
HAL Id: hal-04092018
https://hal.science/hal-04092018v1

Submitted on 20 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

FTS4VMC: A front-end tool for static analysis and
family-based model checking of FTSs with VMC

Maurice ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti,
Luca Paolini, Giordano Scarso

To cite this version:
Maurice ter Beek, Ferruccio Damiani, Michael Lienhardt, Franco Mazzanti, Luca Paolini, et al..
FTS4VMC: A front-end tool for static analysis and family-based model checking of FTSs with
VMC. Science of Computer Programming, 2022, 224, pp.102879. �10.1016/j.scico.2022.102879�. �hal-
04092018�

https://hal.science/hal-04092018v1
https://hal.archives-ouvertes.fr


FTS4VMC: a front-end tool for static analysis and

family-based model checking of FTSs with VMC

Maurice H. ter Beeka,∗, Ferruccio Damianib, Michael Lienhardtc,
Franco Mazzantia, Luca Paolinib, Giordano Scarsob

aISTI–CNR, Pisa, Italy
bUniversity of Turin, Turin, Italy

cONERA, Palaiseau, France

Abstract

FTS4VMC is a publicly available front-end tool for the static analysis and
family-based model checking of a Featured Transition System (FTS). It can
detect ambiguities in an FTS, disambiguate an ambiguous FTS, transform
an FTS into a Modal Transition System (MTS), and interact with the VMC
model checker for family-based verification.

Keywords: product families, variability, static analysis, model checking,
VMC, featured transition systems, modal transition systems

Introduction

A Featured Transition System (FTS) is a formalism for capturing variabil-
ity in behavioural models of product families or configurable systems [1, 2].
The behaviour of all variants (products) is modelled in a single compact FTS
by associating the possibility to perform an action, and transition from one
state to another, with feature expressions that condition the execution of
an action in specific variants. As first recognised in the seminal paper [3],
efficient model checking of FTSs is challenging, as the number of possible
variants may be exponential in the number of features and each variant
may moreover exhibit a large state space. Ideally, the compactness of an
FTS is exploited to reason on the whole system at once. Such an all-in-one

∗Corresponding author
Email addresses: maurice.terbeek@isti.cnr.it (Maurice H. ter Beek),

ferruccio.damiani@unito.it (Ferruccio Damiani), michael.lienhardt@onera.fr
(Michael Lienhardt), franco.mazzanti@isti.cnr.it (Franco Mazzanti),
luca.paolini@unito.it (Luca Paolini), giordano.scarso@edu.unito.it
(Giordano Scarso)

Preprint submitted to Science of Computer Programming June 12, 2023



technique, by which the behaviour of all variants is examined only once si-
multaneously, is called family-based analysis; in contrast, in an enumerative
product-based analysis, the behaviour of each individual variant is examined
one-by-one [4]. During the past decade, FTSs were shown to be amenable
to family-based model-checking [1, 2, 5–11].

In this paper, we present the front-end tool FTS4VMC for the research
tool VMC [12–14], developed to make VMC amenable also to FTSs. VMC
is a research tool for the analysis of a behavioural variability model of a
product family or configurable system in its early design phase. It accepts as
input a Modal Transition System with a set of logical variability constraints
(MTSυ), akin to an FTS’ feature expressions. The concept of a Modal Tran-
sition System (MTS) [15] was originally introduced in [16] to capture the
refinement of partial descriptions into more detailed ones. MTSυs were intro-
duced in [14] to compactly model product family behaviour, whose individual
variant (product) behaviour can be obtained by means of a special-purpose
refinement relation or by an equivalent operational derivation procedure.
In [17], it was shown that such MTSs are equally expressive as FTSs.

We initiated the static analysis of FTSs in [18]1. We identified and defined
three ambiguities for an FTS: a dead transition (i.e., a transition that is
unreachable, and thus cannot be executed, in any variant); a false optional
transition (i.e., a transition that can be executed in all variants in which
its source state is reachable); and a hidden deadlock state (i.e., a state from
which a transition can be executed only in some variants). We presented an
algorithm to detect such ambiguities in FTSs, with a correctness proof, and a
procedure to remove them, mimicking the well-established anomaly detection
for feature models [19]. The motivations were twofold: an ambiguous FTS is
often undesired, since it gives an unclear idea of the SPL behaviour, and an
unambiguous FTS paves the way for an efficient kind of family-based model
checking2. We illustrated this in [18] on a few examples from the literature.

To improve the practical applicability of the automated static analysis for
ambiguity detection in FTSs, in [20] we presented a new and more efficient
algorithm by formalising the ambiguity criteria as propositional formulae,
thus reducing ambiguity detection to SAT solving, with a correctness proof.
We applied the new algorithm to a large set of benchmark examples from the
literature, including the FTS of the complete mine pump model of [21] and

1This paper received the SPLC 2019 Best Paper Award and the ACM Badge “Artifacts
Evaluated & Reusable”.

2As explained in detail in the next section on Impact, an unambiguous FTS is such
that any property ϕ specified in a rich fragment of a dedicated variability-aware temporal
logic can be verified with a linear complexity and if ϕ is true, then ϕ is true in all variants.

2



that of the Claroline SPL of [22] with over 10,000 transitions, both of which
were not tractable with the algorithm presented in [18]. Thus, we empiri-
cally demonstrated the improved efficiency of the new algorithm by means
of a significant runtime speedup (8.5x on average for the FTS benchmarks
that were tractable also before [20, Table 2]). A Python implementation of
this algorithm can be found in analyser.py, which is freely available online
from [23].

The front-end tool FTS4VMC was first presented during the conference
SPLC 2021 in the Demonstrations and Tools track as a short paper [24] and
as part of a tutorial on a toolchain involving FTS4VMC (reported in [25]).
The current paper is an extended version of [24], focussing on the software.

The toolchain constituted by FTS4VMC, analyser.py from [23] (which
implements the static analysis algorithm from [20], where it was shown to
be more efficient than the one presented in [18]), and VMC can be used to
i) analyse an FTS for ambiguities, ii) remove ambiguities from an FTS, and
iii) perform an efficient kind of family-based verification of properties of an
FTS without hidden deadlock states (for which the FTS is transformed into
an MTS). This is possible through a user-friendly GUI, which implements
the code that allows to upload and download files, handle users’ session data,
render graph visualisation and HTML output, and communicate with VMC.
Moreover, the GUI predisposes the seamless interaction with the following
main Python procedures: analyser.py, implementing the ambiguities anal-
ysis; disambiguator.py, implementing the ambiguities removal; graph.py,
implementing the FTS/MTS graph rendering; translator.py, implement-
ing the transformation of an FTS into an MTS; vmc controller.py, han-
dling the property verification with VMC; and process manager.py, han-
dling multiprocessing required for real-time output during the analysis. Al-
ternatively, the core classes of FTS4VMC can be used from a command-line
interface, which is useful for particularly large FTSs that cannot easily be
rendered in a visually attractive format.

Impact

FTS4VMC automates the engineering and verification methodology en-
visioned in Fig. 1, which offers a user the possibility to verify properties of
an FTS or an MTSυ, as well as the possibility to improve an FTS by remov-
ing ambiguities3. The verification strategy sketched in Fig. 1, which will be

3A dead transition indicates a modelling error that must be corrected. A false optional
transition indicates a model redundancy that may be intentional, but resolving it allows for
more efficient verification options. A hidden deadlock should be made explicit to improve

3



discussed in more detail in the next section, is as follows. If i) the model is
live4, which is the case if it has no hidden deadlocks (so, unambiguous FTSs
are live), and ii) the property ϕ to be verified is specified in v-ACTLive□5,
then ϕ can be verified directly on the underlying MTS (ignoring the feature
expressions in case of an FTS model) with a linear complexity. Moreover, if
iii) ϕ holds, then this validity is preserved in all variants, i.e. ϕ holds for all
variants. However, if any of these three conditions does not hold, then ϕ has
to be verified externally with classical family-based model-checking tools (in
case of an FTS model) or with VMC through product-based model checking
(in case of an MTSυ model), with an exponential complexity [1, 7].

Conclusion

FTS4VMC expands the possible use cases of the VMC model checker for
behavioural variability models to include also FTSs, offering moreover a
significant gain in efficiency in specific cases, as demonstrated in [20].

initial
FTS

remove
ambiguities

with
FTS4VMC

is the
FTS
live?

transform
FTS into
MTS with
FTS4VMC

is ϕ a
v-ACTLive□

formula?

is the
MTSυ
live?

initial
MTSυ

verify
product-based

with VMC

verify with
external tool

(e.g. ProVeLines)

verify
family-based
with VMC

ϕ |=True ?
ϕ holds for
all variants

no

yes

yes

no

no (MTSυ)

no (FTS)

yes

no (MTSυ)

no (FTS)

yes

FTS4VMC

VMC

FM’12
SPLC’14

SPLC’19

SPLC’21
EMSE’22

Figure 1: Engineering and verification methodology from [24]

model understanding and to enable an efficient kind of family-based verification (if the
deadlocks in the variants that are the cause should not be remedied in the first place).

4An FTS (or MTSυ) is said to be live if all states are live, where a live state is such
that it does not occur as a deadlock state (from where no action is possible) in any variant.

5v-ACTL [14, 26] is a variability-aware action-based and state-based branching-time
temporal logic derived from ACTL (an action-based version of the well-known logic CTL)
and v-ACTLive□ is a rich fragment of v-ACTL interpreted on live MTSs.

4



Software

FST4VMC was developed using JavaScript coupled with a small back-
end based on the Flask micro web framework. Flask was preferred over
similar alternatives because it is simple to deploy locally as a desktop ap-
plication and it provided a direct integration with the previously developed
code (i.e., analyser.py [23]). Nonetheless, the online repository6 makes the
core classes of FTS4VMC (viz., Disambiguator, to automatically remove
ambiguities detected by the analyser, and Translator, to transform FTSs
into MTSs) available as two separate programs (viz., disambiguate.py and
translate.py) that allow to use FTS4VMC from a command-line interface.
This is particularly useful for large FTSs that cannot easily be rendered in a
visually attractive format.

Tool Functionality

FTS4VMC fully automates the following steps of the engineering and
verification methodology envisioned in Fig. 1:

Input Specify or upload an FTS expressed as a directed graph in Graphviz’s
dot file format7, including a definition of the feature model using the
attribute FM8. Nodes represent states and edges represent transitions.
Every edge requires an action and feature expression defined inside the
label attribute and exactly one node must have the attribute initial
set to True. We refer to [20] for definitions of an FTS, a feature model,
and a feature expression as used in FTS4VMC, while we refer to the
folder tests/dot 9 in the online repository for a dozen exemplary FTS
models from the literature that can be uploaded.

Ambiguity detection Check if the FTS is ambiguous10, by calling method
analyser.z3 analyse full of analyser.py, and output an updated
version of the FTS by calling Disambiguator.highlight ambiguities

to change the dot file of the FTS to highlight the detected ambiguities:
dead transitions are highlighted in blue, false optional transitions in

6https://github.com/fts4vmc/FTS4VMC
7This is a well-known graphical notation supported by the Graphviz open-source graph

visualisation software (cf. https://www.graphviz.org).
8This is a propositional logic formula that defines which feature configurations represent

valid variants, where each feature is True if it is selected and False if unselected.
9https://github.com/fts4vmc/FTS4VMC/tree/master/tests/dot

10An FTS is said to be ambiguous if at least one of its states is a hidden deadlock or at
least one of its transitions is dead or false optional.

5

https://github.com/fts4vmc/FTS4VMC
https://www.graphviz.org
https://github.com/fts4vmc/FTS4VMC/tree/master/tests/dot


green, and hidden deadlock states in red (included in the graph render-
ing with a legend reporting the three types of ambiguities, cf. Fig. 2).

Ambiguity removal Remove all or some selected types of ambiguities from
an FTS, by calling the solve hidden deadlocks, remove transitions

and set true list (set feature expressions of false optional transitions
to True, without removing them) methods of disambiguator.py. We
refer to [20, Section 4] for definitions of the three types of ambiguities
that FTS4VMC can detect and of how to remove them from an FTS.

Liveness analysis Check if the FTS is live, i.e., if it has hidden deadlock
states (ignoring the detection of dead and false optional transitions),
by calling method analyser.z3 analyse hdead of analyser.py. This
is a specialised implementation of the static analysis algorithm that
represents a hidden deadlocks discovery algorithm (i.e., analysing only
liveness) [20, Section 5.3], which requires only a fraction of the runtime
of the full ambiguities discovery algorithm (4.2% on average for the
three largest FTS benchmarks [20, Section 6.2], i.e. those that were not
tractable with the algorithm from [18]).

Transformation Transform a (live) FTS into an MTS, by calling first the
Translator.load modelmethod and then the Translator.translate
method of translator.py. Given the FTS representation in dot for-
mat, the translation process creates an assignment for every state with
at least one outgoing transition. Each assignment contains a list of
statements for every outgoing transition defined as follows: the action
label of the transition, the transition’s optionality inside parentheses,
and the destination state of the transition preceded by a dot (.). A final
step adds the statements SYS and Constraints { LIVE } to specify
which state is the initial state and to declare that the MTS is live, re-
spectively, as required by VMC’s syntax of MTSυs. Method get mts of
graph.py allows to display the FTS’s corresponding MTS at any time.
This transformation makes use of the fact that we know from [20] that
any FTS F can be transformed into an MTS F

MTS
in a straightforward

manner such that whenever F is live, then also F
MTS

is live.

Property verification Specify a v-ACTL formula in FTS4VMC and verify
it with VMC, by calling vmc controller.py, after which the output
of VMC is displayed. If the formula is a v-ACTLive□ formula and it
holds, then FTS4VMC reports that it holds for all variants of the FTS.
Instead, if the formula is not a v-ACTLive□ formula or it does not hold,
then FTS4VMC reports that the result of the formula is not necessarily

6



preserved by the variants (i.e., the user needs to resort to product-
based model checking with VMC). If the formula is false, FTS4VMC
also offers to display the counterexample provided by VMC by calling
VmcController.run vmc and its getter methods. This kind of family-
based verification of properties of (live) FTSs relies on the fact that
a result for MTSυs, namely for a property expressed in v-ACTLive□,
validity for the family model guarantees validity of the property for all
product models (cf. [14, Theorem 4]), carries over to live FTSs [20].

The novelties introduced in [24] are clearly indicated in Fig. 1: the blue and
the green steps (arrows) if applied to FTSs are made possible by FTS4VMC.

Tool Views

During execution of the above steps of the tool’s functionality, the user
can always stop the processing and switch between different views (cf. Fig. 2):

Console Displays progress and the results of the performed steps.

Source Displays the dot source file of the current FTS or MTS.

Graph Displays the rendered graph in svg format, highlighting the feature
model and ambiguities, by using the pydot library11.

Summary Displays the console output after successful analysis in a visually
attractive format.

Counterexample graph Displays the counterexample obtained upon in-
teraction with VMC rendered as a graph.

Moreover, at any time, the user can download the displayed result (e.g., the
FTS in dot or svg format and with or without highlighted ambiguities, the
transformed MTS, etc.).

Reproducibility

The specifications of all the FTS models needed to reproduce the bench-
mark experiments presented in [20, §6 and §7] are freely available online [23].

11By default only models with at most 300 transitions are rendered. This limit is defined
in config.py and can be changed if desired. Moreover, by default graphs are rendered
with a top to bottom (TB) layout for better readability on a Web browser, but also this
can also be configured by changing the value of config.RENDER GRAPH DIRECTION.

7



Figure 2: Screenshot of FTS4VMC’s GUI

Documentation

Documentation of the software is available on GitHub12, explaining how
to install and run FTS4VMC or to use its core classes from a command-
line interface. The GitHub page also provides information on the internal
implementation (i.e., the structure of the source code), which is important
to allow other developers to understand the source code and possibly modify
it to their needs, as well as a link to an online user guide13.

12https://github.com/fts4vmc/FTS4VMC#readme
13https://github.com/fts4vmc/FTS4VMC/blob/master/MANUAL.md

8

https://github.com/fts4vmc/FTS4VMC#readme
https://github.com/fts4vmc/FTS4VMC/blob/master/MANUAL.md


Acknowledgements

Maurice ter Beek and Luca Paolini acknowledge funding from the Italian
MIUR-PRIN 2020TL3X8X project T-LADIES (Typeful Language Adapta-
tion for Dynamic, Interacting and Evolving Systems).

References

[1] A. Classen, M. Cordy, P. Schobbens, P. Heymans, A. Legay, J. Raskin,
Featured Transition Systems: Foundations for Verifying Variability-
Intensive Systems and Their Application to LTL Model Checking, IEEE
Trans. Softw. Eng. 39 (8) (2013) 1069–1089. doi:10.1109/TSE.2012.

86.

[2] M. Cordy, X. Devroey, A. Legay, G. Perrouin, A. Classen, P. Heymans,
P. Schobbens, J. Raskin, A Decade of Featured Transition Systems, in:
M. H. ter Beek, A. Fantechi, L. Semini (Eds.), From Software Engi-
neering to Formal Methods and Tools, and Back, Vol. 11865 of LNCS,
Springer, 2019, pp. 285–312. doi:10.1007/978-3-030-30985-5_18.

[3] A. Classen, P. Heymans, P. Schobbens, A. Legay, J. Raskin, Model
Checking Lots of Systems: Efficient Verification of Temporal Properties
in Software Product Lines, in: Proceedings of the 32nd International
Conference on Software Engineering (ICSE’10), ACM, 2010, pp. 335–
344. doi:10.1145/1806799.1806850.

[4] T. Thüm, S. Apel, C. Kästner, I. Schaefer, G. Saake, A Classification
and Survey of Analysis Strategies for Software Product Lines, ACM
Comput. Surv. 47 (1) (2014) 6:1–6:45. doi:10.1145/2580950.

[5] A. Classen, M. Cordy, P. Heymans, A. Legay, P. Schobbens, Model
checking software product lines with SNIP, Int. J. Softw. Tools Technol.
Transf. 14 (5) (2012) 589–612. doi:10.1007/s10009-012-0234-1.

[6] M. Cordy, A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, Pro-
VeLines: A Product Line of Verifiers for Software Product Lines, in:
Proceedings of the 17th International Software Product Line Conference
(SPLC’13), Vol. 2, ACM, 2013, pp. 141–146. doi:10.1145/2499777.

2499781.

[7] A. Classen, M. Cordy, P. Heymans, A. Legay, P.-Y. Schobbens, Formal
semantics, modular specification, and symbolic verification of product-
line behaviour, Sci. Comput. Program. 80 (B) (2014) 416–439. doi:

10.1016/j.scico.2013.09.019.

9

http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1109/TSE.2012.86
http://dx.doi.org/10.1007/978-3-030-30985-5_18
http://dx.doi.org/10.1145/1806799.1806850
http://dx.doi.org/10.1145/2580950
http://dx.doi.org/10.1007/s10009-012-0234-1
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1145/2499777.2499781
http://dx.doi.org/10.1016/j.scico.2013.09.019
http://dx.doi.org/10.1016/j.scico.2013.09.019


[8] A. S. Dimovski, A. S. Al-Sibahi, C. Brabrand, A. Wasowski, Effi-
cient family-based model checking via variability abstractions, Int. J.
Softw. Tools Technol. Transf. 5 (19) (2017) 585–603. doi:10.1007/

s10009-016-0425-2.

[9] M. H. ter Beek, E. P. de Vink, T. A. C. Willemse, Family-Based Model
Checking with mCRL2, in: M. Huisman, J. Rubin (Eds.), Proceedings
of the 20th International Conference on Fundamental Approaches to
Software Engineering (FASE’17), Vol. 10202 of LNCS, Springer, 2017,
pp. 387–405. doi:10.1007/978-3-662-54494-5_23.

[10] A. S. Dimovski, CTL∗ family-based model checking using variability
abstractions and modal transition systems, Int. J. Softw. Tools Technol.
Transf. 22 (1) (2020) 35–55. doi:10.1007/s10009-019-00528-0.

[11] M. H. ter Beek, S. van Loo, E. P. de Vink, T. A. Willemse, Family-
Based SPL Model Checking Using Parity Games with Variability,
in: H. Wehrheim, J. Cabot (Eds.), Proceedings of the 23rd Inter-
national Conference on Fundamental Approaches to Software Engi-
neering (FASE’20), Vol. 12076 of LNCS, Springer, 2020, pp. 245–265.
doi:10.1007/978-3-030-45234-6_12.

[12] M. H. ter Beek, F. Mazzanti, A. Sulova, VMC: A Tool for Prod-
uct Variability Analysis, in: D. Giannakopoulou, D. Méry (Eds.),
Proceedings of the 18th International Symposium on Formal Meth-
ods (FM’12), Vol. 7436 of LNCS, Springer, 2012, pp. 450–454. doi:

10.1007/978-3-642-32759-9_36.

[13] M. H. ter Beek, F. Mazzanti, VMC: Recent Advances and Challenges
Ahead, in: Proceedings of the 18th International Software Product Line
Conference (SPLC’14), Vol. 2, ACM, 2014, pp. 70–77. doi:10.1145/

2647908.2655969.

[14] M. H. ter Beek, A. Fantechi, S. Gnesi, F. Mazzanti, Modelling and
analysing variability in product families: Model checking of modal tran-
sition systems with variability constraints, J. Log. Algebr. Meth. Pro-
gram. 85 (2) (2016) 287–315. doi:10.1016/j.jlamp.2015.11.006.

[15] J. Křet́ınský, 30 Years of Modal Transition Systems: Survey of Exten-
sions and Analysis, in: L. Aceto, G. Bacci, G. Bacci, A. Ingólfsdóttir,
A. Legay, R. Mardare (Eds.), Models, Algorithms, Logics and Tools,
Vol. 10460 of LNCS, Springer, 2017, pp. 36–74. doi:10.1007/

978-3-319-63121-9_3.

10

http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/s10009-016-0425-2
http://dx.doi.org/10.1007/978-3-662-54494-5_23
http://dx.doi.org/10.1007/s10009-019-00528-0
http://dx.doi.org/10.1007/978-3-030-45234-6_12
http://dx.doi.org/10.1007/978-3-642-32759-9_36
http://dx.doi.org/10.1007/978-3-642-32759-9_36
http://dx.doi.org/10.1145/2647908.2655969
http://dx.doi.org/10.1145/2647908.2655969
http://dx.doi.org/10.1016/j.jlamp.2015.11.006
http://dx.doi.org/10.1007/978-3-319-63121-9_3
http://dx.doi.org/10.1007/978-3-319-63121-9_3


[16] K. G. Larsen, B. Thomsen, A Modal Process Logic, in: Proceedings
of the 3rd Symposium on Logic in Computer Science (LICS’88), IEEE,
1988, pp. 203–210. doi:10.1109/LICS.1988.5119.

[17] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, L. Paolini, On the
expressiveness of modal transition systems with variability constraints,
Sci. Comput. Program. 169 (2019) 1–17. doi:10.1016/j.scico.2018.
09.006.

[18] M. H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, L. Paolini,
Static Analysis of Featured Transition Systems, in: Proceedings of
the 23rd International Systems and Software Product Line Conference
(SPLC’19), ACM, 2019, pp. 39–51. doi:10.1145/3336294.3336295.

[19] D. Benavides, S. Segura, A. Ruiz-Cortés, Automated Analysis of Feature
Models 20 Years Later: a Literature Review, Inf. Syst. 35 (6) (2010)
615–636. doi:10.1016/j.is.2010.01.001.

[20] M. H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, L. Paolini,
Efficient static analysis and verification of featured transition sys-
tems, Empir. Softw. Eng. 22 (1) (2022) 10:1–10:43. doi:10.1007/

s10664-020-09930-8.

[21] A. Classen, Modelling and model checking variability-intensive systems,
Ph.D. thesis, University of Namur (2011).

[22] X. Devroey, G. Perrouin, M. Cordy, P. Schobbens, A. Legay, P. Hey-
mans, Towards Statistical Prioritization for Software Product Lines
Testing, in: Proceedings of the 8th International Workshop on Variabil-
ity Modelling of Software-intensive Systems (VaMoS’14), ACM, 2014,
pp. 10:1–10:7. doi:10.1145/2556624.2556635.

[23] M. H. ter Beek, F. Damiani, M. Lienhardt, F. Mazzanti, L. Paolini,
Supplementary material for: “Static Analysis of Featured Transition
Systems” (December 2019). doi:10.5281/zenodo.2616646.

[24] M. H. ter Beek, F. Mazzanti, F. Damiani, L. Paolini, G. Scarso,
M. Valfrè, M. Lienhardt, Static Analysis and Family-based Model
Checking of Featured Transition Systems with VMC, in: Proceedings
of the 25th International Systems and Software Product Line Confer-
ence (SPLC’21), Vol. 2, ACM, 2021, pp. 24–27. doi:10.1145/3461002.
3473071.

11

http://dx.doi.org/10.1109/LICS.1988.5119
http://dx.doi.org/10.1016/j.scico.2018.09.006
http://dx.doi.org/10.1016/j.scico.2018.09.006
http://dx.doi.org/10.1145/3336294.3336295
http://dx.doi.org/10.1016/j.is.2010.01.001
http://dx.doi.org/10.1007/s10664-020-09930-8
http://dx.doi.org/10.1007/s10664-020-09930-8
http://dx.doi.org/10.1145/2556624.2556635
http://dx.doi.org/10.5281/zenodo.2616646
http://dx.doi.org/10.1145/3461002.3473071
http://dx.doi.org/10.1145/3461002.3473071


[25] M. H. ter Beek, F. Mazzanti, F. Damiani, L. Paolini, G. Scarso,
M. Lienhardt, Static Analysis and Family-based Model Checking with
VMC, in: Proceedings of the 25th International Systems and Soft-
ware Product Line Conference (SPLC’21), Vol. 1, ACM, 2021, p. 214.
doi:10.1145/3461001.3472732.

[26] M. H. ter Beek, F. Damiani, S. Gnesi, F. Mazzanti, L. Paolini, From
Featured Transition Systems to Modal Transition Systems with Vari-
ability Constraints, in: R. Calinescu, B. Rumpe (Eds.), Proceedings of
the 13th International Conference on Software Engineering and Formal
Methods (SEFM’15), Vol. 9276 of LNCS, Springer, 2015, pp. 344–359.
doi:10.1007/978-3-319-22969-0_24.

Required Metadata

Current code version

Nr. Code metadata description Please fill in this column
C1 Current code version v1.0.0
C2 Permanent link to code/repos-

itory used for this code version
https://github.com/fts4vmc/

FTS4VMC

C3 Permanent link to Repro-
ducible Capsule

https://doi.org/10.24433/CO.

8774017.v1

C4 Legal Code License GPL-3.0
C5 Code versioning system used Git
C6 Software code languages, tools,

and services used
Graphviz, JavaScript, Python 3, Z3

C7 Compilation requirements, op-
erating environments & depen-
dencies

Flask, lrparsing, pip, puremagic,
pydot, z3-solver

C8 If available Link to developer
documentation/manual

https://github.com/fts4vmc/

FTS4VMC/blob/master/README.md

C9 Support email for questions fts4vmc@di.unito.it

Table 1: Code metadata

12

http://dx.doi.org/10.1145/3461001.3472732
http://dx.doi.org/10.1007/978-3-319-22969-0_24
https://github.com/fts4vmc/FTS4VMC
https://github.com/fts4vmc/FTS4VMC
https://doi.org/10.24433/CO.8774017.v1
https://doi.org/10.24433/CO.8774017.v1
https://github.com/fts4vmc/FTS4VMC/blob/master/README.md
https://github.com/fts4vmc/FTS4VMC/blob/master/README.md


Current executable software version

Nr. (Executable) software meta-
data description

Please fill in this column

S1 Current software version v1.0.0
S2 Permanent link to executables of

this version
https://github.com/fts4vmc/

FTS4VMC

S3 Permanent link to Reproducible
Capsule

https://doi.org/10.24433/CO.

8774017.v1

S4 Legal Software License GPL-3.0
S5 Computing platforms/Operating

Systems
Debian GNU/Linux, macOS, Win-
dows

S6 Installation requirements & depen-
dencies

Python 3, Flask, lrparsing, pip,
puremagic, pydot, Graphviz dot, z3-
solver

S7 If available, link to user manual - if
formally published include a refer-
ence to the publication in the refer-
ence list

https://github.com/fts4vmc/

FTS4VMC/blob/master/README.md

https://github.com/fts4vmc/

FTS4VMC/blob/master/MANUAL.md

S8 Support email for questions fts4vmc@di.unito.it

Table 2: Software metadata

13

https://github.com/fts4vmc/FTS4VMC
https://github.com/fts4vmc/FTS4VMC
https://doi.org/10.24433/CO.8774017.v1
https://doi.org/10.24433/CO.8774017.v1
https://github.com/fts4vmc/FTS4VMC/blob/master/README.md
https://github.com/fts4vmc/FTS4VMC/blob/master/README.md
https://github.com/fts4vmc/FTS4VMC/blob/master/MANUAL.md
https://github.com/fts4vmc/FTS4VMC/blob/master/MANUAL.md

