinh(ωu)

R33
6v,2 (u) = e(a1+a2)u/2

(
cosh(ωu)− a1 − a2

2ω
sinh(ωu)

)
, ω =

√
(a1 − a2)

2 − 4c1c2

2
(A.5)

Figure 16 gives a representative training vs actual plot for Hamiltonian parameters a1 = 1.,a2 = 0.2,
b1 = 0.45,b2 = 0.75, c1 = 0.4, c2 = 0.6. Next we have the 7-vertex models, which consists of two classes of
solution distinguished by the Hamiltonian entries H00, H33 being equal or not. In the first case, we have

H7v,1 =


a1 0 0 d1
0 a1 + b1 c1 0
0 −c1 a1 − b1 0
0 0 0 a1

 ↔ R7v,1 (u) =


R00
7v,1 (u) 0 0 R03

7v,1 (u)

0 R11
7v,1 (u) R12

7v,1 (u) 0

0 R21
7v,1 (u) R22

7v,1 (u) 0

0 0 0 R33
7v,1 (u)


(A.6)

where

R00
7v,1 (u) = R33

7v,1 (u) = ea1u cosh(c1u)

R11
7v,1 (u) =−R22

7v,1 (u) = ea1u sinh(c1u)

R12
7v,1 (u) = e(a1−b1)u
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Figure 16. (a) 6-vertex model with Hamiltonian of type H6v,2, with parameters
a1 = 1,a2 = 0.2,b1 = 0.45,b2 = 0.75, c1 = 0.4, c2 = 0.6, (b) errors.

Figure 17. (a) 7-vertex model with Hamiltonian of type H7v,1, with parameters a1 = 1,b1 = 0.45, c1 = 0.6,d1 = 0.75, (b) errors.

R21
7v,1 (u) = e(a1+b1)u

R03
7v,1 (u) =− d1

2b1

(
e(a1−b1)u − e(a1+b1)u

)
. (A.7)

Figure 17 plots the predicted R-matrix components as ratios with respect to the (12) component against the
above analytic results, and their differences for a generic choice of parameters
a1 = 1,b1 = 0.45, c1 = 0.6,d1 = 0.75.
In the second case for H00 ̸=H33, we have

H7v,2 =


a1 0 0 d1
0 a1 − c2 c1 0
0 c2 a1 − c1 0
0 0 0 a2

 ↔ R7v,2 (u) =


R00
7v,2 (u) 0 0 R03

7v,1 (u)

0 R11
7v,2 (u) R12

7v,1 (u) 0

0 R21
7v,2 (u) R22

7v,1 (u) 0

0 0 0 R33
7v,1 (u)

 (A.8)
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Figure 18. (a) 7-vertex model with Hamiltonian of type H7v,2, with parameters a1 = 1, c1 = 0.45, c2 = 0.75,d1 = 0.5, (b) errors.

where a2 = a1 − c1 − c2 and

R00
7v,2(u) =

e(a1−
c1+c2

2 )u

c1 − c2
((c1 − c2)cosh(

c1 − c2
2

u)+ (c1 + c2) sinh(
c1 − c2

2
u))

R11
7v,2(u) =

2c2
c1 − c2

e(a1−
c1+c2

2 )u sinh(
c1 − c2

2
u)

R22
7v,2(u) =

2c1
c1 − c2

e(a1−
c1+c2

2 )u sinh(
c1 − c2

2
u)

R12
7v,2(u) = e(a1−c1)u

R21
7v,2(u) = e(a1+c2)u

R03
7v,2(u) =

2d1
c1 − c2

e(a1−
c1+c2

2 )u sinh(
c1 − c2

2
u)

R33
7v,2(u) =

e(a1−
c1+c2

2 )u

c1 − c2
((c1 − c2)cosh(

c1 − c2
2

u)− (c1 + c2) sinh(
c1 − c2

2
u)) (A.9)

Figure 18 plots the predicted R-matrix components as ratios with respect to the (12) component against the
above analytic results, and their differences for a generic choice of parameters
a1 = 1, c1 = 0.45, c2 = 0.75,d1 = 0.5.

8-vertex models have 3 gauge-inequivalent classes labelled H8v,i, i = 1,2,3. One of these models, namely
H8v,1, is a generalisation of the XYZ model

H8v,1 =


a1 0 0 d1
0 b1 c1 0
0 c1 b1 0
d2 0 0 a1

 ↔ R8v,1 (u) =


R00
8v,1 (u) 0 0 R03

8v,1 (u)

0 R11
8v,1 (u) R12

8v,1 (u) 0

0 R21
8v,1 (u) R22

8v,1 (u) 0

R30
8v,1 (u) 0 0 R33

8v,1 (u)

 (A.10)

where

R00
8v,1 (u) = R33

8v,1 (u) =
sn(u+ 2η,m)

sn(2η,m)
eb1u

R11
8v,1 (u) = R22

8v,1 (u) =
sn(u,m)

sn(2η,m)
eb1u

R12
8v,1 (u) = R21

8v,1 (u) = eb1u

R03
8v,1 (u) =

√
d1
d2

√
m sn(u+ 2η,m)sn(u,m)eb1u

R30
8v,1 (u) =

√
d2
d1

√
m sn(u+ 2η,m)sn(u,m)eb1u (A.11)
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Figure 19. (a) 8-vertex model with Hamiltonian of typeH8v,1, with parameters b1 = 0.4,η = 0.8,m= 0.5, δ1 = 1.3, δ2 = 0.7, (b)
errors.

with Hamiltonian coefficients given by

a1 = b1 +
cn(2η,m)dn(2η,m)

sn(2η,m)
, c1 =

1

sn(2η,m)
, d1 =

√
mδ1 sn(2η,m) , d2 =

√
mδ2 sn(2η,m) (A.12)

for free parameters b1,η,m, δ1, δ2. Figure 19 plots the predicted R-matrix components as ratios with respect
to the (12) component against the above analytic results, and their differences for a generic choice of
parameters b1 = 0.4,η = 0.8,m= 0.5, δ1 = 1.3, δ2 = 0.7.

The second class of 8-vertex XYZ-type solution has Hamiltonian H8v,2 and R-matrix R8v,2(u) defined as
follows

H8v,2 =


a1 0 0 d1
0 b1 c1 0
0 c1 b1 0
d2 0 0 2b1 − a1

↔ R8v,2 (u) =


R00
8v,2 (u) 0 0 R03

8v,2 (u)

0 R11
8v,2 (u) R12

8v,2 (u) 0

0 R21
8v,2 (u) R22

8v,2 (u) 0

R30
8v,2 (u) 0 0 R33

8v,2 (u)

 (A.13)

where

R00
8v,2 (u) =

(
cn(u,m)

dn(u,m)
+

sn(u,m)cn(2η,m)

sn(2η,m)

)
eb1u

R11
8v,2 (u) = R22

8v,1 (u) =
sn(u,m)

sn(2η,m)
eb1u

R12
8v,2 (u) = R21

8v,1 (u) = eb1u

R03
8v,2 (u) =

δ1
β1

sn(u,m)cn(u,m)

dn(u,m)sn(2η,m)
eb1u

R30
8v,2 (u) =

δ2
β1

sn(u,m)cn(u,m)

dn(u,m)sn(2η,m)
eb1u

R33
8v,2 (u) = (

cn(u,m)

dn(u,m)
− sn(u,m)cn(2η,m)

sn(2η,m)
)eb1u (A.14)

with the Hamiltonian coefficients given by

a1 = b1 +
cn(2η,m)

sn(2η,m)
, c1 =

1

sn(2η,m)
, d1 =

δ1
β1sn(2η,m)

, d2 =
δ2

β1sn(2η,m)
(A.15)

m=
δ1δ2

α2
1 −β2

1

, cn(2η,m) =
α1

β1
, sn(2η,m) =

√
1− α2

1

β2
1

(A.16)
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Figure 20. (a) 8-vertex model with Hamiltonian of type H8v,2, with parameters b1 = 0.4,α1 = 0.5,β1 = 0.7, δ1 = 0.3, δ2 = 0.2,
(b) errors.

for free parameters b1,α1,β1, δ1, δ2. Figure 20 plots the predicted R-matrix components as ratios with respect
to the (12) component against the above analytic results, and their differences for a generic choice of
parameters b1 = 0.4,α1 = 0.5,β1 = 0.7, δ1 = 0.3, δ2 = 0.2.
The third class of 8-vertex XYZ-type solution has HamiltonianH8v,3 and R-matrix R8v,3(u) defined as follows

H8v,3 =


a1 0 0 d1
0 a1 −b1 0
0 b1 a1 0
d2 0 0 a1

↔ R8v,3 (u) =


R00
8v,3 (u) 0 0 R03

8v,3 (u)

0 R11
8v,3 (u) R12

8v,3 (u) 0

0 R21
8v,3 (u) R22

8v,3 (u) 0

R30
8v,3 (u) 0 0 R33

8v,3 (u)

 (A.17)

where

R00
8v,3 (u) = R33

8v,1 (u) =
cosh(b1u)

cos
(√

d1d2u
)ea1u

R11
8v,3 (u) =−R22

8v,1 (u) =
sinh(b1u)

cos
(√

d1d2u
)ea1u

R12
8v,3 (u) = R21

8v,1 (u) = ea1u

R03
8v,3 (u) =

√
d1
d2
ea1u tan

(√
d1d2u

)
R30
8v,1 (u) =

√
d2
d1
ea1u tan

(√
d1d2u

)
(A.18)

Figure 21 plots the predicted R-matrix components as ratios with respect to the (12) component against the
above analytic results, and their differences for a generic choice of parameters
a1 = 1, b1 =−0.45, d1 = 0.6, d2 = 0.75.
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Figure 21. (a) 8-vertex model with Hamiltonian of type H8v,3, with parameters a1 = 1, b1 =−0.45, d1 = 0.6, d2 = 0.75, (b)
errors.

For non-XYZ type models, the 6 gauge-inequivalent Hamiltonians are of the form

Hclass−1 =


0 a1 a2 0
0 a5 0 a3
0 0 −a5 a4
0 0 0 0

 , with a1a3 = a2a4 ; Hclass−2 =


0 a2 a3 − a2 a5
0 a1 0 a4
0 0 −a1 a3 − a4
0 0 0 0

 ,

Hclass−3 =


−a1 (2a1 − a2)a3 (2a1 + a2)a3 0
0 a1 − a2 0 0
0 0 a1 + a2 0
0 0 0 −a1

 , Hclass−4 =


a1 a2 a2 a3
0 −a1 0 a4
0 0 −a1 a4
0 0 0 a1

 ,

Hclass−5 =


a1 a2 −a2 0
0 −a1 2a1 a3
0 2a1 −a1 −a3
0 0 0 a1

 , Hclass−6 =


a1 a2 a2 0
0 −a1 2a1 −a2
0 2a1 −a1 −a2
0 0 0 a1

 (A.19)

Corresponding R-matrices are

Rclass−1 (u) =


1 a1(e

a5u−1)
a5

a2(e
a5u−1)
a5

(a1a3+a2a4)
a25

(cosh(a5u)− 1)

0 0 e−a5u a4(1−e−a5u)
a5

0 ea5u 0
a3(1−e−a5u)

a5
0 0 0 1

 (A.20)

Rclass−2 (u) = uP

(
a1

sinh(a1u)
+Hclass-5 +

tanh(a1u)

a1
H2

class-5

)
, P=


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (A.21)

Rclass−3 (u) =


e−a1u a3

(
e(a1−a2)u − e−a1u

)
a3
(
e(a1+a2)u − e−a1u

)
0

0 0 e(a1+a2)u 0
0 e(a1−a2)u 0 0
0 0 0 e−a1u

 (A.22)

Rclass−4 (u) =


ea1u a2 sinh(a1u)

a1
a2 sinh(a1u)

a1
ea1u(a2a4+a1a3 coth(a1u)) sinh

2 (a1u)
a21

0 0 e−a1u a4 sinh(a1u)
a1

0 e−a1u 0 a4 sinh(a1u)
a1

0 0 0 ea1u

 (A.23)
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Figure 22. (a), (b) class 2, with H2 parameters a1 =−0.6, a2 = 0.381+ 0.123 i, a3 = 0.447 i, a4 = 0.7 i, a5 =−0.3 i: real and
imaginary parts, (c), (d) class 3, with H2 parameters a1 = 1, a2 = 0.5, a3 = 0.7: real and imaginary parts, (e), (f) class 4, with H2

parameters a1 = 0.5, a2 =−0.5 i, a3 = 0.5, a4 =−0.5: real and imaginary parts.

Rclass−5 (u) = (1− a1u)


2a1u+ 1 a2u −a2u a2a3u2

0 2a1u 1 −a3u
0 1 2a1u a3u
0 0 0 2a1u+ 1

 (A.24)

Rclass−6 (u) = (1− a1u)


2a1u+ 1 a2u(2a1u+ 1) a2u(2a1u+ 1) −a22u

2 (2a1u+ 1)
0 2a1u 1 −a2u(2a1u+ 1)
0 1 2a1u −a2u(2a1u+ 1)
0 0 0 2a1u+ 1

 . (A.25)
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Figure 23. (a), (b) class 5, with H2 parameters a1 =−0.5, a2 =−0.5 i, a3 =−0.5 i: real and imaginary parts.

In the class-2 solution above, the non-zero R-matrix components are explicitly given by

R00
class−2 (u) = R33

class−2 (u) =
a1u

sinhu

R01
class−2 (u) = a2u

(
1+ tanh

(a1u
2

))
,

R02
class−2 (u) = (a2 − a3)u

(
−1+ tanh

(a1u
2

))
R03
class−2 (u) = a5u

(
1+

((a4 − a3)(a2 − a3)+ a2a4) tanh
a1u
2

a1a5

)
R12
class−2 (u) = a1u

(
−1+

1

sinh(a1u)
+ tanh

a1u

2

)
R13
class−2 (u) = (a4 − a3)u

(
−1+ tanh

(a1u
2

))
R21
class−2 (u) = a1u

(
1+

1

sinh(a1u)
+ tanh

a1u

2

)
R23
class−2(u) = a4u(1+ tanh(

a1u

2
)). (A.26)

Amongst the above non-XYZ type models, we have already looked into the training for Class 1 model in
section 4.1. Figures 22–24 plot the training vs actual R-matrix components for classes 2,3,4, class 5, and class
6 respectively, with generic Hamiltonian parameters. Also we note that allowing for complex parameters
results in generically complex R-matrices. We compare the predictions against the actual formulae by taking
ratios with respect to the real part of the (00) component for classes 2–5, and (12) component for class 6.
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Figure 24. (a), (b) class 6, with H2 parameters a1 =−0.4, a2 =−0.6 i: real and imaginary parts.

Figure 25. Visualizing the map ϕ which is learnt by the Siamese architecture. The points x1 and x3 are similar to each other while
x2 is dissimilar to both of them.

Appendix B. Designing the neural network

This appendix contains an extensive overview of the architecture of our neural network solver, as well as
details of the hyperparameters with which the network is trained. Our starting point is the close analogy
between our problem of machine learning R-matrices by imposing constraints and the design of the Siamese
neural networks [93, 94]. These were designed to function in settings where the canonical supervised
learning approach of (3.5) for classification becomes infeasible due to the large number of target classes {y}
and the paucity of training examples {xα} corresponding to each class yα. In such a situation, one may
instead define a similarity relation

xα1 ∼ xα2 ⇐⇒ y(xα1) = y(xα2) , (B.1)

and train the neural network to learn a function ϕ(x) : RD → Rd such that the Euclidean distance between
representatives ϕ(x) of two input vectors x1, x2 that are similar to each other is small, while the distance
between dissimilar data is large. Schematically,

d(xa,xb) = |ϕ(xa)−ϕ(xb)|2 ≈ 0 ⇐⇒ xa ∼ xb . (B.2)

This is visualized in figure 25.
There are many loss functions by which such networks may be trained, see for example [93–96]. For

definiteness, we mention the contrastive loss function of [93, 94], given by

L= Yd(x1,x2)+ (1−Y)max(ro − d(x1,x2) ,0) , (B.3)
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Figure 26. Visualizing the forward propagation of the neural networkR(u). This has a very strong parallel to figure 25, with the
functionR(u) playing the role of the map ϕ. The only difference is thatR(u) also has additional constraints onR(0) and
R ′ (0) which are unique to our problem.

where Y = 1 if x1 ∼ x2 and Y = 0 otherwise. Clearly this loss function causes the network to learn a function ϕ
such that similar inputs x are clustered together while dissimilar inputs are pushed at least a distance ro apart.
This therefore realizes our naive criterion for ϕ laid out in equation (B.2). We also see very explicitly that the
loss function in equation (B.3) does not directly depend on the values y in contrast to equation (3.5). Instead,
the network is trained to learn a function ϕ(x) which obeys a property which is not given point-wise for each
input x but instead is expressed as a non-linear constraint (B.2) on ϕ(x) evaluated at two points x1 and x2.

B.1. The neural network architecture and forward propagation
We now provide some more details about our implementation ofR(u) and the training done to converge to
solutions of the YB equation (2.3) consistent with additional requirements such as regularity (2.4). As
already mentioned in section 3.2, each matrix elementRij is decomposed into the sum aij + ibij which are
individually modeled by MLPs. In principle each MLP is independent of the rest and can be individually
designed. We shall however take all MLPs to contain two hidden layers of 50 neurons each, followed by a
single output neuron which is linear activated 13. The possible activations for the hidden layers are
compared in appendix B.2 below. To proceed further, note that our loss function involves a term (3.7) which
takes argumentsR(u),R(v) andR(u− v) where u, v are valued in Ω. This clearly has a very strong parallel
with the Siamese Networks introduced above. At least intuitively, one may regard our problem as training a
‘triplet’ of identical neural networksR to optimize the loss function (3.7). In addition however, we also have
to train the function on loss functions such as (3.12) and (3.13). These constraints, along with the Siamese
schematic shown in figure 25 motivate our design visualized in figure 26.

During the forward propagation we sample a minibatch of u and v values, from which the corresponding
u− v is constructed. Next, theRmatrix is constructed at u, v and u− v via equation (3.6). We also evaluate
R(0) andR ′ (0) thus completing the forward propagation. Next, we compute the losses (3.7), (3.12)
and (3.13) as well as possibly (3.15). The loss function is trained on by using the Adam optimizer [73], with
an initial learning rate η of 10−3 which is annealed to 10−8 in steps of 10−1 by monitoring the saturation in
the YB loss computed for the validation set over 5–10 epochs. The effect of this annealing in the learning rate
is also visible in the training histories in figures 2 and 27 where the step-wise falls in the losses correspond to
the drops in the learning rate. Across the board, training converges in about 100 epochs and is terminated by
early stopping.

B.2. Comparing different activation functions
We now turn to a brief comparison of the performance of different activation functions with the above set
up. Again for uniformity, we will use one activation throughout for all the MLPs aij and bij, but for the

13 One might also construct an alternate formulation of the neural network where a single MLP of the kind shown in figure 1 accepts a
real input u and outputs all the requisite real scalar functions that compriseR(u). So far we have observed that such a network does not
perform as well as our current formulation of independent neural networks for each real function. Nonetheless, it is possible that this
formulation may eventually prove competitive with our current one and the question remains under investigation currently.
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Figure 27. The evolution of the Yang–Baxter loss (left) and the Hamiltonian loss (right) for a variety of activation functions when
training for 200 epochs. The swish activation tends to outperform the others. The precise numbers are given in table 1.

Table 1. Performance of different activation functions on learning the Hamiltonian (B.4). The saturation epoch is the approximate
epoch after which the model did not train further. The final values of the Yang–Baxter and Hamiltonian losses after saturation is also
mentioned. We observed that the swish activation converges sooner and to lower losses. This is stable across multiple runs. See also
figure 27.

Activation Final Yang–Baxter loss Final Hamiltonian loss Saturation epoch

sigmoid 2.5× 10−3 6.12× 10−7 150
tanh 1.90× 10−4 5.25× 10−7 125
swish 6.49× 10−5 1.51× 10−7 75
elu 2.75× 10−4 5.63× 10−7 100
relu 5.52× 10−4 4.63× 10−7 100

output neuron which is linearly activated. We then compared the performance of this neural network
architecture while learning the Hamiltonian

H6v,1 =


0.3 0 0 0
0 0.45 0.4 0
0 0.25 0.6 0
0 0 0 0.3

 , (B.4)

which is 6-vertex Type 1 in the classification of [68], see equation (A.2) above. The neural network was
trained with the loss functions (3.7), (3.13) and (3.12) and setting λH and λreg to 1 each. The training was
carried out for 200 epochs on observing that the networks did not perform better on training for longer.
Further, we set a batch size of 16 and optimized using Adam with a starting learning rate of 10−3 which was
annealed to 10−8 using the saturation in the YB loss over the validation set as the criterion as mentioned
above. We conducted this training using the activations sigmoid, tanh, swish, all of which are
holomorphic, as well as elu and relu. The last two are not holomorphic but have been included for
completeness. The evolution of the YB and the Hamiltonian loss for all these activations is shown in figure 27
and table 1. On the whole, we see that the swish activation tends to outperform the others quite significantly.
While these are the results of a single run, we found that the result is consistent across several runs and tasks,
leading us to adopt the swish activation uniformly across the board for all the analyses shown in this paper.

B.3. Proof of concept: training with a single hidden neuron
As a final observation we present a simple proof of concept of our approach of solving the YB equation along
with other constraints by optimizing suitable loss functions. Here, instead of attempting to deep learn the
solution, we use a single layer of neurons for each R-matrix function and pick an activation function by the
form of the known analytic solution. In effect, rather than rely on the feature learning properties of a deep
MLP as we have done in the rest of our paper, we ourselves provide activation functions which should
furnish a natural basis to express the known analytic solutions in.
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Figure 28. The figure on the left shows the XXZ model R-matrix with η = π
3
obtained by trained on a single sin activated hidden

neuron in the range u ∈ (−1,1) shown in gray. The solution remains valid outside the training domain as well. The figure on the
right shows the corresponding training curves.

For definiteness, consider the XXZ model at η = π
3 . The non-zero entries in this R-matrix are

R00 (u) = sin(u+ η) , R11 (u) = sin(u− η) = R22 (u) , R12 (u) = sin(η) = R21 (u) , (B.5)

as may be observed by settingm= 0 in equation (4.4). We define the networks aij and bij to have a single
hidden layer of a solitary neuron activated by the sin function. This means that the functions learnt by the
network are simply of the form

aij = W̃ ◦ sin(W ◦ u) , (B.6)

and similarly for the bij. TheW and W̃ are the weight and bias of the hidden and the output neuron
respectively and the compositionW ◦ u is shorthand for the affine transformation wu+ b. Next, we train the
network imposing the losses (3.7), (3.12), (3.13) and (3.15), each with weight λ= 1, and the Adam optimizer
with our standard learning rate scheduling. Figure 28 plots the trained XXZ R-matrix components for u
lying in the range (−10,10).

Note that since we trained with an activation function that presupposed our knowlege of the exact
solution—in effect, the true R-matrix lay within our hypothesis class—the model trained to losses of the
order of 10−8 which is several orders of magnitude below the typical end of training losses we observed in the
standardized framework. Further, we also obtain an excellent performance even out of the domain of
training, which is usually not the case in machine learning.
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[84] Majumder S, Sax O O, Stefański B and Torrielli A 2021 Protected states in AdS3 backgrounds from integrability J. Phys. A: Math.

Theor. 54 415401
[85] Frolov S and Sfondrini A 2022 Mirror thermodynamic Bethe ansatz for AdS3/CFT2 J. High Energy Phys. JHEP03(2022)138
[86] Schmidt M and Lipson H 2009 Distilling free-form natural laws from experimental data Science 324 81
[87] Quessard R, Barrett T and Clements W 2020 Learning disentangled representations and group structure of dynamical

environments Advances in Neural Information Processing Systems vol 33 p 19727
[88] Paulos M F and Zheng Z 2020 Bounding scattering of charged particles in 1+ 1 dimensions J. High Energy Phys. JHEP05(2020)145
[89] Zhang Y, Kauffman L H and Ge M-L 2005 Yang-Baxterizations, universal quantum gates and Hamiltonians Quantum Inf. Proc.

4 159
[90] Rowell E C, Zhang Y, Wu Y-S and Ge M-L 2010 Extraspecial two-Groups, generalized Yang-Baxter equations and braiding

quantum gates Quantum Inf. Comput. 10 0685
[91] Padmanabhan P, Sugino F and Trancanelli D 2020 Quantum entanglement, supersymmetry and the generalized Yang-Baxter

equation Quantum Inf. Comput. 20 37
[92] Padmanabhan P, Sugino F and Trancanelli D 2020 Braiding quantum gates from partition algebras Quantum 4 311
[93] Bromley J, Bentz J W, Bottou L, Guyon I, LeCun Y, Moore C, Säckinger E and Shah R 1993 Signature verification using a “siamese”

time delay neural network Int. J. Pattern Recognit. Artif. Intell. 7 669
[94] Hadsell R, Chopra S and LeCun Y 2006 Dimensionality reduction by learning an invariant mapping IEEE Computer Society Conf.

on Computer Vision and Pattern Recognition (CVPR’06) pp 1735–42
[95] Chechik G, Sharma V, Shalit U and Bengio S 2010 Large scale online learning of image similarity through ranking J. Mach. Learn.

Res. 11 1109–1135
[96] Schroff F, Kalenichenko D and Philbin J Facenet: a unified embedding for face recognition and clustering 2015 Proc. IEEE Conf. on

Computer Vision and Pattern Recognition pp 815–23

34

https://doi.org/10.1016/B0-12-512666-2/00191-7
https://doi.org/10.1016/B0-12-512666-2/00191-7
https://doi.org/10.1007/BF02285311
https://doi.org/10.1007/BF02285311
https://doi.org/10.1007/BF01221646
https://doi.org/10.1007/BF01221646
https://doi.org/10.1016/0370-2693(85)90259-X
https://doi.org/10.1016/0370-2693(85)90259-X
https://doi.org/10.1007/BF01221256
https://doi.org/10.1007/BF01221256
https://doi.org/10.1143/PTP.68.508
https://doi.org/10.1143/PTP.68.508
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1016/0375-9601(81)90994-4
https://doi.org/10.1142/S0217751X91001027
https://doi.org/10.1142/S0217751X91001027
https://doi.org/10.1007/JHEP10(2018)110
https://doi.org/10.1088/1751-8121/ab529f
https://doi.org/10.1088/1751-8121/ab529f
https://doi.org/10.1103/PhysRevLett.125.031604
https://doi.org/10.1103/PhysRevLett.125.031604
https://doi.org/10.21468/SciPostPhys.11.3.069
https://doi.org/10.21468/SciPostPhys.11.3.069
https://doi.org/10.1002/prop.202100057
https://doi.org/10.1002/prop.202100057
https://arxiv.org/abs/1710.05941
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1908.02729
https://arxiv.org/abs/2006.08859
https://doi.org/10.1070/RM1979v034n05ABEH003909
https://doi.org/10.1070/RM1979v034n05ABEH003909
https://doi.org/10.1016/j.nuclphysb.2003.08.015
https://doi.org/10.1016/j.nuclphysb.2003.08.015
https://doi.org/10.1007/JHEP08(2013)043
https://doi.org/10.1088/1751-8121/ac21e5
https://doi.org/10.1088/1751-8121/ac21e5
https://doi.org/10.1007/JHEP03(2022)138
https://doi.org/10.1126/science.1165893
https://doi.org/10.1126/science.1165893
https://doi.org/10.1007/JHEP05(2020)145
https://doi.org/10.1007/s11128-005-7655-7
https://doi.org/10.1007/s11128-005-7655-7
https://doi.org/10.26421/QIC10.7-8-8
https://doi.org/10.26421/QIC10.7-8-8
https://doi.org/10.26421/QIC20.1-2-3
https://doi.org/10.26421/QIC20.1-2-3
https://doi.org/10.22331/q-2020-08-27-311
https://doi.org/10.22331/q-2020-08-27-311
https://doi.org/10.1142/S0218001493000339
https://doi.org/10.1142/S0218001493000339

	The R-mAtrIx Net
	1. Introduction
	1.1. Summary of neural network and training:

	2. An overview of spin chains and quantum integrability
	2.1. R-matrices of the difference form for spin chains with two-dimensional local Hilbert space

	3. Neural networks for the R-matrix
	3.1. An overview of neural networks
	3.2. Machine learning the R-matrix

	4. Results
	4.1. Specific integrable spin chains
	4.1.1. Hermitian models: XYZ spin chain and its isotropic limits
	4.1.2. Two-dimensional classification

	4.2. Explorer: new from existing

	5. Conclusions and future directions
	Appendix A. Classes of 2D integrable spin chains of difference form
	Appendix B. Designing the neural network
	B.1.  The neural network architecture and forward propagation
	B.2.  Comparing different activation functions
	B.3.  Proof of concept: training with a single hidden neuron

	References


