Maurice H Ter Beek
email: maurice.terbeek@isti.cnr.it

Ferruccio Damiani
email: ferruccio.damiani@unito.it

Michael Lienhardt
email: michael.lienhardt@onera.fr

Franco Mazzanti
email: franco.mazzanti@isti.cnr.it

Luca Paolini
email: luca.paolini@unito.it

Giordano Scarso
email: giordano.scarso@edu.unito.it

FTS4VMC: A front-end tool for static analysis and family-based model checking of FTSs with VMC

Keywords: product families, variability, static analysis, model checking, VMC, featured transition systems, modal transition systems

come L'archive ouverte pluridisciplinaire

Introduction

A Featured Transition System (FTS) is a formalism for capturing variability in behavioural models of product families or configurable systems [START_REF] Classen | Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking[END_REF][START_REF] Cordy | A Decade of Featured Transition Systems[END_REF]. The behaviour of all variants (products) is modelled in a single compact FTS by associating the possibility to perform an action, and transition from one state to another, with feature expressions that condition the execution of an action in specific variants. As first recognised in the seminal paper [START_REF] Classen | Model Checking Lots of Systems: Efficient Verification of Temporal Properties in Software Product Lines[END_REF], efficient model checking of FTSs is challenging, as the number of possible variants may be exponential in the number of features and each variant may moreover exhibit a large state space. Ideally, the compactness of an FTS is exploited to reason on the whole system at once. Such an all-in-one technique, by which the behaviour of all variants is examined only once simultaneously, is called family-based analysis; in contrast, in an enumerative product-based analysis, the behaviour of each individual variant is examined one-by-one [START_REF] Thüm | A Classification and Survey of Analysis Strategies for Software Product Lines[END_REF]. During the past decade, FTSs were shown to be amenable to family-based model-checking [START_REF] Classen | Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking[END_REF][START_REF] Cordy | A Decade of Featured Transition Systems[END_REF][START_REF] Classen | Model checking software product lines with SNIP[END_REF][START_REF] Cordy | Pro-VeLines: A Product Line of Verifiers for Software Product Lines[END_REF][START_REF] Classen | Formal semantics, modular specification, and symbolic verification of productline behaviour[END_REF][START_REF] Dimovski | Efficient family-based model checking via variability abstractions[END_REF][START_REF] Beek | Family-Based Model Checking with mCRL2[END_REF][START_REF] Dimovski | CTL * family-based model checking using variability abstractions and modal transition systems[END_REF][START_REF] Beek | Family-Based SPL Model Checking Using Parity Games with Variability[END_REF].

In this paper, we present the front-end tool FTS4VMC for the research tool VMC [START_REF] Beek | VMC: A Tool for Product Variability Analysis[END_REF][START_REF] Beek | VMC: Recent Advances and Challenges Ahead[END_REF][START_REF] Beek | Modelling and analysing variability in product families: Model checking of modal transition systems with variability constraints[END_REF], developed to make VMC amenable also to FTSs. VMC is a research tool for the analysis of a behavioural variability model of a product family or configurable system in its early design phase. It accepts as input a Modal Transition System with a set of logical variability constraints (MTSυ), akin to an FTS' feature expressions. The concept of a Modal Transition System (MTS) [START_REF] Křetínský | 30 Years of Modal Transition Systems: Survey of Extensions and Analysis[END_REF] was originally introduced in [START_REF] Larsen | A Modal Process Logic[END_REF] to capture the refinement of partial descriptions into more detailed ones. MTSυs were introduced in [START_REF] Beek | Modelling and analysing variability in product families: Model checking of modal transition systems with variability constraints[END_REF] to compactly model product family behaviour, whose individual variant (product) behaviour can be obtained by means of a special-purpose refinement relation or by an equivalent operational derivation procedure. In [START_REF] Beek | On the expressiveness of modal transition systems with variability constraints[END_REF], it was shown that such MTSs are equally expressive as FTSs.

We initiated the static analysis of FTSs in [START_REF] Beek | Static Analysis of Featured Transition Systems[END_REF] 1 . We identified and defined three ambiguities for an FTS: a dead transition (i.e., a transition that is unreachable, and thus cannot be executed, in any variant); a false optional transition (i.e., a transition that can be executed in all variants in which its source state is reachable); and a hidden deadlock state (i.e., a state from which a transition can be executed only in some variants). We presented an algorithm to detect such ambiguities in FTSs, with a correctness proof, and a procedure to remove them, mimicking the well-established anomaly detection for feature models [START_REF] Benavides | Automated Analysis of Feature Models 20 Years Later: a Literature Review[END_REF]. The motivations were twofold: an ambiguous FTS is often undesired, since it gives an unclear idea of the SPL behaviour, and an unambiguous FTS paves the way for an efficient kind of family-based model checking 2 . We illustrated this in [START_REF] Beek | Static Analysis of Featured Transition Systems[END_REF] on a few examples from the literature.

To improve the practical applicability of the automated static analysis for ambiguity detection in FTSs, in [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF] we presented a new and more efficient algorithm by formalising the ambiguity criteria as propositional formulae, thus reducing ambiguity detection to SAT solving, with a correctness proof. We applied the new algorithm to a large set of benchmark examples from the literature, including the FTS of the complete mine pump model of [START_REF] Classen | Modelling and model checking variability-intensive systems[END_REF] and that of the Claroline SPL of [START_REF] Devroey | Towards Statistical Prioritization for Software Product Lines Testing[END_REF] with over 10,000 transitions, both of which were not tractable with the algorithm presented in [START_REF] Beek | Static Analysis of Featured Transition Systems[END_REF]. Thus, we empirically demonstrated the improved efficiency of the new algorithm by means of a significant runtime speedup (8.5x on average for the FTS benchmarks that were tractable also before [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF]Table 2]). A Python implementation of this algorithm can be found in analyser.py, which is freely available online from [START_REF] Beek | Supplementary material for[END_REF].

The front-end tool FTS4VMC was first presented during the conference SPLC 2021 in the Demonstrations and Tools track as a short paper [START_REF] Beek | Static Analysis and Family-based Model Checking of Featured Transition Systems with VMC[END_REF] and as part of a tutorial on a toolchain involving FTS4VMC (reported in [START_REF] Beek | Static Analysis and Family-based Model Checking with VMC[END_REF]). The current paper is an extended version of [START_REF] Beek | Static Analysis and Family-based Model Checking of Featured Transition Systems with VMC[END_REF], focussing on the software.

The toolchain constituted by FTS4VMC, analyser.py from [START_REF] Beek | Supplementary material for[END_REF] (which implements the static analysis algorithm from [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF], where it was shown to be more efficient than the one presented in [START_REF] Beek | Static Analysis of Featured Transition Systems[END_REF]), and VMC can be used to i) analyse an FTS for ambiguities, ii) remove ambiguities from an FTS, and iii) perform an efficient kind of family-based verification of properties of an FTS without hidden deadlock states (for which the FTS is transformed into an MTS). This is possible through a user-friendly GUI, which implements the code that allows to upload and download files, handle users' session data, render graph visualisation and HTML output, and communicate with VMC. Moreover, the GUI predisposes the seamless interaction with the following main Python procedures: analyser.py, implementing the ambiguities analysis; disambiguator.py, implementing the ambiguities removal; graph.py, implementing the FTS/MTS graph rendering; translator.py, implementing the transformation of an FTS into an MTS; vmc controller.py, handling the property verification with VMC; and process manager.py, handling multiprocessing required for real-time output during the analysis. Alternatively, the core classes of FTS4VMC can be used from a command-line interface, which is useful for particularly large FTSs that cannot easily be rendered in a visually attractive format.

Impact

FTS4VMC automates the engineering and verification methodology envisioned in Fig. 1, which offers a user the possibility to verify properties of an FTS or an MTSυ, as well as the possibility to improve an FTS by removing ambiguities 3 . The verification strategy sketched in Fig. 1, which will be discussed in more detail in the next section, is as follows. If i) the model is live 4 , which is the case if it has no hidden deadlocks (so, unambiguous FTSs are live), and ii) the property ϕ to be verified is specified in v-ACTLive □5 , then ϕ can be verified directly on the underlying MTS (ignoring the feature expressions in case of an FTS model) with a linear complexity. Moreover, if iii) ϕ holds, then this validity is preserved in all variants, i.e. ϕ holds for all variants. However, if any of these three conditions does not hold, then ϕ has to be verified externally with classical family-based model-checking tools (in case of an FTS model) or with VMC through product-based model checking (in case of an MTSυ model), with an exponential complexity [START_REF] Classen | Featured Transition Systems: Foundations for Verifying Variability-Intensive Systems and Their Application to LTL Model Checking[END_REF][START_REF] Classen | Formal semantics, modular specification, and symbolic verification of productline behaviour[END_REF].

Conclusion

FTS4VMC expands the possible use cases of the VMC model checker for behavioural variability models to include also FTSs, offering moreover a significant gain in efficiency in specific cases, as demonstrated in [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF]. [START_REF] Beek | Static Analysis and Family-based Model Checking of Featured Transition Systems with VMC[END_REF] model understanding and to enable an efficient kind of family-based verification (if the deadlocks in the variants that are the cause should not be remedied in the first place). 4 An FTS (or MTSυ) is said to be live if all states are live, where a live state is such that it does not occur as a deadlock state (from where no action is possible) in any variant.

5 v-ACTL [START_REF] Beek | Modelling and analysing variability in product families: Model checking of modal transition systems with variability constraints[END_REF][START_REF] Beek | From Featured Transition Systems to Modal Transition Systems with Variability Constraints[END_REF] is a variability-aware action-based and state-based branching-time temporal logic derived from ACTL (an action-based version of the well-known logic CTL) and v-ACTLive □ is a rich fragment of v-ACTL interpreted on live MTSs.

Software

FST4VMC was developed using JavaScript coupled with a small backend based on the Flask micro web framework. Flask was preferred over similar alternatives because it is simple to deploy locally as a desktop application and it provided a direct integration with the previously developed code (i.e., analyser.py [START_REF] Beek | Supplementary material for[END_REF]). Nonetheless, the online repository 6 makes the core classes of FTS4VMC (viz., Disambiguator, to automatically remove ambiguities detected by the analyser, and Translator, to transform FTSs into MTSs) available as two separate programs (viz., disambiguate.py and translate.py) that allow to use FTS4VMC from a command-line interface. This is particularly useful for large FTSs that cannot easily be rendered in a visually attractive format.

Tool Functionality

FTS4VMC fully automates the following steps of the engineering and verification methodology envisioned in Fig. 1:

Input Specify or upload an FTS expressed as a directed graph in Graphviz's dot file format 7 , including a definition of the feature model using the attribute FM 8 . Nodes represent states and edges represent transitions. Every edge requires an action and feature expression defined inside the label attribute and exactly one node must have the attribute initial set to True. We refer to [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF] for definitions of an FTS, a feature model, and a feature expression as used in FTS4VMC, while we refer to the folder tests/dot 9 in the online repository for a dozen exemplary FTS models from the literature that can be uploaded. 8 This is a propositional logic formula that defines which feature configurations represent valid variants, where each feature is True if it is selected and False if unselected.

Ambiguity detection

9 https://github.com/fts4vmc/FTS4VMC/tree/master/tests/dot 10 An FTS is said to be ambiguous if at least one of its states is a hidden deadlock or at least one of its transitions is dead or false optional.

green, and hidden deadlock states in red (included in the graph rendering with a legend reporting the three types of ambiguities, cf. Fig. 2).

Ambiguity removal Remove all or some selected types of ambiguities from an FTS, by calling the solve hidden deadlocks, remove transitions and set true list (set feature expressions of false optional transitions to True, without removing them) methods of disambiguator.py. We refer to [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF]Section 4] for definitions of the three types of ambiguities that FTS4VMC can detect and of how to remove them from an FTS.

Liveness analysis Check if the FTS is live, i.e., if it has hidden deadlock states (ignoring the detection of dead and false optional transitions), by calling method analyser.z3 analyse hdead of analyser.py. This is a specialised implementation of the static analysis algorithm that represents a hidden deadlocks discovery algorithm (i.e., analysing only liveness) [20, Section 5.3], which requires only a fraction of the runtime of the full ambiguities discovery algorithm (4.2% on average for the three largest FTS benchmarks [20, Section 6.2], i.e. those that were not tractable with the algorithm from [START_REF] Beek | Static Analysis of Featured Transition Systems[END_REF]).

Transformation Transform a (live) FTS into an MTS, by calling first the Translator.load model method and then the Translator.translate method of translator.py. Given the FTS representation in dot format, the translation process creates an assignment for every state with at least one outgoing transition. Each assignment contains a list of statements for every outgoing transition defined as follows: the action label of the transition, the transition's optionality inside parentheses, and the destination state of the transition preceded by a dot (.). A final step adds the statements SYS and Constraints { LIVE } to specify which state is the initial state and to declare that the MTS is live, respectively, as required by VMC's syntax of MTSυs. Method get mts of graph.py allows to display the FTS's corresponding MTS at any time. This transformation makes use of the fact that we know from [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF] that any FTS F can be transformed into an MTS F MTS in a straightforward manner such that whenever F is live, then also F MTS is live.

Property verification Specify a v-ACTL formula in FTS4VMC and verify it with VMC, by calling vmc controller.py, after which the output of VMC is displayed. If the formula is a v-ACTLive □ formula and it holds, then FTS4VMC reports that it holds for all variants of the FTS. Instead, if the formula is not a v-ACTLive □ formula or it does not hold, then FTS4VMC reports that the result of the formula is not necessarily preserved by the variants (i.e., the user needs to resort to productbased model checking with VMC). If the formula is false, FTS4VMC also offers to display the counterexample provided by VMC by calling VmcController.run vmc and its getter methods. This kind of familybased verification of properties of (live) FTSs relies on the fact that a result for MTSυs, namely for a property expressed in v-ACTLive □ , validity for the family model guarantees validity of the property for all product models (cf. [START_REF] Beek | Modelling and analysing variability in product families: Model checking of modal transition systems with variability constraints[END_REF]Theorem 4]), carries over to live FTSs [START_REF] Beek | Efficient static analysis and verification of featured transition systems[END_REF].

The novelties introduced in [START_REF] Beek | Static Analysis and Family-based Model Checking of Featured Transition Systems with VMC[END_REF] are clearly indicated in Fig. 1: the blue and the green steps (arrows) if applied to FTSs are made possible by FTS4VMC.

Tool Views

During execution of the above steps of the tool's functionality, the user can always stop the processing and switch between different views (cf. Fig. 2):

Console Displays progress and the results of the performed steps.

Source Displays the dot source file of the current FTS or MTS.

Graph Displays the rendered graph in svg format, highlighting the feature model and ambiguities, by using the pydot library 11 .

Summary Displays the console output after successful analysis in a visually attractive format.

Counterexample graph Displays the counterexample obtained upon interaction with VMC rendered as a graph.

Moreover, at any time, the user can download the displayed result (e.g., the FTS in dot or svg format and with or without highlighted ambiguities, the transformed MTS, etc.).

Reproducibility

The specifications of all the FTS models needed to reproduce the benchmark experiments presented in [20, §6 and §7] are freely available online [START_REF] Beek | Supplementary material for[END_REF].

11 By default only models with at most 300 transitions are rendered. This limit is defined in config.py and can be changed if desired. Moreover, by default graphs are rendered with a top to bottom (TB) layout for better readability on a Web browser, but also this can also be configured by changing the value of config.RENDER GRAPH DIRECTION.

Documentation

Documentation of the software is available on GitHub12 , explaining how to install and run FTS4VMC or to use its core classes from a commandline interface. The GitHub page also provides information on the internal implementation (i.e., the structure of the source code), which is important to allow other developers to understand the source code and possibly modify it to their needs, as well as a link to an online user guide 13 .

Figure 1 :

 1 Figure1: Engineering and verification methodology from[START_REF] Beek | Static Analysis and Family-based Model Checking of Featured Transition Systems with VMC[END_REF]

Figure 2 :

 2 Figure 2: Screenshot of FTS4VMC's GUI

 Check if the FTS is ambiguous10 , by calling method analyser.z3 analyse full of analyser.py, and output an updated version of the FTS by calling Disambiguator.highlight ambiguities to change the dot file of the FTS to highlight the detected ambiguities: dead transitions are highlighted in blue, false optional transitions in 6 https://github.com/fts4vmc/FTS4VMC 7 This is a well-known graphical notation supported by the Graphviz open-source graph visualisation software (cf. https://www.graphviz.org).

This paper received the SPLC

Best Paper Award and the ACM Badge "Artifacts Evaluated & Reusable".[START_REF] Cordy | A Decade of Featured Transition Systems[END_REF] As explained in detail in the next section on Impact, an unambiguous FTS is such that any property ϕ specified in a rich fragment of a dedicated variability-aware temporal logic can be verified with a linear complexity and if ϕ is true, then ϕ is true in all variants.

A dead transition indicates a modelling error that must be corrected. A false optional transition indicates a model redundancy that may be intentional, but resolving it allows for more efficient verification options. A hidden deadlock should be made explicit to improve

https://github.com/fts4vmc/FTS4VMC#readme

https://github.com/fts4vmc/FTS4VMC/blob/master/MANUAL.md

Acknowledgements

Maurice ter Beek and Luca Paolini acknowledge funding from the Italian MIUR-PRIN 2020TL3X8X project T-LADIES (Typeful Language Adaptation for Dynamic, Interacting and Evolving Systems).