Experimental observation of the role of countercations on the electrical conductance of Preyssler-type polyoxometalate nanodevices - Archive ouverte HAL
Article Dans Une Revue Nanoscale Année : 2023

Experimental observation of the role of countercations on the electrical conductance of Preyssler-type polyoxometalate nanodevices

Résumé

Polyoxometalates are nanoscale molecular oxides with promising properties that are currently explored for molecule-based memory devices. In this work, we synthesize a series of Preyssler polyoxometalates (POMs), (Na-P5W30O110)14-,stabilized with four different counterions, H+, K+, NH4+ and tetrabutylammonium (TBA+), and we study the electron transport properties at the nanoscale (conductive atomic force microscopy, C-AFM) of molecular junctions formed by self-assembled monolayers (SAMs) of POMs electrostatically deposited on ultraflat gold surface prefunctionalized with a positively charged SAM of amine-terminated alkylthiol chains. We report that the electron transport properties of P5W30-based molecular junctions depend on the nature of the counterions, the low-bias current (in the voltage range -0.6 V to 0.6 V) gradually increasing by a factor ca. 100 by changing the counterion in the order K+, NH4+, H+ and TBA+. From a statistical study (hundreds of current-voltage traces) using a simple analytical model for charge transport in nanoscale devices, we show that the energy position of the lowest unoccupied molecular orbital (LUMO) of the P5W30 with respect of the Fermi energy of the electrodes increases from ca. 0.4 eV to 0.7 eV and that that electrode coupling energy also increases from ca. 0.05 to 1 meV in the same order from K+, NH4+, H+ to TBA+. We discuss several hypotheses on the possible origin of these features, such as a counterion-dependent dipole at the POM/electrode interface and counterion-modulated molecule/electrode hybridization, with, in both cases, the largest effect in the case of TBA+ counterions.
Fichier principal
Vignette du fichier
P5W30 counterions - arXiv.pdf (3.78 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Licence

Dates et versions

hal-04092006 , version 1 (09-05-2023)

Licence

Identifiants

Citer

Cécile Huez, Séverine Renaudineau, Florence Volatron, Anna Proust, Dominique Vuillaume. Experimental observation of the role of countercations on the electrical conductance of Preyssler-type polyoxometalate nanodevices. Nanoscale, 2023, 15, pp.10634-10641. ⟨10.1039/D3NR02035E⟩. ⟨hal-04092006⟩
131 Consultations
38 Téléchargements

Altmetric

Partager

More