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Abstract12

In this paper, we present a processing method to detect millimeter interlayer debond-13

ings from Ground Penetrating Radar (GPR) B-scan images. The method is matched to14

carry out rapid debonding detection at the operational level. A machine learning based15

outlier-detection strategy namely, One-class Support Vector Machines (OCSVM) is16

proposed to detect A-scan data vectors which differ from a reference data set collected17

over a known healthy pavement area.18

OCSVM is tested on both simulated and experimental data representing GPR data over19

various artificial millimetric debondings at 2.6GHz and 4.2GHz from respectively20

ground-coupled and air-coupled radar configurations. The experimental data were col-21

lected at the Accelerated Pavement Test site located in the Nantes campus of Université22

Gustave Eiffel. The simulated models on the other hand were generated using a nu-23

merical EM solver based on Finite Difference Time Domain (FDTD) method namely,24

GprMax. Simulation tests allow to conduct sensitivity analysis to determine the robust-25

ness of the detection method at various signal-to-noise ratios (10 dB to 60 dB).26

The proposed OCSVM method demonstrated high performance on both simulated and27

experimental data to detect thin interlayer debondings over various GPR configura-28

tions.29

Keywords: Ground Penetrating Radar (GPR), thin debondings, One-class SVM30

(OCSVM), Air-coupled radar, Ground-coupled radar, Sensitivity Analysis, Finite31

Difference Time Domain (FDTD), GprMax.32

1. Introduction33

In the context of pavement monitoring, an early stage defect detection is of great34

importance to maintain its durability, conduct Life Cycle Assessments (LCA) and avoid35

significant failures (Büyüköztürk and Yu, 2006; Hajj et al., 2010). However, with the36
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passage of time and heavy traffic, extreme variations in weather conditions and water37

seepage, two types of pavement damages tend to occur: Surface and subsurface defects38

(Wright et al., 2014). In this paper, we focus on the latter type of defects, especially39

horizontal inter-layer cracks. The inter-layer cracks, called debondings (or delamina-40

tions), usually appear between the top two layers of the pavement (Todkar et al., 2017).41

These defects may give rise to stripping and/or reflexive cracks that lead to open sur-42

face cracks severely degrading the structural integrity of the pavement. Non-destructive43

testing (NDT) is one such technique that has been widely be used in this aspect.44

Ground Penetrating Radar (GPR) is one well-known NDT electromagnetic method45

used in the field of Civil engineering for Non-destructive Testing (NDT) applications.46

(Wai-Lok Lai et al., 2018) provides an overview of the 30-year journey of GPR tech-47

nology in civil engineering. Owing to its non-invasive capability and the sensitivity48

to material permittivity, GPR has been used in the literature for various applications49

including water content measurement (Kaplanvural et al., 2018), rebar corrosion in50

concrete (Zaki et al., 2018), pavement layer thickness estimation (Pinel et al., 2009),51

subsurface defects (Dong et al., 2016), anti-personnel mine detection (Ebrahim et al.,52

2018; Tellez and Scheers, 2017) etc.53

In this paper, we focus on the detection of the horizontally stratified thin debondings54

that occur at the interface between the top two layers of the pavement structures. How-55

ever as mentioned in (Benedetto et al., 2017), GPR data require suitable processing56

techniques that can interpret and help in the decision making process (such as clas-57

sification, identification etc.). This has motivated the development of specific signal58

processing techniques to conduct early detection of thin debondings.59

Support Vector Machines (SVM) are generally implemented as they pose low compu-60

tational complexity, since they are based on support vectors (Tbarki et al., 2017b). In61

addition, the convexity of the optimal problem characterizes the unique solution ob-62

tained using SVM. Two-class SVM has been used in (Todkar et al., 2019, 2018, 2017)63

on GPR data to classify data vectors into defective (debonding) and non-debonding64

(healthy) A-scan classes.65

Although the Two-class classification provided some impressive results in these cases,66

it lacked some key aspects. Firstly, it required a priori knowledge about the two data67

classes during the learning step, which, is not always available (Salem and Stolfo,68

2012). Secondly, the imbalance in the two data (debonding and non-debonding) classes69

during the learning step results in a lower performance of the method. Two-class SVM70

also generally demands a larger learning dataset for best performance as shown in (Tod-71

kar et al., 2019).72

An alternative strategy is proposed here to detect debondings within pavement struc-73

tures using One-class SVM (OCSVM). A unique reference data class is used to identify74

outlier subsurface pavement conditions. In this context, the outlier is defined as the A-75

scan vectors that deviate from the reference data set collected over healthy pavement76

sections. The proposed strategy is expected to be better matched to both the short-term77

condition of field test and the limited prior knowledge which is available at the opera-78

tional level. In the literature, OCSVM method has been used along with GPR to detect79

buried landmines (Tbarki et al., 2017b, 2018). Within this scope, the machine learning80

OCSVM (Schölkopf et al., 2001) is applied for detecting outlier radar data vectors (i.e.81

A-scans). OCSVM is advantageous as it performs faster training and testing (Salem82
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and Stolfo, 2012) due to its simplistic classification model. It also eliminates the need83

for labeled two-class information during learning stage (Senf et al., 2006). Besides, as84

mentioned in (Tbarki et al., 2017a), the outlier data (i.e., debonding data in our appli-85

cation) are either not readily available or they very costly to acquire.86

The versatility of the proposed approach is illustrated with the data created using the87

Finite-Difference Time Domain (FDTD) method simulating two radar configurations:88

air-coupled and ground-coupled GPR data collected over the same pavement structure89

embedded with artificial debondings. OCSVM is thereafter formulated using some lo-90

cal signal features to provide the required refined signal analysis of the time domain91

GPR signatures. The method demonstrated a quick and efficient defect detection and92

classification for both simulated and experimental data over ground-coupled and air-93

coupled radar configurations.94

In this paper, we present the experimental and simulated GprMax datasets used to test95

the proposed detection OCSVM method, and describe its approach. The simulated96

data are modeled using Ground-Coupled-GPR (GC-GPR) and Air-coupled Stepped97

Frequency GPR (SF-GPR) configurations. Throughout, OCSVM parameters are ex-98

tensively tested by Sensitivity Analysis using GprMax data, followed by demonstrating99

its performance on experimental data.100

2. Datasets for method tests and validation101

In this paper, two types of datasets are used to test the proposed detection method: a102

pavement model generated using GprMax, and experimental data collected at our uni-103

versity’s Accelerated Pavement Test (APT) site. Both datasets are acquired/generated104

using the two configurations: ground-coupled and air-launched GPR. We now present105

these two data sets.106

2.1. Experimental datasets107

To validate the OCSVM method over experimental data, the data is collected at108

IFSTTAR’s∗ APT site (Simonin et al., 2012) (currently known as University Gustave109

Eiffel).110

2.1.1. The Fatigue Carousel111

The fatigue carousel situated at the Nantes campus of University Gustave Eiffel is112

a 120m long and 6m wide one off-circular outdoor APT test track. It facilitates sev-113

eral loading stages (65 kN on single wheel, twin wheel, tandem or tridem axles) with114

various configurations and rotational speeds of up to 100 kmh−1 which reproduces the115

effect of in-use traffic at an accelerated rate.116

Of its 120m test track, the site dedicates a 25m section for our experiments. Here, a117

two-layered structure with the top layer (course layer) of about 5 cm to 6 cm thickness118

and the base layer of about 8 cm thickness over a granular sub-base are laid.119

Three artificial rectangular defects of various thickness and material compositions are120

∗French Institute of Science and Technology for Transport, Development and Networks
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embedded in this section (ref. Figure 1a). These defects namely, Geotextile, Sand and121

Tack-free based defects are monitored over several loading stages of 10K, 50K and122

100K (where K indicates one thousand loading cycles/rotations of the fatigue carousel123

(Dérobert and Baltazart, 2012)). Geotextile and Sand based defects are defects with124

larger thicknesses presenting the highly degraded pavement conditions. Tack-free de-125

fects represent the lack of coating conditions between the pavement layers and as such,126

they closely resemble a realistic defective pavement structure with thin debondings.127

Thus, in this paper we present the debonding detection for the weakest defect type,128

namely, Tack-free. A coring test at the end of the pavement life-cycle showed that the129

maximum debonding thickness of Tack-free defect zone was within the range of 2mm130

to 3mm. Figure 1a shows the embedded defects before laying the course layer. The131

zone I13 represents the Tack-free based defects (Simonin et al., 2016, 2012). For our132

experiments, this zone is used for data acquisition. The areas marked ‘Zone I11’ and133

‘Zone I12’ respectively represent Geotextile and Sand-based defects which are not in-134

cluded in this paper. (Dérobert et al., 2020) provides the recorded data for both radar135

types and the detailed description of the test track with the three embedded defects.136

The GPR probing pavement section consists of three layers (see Figure 1c): Layers 1137

and 2 are asphalt surface pavements (with εr1 < εr2) and Layer 3 represents the arti-138

ficial debonding layer whose thickness ranges from 2mm to 3mm with εr1 < εr2 <139

εr,deb for Tack-free defects. It should be noted that the permittivities may be reinforced140

by water seeping with time (Todkar et al., 2019).141

2.1.2. Data collection142

The data collection is done using the two main radar configurations which are used143

at the operational level. The first configuration is a ground-coupled commercial GPR144

namely, GSSI SIR-3000 (GSSI-GPR) operating at a peak magnitude centered at fc =145

2.6GHz in free space.146

The GSSI-GPR uses a high-frequency quasi-monostatic transmitter-receiver (Tx - Rx)147

bow-tie antenna setup (Todkar et al., 2017). The radar allows data collection at traf-148

fic speed of up to 10 kmh−1. The radar is capable to acquire up to 8192 samples149

per A-scan. However during experiments, a preset value of 1024 samples per A-scan is150

chosen with a time window duration of 8 ns and the data is collected at average walking151

speed. The GSSI-GPR uses a very small Tx - Rx offset maintaining it in a quasi-mono152

static configuration. Figure 2a shows the GSSI-GPR data acquisition setup at IFST-153

TAR’s APT site.154

The second GPR is an experimental air-coupled Step-frequency radar (SFR) whose155

peak magnitude is centered at fc = 4.2GHz in free space with frequency bandwidth156

BW = 0.8GHz to 10.8GHz. The SFR uses an ultra-wideband exponentially tapered157

slot antennas (Diakité et al., 2015) and collects the data in frequency domain at limited158

speed thanks to a Vector Network Analyzer (VNA). The frequency data is converted159

to time domain data using inverse Fourier transform for processing by OCSVM. The160

SFR time range is limited to 6 ns and includes 5000 samples per A-scan. The SFR, has161

an offset of 0.2m between the Tx and Rx and is thereby in a bi-static configuration.162

Figure 2b shows the SFR data acquisition setup.163

Thanks to toolbox provided by (Nesbitt et al., 2019), the GSSI data is easily accessed164

for processing on the Python environment. On the other hand, an inverse Fourier trans-165
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(a) 25m track with artificial defects before laying the wear-
ing course layer. ‘Zone I13’ indicates Tack-free based defects
(Zones I11 and I12 are respectively Geotextile and Sand-based
defects)

(b) Location of each embedded defect sections. Zone ‘I13’
represents the Tack-free defects that was used for data acqui-
sition (Dérobert et al., 2020)
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(c) Top and Lateral views of the test section (Zone I13 or Tack-
free)

Figure 1: APT Test track at Univ. Gustave Eiffel

form is used on the SF-GPR data for processing.166

167

2.2. Numerical modeling using GprMax168

For preliminary validation of the debonding detection method, we use an FDTD-169

based method that is used to generate subsurface models using EM wave propagation170

namely GprMax (Warren et al., 2015). Since we perform a 2D analysis, a 2D pavement171

model of dimensions 3.0m × 0.28m is created. The domain size of the model is set172

to 3.0m× 1.0m. The spatial and temporal discretization sizes (or mesh size) used are173

respectively ∆x = 1× 10−3 m and ∆y = 5× 10−4 m. The temporal resolution is174

set to ∆t = 1.45× 10−12 s such that the stability condition known as CFL (Courant,175

Freidrichs, Lewy) condition is satisfied (Giannopoulos, 2005). The point source is a176

Hertzian dipole polarized in z-axis.177

The pavement model used with GprMax is as shown in Figure 3. The model consists178
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(a) GSSI GPR setup

(b) Step-frequency GPR setup (Dérobert et al., 2020). The ‘x’-
axis (or spatial axis) represents the scanning direction, ‘y’-axis
(or time axis) is the depth and ‘z’-axis is the lateral axis

Figure 2: Data acquisition setup at IFSTTAR’s APT site

of two or three layers depending on the zone, which is divided into Non-debonding179

zone (two layers) and Debonding zone (three layers). The top course layer has relative180

permittivity of εr1 = 5 and of thickness 0.08m. The base layer on the other hand has181

permittivity of εr2 = 7 with thickness 0.2m.182

In reality, an interlayer debonding may be composed of (a) air voids or water/moisture183

voids, (b) mixture of the pavement material from adjacent layers, or, (c) a combination184

of all of the above. In this paper, we focus on the detection of air-void defects. The185

debonding layer thus has a relative permittivity of εr,deb = 2 (value is used to incorpo-186

rate ‘near air-void’ defects) and the debonding thickness is assigned as thdeb = 3mm187

(other values for thdeb have been also studied in the later sections).188

In addition, it should be noted that whilst creating the model, the following assumptions189

were made:190

1. Pavement layers are assumed to be homogeneous191

2. Smooth surfaces and interfaces192

3. Top layer is sufficiently thick to avoid overlapping of surface and interface echoes193

4. Debonding thickness is smaller than the quarter of the wavelength (i.e, thdeb ≤194

λdeb/4, where λdeb is the wavelength within the debonding layer)195

The excitation waveform in the case of ground-coupled GPR is a Gaussian centered at196

fc = 2.6GHz whose antennas are positioned in contact with the surface (i.e, hant =197
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Figure 3: Generated pavement model using gprMax

0.05m). These parameters are set to imitate the GSSI-GPR used in the experimental198

data (see Section 2.1). The distance between Tx and Rx is set to 0.05m. For the199

air-launched GPR, the excitation waveform is the first Gaussian derivative centered at200

fc = 4.2GHz with hant = 0.3m and the distance between Tx and Rx being 0.05m.201

In both cases, the adjacent A-scans possess a spatial separation of 0.01m. On the202

pavement model, the acquisition avoids the PML (Perfectly Matched Layer) zone of203

the model. In addition, 25 A-scans on both sides of the pavement model are ignored to204

eliminate the A-scans with edge effects.205

A total of 150 A-scans are acquired to create a B-scan consisting on 50 A-scans for206

debonding case and 100 A-scans for non-debonding case. The B-scans are generated207

to approximate the two radar configurations used in the experiments.208

3. OCSVM for Thin debonding detection209

In this section, we present the different preprocessing techniques and the detection210

process based on the proposed method for rapid short-term debonding detection. Short-211

term detection refers to the debonding detection spanning over various time intervals212

carried out without prior knowledge of the initial conditions of the pavement. This ap-213

proach enables the operator to efficiently locate debondings (outliers) even from large214

GPR datasets.215
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3.1. Basics on GPR time signatures216

For our application, the top two pavement layers are studied. As mentioned in217

(Todkar et al., 2019), in case of a healthy pavement, two reflected echoes are obtained:218

backscattered echo from the top surface of the pavement and echo from the interface219

between the first and the second pavement layers. The signal amplitude is proportional220

to the contrast in the dielectric of the two media (pavement layers).221

In case of a debonded pavement, three echoes are expected. The first is the backscat-222

tered surface echo while the two subsequent echoes are reflections from the upper and223

the lower interfaces of the debonded layer that overlap in time domain. This overlap-224

ping is mostly constructive as long as the debonding thickness is limited by the quarter225

wavelength (thdeb ≤ λdeb/4) (Todkar et al., 2019). Since the amplitude of the reflected226

echo depends on the dielectric contrast at each interface of the stratified medium, the227

first (or surface) echo is the strongest whereas the second strongest echo is seen at228

the interface (healthy and debonded zones) and can be up to 1
10 th of the surface echo.229

Then, the peak magnitude of the second strongest echo is used to center the time win-230

dow. Therefore, the echoes can be identified based on both the amplitude and time231

delays.232

3.2. Pre-processing GPR data233

Signal features can be generally defined as the characteristics of a data set that234

contains sufficient information to distinguish among the classes of data (Liu and Mo-235

toda, 1998; Siegwart et al., 2011), which, in our application are debonding and non-236

debonding classes.237

The useful information expected from the signal features are that they (a) retain the238

characteristics of the original data (b) are limited in number, and, (c) are unaffected by239

unwanted variability in the input data (Kumar and Bhatia, 2014). The study of the use240

of signal features in this paper is necessary as it helps to:241

• validate the adaptability of OCSVM for various input data types (i.e., Sensitivity242

Analysis)243

• reduce the processing data size and complexity244

• avoid over-learning/over-fitting that may hinder the performance, and,245

• possibly improve the debonding detection rate246

Signal features can either be global or local depending on the zone from where they are
extracted. (Peeters, 2004) defines global features as the characteristics computed from
the complete signal and local features as the characteristics computed within a specific
time window.
For our application, we define the global and local features by the size of the time-
gating window. The global features are computed within the time window that encom-
passes the surface and the interface echo, which, as shown in Figure 4 for experimental
data is approximately between 1.84 ns and 4.7 ns. The time-gating window to compute
local features on the other hand, is limited at the interface (i.e., echo between the top
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and base pavement layers). The length of time gating window (Wtg), in terms of num-
ber of samples for local features is a function of the center frequency of the GPR pulse
given by (Todkar et al., 2019):

Wtg = 2× {fs × tw} (1)

where, fs is the sampling frequency and tw is the pulse width of the emitted GPR247

pulse.248

A tapered Tukey-cosine window is used for the interval Wtg in order to extract local
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Figure 4: Time-gating window for an A-scan from APT data (Tack-free based defects at 10K loading)
(Todkar, 2019)

249

features. For better representation, Figure 4 shows an A-scan with the window. Fig-250

ure 5 compares a B-scan before and after the time gating is performed.251

Following (Todkar et al., 2019), the local signal features are used in this paper to252

achieve better debonding detection.253

For the sake of comparison, this paper uses the same local signal features listed in Ta-254

ble I of (Todkar et al., 2019). This local feature set consists of 10 signal features for255

each A-scan data vector. These features are chosen using the Ground truth (GT) as-256

sociated to a known GPR dataset to perform the feature selection. GT categorizes the257

A-scans into two classes, namely debonding and non-debonding cases. The probability258

density function (PDF) of the features is computed over each class to determine those259

which are sensitive enough to the pavement conditions. The separation between the260

two curves is used to choose the best features for our application (Todkar et al., 2019).261

In order to use the OCSVM method, the feature matrix (Fmat) is column-normalized262

(A-scan by A-scan) between [-1, 1] using Min-Max normalization. By normalization,263

the impact of large valued features extracted on a different scale is reduced allowing264

small valued features to contribute equally.265
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10K loading) (Todkar, 2019). The amplitudes in both images have been normalized for visualization

3.3. Proposed debonding detection method266

(Schölkopf et al., 2001) introduced the OCSVM as a method of adapting SVM to a
one-class classification problem.
For OCSVM, the learning data consists only in non-debonding data and the origin is
the only member of the debonding data set (by contrast, SVM would require the learn-
ing data set to include both debonding and non-debonding data). Figure 6 shows the
geometrical interpretation of OCSVM.
OCSVM can be obtained using Support Vector Data Description (SVDD) wherein the
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Figure 6: Geometrical representation of a OCSVM using two signal features (kurtosis and skewness) from
APT data (Sand-based defects)

data-points are mapped onto a higher dimension circumscribed by a hyper-sphere (Tax
and Duin, 2004). This hyper-sphere acts as the limiting factor and the aim would be to

10



find this hyper-sphere with minimum radius that encompasses the positive (i.e. Non-
debonding) data mapped on the said hyper-space.
To begin with, we first define a closed hyper-sphere around the known non-debonding
learning feature set in the hyper-space. This sphere is defined by its radius R > 0 and
centered at b. The learning set strictly contains the data-vectors of only one type of
data and is given by: Xmat = x1,x2 . . . ,xN where N is the number of learning data-
vectors and Xmat ∈ Fmat is the feature matrix of the known non-debonding zone.
We aim to minimize the volume of this hyper-sphere by minimizing the radius R keep-
ing in mind that all the learning points are embedded within this hyper-sphere. To do
so, as (Tax and Duin, 2004) mentions, an error function is defined analogous to Support
vector classifiers as:

f(R, b) = R2

constrained to: ||xi − b||2≤ R2 ∀ i
(2)

Now, to allow all possibilities of the outliers into the learning set, the distance between
each data-vector xi and the center of the hyper-sphere b should be less than R2. If this
condition is not satisfied, the distances larger than this should be penalized. To do so,
a positive slack variable ξi (where ξi ≥ 0) is introduced. The minimization problem
thus becomes (Chen et al., 2001; Tax and Duin, 2004):

minimizeR,ξ,b f(R, b, ξ) = R2 +
1

νN

N∑
i=1

ξi

s.t. ||xi − b||2≤ R2 + ξi, ∀i = 1, 2, . . . N

(3)

where,267

- ν is a user designed parameter that is used to determine the amount of268

admitted slack (i.e. amount of outliers permitted in the learning data)269

- ξi is the introduced slack variable270

Equation 3 is the standard form of convex quadratic programming problem which can271

be solved by introducing Lagrangian multipliers, αi and βi (Gu et al., 2010; Tax and272

Duin, 2004):273

(4)£(R, b, α, β, ξ) = R2 +
1

νN

N∑
i=1

ξi +

N∑
i=1

αi

[
R2 + ξi − ||xi − b||2

]
+

N∑
i=1

βiξi

By solving the Lagrangian and substituting values, we obtain:

(5)£(R, b, α, β, ξ) =
∑
i

αi.〈xi,xi〉 −
∑
i

∑
j

αiαj〈xi,xj〉

The 〈·, ·〉 dot product can be replaced with a kernel function (Φ(·)) in One-class274

SVM (Gu et al., 2010).275

For cases where the data is linearly separable, Φ(·) is a linear kernel, otherwise, a non-276

linear kernel (namely, Gaussian radial basis function, sigmoid or polynomial kernel277

(Chang and Lin, 2011)) is used. The boundary condition is then defined by R as:278
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||Φ(xi)− b||2= R2 (6)

where,279

- xi is any support vector with 0 < αi <
1

νN280

- αi is the Lagrange multiplier281

The OCSVM decision function D(x) is given as:

D(x) = sgn{Φ(xi)− b} =

{
+1, for f(x)
−1, for f̄(x)

where, f(x) and f̄(x) are respectively inlier and outlier data predicted by OCSVM.282

3.4. OCSVM programming283

The anomaly debonding detection is implemented in Python Scikit-learn (Pedregosa284

et al., 2011) using the LIBSVM (Chang and Lin, 2011) library to create a outlier detec-285

tion model. The latter model requires to select the kernel function in Equation 3 and its286

associated parameters according to the processing presented in the next section. The287

selected model is then used to identify the presence or absence of debondings (outliers)288

over the unknown pavement area.289

The learning data size for synthetic GprMax and experimental data are respectively 30290

and 20 adjacent A-scans from the healthy pavement zone. In case of simulated dataset,291

the learning data is considered separately for each individual noise level and debonding292

thickness. For experimental data, the learning data for each B-scan is acquired from293

the healthy pavement zone at their respective loading cycle of the fatigue carousel.294

The outlier-detection model is generated using the learning data. A k-fold Cross295

validation technique (with k = 3) is used alongside a loss function to determine the296

model parameters. These parameters are then used to identify the presence or absence297

of debondings over the unknown test pavement area. Figure 7 briefly depicts the over-298

all steps carried out to detect thin debondings using OCSVM.299

Since learning data consists of only one type of data, it is expected to demonstrate300

similar performance levels at various values of learning data set size i.e, Nlearn. Nev-301

ertheless, this analysis will be studied in the next section (Section 4.2.2).302

3.5. Choice of OCSVM parameters303

The selection of the kernel function and the associated parameters is conducted by
optimizing the classification results over the training data set. In this paper, two kernel
functions namely, linear and non-linear (Gaussian) have been compared on this basis.
These kernel functions can be expressed as (Eude and Chang, 2018):

Φlin(xi,xj) = xi
Txj + C (7)

Φrbf (xi,xj) = exp{−γ||xi − xj||2} (8)
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Figure 7: Debonding detection process (Todkar, 2019)

The linear kernel requires the optimization of a single parameter, namely, ν; whereas304

the Gaussian kernel uses both ν and γ parameters.305

The Hinge loss is usually the preferred loss function since it is better suited for classifi-306

cation problems; by contrast, the root-mean square error would be preferred instead for307

regression problems (Todkar, 2019). For our intended output, the Hinge loss function308

only takes two discrete values [0, 2], i.e. non-zero values for misclassified A-scans309

(False Positive - FP and False Negative - FN values) and to zero values for properly310

classified A-scans (True Positive - TP value).311

In order to gain further sensitivity in the optimization problem, the average Hinge-loss312

function is computed at each signal-to-noise ratios (SNR) over the 100 independent313

noise realizations, accordingly to the Monte-Carlo process. As a result, the average314

hinge loss function then takes intermediate step-wise value within the [0, 2] interval,315

as traced in both Figure 8 and Figure 9.316

The search for the minimum hinge loss value is usually performed over a fine grid317

search in ν and γ. The user designed slack is limited to ν ∈ ]0, 1]. In practice, the318

ν-parameter decides the fraction of outliers present in the training data set (Mei and319

Zhu, 2015). Since the training dataset for simulated data is devoid of outliers, the value320

of ν is fixed to a low value, i.e., ν = 0.001. The optimum value is then expected to321

be small. On the other hand, the γ-parameter range is chosen from (Pedregosa et al.,322

2011), where the suitably sufficient range for γ is [10−3, 103].323

Figure 8 presents the average hinge loss for the Gaussian kernel after 100 Monte-Carlo324

realizations at 30 dB SNR with 20 learning samples. As mentioned in the previous325
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Figure 8: Variation of Hinge-loss function with respect to ν and γ parameters for a simulated gprMax B-scan
image with SNR = 30dB using 20 learning samples and thdeb = 3mm

Figure 9: Variation of Hinge-loss function with respect to ν-parameter for a simulated gprMax B-scan image
at various SNR levels using 20 learning samples and thdeb = 3mm
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section, a 3-fold cross validation is used here. It was observed that the function to min-326

imize shows smooth step-wise variations with a global minimum loss function value327

observed at smaller ν and intermediate γ values. It is also shown that γ parameter has a328

small influence on the loss function at medium to high SNR levels. Further simulations329

have shown that, at lower SNR values, the Hinge-loss variations depends on both ker-330

nel parameters at once again smaller ν values and intermediate and/or high γ values.331

Due to the small influence on gamma-parameter, the linear kernel function has been332

preferred as kernel function for data with SNR = 30 dB or above, thereby reducing the333

computation to simply one parameter, namely, ν. Figure 9 shows the influence of ν334

over Hinge-loss values at various SNR levels. It can be confirmed that the optimum ν335

value is close to 0.001 and slightly depends on SNR. By contrast, the Gaussian kernel336

would be better suited for data of SNR = 20 dB or below.337

3.6. Metrics to assess OCSVM performance338

A benchmark, called as Ground Truth (GT) is established for each dataset. GT339

refers to the accurate interpretation and labeling of the pavement conditions under con-340

trolled tests. While the GT is used for the synthetic GprMax data, the experimental341

data uses the Pseudo Ground Truth (PGT), which is a roughly estimated benchmark342

of pavement conditions. In both cases, the debonding A-scan is assigned to 1 and the343

non-debonding A-scan is assigned to -1.344

The OCSVM detection can result in one-out-of-four possible outcomes namely: True345

Positive (TP), False Positive (FP), True Negative (TN) and False Negative (FN). These346

four values are collectively grouped as a Confusion Matrix (Kulkarni et al., 2020).347

This matrix is used to compute the Dice score (DSC) that describes the performance348

of OCSVM model.349

Furthermore, for the sake of reliability, the transition zone between debonding and350

healthy zones is not included in the performance assessment for both simulated and351

experimental data.352

4. Tests and validation of GprMax model353

In this section we analyze the performance of the detection method on pavement354

model generated using GprMax.355

4.1. Noiseless simulated data356

Figure 10a and Figure 10b illustrate the detection results of the OCSVM method for357

the two radar technologies. The classification labels in the figures use -1 to indicated358

Non-debonding and +1 for debonding labels.359

Due to the absence amount of variation in the feature distribution for the healthy zone360

(non-debonding A-scans along the scanning direction), a small data size (Nlearn = 20)361

is sufficient for the learning step. Due to the ideal smooth interface B-scan data, it was362

observed that OCSVM presented an excellent detection result with zero false detection.363

As mentioned in Section 3.5, a linear kernel was used and the value for ν parameter364

was set to 0.001.365

However, in order to explore the OCSVM capability to adapt to various pavement366

configurations and scenarios, Sensitivity analysis is presented hereafter.367
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(b) Air-launched GPR configuration

Figure 10: OCSVM debonding detection on noiseless GprMax data with debonding thickness thdeb =
3mm. The vertical dashed line indicates the learning data

4.2. Sensitivity Analysis368

Sensitivity analysis (SA) is the study of uncertainties between a given input and its369

expected output (Samadzadegan et al., 2010). Using SA, we can also determine the370

robustness and adaptability of OCSVM over various GPR technologies and pavement371

configurations. In this section, we present the OCSVM-SA with respect to, noise level372

and learning data size.373

4.2.1. Effect of Noise374

Noise plays an important role in the consistency of the signal and as such, the noise
level in the signal sometimes limits the performance of the detection methods. The
noise level is decided by the standard deviation of the noise given by:

σN =
M

10(
SNR
20 )

(9)

where,375

- M is the maximum magnitude of the second echo of the signal (A-scan),376

- σN is the standard deviation of the noise added,377

- SNR is the signal-to-noise ratio in dB.378

Using Equation 9, an ideal-White Gaussian noise is added to each B-scan image such379

that the noise samples are decorrelated to each other in both vertical (i.e., time) and380
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horizontal (i.e., between A-scans); the SNR has been varied between 10 dB to 60 dB.381

The detection results presented are averaged over 100 independent noise realizations382

for each Ground-coupled and Air-launched GPR configurations.383

384

Figure 11: Comparison of average DSC score for GC-GPR and SF-GPR GprMax configurations at various
levels of SNR for 100 independent Monte-Carlo realizations (thdeb = 3mm, Nlearn = 30)

Figure 11 traces the DSC score with respect to SNR for both GC-GPR and SF-385

GPR configurations. For the two GPR configurations, it is observed that at SNR =386

10 dB, the debonding detection indulges a high false-detection rate (both FP and FN)387

leading to reduced performance.388

However, the performance rapidly improves above 0.75 beyond SNR = 20 dB. In389

all cases, the detection rate is higher for SF-GPR data compared to GC-GPR. The390

higher frequency and larger frequency bandwidth provide better time resolution to SFR391

radar, that provides better separation of surface and interface echoes. This conclusion392

is worth over all levels of SNR according to Figure 11, but also for any thickness as393

well according to (Todkar, 2019).394

During this analysis, the learning data size was chosen by intuition. However, the395

learning data has an effect over the performance of SVM as stated in (Huang, 2001;396

Thomas et al., 2015). Thus, in the following section, the sensitivity of the OCSVM is397

tested with respect to, the learning data size and its effect on the debonding detection398

rate.399

4.2.2. Effect of learning data size400

For Two class SVM, learning to test data ratio used in the literature varies from as401

low as 1
5 th (Huang, 2001) to as high as 4

5 th (Thomas et al., 2015).402

On the other hand, in case of OCSVM, the literature suggests to use 2
3 rd of the data for403
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learning (Dreiseitl et al., 2010; Li et al., 2003). Since One-class SVM relies on only404

one type of data to create the classification model, the dependability of the learning405

data size is inclined on the variations of the non-debonding data.406

As specified in Section 4.1, the noiseless data presents no variation in the feature dis-407

tribution. Thus the learning data size can be very small. However for noisy data, the408

learning data size is expected to play a vital role in the debonding detection. Therefore,409

in this section, we analyze the effect of learning data size on the performance.410

Here, the debonding thickness is set to 3mm and noise is added to obtain an SNR of411

30 dB. Figure 12 traces the DSC score variation at increasing learning data sizes for412

both GC-GPR and SF-GPR configurations. These are obtained by a Monte-Carlo pro-413

cess averaged over 100 independent realizations for the two configurations.414

It can be observed that, for both GC-GPR and SF-GPR configurations, for small learn-

Figure 12: DSC variation with respect to learning data size for noisy GprMax data with SNR = 30dB for
ground-coupled and air-launched configurations (thdeb = 3mm, Nlearn = 30)

415

ing datasets (= 5 A-scans), the debonding detection rate (DSC) is greater than 0.8.416

However a rapid increase in the performance (i.e, DSC) is observed up to Nlearn =417

20 beyond which a gradual increase in DSC up to 1 was observed. This SA infers that418

the OCSVM method can be implemented on GPR datasets for debonding detection419

irrespective of its configuration.420

4.2.3. Effect of debonding thickness421

In the previous sections, we studied the effect of various parameters such as noise,422

learning data size etc. on the performance. However, in every case, the debonding423

layer within the B-scan was fixed to one thickness (i.e, 3mm). In this section, we424

analyze the performance behavior in conditions with different debonding thicknesses.425
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As done in previous sections, the detection is averaged over 100 independent Monte-426

Carlo realizations.427

A B-scan is generated with the pavement parameters specified in Section 2.2. The428

defective zone consists of four sub-zones containing debondings of respectively 1mm,429

3mm, 5mm and 7mm thicknesses (as depicted in Figure 13). Each defective zone is430

0.2m long with 20 acquired A-scans whereas the non-defective zone is 1m long with431

100 acquired A-scans. Thus, the resulting B-scan contains a total of 180 A-scans.432

Figure 14a and Figure 14b respectively present the debonding detection for GC-GPR

1 m

0.
1 

m
0.

4
 m

0.8 m

1 mm 3 mm 5 mm 7 mm

Figure 13: Pavement structure model used to generate a B-scan with defective zone containing debondings
of respectively 1mm, 3mm, 5mm and 7mm thicknesses. Antennas are positioned respectively as shown
in Figure 3

433

and SF-GPR configurations of the pavement model from Figure 13. For both SF-GPR434

and GC-GPR configurations, zero non-detection (i.e., FN ) were observed. However,435

some false alarms were seen to occur in both cases leading to the DSC scores of 0.98436

and 0.99 for respectively GC-GPR and SF-GPR configurations.437

Since the SF-GPR operates at a higher frequency, the time resolution of its data is438

higher. This provides a better feature separation and therefore has a better performance439

than the GC-GPR data.440

In the final section, we implement One-class SVM debonding detection method on441

experimental data collected at the IFSTTAR’s APT site using both air-launched and442

ground-coupled radar configurations.443

5. Experimental validation of OCSVM444

In this section, the proposed method is tested on the experimental data presented in445

Section 5. Here, the OCSVM model optimization and the debonding detection process446

is the same as done for GprMax pavement model in Section 4. Two pavement sections447

are probed with the GPR. The first is the known pavement section with no debondings448

consisting of N = 20 A-scans and is used for the ‘learning’ step (as done in Section 4).449

The second section is then probed whose subsurface condition is unknown. This un-450

known B-scan is divided by the operator into two groups namely, transition zone and451

testing zone. The transition zone is the region where the presence/absence of debond-452
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(b) Air-launched GPR configuration

Figure 14: One-class SVM debonding detection on noisy GprMax data (SNR = 30dB, Nlearn = 30) with
various debonding thicknesses thdeb = 1mm, 3mm, 5mm and 7mm. The solid box indicates the learning
data; vertical dashed lines indicate various thickness zones

ing is ambiguous and this zone is excluded from the performance evaluation of the453

detection method.454

Loading stages SFR GSSI

10K 0.96 0.93

50K 0.97 0.9

100K 0.96 0.96

Table 1: Debonding detection DSC score for Tack-free defects at various loading stages for SFR and GSSI-
GPR data

Table 1 presents DSC score for Tack-free defects each at various loading stages.455

Figures 15, 16 and 17 present the detection results for Tack-free defects at 10K, 50K456

and 100K cycles loading stages. The first N = 20 A-scans is the known region used457

for the learning step. In each figure, the region between the dashed lines is the transi-458

tion zone. The remainder is the testing B-scan data.459

In case of experimental data, the thickness of Tack-free defects was observed to be be-460

tween 2mm to 3mm (see Section 2.1). The OCSVM method provided similar results461

for GC-GPR and SF-GPR data at 10K and 100K loading. However the performance in462

case of GC-GPR data at 50K loading was reduced due to aberrant A-scans present in463
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the learning data.464

From Figures 15, 16 and 17 and Table 1, it can be observed that OCSVM is capable465

of detecting debondings with high efficiency and very few false alarms. These false466

alarms could be attributed to the data-points present very close to the OCSVM hyper-467

sphere boundary. The zone in the blue box indicates the learning data and tzone denotes468

the transition zone. In general, it was observed that the performance of the OCSVM
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Figure 15: Debonding detection at 10K loading for for Tack-free based defects
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Figure 16: Debonding detection at 50K loading for for Tack-free based defects
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Figure 17: Debonding detection at 100K loading for for Tack-free based defects

469

method was always slightly better for SF-GPR that the GC-GPR data. This observation470

was held true for both synthetic GprMax as well as experimental data. The SF-GPR471
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operates at a higher frequency (fc,SFR = 4.2GHz) compared to the GC-GPR oper-472

ating at fc,GSSI = 2.6GHz. The higher temporal resolution allows the SF-GPR to473

provide better distinction between the interface echoes and therefore, better separated474

features of the two classes.475

However, the OCSVM method has a few limitations. In this paper, a known non-476

debonding dataset is used to train the OCSVM model. The presence of debonding477

data (outliers) in this learning dataset could skew the classification model leading to478

false detection (False Negative and/or False Positive). OCSVM is also limited by the479

number of classes for classification (inliers or outliers); this method cannot be used for480

multi-class classification.481

6. Comparison between One-class and Two-class SVMs482

In this section, we compare the performance of One-class and Two-class SVM (483

from (Todkar et al., 2019)). Contrary to OCSVM, the Two-class SVM requires data484

from both classes during the learning stage. The best separation in this case is intu-485

itively achieved with the hyper-plane which provides the maximum distance from the486

nearest data-points of the debonding and non-debonding classes.487

In case of Two-class SVM, the initial data set (i.e., 10K loading) for each defect was488

used in the learning stage to generate a classification model. This approach is suitable489

for a long-term detection while the initial conditions is available. OCSVM in this pa-490

per is more of an immediate/short-term detection approach because it does not require491

an initial data set. Detection is carried out on each loading stage independent of the492

previous data. Since (Todkar et al., 2019) performs detection on SF-GPR data only, we493

compare the same with OCSVM results. For the sake of relevance, we cover the two494

extreme cases and the results for strong (Geotextile) defects are presented in addition495

to Tack-free defect data.496

The Two-class SVM detection (as presented in (Todkar et al., 2019)) for SF-GPR data497

uses approximately 50% of its data as learning data. OCSVM, on the contrary, uses a498

smaller learning data (first 20 A-scans, which is about 20% - 25%) to provide very sim-499

ilar results. Table 2 and Table 3 compare the DSC scores of One-class and Two-class500

SVMs for Tack-free and Geotextile defects respectively. It can be noted that in case of501

Tack-free defects, both One and Two-class SVMs provide similar performance.502

Both One and Two-class SVMs demonstrate good performance. However, OCSVM

Loading stage Two-class SVM One-class SVM

10K 1.0† 0.96

50K 0.96 0.97

100K 0.95 0.96

Table 2: Comparison of DSC score for Tack-free defects at various loading stages obtained using Two-class
and One-class SVMs (Two-class detection results taken from (Todkar et al., 2019))
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Loading stage Two-class SVM One-class SVM

10K 1.0† 0.96

50K 1.0 1.0

100K 1.0 0.95

Table 3: Comparison of DSC score for Geotextile defects at various loading stages obtained using Two-class
and One-class SVMs (Two-class detection results taken from (Todkar et al., 2019))

503

relies on the non-debonding data which is readily available contrary to the two-class504

and a smaller learning dataset size. In addition, since OCSVM does not require initial505

data, it is well-suited to be used in field detection for short-term practical experiments.506

7. Conclusion507

In this article, we proposed to implement OCSVM for detecting thin debondings508

from both air-coupled and ground-coupled GPR data. The proposed approach was first509

tested with simulated pavement models from GprMax. To study its capability to adapt510

to various data configurations, OCSVM Sensitivity Analysis was conducted.511

With the help of OCSVM, we were able to detect debondings with DSC > 0.75 (for512

GC-GPR) and DSC > 0.98 (for SF-GPR) at an SNR= 20 dB or greater. At a small513

learning data size of Nlearn = 5, GC-GPR showed a DSC > 0.8 in contrast to the514

SF-GPR with DSC > 0.85. The performance reached close to DSC ≈ 1 as the learn-515

ing data size was gradually increased. In addition, OCSVM was able to detect thin516

debondings within a B-scan varying from 1mm to 7mm from both GC and SF-GPR517

with very few false detection. Overall, for simulated data, the OCSVM method per-518

formed better with SF-GPR data sets than its counterpart GC-GPR data sets.519

The OCSVM was then validated on experimental data collected with two GPR config-520

urations over embedded Tack-free defects. Over three loading stages (10K, 50K and521

100K), due to its increased temporal resolution and better separated signals in the time522

domain, OCSVM provided better results for SF-GPR compared to the GC-GPR data523

sets.524

Finally, a short comparison to the previous works showed that the OCSVM method525

provided similar results as its Two-class counterpart. It was observed that OCSVM is526

suited for short-term debonding detection experiments.527

In perspective, we aim to extend the performance assessment of the proposed detection528

method to the entire data set collected over the tested pavement structure during its529

entire lifetime, i.e., up to 800K loading.530

†(Todkar et al., 2019) used 10K data set as learning and the remaining loading sets as test; contrast to the
OCSVM in this paper that uses the first 20 A-scans of each loading for learning
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Appendix A. Computation of SNR from experimental data534

In this appendix, we present, in brief, the estimation of SNR from experimental
SF-GPR data.
Revisiting Equation 9 for SNR computation, we have:

SNR = 20 ∗ log
{
M

σN

}
(A.1)

Now, in order to compute the SNR from experimental data, two values, namely M535

and σN are required. The value for M is obtained from the known learning data (non-536

debonding zone) using the automatic time-gating window (Section 3.2). The standard537

deviation of the noise (σN ) is computed from the late arrival signals of the subsequent538

layers as shown in Figure A.18.539

To summarize, Table A.4 provides the SNR levels for all loading stages obtained for
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Figure A.18: Illustration of the SNR computation for GPR data from Equation 9 over the Tack-free defect at
10K loading

540

Tack-free defects.541
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