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EQUALITY IN THE MIYAOKA–YAU INEQUALITY AND

UNIFORMIZATION OF NON-POSITIVELY CURVED KLT PAIRS

BENOÎT CLAUDON, PATRICK GRAF, AND HENRI GUENANCIA

In memory of Jean-Pierre Demailly

Abstract. Let (X,∆) be a compact Kähler klt pair, where KX + ∆ is ample or
numerically trivial, and ∆ has standard coefficients. We show that if equality holds
in the orbifold Miyaoka–Yau inequality for (X,∆), then its orbifold universal cover is
either the unit ball (ample case) or the affine space (numerically trivial case).
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1. Introduction

Let X be an n-dimensional compact Kähler manifold and let us assume that either

(I) KX is ample (and X is thus projective), or

(II) KX is numerically trivial (equivalently, c1(X) = 0 in H2(X,R)).

As a consequence of the existence of a Kähler–Einstein metric ωKE onX (proved by Aubin
[Aub78] and Yau [Yau78]), the Chern classes of X satisfy the Miyaoka–Yau inequality

(MY)
(
2(n+ 1) c2(X)− n c21(X)

)
· αn−2 ≥ 0.

where in case (I), we set α = [KX ], while in case (II), α can be an arbitrary Kähler class.

Furthermore, in case of equality, the universal cover π : X̃ → X is (biholomorphic to)

(I) the n-dimensional unit ball Bn =
{
(z1, . . . , zn) ∈ Cn

∣∣ |z1|
2 + · · ·+ |zn|

2 < 1
}
,

(II) the n-dimensional affine space Cn.
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We can reformulate the above conclusion by saying that

(I) X = Bn
/
Γ with Γ ⊂ PU(1, n) = Aut(Bn),

(II) X = Cn
/
Γ with Γ ⊂ Cn ⋊U(n) = Aut(Cn, π∗ωKE),

where in both cases, the action of Γ on X̃ is fixed point-free.
It seems natural to investigate the general case of quotients by cocompact lattices

Γ ⊂ Aut(X̃) (with X̃ = Bn or Cn endowed with the Bergman metric or the flat metric,
respectively), the action being of course assumed to be properly discontinuous. The
corresponding quotients are then naturally endowed with an orbifold structure that can
be encoded in the datum of a Q-divisor with standard coefficients (see Setup 1.1 below).
To sum up, it is natural to consider pairs (X,∆) when dealing with these quotients.

The question of uniformizing spaces (as opposed to pairs) in the cases (I) and (II)
has been considered in the framework of klt singularities. To quote a few relevant pa-
pers: [GKP16, LT18, GKPT19, GKPT20, GK20, CGG22]. This article grew out of an
attempt to understand the general situation with an orbifold structure in codimension
one.

Unfortunately, the parallels between cases (I) and (II) cannot be pursued throughout
this introductory section since the difficulties (when dealing with the inequality (MY) in
the singular setting) are not of the same nature. The following two facts illustrate this
point:

◦ In case (I), the variety X is necessarily projective, but the codimension one part of
the orbifold structure cannot be easily eliminated. Therefore we have to use orbifold
techniques in the proof.

◦ In case (II), we also need to consider (non-algebraic) compact Kähler spaces, but we
can get rid of the codimension one part of the orbifold structure via a cyclic covering
(see Proposition 2.5). This enables us to assume that ∆ = 0 for most of the argument.

Due to this break in symmetry, we split the discussion according to the sign of the
canonical bundle.

The canonically polarized case. Let us recall the singular version of the inequal-
ity (MY) as proven by the third-named author together with B. Taji [GT22]. When
dealing with case (I), we work in the following setting:

Setup 1.1. Let (X,∆) be an n-dimensional klt pair, where X is a projective variety and
∆ has standard coefficients, i.e. ∆ =

∑
i∈I

(
1 − 1

mi

)
∆i with integers mi ≥ 2 and the ∆i

irreducible and pairwise distinct.

Theorem 1.2 (⊂ [GT22, Thm. B]). Let (X,∆) be as in Setup 1.1, and assume that
KX + ∆ is big and nef. Assume additionally that every irreducible component ∆i of ∆
is Q-Cartier. Then the following inequality holds:

(1.2)
(
2(n+ 1) c̃2(X,∆)− n c̃21(X,∆)

)
· [KX +∆]n−2 ≥ 0.

Here, c̃2(X,∆) and c̃21(X,∆) denote the appropriate orbifold Chern classes of the pair
(X,∆), as defined e.g. in [GT22, Notation 3.7]. �

Remark. In the above theorem, the assumption that the ∆i be Q-Cartier is not necessary,
and establishing this is one of the (minor) contributions of this paper, cf. Theorem 6.1.
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While this may seem like an innocuous technical issue at first sight, eliminating the
Q-Cartier assumption will become crucial below when deducing Corollary 1.4 from The-
orem A, see Remark 6.3.

As in the smooth case, it is interesting to characterize geometrically those pairs that
achieve equality in (1.2). In the case where ∆ = 0, this has been achieved in [GKPT19,
Thm. 1.2] and [GKPT20, Thm. 1.5]: equality holds if and only if there is a finite quasi-
étale Galois cover Y → X such that the universal cover of Y is the unit ball. An
expectation concerning the general case was formulated in [GKPT19, Sec. 10.2]. Our
first main result confirms this expectation.

Theorem A (Uniformization of canonical models). Let (X,∆) be as in Setup 1.1. As-
sume that KX + ∆ is ample and that equality holds in (1.2). Then the orbifold univer-

sal cover π : X̃∆ → X of (X,∆) is the unit ball (cf. Definition 2.17). More precisely,

(X̃∆, ∆̃) ∼= (Bn, ∅).

In fact, a suitable converse of the above theorem also holds, and we obtain the following
corollary.

Corollary 1.3 (Characterization of ball quotients). Let (X,∆) be as in Setup 1.1. The
following are equivalent:

(1.3.1) KX +∆ is ample, and equality holds in (1.2).

(1.3.2) The orbifold universal cover of (X,∆) is the unit ball Bn.

(1.3.3) (X,∆) admits a finite orbi-étale Galois cover f : Y → X (cf. Definition 2.1),
where Y is a projective manifold whose universal cover is the unit ball.

In the spirit of [GKPT20, Thm. 1.5], we can also prove the following uniformization
statement for minimal pairs of log general type.

Corollary 1.4 (Uniformization of minimal models). Let (X,∆) be as in Setup 1.1.
Assume that KX +∆ is big and nef and that equality holds in (1.2). Then the canonical
model (X,∆)can =: (Xcan,∆can) of the pair (X,∆) is a ball quotient in the sense of
Theorem A.

The flat case. As mentioned earlier, Kähler quotients of Cn by cocompact groups of
isometries are in general not projective, so we have to consider the following framework.

Setup 1.5. Let (X,∆) be an n-dimensional klt pair, where X is a compact Kähler space
and ∆ has standard coefficients, i.e. ∆ =

∑
i∈I

(
1− 1

mi

)
∆i with integers mi ≥ 2 and the

∆i irreducible and pairwise distinct.

In this more general Kähler setting, the methods of [GT22] cannot be used to prove a
singular analogue of the Miyaoka–Yau inequality. Instead, we rely on the Decomposition
Theorem from [BGL22] to deduce the following singular version of the inequality (MY)
in case (II).

Theorem 1.6 (Singular Miyaoka–Yau inequality). Let (X,∆) be as in Setup 1.5 and
assume that c1(KX +∆) = 0 ∈ H2(X,R). Let α ∈ H2(X,R) be any Kähler class. We
then have:

(1.3) c̃2(X,∆) · αn−2 ≥ 0.
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As before, we are particularly interested in what happens if equality is achieved.

Theorem B (Uniformization in the flat case). Let (X,∆) be as in Setup 1.5. Assume
that c1(KX +∆) = 0 ∈ H2(X,R) and that equality holds in (1.3) for some Kähler

class α. Then the orbifold universal cover π : X̃∆ → X of (X,∆) is the affine space

(cf. Definition 2.17). More precisely, (X̃∆, ∆̃) ∼= (Cn, ∅).

As above, we can formulate a converse and get the following corollary.

Corollary 1.7 (Characterization of torus quotients). Let (X,∆) be as in Setup 1.5. The
following are equivalent:

(1.7.1) c1(KX +∆) = 0 ∈ H2(X,R), and equality holds in (1.3) for some Kähler class α.

(1.7.2) The orbifold universal cover of (X,∆) is Cn.

(1.7.3) (X,∆) admits a finite orbi-étale Galois cover f : T → X (cf. Definition 2.1),
where T is a complex torus.

The previous statements are thus generalizations of [LT18, Thm. 1.2] (itself elaborating
on [GKP16, Thm. 1.17]). The generalization is threefold:

◦ Here X is a compact Kähler space, not necessarily projective.

◦ The class α is transcendental, a priori not an ample class.

◦ Ramification is allowed in codimension one; i.e. we work with klt pairs rather than klt
spaces.

Acknowledgements. We are honored to dedicate this paper to the memory of Jean-
Pierre Demailly, who has been a constant source of inspiration and admiration to us.

B.C. would like to thank Institut Universitaire de France for providing excellent work-
ing conditions. H.G. acknowledges the support of the French Agence Nationale de la
Recherche (ANR) under reference ANR-21-CE40-0010.

2. Generalities on orbifolds

In this section, we consider Kawamata log terminal (klt) pairs (X,∆) consisting of
a normal algebraic variety or complex space X of dimension n and a Q-divisor ∆ =∑

i∈I

(
1− 1

mi

)
∆i on X, with mi ≥ 2.

2.A. Orbi-structures and orbi-sheaves. Most of the definitions and basic properties
given below can be found in e.g. [GT22, §2] in the slightly more general setting of dlt
pairs with standard coefficients, at least if X is algebraic. Working exclusively with klt
pairs will simplify the exposition.

Definition 2.1 (Adapted morphisms). Let f : Y → X be a finite surjective Galois
morphism from a normal variety or complex space Y . One says that f is:

◦ adapted to (X,∆) if for all i ∈ I, there exists ai ∈ Z≥1 and a reduced divisor ∆′
i on Y

such that f∗∆i = aimi∆
′
i,

◦ strictly adapted to (X,∆) if it is adapted and if ai = 1 for all i ∈ I,

◦ orbi-étale if it is strictly adapted and the divisorial component of the branch locus of
f is contained in supp(∆) — equivalently, if f is étale over Xreg \ supp(∆).
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Remark. If X is compact, then a map f : Y → X as above is orbi-étale if and only if
KY = f∗(KX +∆).

Definition 2.2 (Orbi-structures). An orbi-structure for the pair (X,∆) consists of a
compatible collection of triples C =

{
(Uα, fα,Xα)

}
α∈J

, where (Uα)α∈J is a covering of
X by étale-open subsets, and for each α ∈ J , fα : Xα → Uα is an adapted morphism
from a normal complex space Xα with respect to the pair structure on Uα induced by
(X,∆). The compatibility condition means that for all α, β ∈ J , the projection map
gαβ : Xαβ → Xα is quasi-étale, where Xαβ is the normalization of Xα ×X Xβ .

An orbi-structure C =
{
(Uα, fα,Xα)

}
α∈J

is called strict (resp. orbi-étale) if for each

α ∈ J , the morphism fα is strictly adapted (resp. orbi-étale). It is called smooth if for
each α ∈ J , the variety Xα is smooth. In this case, the maps gαβ are étale by purity of
branch locus.

Definition 2.3 (Quotient singularities). A pair (X,∆) is said to have quotient singular-
ities if locally analytically on X, there exists an orbi-étale morphism f : Y → X, where
Y is smooth. The maximal open subset of X where this condition is satisfied will also be
referred to as the orbifold locus of (X,∆) and will be denoted by X◦ ⊂ X or Xorb ⊂ X.

Remark. With the above terminology, a pair (X,∆) admits a smooth orbi-étale orbi-
structure if and only if it has quotient singularities. This is because the compatibility
condition is automatically satisfied.

The following technical result will be useful in the sequel: a pair with quotient singu-
larities whose underlying space is compact Kähler is a Kähler orbifold. The log smooth
case had been already observed in [Cla08, Prop. 2.1]. Slightly more generally, we have
the following.

Lemma 2.4 (Existence of orbifold Kähler metrics). Let (Z,∆) be a pair with quotient
singularities and such that Z is a Kähler space. Then for any relatively compact open
subset X ⋐ Z, there exists an orbifold Kähler metric ω adapted to (X,∆|X) in the sense
that ω is a Kähler metric on Xreg \ supp∆ which pulls back to a smooth Kähler metric
on the smooth local covers.

Proof. One can find an open neighborhood X ′ of X ⊂ Z admitting a finite covering
X ′ =

⋃
α∈I X

′
α such that there exist smooth orbi-étale covers pα : Y

′
α → X ′

α. We set

Xα := X ′
α ∩ X and Yα := p−1

α (Xα). We pick a Kähler metric ωZ on Z, as well as
potentials φα on X ′

α such that ddcp∗αφα is a Kähler metric on Y ′
α; the functions φα are

solely continuous on Xα but p∗αφα is smooth on Y ′
α. We can assume that |φα| ≤ 1 on

Xα. Finally, let (χα)α∈I be some partition of unity subordinate to the covering (Xα)α∈I
and set φ :=

∑
χαφα. We set N := |I| and pick a constant C > 0 such that

(2.1) ‖ddcχα‖
2
ωZ

+ ‖dχα‖
2
ωZ

≤ C,

holds for any α ∈ I and we claim that the current

ω :=MωZ + ddcφ

is an orbifold Kähler metric on X for M ≫ 1. Clearly, ω is smooth as an orbifold
differential form, as one can see directly by using the compatibility of the covers. Let
x ∈ X and let J := {α ∈ I, x ∈ Xα} = {α1, . . . , αs}. We set XJ := ∩α∈JXα and choose
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a connected component YJ of the normalization of p−1
α1

(XJ) ×XJ
· · · ×XJ

p−1
αs

(XJ). The
space YJ is a smooth manifold endowed with an orbi-étale map pJ : YJ → XJ induced
by the pαi

, i = 1, . . . , s.
We have 1 =

∑
α∈I χα(x) =

∑
α∈J χα(x), hence there exists β ∈ J such that χβ(x) ≥

1
N . Since p∗J(dd

cφβ|XJ
) is a Kähler metric on YJ (which extends slightly beyond), we

infer that there exists δ > 0 such that

∀α ∈ J, ddcφβ ≥ δdφα ∧ dcφα on XJ .

Next, we have the following inequality for any ε > 0:

±(dφα ∧ dcχα + dχα ∧ dcφα) ≤ εdφα ∧ dcφα + ε−1dχα ∧ dcχα.

Combining the above inequality with (2.1), we get for any ε > 0:

ω =MωZ +
∑

α∈I

χαdd
cφα +

∑

α∈I

φαdd
cχα +

∑

α∈I

(dφα ∧ dcχα + dχα ∧ dcφα)

≥ (M −NC(1 + ε−1))ωZ + χβdd
cφβ − ε

∑

α∈I

dφα ∧ dcφα

which yields, at the point x:

ω ≥ (M −NC(1 + ε−1))ωZ +

(
1

N
−
Nε

δ

)
ddcφβ.

Therefore, if we choose ε := δ
2N2 and M = 2NC(1 + ε−1), then ω is an orbifold Kähler

metric near x. Since x is arbitrary and the constants N,C, δ are uniform, the lemma is
now proved. �

2.B. Covering constructions. In what follows, we present some variations on the well-
known cyclic covering theme. The first one, Proposition 2.5, is a consequence of [Sho92,
Ex. 2.4.1] when X is quasi-projective so that KX is well-defined as a (class of) Weil
divisor, but one needs to argue slightly differently in the complex analytic case. The
second one, Proposition 2.6, improves upon previous results such as [JK11, Prop. 2.9],
[GT22, Ex. 2.11] and [CKT21, Prop. 2.38]. The main observation is that given a pair
(X,∆), it is (for our purposes) unnecessary to assume that the components of ∆ are
Q-Cartier as long as KX +∆ is. As explained in Remark 6.3, this is crucial for proving
Corollary 1.4.

Proposition 2.5 (Existence of orbi-étale covers). Let (X,∆) be a (not necessarily klt)
pair with standard coefficients, where X is a normal complex space. Assume that there
is a reflexive rank 1 sheaf L and an integer N ≥ 1 such that N∆ is a Z-divisor and

OX(N∆) ∼= L
[N ].

Then there exists an orbi-étale morphism f : Y → X. In particular:
If (X,∆) is klt and there is an integer N ≥ 1 such that N∆ is a Z-divisor and

ω
[N ]
X (N∆) ∼= OX , then we can find an orbi-étale morphism f : Y → X such that ωY ∼= OY

and Y has canonical singularities.
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Proof. Let σ ∈ H0
(
X,L [N ]

)
be such that div(σ) = N∆, and let us consider the cyclic

covering g : Z → X induced by σ, cf. e.g. [KM98, Def. 2.52]. In the analytic setting, we
can construct f in the following way. On Xreg \ supp(∆), L |Xreg\supp(∆) is torsion and it

gives rise to an étale cover g◦ : Z◦ → Xreg \ supp(∆) (the N th-root of σ|Xreg\supp(∆)) that
is moreover a Galois cover with cyclic Galois group. According to [DG94, Thm. 3.4], the
map g◦ can be extended to a finite cover f : Z → X with the same Galois group.

We claim that g ramifies exactly at order mi along ∆i. It is enough to check the
claim at a general point of ∆i. Therefore, there is no loss of generality assuming that
(X,∆) = (U, (1 − 1

m)D) where U ⊂ Cn (n = dim(X)) is a ball, D = (z1 = 0) ∩ U , and

that σ|U = z
N(1− 1

m
)

1 σ⊗N
L , U with σL , U a trivializing section of L over U .

Write N = km, and let V := {(t, z) ∈ C × Cn
∣∣ tN = z

k(m−1)
1 } ⊂ C × Cn and let

ν : V ν → V be its normalization. One can actually write down exactly what V ν is.
Indeed, let ζ be a primitive k-th root of unity, and set Vp := {(t, z)

∣∣ tm = ζpzm−1
1 } ⊂

C × Cn for p = 0, . . . , k − 1. We have a decomposition V = ∪pVp into irreducible
components, and the normalization νp : V

ν
p → Vp is the affine space V ν

p
∼= C×Cn−1 with

map νp(u,w) = (ξum−1, um, w) where ξ is an m-th root of ζp. Now, set V ν := ⊔pV
ν
p and

defined ν : V ν → V by ν|V ν
p
:= νp. We have a diagram

V ν V Z

U X

j

ν

prCn g

where j is obtained by the universal property of normalization. In particular, j is finite
and generically 1-to-1 between normal varieties, hence it is an open embedding. Moreover,
if (u,w) ∈ V ν

p , we have prCn ◦ ν(u,w) = (um, w), hence the latter map ramifies at order
m along D. It follows that g ramifies at order m along D.

Finally, one picks one irreducible component Y of Z and sets f := g|Y . It yields the
expected cover, which is Galois with group G < Z/nZ ∼= Gal(Z → X) defined as the
stabilizer of Y .

As for the last part of the proposition, we can apply the above construction to L =

ω
[−1]
X := ω ‹

X . This provides us with an orbi-étale morphism f : Y → X. In particular,
Y is klt and the computations made above show that f∗(KX+∆) is trivial over Xreg\∆sg.
So we get that ωY is trivial as well and finally that Y has only canonical singularities. �

Proposition 2.6 (Existence of strictly adapted covers). Let (X,∆) be a projective pair
with standard coefficients such that KX +∆ is Q-Cartier (but not necessarily klt). Then
there exists a very ample divisor L on X such that for general H ∈ |L|, there exists a
cyclic Galois cover f : Y → X with the following properties:

(2.6.1) The morphism f is orbi-étale for
(
X,∆+ (1− 1

N )H
)
, where N := deg(f).

(2.6.2) The morphism f is strictly adapted for (X,∆).

(2.6.3) If (X,∆) is klt, then so are the pairs
(
X,∆+ (1− 1

N )H
)

and (Y, ∅).
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Proof. Pick, once and for all, a representative K of KX , that is, an integral (but not
necessarily effective) Weil divisor K on X such that KX ∼ K. Choose a very ample
divisor A on X and a positive integer N such that

L := N ·
(
A− (K +∆)

)

is integral and very ample, and pick a general element H ∈ |L|. Consider the principal
divisor

D := H − L = H +N · (K +∆−A) ∼ 0.

Let f : Y → X be the degree N cyclic cover associated to D, as in [Sho92, §2.3]. (To
be more precise, Y is an arbitrary irreducible component of the normalization of that
cover.) We need to check properties (2.6.1)–(2.6.3).

By construction, the branch locus of f is contained in supp(D). Recall from [Sho92]
that writing D =

∑
i diDi, the ramification order of f along each component of f−1(Di)

is given by N/hcf(di, N). Since K, A and H are Z-divisors, where H is even reduced,
this implies (2.6.1). Property (2.6.2) is an immediate consequence.

For (2.6.3), it is enough to show the first claim thanks to (2.6.1) and [KM98, Prop. 5.20].

To check the claim, we take a log resolution π : X̃ → X of (X,∆) and write

K
X̃
+∆′ = π∗(KX +∆) +

∑
aiEi

as usual, where ∆′ is the strict transform of ∆. Since H is a general element of |L|, and
π∗|L| is basepoint-free, one can assume that π∗H = π−1

∗ H is smooth and intersects each
stratum of the exceptional divisor of π and of ∆′ smoothly. In particular, π is also a log
resolution for the pair

(
X,∆+ (1− 1

N )H
)
. Now, the identity

KX̃ +∆′ +

(
1−

1

N

)
π−1
∗ H = π∗

(
KX +∆+

(
1−

1

N

)
H

)
+

∑
aiEi

shows that
(
X,∆+ (1− 1

N )H
)

is klt. �

Remark. More generally, it can be observed that a pair (X,∆) (with X a normal analytic
space) admits strictly adapted covers if there exists a Cartier divisor D on X having no
component in common with ∆ and such that m(KX + ∆) ∼ D for some (sufficiently
divisibe) integer m ≥ 1. We can indeed apply Proposition 2.5 to the pair (X \D,∆|X\D)
and get an orbi-étale cover Y ◦ → X \ D. Its completion over X is then adapted with
respect to ∆ and the extra-ramification is supported over the components of D.

The following result seems to have been known to experts for a long time. A proof of
it was written down in [GKKP11] in the case where ∆ = 0, and the general case follows
almost immediately from Proposition 2.5 as we will explain.

Lemma 2.7 (Klt pairs have quotient singularities in codimension two). Let (X,∆) be a
klt pair with standard coefficients. Then there is a Zariski closed subset Z ⊂ Xsg∪supp∆
with codimX(Z) ≥ 3 such that for X◦ := X \ Z, the pair (X◦,∆|X◦) admits a smooth
orbi-étale orbi-structure C◦.

Proof. Since KX + ∆ is a Q-Cartier divisor, we can cover X by (affine or Stein) open
subsets Uβ ⊂ X, β ∈ I, such that (KX + ∆)|Uβ

∼Q 0. By Proposition 2.5, we can find

a finite cyclic cover gβ : U
′
β → Uβ that branches exactly over the ∆i|Uβ

with multiplicity
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mi. Moreover, U ′
β has klt singularities, since KU ′

β
= g∗β(KUβ

+ ∆|Uβ
). We can now

use [GKKP11, Prop. 9.3] or [GK20, Lemma 5.8] to find a smooth orbi-étale orbi-structure
{U ′

βγ , fβγ ,X
′
βγ}γ∈J on U ′

β \ Zβ, for some closed subset Zβ ⊂ U ′
β of codimension at least

three. Set Uβγ = gβ(U
′
βγ), so that

⋃
β Uβγ ⊂ Uβ is an open subset whose complement is

of codimension at least three. In summary, we get the following diagram:

(2.2)

X ′
βγ U ′

βγ Uβγ

U ′
β Uβ X

fβγ

hβγ

gβ

gβ

Now
{
Uβγ , hβγ ,X

′
βγ

}
(β,γ)∈I×J

is the sought-after smooth orbi-étale orbi-structure on

(X◦,∆|X◦), where the open subset X◦ :=
⋃

(β,γ)∈I×J Uβγ has complement of codimension

at least three. �

Remark 2.8. In particular, a klt surface pair with standard coefficients admits a smooth
orbi-étale orbi-structure, hence it has quotient singularities in the sense of Definition 2.3.
This is of course well-known and follows from the cyclic cover construction recalled above
and [KM98, Proposition 4.18].

Definition 2.9 (Orbi-sheaves). An orbi-sheaf with respect to an orbi-structure C ={
(Uα, fα,Xα)

}
α∈J

on (X,∆) is the datum of a collection (Eα)α∈J of coherent sheaves
on each Xα, together with isomorphisms g∗αβEα

∼= g∗βαEβ of OXαβ
-modules satisfying the

natural compatibility conditions on triple overlaps.

All the usual notions for sheaves (locally free, reflexive, subsheaves, morphisms etc.)
can be carried over to this setting in the obvious way, cf. [GT22, §2.7]. Ditto for Higgs
fields and Higgs sheaves, cf. [GT22, Definition 2.24].

Recall the following definition from [CKT21, Sec. 3]:

Definition 2.10 (Adapted differentials). Let γ : Y → X be a strictly adapted morphism
for (X,∆). Let X◦ ⊂ X and ι : Y ◦ →֒ Y be the maximal open subsets where γ is good
in the sense of [CKT21, Def. 3.5]. The sheaf of adapted reflexive differentials is defined
as

Ω
[1]
(X,∆,γ)

:= ι∗

[(
im

(
γ∗Ω1

X◦ → Ω1
Y ◦

)
⊗ OY ◦(γ∗∆)

)
∩ Ω1

Y ◦

]
.

Lemma 2.11. The following properties hold:

(2.11.1) The sheaf Ω
[1]
(X,∆,γ) is a coherent reflexive subsheaf of Ω

[1]
Y .

(2.11.2) If γ is orbi-étale for (X,∆), then Ω
[1]
(X,∆,γ) = Ω

[1]
Y .

(2.11.3) Let γ2 : Z → Y be quasi-étale, where Z is normal. Then δ := γ ◦ γ2 : Z → X is

strictly adapted for (X,∆), and Ω
[1]
(X,∆,δ) = γ

[∗]
2 Ω

[1]
(X,∆,γ). �
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Definition 2.12 (Orbifold cotangent sheaf, cf. [GT22, Def. 2.23]). Consider on (X,∆)
any strictly adapted orbi-structure C =

{
(Uα, fα,Xα)

}
α∈J

. Then the sheaves

(
Ω
[1]
(X,∆,fα)

)
α∈J

induce a reflexive orbi-sheaf called the orbifold cotangent sheaf, or sheaf of reflexive dif-

ferential forms, which we denote by Ω
[1]
C . If the orbi-structure C is smooth and orbi-étale,

then Ω
[1]
C is locally free. Changing the (strictly adapted) orbifold structure yields com-

patible sheaves in the sense of [GT22, Def. 3.2], hence we will often denote this sheaf by

Ω
[1]
(X,∆).

The same construction can be carried out for any integer p ≥ 0, yielding orbi-

sheaves Ω
[p]
(X,∆). For p = 0, we obtain the structure sheaf O(X,∆), which is nothing

but OXα in each chart fα.

Lemma 2.13. Let (X,∆) be a projective klt pair with standard coefficients, and let X◦

be endowed with a smooth orbi-étale orbi-structure C as in Lemma 2.7. Let H be an
ample line bundle on X and pick a complete intersection surface

S = D1 ∩ · · · ∩Dn−2

of n− 2 general hypersurfaces Di ∈ |mH| for m ≫ 1. Then S ⊂ X◦ and the restriction
of C to (S,∆|S) induces a smooth orbi-étale orbi-structure on (S,∆|S). In particular,
(S,∆|S) has quotient singularities.

Proof. We have S ⊂ X◦ for dimensional and genericity reasons. Next, if we express the
structure C as C =

{
(Xα, fα, Uα)

}
, set Sα := S ∩ Uα, Tα := f−1

α (Sα), gα := fα|Tα , and

define C|S :=
{
(Tα, gα, Sα)

}
. We claim that Tα is smooth, which would prove the lemma.

Indeed, since fα is quasi-finite (as the composition of an étale map with a finite map),
one can find an open immersion Xα →֒ Xα and a finite extension fα : Xα → X of fα as
follows:

Tα Xα Xα

Sα Uα X

gα fα fα

Since fα
∗
|mH| is basepoint-free, Bertini’s theorem guarantees that if Tα is a general

intersection of (n − 2) hypersurfaces in fα
∗
|mH|, then Tα ∩ Xα

reg
is smooth. Since

Xα ⊂ Xα
reg

, this shows that Tα is smooth, hence the lemma. �

2.C. The orbifold fundamental group. Let (X,∆) be a klt pair with standard coef-
ficients as before, and set X∗ := Xreg \ supp∆.

Definition 2.14 (Fundamental group). The (orbifold) fundamental group of (X,∆) is
defined as

πorb1 (X,∆) := π1(X
∗)
/
〈〈γmi

i , i ∈ I 〉〉.

Here, for each i ∈ I, the element γi is a “loop around ∆i”, i.e. a loop in the normal circle
bundle of (∆i)reg ∩Xreg ⊂ Xreg, and 〈〈· · ·〉〉 denotes the normal subgroup generated by a
given subset.
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Note that if D = ∅, then πorb1 (X, ∅) = π1(Xreg) is in general different from π1(X).

Definition 2.15 (Covers branched at ∆, cf. [Cla08, Def. 1.3]). A cover of X branched
at most at ∆ is a holomorphic map π : Y → X, where:

(2.15.1) Y is a normal connected complex space (not necessarily quasi-projective),

(2.15.2) π has discrete fibres and π−1(X∗) → X∗ is étale,

(2.15.3) at each irreducible component ∆̃j,k ⊂ π−1(∆j), the ramification index rj,k of π
divides mj ,

(2.15.4) every x ∈ X has a connected neighborhood V ⊂ X such that every connected
component U of π−1(V ) meets the fibre π−1(x) in only one point, and π|U : U →
V is finite.

We say that π is branched exactly at ∆ if in (2.15.3), we have rj,k = mj for all j, k.

Note that if Y is quasi-projective and π is Galois, then saying that π is branched
exactly at ∆ is the same as saying that π is orbi-étale.

Theorem 2.16 (Covers and the fundamental group). There exists a natural one-to-one
correspondence between subgroups G ⊂ πorb1 (X,∆) and covers π : Y → X branched at
most at ∆. Furthermore:

(2.16.1) G is of finite index if and only if π is finite.

(2.16.2) G is a normal subgroup if and only if π is Galois.

(2.16.3) Let Y1,2 → X be two covers branched at most at ∆, with corresponding subgroups

G1,2 ⊂ πorb1 (X,∆). Then there is a factorization

Y2

Y1 X

∃

if and only if G1 ⊂ G2.

Proof. The proof is the same as in the snc case, cf. [Cla08, Thm. 1.1], with one important
difference: in order to extend (possibly non-finite) étale covers of X∗ to branched covers
of X, we would like to apply [DG94, Thm. 3.4]. In order to do this, we must invoke the
finiteness of local orbifold fundamental groups of klt pairs, as proved in [Bra21, Thm. 1].
(Note that [Bra21] works in the algebraic category, but in view of [Fuj22, Thm. 1.7]
and [CGGN22, Rem. 6.10] his result extends to complex spaces as well.) �

Definition 2.17 (Universal cover). The (orbifold) universal cover of (X,∆) is the cover

π : X̃∆ → X corresponding to the trivial subgroup {1} ⊂ πorb1 (X,∆) under the corre-
spondence from Theorem 2.16.

Let ∆̃ be the divisor on X̃∆ which is supported on π−1(supp∆) and satisfies

K
X̃∆

+ ∆̃ = π∗(KX +∆).

It is easy to see that the pair (X̃∆, ∆̃) is again klt with standard coefficients. Also, ∆̃ = 0
if and only if π is branched exactly at ∆.
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Definition 2.18 (Developable pairs). We say that (X,∆) is developable if in the above

notation, X̃∆ is smooth and ∆̃ = 0.

Intuitively, being developable means that the universal cover is a manifold.

Example 2.19. Consider the klt pair (X,∆), where X = P1 and

∆ =
(
1− 1

n

)
· [0] +

(
1− 1

m

)
· [∞]

with n,m ≥ 2. Set d = gcd(n,m). Then πorb1 (X,∆) = Z
/
dZ, and the universal cover

π : X̃∆ = P1 → P1 is given by [z0 : z1] 7→ [zd0 : zd1 ]. We have

∆̃ =
(
1− 1

n/d

)
· [0] +

(
1− 1

m/d

)
· [∞].

In particular, (X,∆) is developable if and only if n = m.

Corollary 2.20 (Galois closure). Let Y → X be a finite cover branched at most at ∆.
Then there is a finite cover Y ′ → Y such that the composition Y ′ → X is finite, Galois,
and branched at most at ∆. If additionally Y → X is branched exactly at ∆, then the
same is true of Y ′ → X, and Y ′ → Y is quasi-étale.

We call Y ′ → X the Galois closure of Y → X.

Proof. Using the correspondence from Theorem 2.16, the statement boils down to the
following: for a group G and a subgroupH ⊂ G of finite index, there is a normal subgroup
N E G of finite index such that N ⊂ H. But this is easy (and well-known): simply set

N :=
⋂

g∈G/H

gHg−1.

The last statement is easily seen to be true by comparing the ramification indices of
Y → X and Y ′ → X over the components ∆i. �

3. Orbifold Chern classes of klt pairs

In this section, we recall the definition of the first and second orbifold Chern classes
for klt pairs, in the spirit of [GK20]. We then explain how to compute them concretely
in two cases: in the projective setting by a cutting-down argument (Section 3.C), and
when we have an “orbi-resolution” at our disposal (Section 3.D).

3.A. The general Kähler case. Let us begin by recalling how to define Chern num-
bers associated with the first and second Chern classes. This is nothing but a slight
generalization of [GK20, Def. 5.2] that takes into account the presence of a boundary.
The construction relies on the Chern–Weil formalism in the orbifold setting. We will
not recall the basic definitions and properties for the differential geometry of orbifolds
(e.g. Hermitian metrics on orbifold bundles, orbifold Chern classes, orbifold de Rham
cohomology, and so on). A good reference is [Bla96, Sec. 2].

Let (X,∆) as in Setup 1.5 and let X◦ ⊂ X be the largest open subset of X such that
(X,∆) admits a smooth orbi-étale orbi-structure C◦, and set Z := X \X◦. As proved in
Lemma 2.7, dimZ ≤ n− 3. Next, let α ∈ H2n−4(X,R) where that cohomology space is
understood as the cohomology of the locally constant sheaf RX . For dimensional reasons,
we have an isomorphism H2n−4

c (X◦,R) ∼−→ H2n−4(X,R). Next, the de Rham complex of
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orbifold differential forms on X◦ yields a de Rham–Weil isomorphism H•
dR, c(X

◦,R) →

H•
c(X

◦,R), so that in the end we get a natural isomorphism

(3.1) ψ : H2n−4
dR, c (X

◦,R)
∼

−→ H2n−4(X,R) .

Now, let E → X◦ be an orbifold bundle for the pair (X◦,∆◦). We can equip it
with an orbifold Hermitian metric h and form the Chern classes corbi (E, h) which are
orbifold differential forms of bidegree (i, i). We can use the isomorphism (3.1) to define
real numbers when i = 2. If α ∈ H2n−4(X,R), the class ψ−1(α) can be represented
by a compactly supported orbifold (2n − 4)-form Ω on X◦, so that corb2 (E, h) ∧ Ω is a
compactly supported orbifold (n, n)-form on X◦.

Definition 3.1. The orbifold second Chern class c̃2(E) is the unique element in the
dual space H2n−4(X,R) ‹ which under ψ ‹ corresponds to the Poincaré dual of the class
corb2 (E) ∈ H4

dR(X
◦,R), where the latter is taken with respect to (but independent of) the

orbi-structure C◦. The quantity

c̃2(E) · α :=

∫

X◦

corb2 (E, h) ∧Ω

is thus a well defined real number for any class α ∈ H2n−4(X,R).

Let us apply the above construction to Ω1
(X◦,∆◦) the orbifold bundle of differential

forms. For the first Chern class, one can avoid the use of orbistructures and define it
directly as a cohomology class as follows.

Definition 3.2. For a klt pair (X,∆), we set

c̃1(X,∆) :=
1

m
c1

((
ωX

[m] ⊗ OX(m∆)
) ‹ ‹)

∈ H2(X,R)

where m ≥ 1 is an integer such that the reflexive rank 1 sheaf
(
ωX

[m] ⊗ OX(m∆)
) ‹ ‹

is a
line bundle.

Now let us consider the case of the second Chern class.

Definition 3.3. The orbifold second Chern class c̃2(X,∆) ∈ H2n−4(X,R) ‹ of the pair
(X,∆) is the second Chern class of the orbi-bundle Ω1

(X◦,∆◦) on X◦ defined in Defini-

tion 2.12.

Remark 3.4. As already observed in [GK20, p. 893], the object constructed in Defini-
tion 3.3 is naturally a homology class:

c̃2(X,∆) ∈ H2n−4(X,R) .

3.B. The projective case — Mumford’s construction. Let (X,∆) be a projec-
tive dlt pair with standard coefficients such that each component ∆i of ∆ is Q-Cartier.
In [GT22, §3.1, p. 1458], the orbifold Chern classes c̃2(X,∆) and c̃21(X,∆) were defined
as multilinear forms on N1(X)Q. Here we would like to observe that this procedure can
also be carried out without the assumption that the ∆i be Q-Cartier. Our argument
follows the proof of [GKPT19, Thm. 3.13] closely. — We will restrict attention to the
case of klt pairs, as we are only concerned with those in this paper.

So let (X,∆) be an n-dimensional projective klt pair with standard coefficients. Ap-
plying Lemma 2.7, we obtain an open subsetX◦ ⊂ X whose complement has codimension
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≥ 3 and such that (X◦,∆|X◦) admits a smooth orbi-étale orbi-structure C. Consider the

“big global cover” γ : X̂◦ → X◦ associated to C, cf. [Mum83, §§2–3], which up to shrink-

ing X◦ may be assumed to be Cohen–Macaulay. The locally free orbi-sheaf Ω
[1]
C from

Definition 2.12 induces a genuine locally free sheaf F on X̂◦. The Chern classes of F

induce classes ci

(
Ω
[1]
C

)
∈ An−i(X

◦). Since A∗(X
◦) is equipped with a ring structure, we

also have c21

(
Ω
[1]
C

)
∈ An−2(X

◦). For dimensional reasons, An−i(X) ∼−→ An−i(X
◦) is an

isomorphism for i ≤ 2. We obtain classes c2

(
Ω
[1]
C

)
and c21

(
Ω
[1]
C

)
∈ An−2(X), which are

independent of the choice of C by [GT22, Prop. 3.5]. The orbifold Chern classes c̃2(X,∆)
and c̃21(X,∆) are then given by cap product with Chern classes of line bundles on X:

c̃2(X,∆) · L1 · · ·Ln−2 := deg
(
c2

(
Ω
[1]
C

)
∩ c1(L1) ∩ · · · ∩ c1(Ln−2)

)
,

c̃21(X,∆) · L1 · · ·Ln−2 := deg
(
c21

(
Ω
[1]
C

)
∩ c1(L1) ∩ · · · ∩ c1(Ln−2)

)
,

and these maps factors via N1(X)Q.

3.C. The projective case — cutting down. If (X,∆) is a projective klt pair with
standard coefficients, then Lemma 2.7 allows one to generalize Mumford’s construction
of Q-Chern classes [Mum83] to this setting as explained above. The fact that the Chern–
Weil construction from Definition 3.3 and Mumford’s definition of Q-Chern classes are
equivalent is given in [GK20, Claim 6.5] in the case where ∆ = 0. It extends readily to
the more general setting of klt pairs with standard coefficients.

Since ψ is an abstract isomorphism, it is in practice difficult to actually compute these
numbers. There is, however, an important situation where things get much more explicit
and that is when α = c1(L)

n−2 where L is an ample line bundle on X (we could also have
(n − 2) different ample line bundles, but let us stick to the former case for simplicity).
By homogeneity of the intersection product, we can assume that L is very ample and
induces an embedding i : X →֒ PN such that L ∼= i∗OPN (1). We pick (n−2) hyperplanes
H1, . . . ,Hn−2 in general position. In particular, one has that

∑
Hi has simple normal

crossings and S := H1 ∩ · · · ∩Hn−2 ∩X ⊂ X◦.

Lemma 3.5. With the notation as above, the Chern number from Definition 3.1 can be
computed with the following formula:

(3.2) c̃2(E) · c1(L)
n−2 =

∫

S
corb2 (E, h)

∣∣
S
.

Proof. To begin with, let us choose sections si ∈ H0
(
PN ,OPN (1)

)
such that Hi = {si =

0}, and we equip OPN (1) with the Fubini–Study metric. Next, we choose cut-off functions
χi : P

N → [0, 1] such that

χi =

{
0 on {|si| ≤ δ}

1 on {|si| ≥ 2δ}

for some δ > 0 small enough so that

n−2⋂

i=1

{|si| ≤ 2δ} ∩X ⊂ X◦.
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For any ε ∈ (0, 1], one defines ϕi,ε := χi log |si|
2 + (1 − χi) log(|si|

2 + ε2) and set ωi,ε :=
ωFS + ddcϕi,ε. Clearly, ωi,ε is supported on {|si| ≤ 2δ} and ωi,ε → [Hi] as ε → 0, both

weakly as currents on PN and locally smoothly away from Hi. We set Ωε :=
∧n−2
i=1 ωi,ε,

which is supported on
⋂n−2
i=1 {|si| ≤ 2δ}.

The immersion i : X◦ →֒ PN induces a commutative diagram

H2n−4
dR

(
PN ,R

)
H2n−4

(
PN ,R

)

H2n−4
dR (X◦,R) H2n−4(X◦,R) .

∼

i∗ i∗

∼

and by our choices the image i∗[Ωε] lands in the image of the natural map

H2n−4
dR, c (X

◦,R) → H2n−4
dR (X◦,R)

and satisfies ψ(i∗[Ωε]) = c1(OPN (1))n−2 |X = c1(L)
n−2. Therefore, we have for any ε > 0

the identity

(3.3) c̃2(E) · c1(L)
n−2 =

∫

X◦

corb2 (E, h) ∧Ωε.

Now, since
∑
Hi has simple normal crossings, an easy local computation shows that

Ωε converges to the current of integration along the submanifold W :=
⋂n−2
i=1 Hi, both

weakly on PN and locally smoothly away from W . Since the support of Ωε|X is contained
in a fixed compact subset of X◦, ones sees that Ωε|X◦ converges weakly to [S] = [W ∩X◦]
in the sense of currents on the orbifold X◦. Letting ε tend to 0 in (3.3), we finally get
the formula (3.2). �

3.D. Orbi-resolutions and Chern numbers. When X is smooth in codimension two,
one can compute Chern numbers on a resolution of singularities, cf. e.g. [CGG22]. In the
presence of singularities in codimension two, it is explained in loc. cit. that a resolution
does not compute Chern numbers anymore in general. The substitute of a resolution in
that setting is an orbi-resolution as defined below.

Definition 3.6 (Orbi-resolutions). Let (X,∆) be a pair, where X is a normal complex
space, ∆ has standard coefficients and let X◦ ⊂ X be the orbifold locus of (X,∆). An

orbi-resolution of (X,∆) is a surjective, proper bimeromorphic map π : X̂ → X from a

normal complex space X̂ such that:

(3.6.1)
(
X̂, ∆̂ := π−1

∗ (∆)
)

has only quotient singularities, and

(3.6.2) π is isomorphic over X◦.

The existence of orbi-resolutions can be established1 for quasi-projective varieties (with
∆ = 0), using deep results about stacks as Chenyang Xu has showed in [LT19, §3].
However, the construction proposed there is highly non-canonical (or non-functorial)
and this makes it difficult to generalize it to the complex analytic setting, even assuming
algebraic singularities.

1The proof of [LT19, Thm. 3] applies verbatim when ∆ 6= 0, but we will only use the existence of
orbi-resolutions when ∆ = 0.
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One important application of the existence of orbi-resolutions is highlighted by the
following lemma, which shows that we can use such partial resolutions to compute the
orbifold second Chern class of (X,∆) against a class in H2n−4(X,R).

Lemma 3.7. Let (X,∆) be a pair as in Setup 1.5. Assume that (X,∆) admits an orbi-

resolution π : (X̂, ∆̂) → (X,∆) as in Definition 3.6. Given any a ∈ H2n−4(X,R), one
has the formula

c̃2(X,∆) · a = corb2

(
X̂, ∆̂

)
· ψ(π∗a),

where on the right-hand side, corb2

(
X̂, ∆̂

)
∈ H4

dR

(
X̂,R

)
is the usual orbifold second

Chern class of (X̂, ∆̂) and ψ : H•
(
X̂,R

)
→ H•

dR

(
X̂,R

)
is the orbifold de Rham–Weil

isomorphism.

Proof. With the notation from Definition 3.6, let us denote X̂ \ E := π−1(X◦) and

j : X̂ \ E → X̂ the natural inclusion; for simplicity we set k := 2n − 4 and skip the

reference to R in the cohomology spaces below. Finally, we set π0 := π|
X̂\E

: X̂ \E → X◦.

We then have the following diagram

HkdR

(
X̂
)

HkdR, c

(
X̂ \ E

)
Hkc

(
X̂ \ E

)
Hk

(
X̂
)

HkdR, c(X
◦) Hkc (X

◦) Hk(X)

φ

jdR
∗

j∗

ψ

φ

(πdR
0 )∗

i∗

π∗

0 π∗

where all arrows except for j∗, j
dR
∗ and π∗ are isomorphisms. Now, one can pick an

orbifold Hermitian metric ĥ on TX̂,∆̂ and descend it to an orbifold Hermitian metric h

on TX◦ since π is an isomorphism X̂ \ E → X◦. Then, if as before α is an orbifold
representative of φ−1(i−1

∗ (a)) with compact support in X◦, we have

c̃2(X,∆) · a =

∫

X◦

corb2 (X◦, h) ∧ α

=

∫

X̂\E
corb2

(
X̂, ĥ

)
∧ π∗α

= corb2

(
X̂, ∆̂

)
· [π∗α]dR

= corb2

(
X̂, ∆̂

)
· ψ(π∗a)

since we have ψ(π∗a) = (j∗)
dR([π∗α]dR) from the commutativity of the diagram above.

�

We conclude this paragraph with a remark on the non-orbifold locus. For the sake of
clarity (and also since we will use only this case), we stick to the case ∆ = 0.
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If X is a normal complex space that admits an orbi-resolution π : X̂ → X in the sense
of Definition 3.6, it is immediate that its non-orbifold locus X \Xorb coincides with π(E),

where E ⊂ X̂ is the exceptional locus of π. In particular, the non-orbifold locus is an
analytic subset of X. This latter statement is very natural and should be true regardless
of the existence of orbi-resolutions. Unfortunately, we are neither able to prove it in
the general analytic setting nor able to locate a suitable reference. We can, however,
prove it under the additional assumption that the singularities of X are algebraic. This
is sufficient for the application in Section 7.

Lemma 3.8 (Analyticity of the non-orbifold locus). Let X be a normal complex space
having only algebraic singularities (in the sense of [CGGN22, Def. 2.4]). Then its non-
orbifold locus Z := X \Xorb is a closed analytic subset.

In particular, this applies if X is a compact klt Kähler space with c1(X) = 0.

Proof. When X is algebraic, this is a straightforward consequence of [Art69, Cor. 2.6].
If U ⊂ X is a euclidean open subset of X being isomorphic through a map ϕ : U ∼−→ V
to an open subset V ⊂ Y of an algebraic variety, then we have ϕ(Z ∩U) = V \V orb, and
this is an analytic subset of V by the algebraic case. The subset Z ∩ U is then given by
the vanishing of a family of holomorphic functions, i.e. it is analytic in U .

The last statement is a consequence of [BGL22, Thm. B]: X can be realized as a
member of a locally trivial family which also has projective fibers. The family being
locally trivial (over a smooth connected base), all the fibers are locally isomorphic and
such an X then has locally algebraic singularities (cf. [CGGN22, Ex. 2.5]). �

4. Uniformization of canonical models

In this section, we prove Theorem A. Let us first introduce notation. We set A :=
KX +∆ and pick a complete intersection surface S = D1 ∩ · · · ∩Dn−2 of n − 2 general
hypersurfaces Di ∈ |mA|, where m is sufficiently large and divisible. — The proof is
divided into four steps.

Step 1: The orbi Higgs-sheaf (EX , ϑX). Using the notation introduced in the proof
of Lemma 2.7, we can find a (a priori non-smooth) orbi-étale structure C = {Uα, gα, U

′
α}

with respect to (X,∆) on the whole X. Then, one can define the reflexive orbi-Higgs
sheaf (EX , ϑX) with respect to C as follows:

(4.1) ϑX : EX := Ω
[1]
(X,∆) ⊕ O(X,∆) −→ EX ⊗ Ω

[1]
(X,∆),

where on each chart U ′
α, we define ϑU ′

α
(a, f) := (0, a) where (a, f) is a section of EU ′

α
:=

Ω
[1]
U ′

α
⊕ OU ′

α
. Cf. also Definition 2.12 and [GT22, §5.1, Step 2].

In order to compute Chern numbers involving EX , one needs to introduce a global
cover f : Y → X and an actual reflexive sheaf EY on Y as we now explain. Thanks
to Proposition 2.6, there exists a finite morphism f : Y → X that is strictly adapted
for (X,∆) and whose extra ramification in codimension one (i.e. away from supp(∆)) is
supported over a general element H of a very ample linear system on X. Let N be the
ramification order along H; we have

(4.2) KY = f∗
(
KX +∆+

(
1− 1

N

)
H
)
.
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We set D := ∆ +
(
1 − 1

N

)
H and define (X,D)orb to be the largest open subset of

X where the pair (X,D) admits a smooth orbi-étale orbi-structure C◦; we know that
codimX(X \ (X,D)orb) ≥ 3 by Lemma 2.7. One can be a bit more precise about the
shape of C◦, which will be useful later. Recall from the proof of Lemma 2.7 that if we
set K := I × J and α := (β, γ) ∈ K, then we have a diagram

X ′
α U ′

α Uα X

U ′
β Uβ X

fα

hα

gα

id

gβ

where X ′
α is smooth and fα is quasi-étale. Note that one can “restrict” EX to the orbifold

locus
⋃
α Uα ⊂ X of (X,∆) to get a locally free orbi-Higgs sheaf with respect to the

smooth orbi-étale structure {Uα, hα,X
′
α}α∈K for the pair (X,∆) in codimension two,

given by EX′

α
:= f

[∗]
α (EU ′

β
|U ′

α
) ≃ Ω1

X′

α
⊕ OX′

α
. In particular, one can define the Chern

number c̃2(EX) · A
n−2 as explained in Section 3.A.

By choosing H general, one can arrange that h∗αH is smooth for all indices α ∈ K
thanks to Bertini’s theorem, so that a further Kawamata cover κα : Xα → X ′

α orbi-étale
with respect to (X ′

a, h
∗
α(1 − 1

N )H) yields the expected smooth orbi-étale orbi-structure
C◦ := {Uα, pα,Xα}α∈K for the pair (X,D) in codimension two where pα = ha ◦ κα. We
end up with the following factorization:

Xα Uα X

X ′
α

κα

pα étale

hα

Next, set

Y ◦ := f−1
(
(X,D)orb

)
∩ (Y, ∅)orb ⊂ Y.

Since f is finite, and by Lemma 2.7 applied to (Y, ∅), we have codimY (Y \ Y ◦) ≥ 3. The
map f restricts to f◦ : Y ◦ → X◦ := (X,D)orb.

Finally, we set T := f−1(S). Since the linear system |mA| (resp. f∗|mA|) is basepoint-
free and S is general, we have S ⊂ X◦ (resp. T ⊂ Y ◦). Also, recall from Lemma 2.13 that
(S,D|S) has quotient singularities. The following diagram summarizes the situation:

T Y ◦ Y

S X◦ X

f |T f◦ f

Moreover, the ramification formula KT = f∗(KS+D|S) shows that T is klt as well, i.e. it
is a surface with quotient singularities.

Step 2: Computing Chern numbers for EX . Set ∆◦ := ∆|X◦ and D◦ := D|X◦ . Con-
sider the locally free orbi-sheaf for the pair (X◦,D◦) with respect to the orbi-structure C◦
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constructed in Step 1 above, defined by

(4.3) EXα = Ω
[1]
(X◦,∆◦,pα)

⊕ OXα .

Since
(
Xα, p

−1
α (H)

)
is log smooth, the subsheaf Ω

[1]
(X◦,∆◦,pα)

⊂ Ω1
Xα

has a very explicit

expression in terms of local coordinates. More precisely, if (z1, . . . , zn) is a local chart
such that p−1

α (H) = {z1 = 0} on that chart, then the bundle at play is the subbundle

of Ω1
Xα

generated by zN−1
1 dz1, dz2, . . . ,dzn. In particular, it agrees with Ω1

Xα
outside of

p−1
α (H).

Now set EY := Ω
[1]
(X,∆,f) ⊕ OY ⊂ Ω

[1]
Y ⊕ OY , which we should think of as the reflexive

pull back of EX by f . We equip this sheaf with the usual Higgs field ϑY , and denote by

EY ◦ its restriction to Y ◦. Note that by (2.11.2), EY = Ω
[1]
Y ⊕ OY holds on Y \ f−1(H).

Let
{
(Vβ , qβ, Yβ)

}
β∈K

be a smooth orbi-étale (i.e. quasi-étale, in this case) orbi-structure

for (Y ◦, ∅), which exists by (2.6.3) and Lemma 2.7 again, at least after shrinking Y ◦. Set

EYβ := q
[∗]
β EY and consider the diagram

(4.4)

Wαβ Yβ

Y ◦

Xα X◦

rαβ

gαβ

qβ

f

pα

where Wαβ is the normalization of Xα ×X◦ Yβ. Since pα is orbi-étale with respect to
D◦, the map rαβ is étale over X◦

reg \ supp(D◦). Moreover, since qβ is quasi-étale, it
follows that f ◦ qβ and pα ramify to the same order along each component of D. In other
words, the smooth orbi-étale orbi-structures C◦ and

{(
f(Vβ), f ◦qβ , Yβ

)}
are compatible.

In particular, gαβ and rαβ are étale so that Wαβ is smooth, and we have additionally
g∗αβEXα

∼= r∗αβEYβ by (2.11.3). Since EXα is locally free, so is EYβ , so that the reflexive
sheaf EY ◦ is a genuine orbifold bundle on the orbifold Y ◦.

Let ω be an orbifold Kähler metric adapted to (X◦,∆◦), as given by Lemma 2.4. It
is defined on an arbitrarily large relatively compact open subset of X◦. In particular,
it is defined in a neighborhood of S and this will be enough for our purposes. Set
S∗ := Sreg \ suppD. By definition, one has

c̃2

(
Ω
[1]
(X,∆)

∣∣
S

)
=

∫

Sreg\supp(∆)
c2

(
Ω1
Xreg

, ω
)
=

∫

S∗

c2

(
Ω1
Xreg

, ω
)

and the last two integrals on the right are well-defined since ω pulls back to a smooth
Kähler metric across points in Ssing ∪ supp(∆) via the finite maps hα. The smooth form
p∗α ω = f∗α h

∗
α ω is semipositive, degenerate along p−1

α (H). More precisely, if p−1
α (H)∩U =
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{z1 = 0} for some coordinate chart U ⊂ Xα, then

p∗αω|U = a11̄|z1|
2(N−1)idz1 ∧ dz̄1 +

n∑

k=2

a1k̄z
N−1
1 dz1 ∧ idz̄k+

+
n∑

k=2

ak1̄z̄
N−1
1 dzk ∧ idz̄1 +

n∑

j,k=2

ajk̄dzj ∧ dz̄k

where (ajk̄) is smooth and definite positive. In particular, p∗αω defines a smooth Hermitian

metric on Ω
[1]
(X◦,∆◦,pα)

. Said otherwise, g∗αβ p
∗
α ω induces a smooth Hermitian metric on

g∗αβ Ω
[1]
(X◦,∆◦,pα)

∼= r∗αβ Ω
[1]
(X◦,∆◦,f◦qβ)

. Hence, q∗β f
∗ω is a smooth Hermitian metric on

the vector bundle Ω
[1]
(X◦,∆◦,f◦qβ)

= q
[∗]
β Ω

[1]
(X◦,∆◦,f), so that f∗ω induces an orbifold metric

on the orbi-bundle Ω
[1]
(X◦,∆◦,f). By the definition of the Chern classes of orbifold vector

bundles, we have

c̃2

(
Ω
[1]
(X◦,∆◦,f)

∣∣
T

)
=

∫

f−1(S∗)
c2

(
Ω1
Yreg , f

∗ω
)

= deg(f |T ) ·

∫

S∗

c2

(
Ω1
Xreg

, ω
)

= deg(f) · c̃2
(
Ω
[1]
(X,∆)

∣∣
S

)

where the last identity follows from deg(f |T ) = deg(f) since S is general. All in all, we
find by Lemma 3.5

(4.5) c̃2(EY ) · (f
∗A)n−2 = deg(f) c̃2(EX) · A

n−2.

The same arguments show the similar identity

(4.6) c̃21(EY ) · (f
∗A)n−2 = deg(f) c̃21(EX) · A

n−2.

Step 3: (X,∆) has quotient singularities. Consider on X the orbi-Higgs sheaf
(FX ,ΘX) := End(EX , ϑX). It satisfies:

c̃21(FX) ·A
n−2 = c̃2(FX) · A

n−2 = 0,

as follows from the assumption on the Chern classes of (X,∆), i.e. the assumption that
equality holds in (1.2). Combined with (4.5)–(4.6), the latter identity implies that the
(genuine) Higgs sheaf (FY ,ΘY ) := End(EY , ϑY ) on Y satisfies

c̃21(FY ) · (f
∗A)n−2 = c̃2(FY ) · (f

∗A)n−2 = 0.

Moreover, by [GT22, Sec. 4.4, proof of Thm. C], the sheaf Ω
[1]
(X,∆,f) is (f∗A)-semistable.

Recall that c1

(
Ω
[1]
(X,∆,f)

)
= f∗A by [CKT21, (3.11.5)]. It follows that (EY , ϑY ) is (f∗A)-

Higgs-stable, cf. the calculations in [GKPT19, proof of Cor. 7.2]. This in turn implies that
the endomorphism sheaf (FY ,ΘY ) is (f∗A)-Higgs-polystable. Indeed, the last assertion
can be deduced from the usual smooth case by restricting to a general complete inter-
section curve and using the Mehta–Ramanathan theorem for Higgs sheaves [GKPT19,
Thm. 5.22]. Cf. also [GKPT20, Lemma 4.7].
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By the Simpson correspondence for klt spaces [GKPT20, Thm. 5.1], the Higgs sheaf
(FY ,ΘY )

∣∣
Yreg

is locally free and is induced by a tame, purely imaginary harmonic bundle.

By [GKPT20, Prop. 3.17], the reflexive pull-back g[∗]FY of FY to a maximally quasi-
étale cover g : Z → Y (whose existence is guaranteed by [GKP16, Thm. 1.5]) is locally
free.

Now, set W := X \H ⊂ X and h := f ◦ g : Z → X. On h−1(W ), we have that

g[∗]EY ∼= g[∗]
(
Ω
[1]
Y ⊕ OY

)
∼= Ω

[1]
Z ⊕ OZ .

It follows that g[∗]FY
∼= End

(
Ω
[1]
Z ⊕OZ

)
, which contains the tangent sheaf TZ as a direct

summand (again, only on h−1(W )). Since direct summands of locally free sheaves are
locally free by Nakayama’s lemma, the resolution of the Lipman–Zariski Conjecture for
klt spaces [GKKP11, GK14, Dru14] implies that h−1(W ) is smooth.

By construction, the map h−1(W ) → W is branched exactly at ∆|W . By Corol-

lary 2.20, its Galois closure W̃ → W also has this property, and W̃ is smooth, be-
ing a quasi-étale (hence étale) cover of the smooth space h−1(W ). This shows that
(W,∆|W ) has quotient singularities. So far, we have only imposed that H is general
in its (basepoint-free) linear system. We can therefore repeat the argument by choosing
general elements H1, . . . ,Hn+1 ∈ |H| and conclude that (X,∆) has quotient singularities.
This means that (X,∆) is a “complex orbifold” in the sense of [BG08, p. 109].

Step 4: (X,∆) is a ball quotient. Since (X,∆) is a complex orbifold with KX + ∆
ample, there is an orbifold Kähler–Einstein metric ω such that Ricω = −ω, cf. [BG08,
Thm. 5.2.2]. Set X∗ := Xreg \ supp(∆), so that ω is a genuine Kähler metric on X∗.
One can compute the orbifold Chern classes using ω, and, in particular, one has from
the usual Chern form computations

0 =
(
2(n + 1) c̃2(X,∆)− n c̃21(X,∆)

)
· [KX +∆]n−2

=

∫

X∗

(
2(n + 1)c2(X,ω) − nc21(X,ω)

)
∧ ωn−2

= Cn

∫

X∗

|Θ◦(TX , ω)|
2
ω ω

n,

where Cn > 0 is a dimensional constant, while

Θ◦(TX , ω) := Θ(TX , ω)−
1

n
trEnd(Θ(TX , ω)) · idTX

is the trace-free Chern curvature tensor of (TX , ω).
As a result, ω has constant negative bisectional curvature. This implies that ω has

negative Riemannian sectional curvature on X∗ by e.g. [Gol99, §2.4.2]. (Note that one
could also have said that (X∗, ω) is locally isometric to the complex hyperbolic space
(Bn, ωhyp) by [Boc47, Thm. 6] and conclude by the usual curvature properties of the
complex hyperbolic metric.)

Let π : X̃∆ → X be the orbifold universal cover of (X,∆), cf. Definition 2.17. By
the previous paragraph, (X,∆, ω) is an orbifold of nonpositive Riemannian sectional
curvature. It then follows from [BH99, Cor. 2.16 on p. 603] that (X,∆) is developable.

Now, (X̃∆, π
∗ω) is a simply connected Kähler manifold with constant negative bisectional



22 CLAUDON, GRAF, AND GUENANCIA

curvature, so it is holomorphically isometric to (Bn, ωhyp) by [KN69, Thm. 7.9]. In

particular, X̃∆
∼= Bn, proving Theorem A. �

5. Characterization of ball quotients

In this section, we prove Corollary 1.3. We prove the implications (1.3.1) ⇒ (1.3.2)
⇒ (1.3.3) ⇒ (1.3.1) separately.

(1.3.1) ⇒ (1.3.2). This is Theorem A.

(1.3.2) ⇒ (1.3.3). Let π : Bn → X be the orbifold universal cover of (X,∆). (In
particular, (X,∆) is developable.) By (2.16.2), the map π is Galois, with Galois group
Γ ∼= πorb1 (X,∆). Note that Γ ⊂ Aut(Bn) = PU(1, n) is a finitely generated linear group.
Furthermore, the stabilizers of the action Γ

	
Bn are finite by (2.15.4). By Selberg’s

lemma [Alp87], there is a finite index normal subgroup Γ′ ⊂ Γ which is torsion-free. This
implies that Γ′ acts freely on Bn. We obtain the following factorization of π:

Bn −−−−→ Bn
/
Γ′

f
−−−−→ Bn

/
Γ = X,

where f is the quotient by the action of the finite group G := Γ
/
Γ′ on the projective

manifold Y := Bn
/
Γ′. Since the first map is étale, it exhibits Bn as the universal cover

of Y . Combining this with the fact that π is branched exactly at ∆, we infer that f is
orbi-étale.

(1.3.3) ⇒ (1.3.1). Recall thatKY is ample and that Y satisfies equality in the Miyaoka–
Yau inequality, cf. e.g. [Kol95, (8.8.3)]. As f : Y → X is orbi-étale, it follows that
also KX + ∆ is ample and equality likewise holds in the Miyaoka–Yau inequality for
(X,∆). �

6. Uniformization of minimal models

This section has two (related) purposes: first, to remove the assumption about the
irreducible components of ∆ being Q-Cartier from Theorem 1.2. And second, to prove
Corollary 1.4.

6.A. Orbifold Miyaoka–Yau inequality. In Theorem 1.2, or more generally in [GT22,
Thm. B], the assumption that the ∆i be Q-Cartier can be dropped without replacement.
We give two proofs of this result, the first one relying on [BCHM10] and the second one
on Proposition 2.6.

Theorem 6.1 (Miyaoka–Yau inequality). Let (X,∆) be an n-dimensional projective klt
pair with standard coefficients, and assume that KX+∆ is big and nef. Then the following
inequality holds:

(6.1)
(
2(n+ 1) c̃2(X,∆)− n c̃21(X,∆)

)
· [KX +∆]n−2 ≥ 0.

First proof. Consider a Q-factorialization f : X ′ → X, cf. [BCHM10, Cor. 1.4.3] applied
with E = ∅. Set ∆′ := f−1

∗ ∆. The map f is small, meaning that Exc(f) ⊂ X ′ has
codimension at least two. Therefore (X ′,∆′) reproduces all the assumptions made on
(X,∆), and in addition X ′ is Q-factorial. In particular, KX′ +∆′ = f∗(KX +∆) is big
and nef. Furthermore, f(Exc(f)) ⊂ X has codimension ≥ 3, therefore f∗

(
c̃2(X

′,∆′)
)
=
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c̃2(X,∆) as homology classes, and likewise for c̃21(X
′,∆′) (cf. Remark 3.4). By the

projection formula, we obtain
(
2(n+ 1) c̃2(X,∆) − n c̃21(X,∆)

)
· [KX +∆]n−2 =

(
2(n + 1) c̃2

(
X ′,∆′

)
− n c̃21

(
X ′,∆′

) )
· [KX′ +∆′]n−2.

The right-hand side is non-negative by [GT22, Thm. B]. �

Second proof. Observe that in [GT22], the assumption that the ∆i be Q-Cartier is only
used in order to construct a strictly adapted morphism whose extra ramification is sup-
ported on a general very ample divisor (cf. Ex. 2.11 of that paper). However, using
Proposition 2.6 we can construct such a cover even without that assumption. After that,
the proof of [GT22, Thm. B] applies verbatim. �

6.B. Uniformization of minimal models. In order to prove Corollary 1.4, we use the
strategy explained in [GKPT20, Step 1, p. 1086]. This means we first have to prove the
following lemma.

Lemma 6.2. In the setting of Corollary 1.4, the canonical model (Xcan,∆can) also sat-
isfies equality in (1.2).

Assuming Lemma 6.2 for the moment, we then apply Theorem A on (Xcan,∆can) to
conclude. This finishes the proof of Corollary 1.4.

Remark 6.3. If we had proved Theorem A only in the setting of [GT22] (that is, assuming
that the ∆i are Q-Cartier), then the above argument would break down. This is because
the irreducible components of ∆can may not be Q-Cartier (even if the same is true of ∆).

Proof of Lemma 6.2. As in the statement of Corollary 1.4, let (Xcan,∆can) denote the
canonical model of the pair (X,∆) and π : (X,∆) → (Xcan,∆can) the canonical morphism
(KX +∆ being big and nef, some multiple is basepoint-free and so π is a morphism). By
construction, KXcan +∆can is ample and π is crepant:

(6.2) KX +∆ = π∗
(
KXcan +∆can

)
.

The pair (Xcan,∆can) still has klt singularities. From Theorem 1.2, we know that the
inequality (1.2) holds for (Xcan,∆can) and we are led to checking that:

(
2(n+ 1) c̃2(X,∆) − n c̃21(X,∆)

)
· [KX +∆]n−2 ≥

(
2(n+ 1) c̃2(Xcan,∆can)− n c̃21(Xcan,∆can)

)
· [KXcan +∆can]

n−2.
(6.3)

In view of (6.2), this amounts to showing

(6.4) c̃2(X,∆) · [KX +∆]n−2 ≥ c̃2(Xcan,∆can) · [KXcan +∆can]
n−2.

At this point, let us consider a general surface Σ ⊂ Xcan cut out by the linear system
|m(KXcan +∆can)| (for m≫ 1 sufficiently divisible) and let us look at its preimage S :=
π−1(Σ) ⊂ X in X. The pairs2 (S,∆) and (Σ,∆can) are orbifold surfaces and contained in

2To avoid cumbersome notation, the restriction of the divisors ∆ and ∆can to S and Σ is not written
out.
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the orbifold loci of (X,∆) and (Xcan,∆can) respectively. Obviously, (Σ,∆can) is nothing
but (S,∆)can and we can apply [Meg99, Thm. 4.2]. This yields

4 c̃2(Σ,∆can)− c̃21(Σ,∆can) ≤ 4 c̃2(S,∆)− c̃21(S,∆) .

The morphism π|S : (S,∆) → (Σ,∆can) being crepant, the above inequality reads as

(6.5) c̃2(Σ,∆can) ≤ c̃2(S,∆) .

With the notation introduced, the inequality (6.4) boils down to the following:

c̃2
(
T(X,∆)

∣∣
S

)
≥ c̃2

(
T(Xcan,∆can)

∣∣
Σ

)
.

This last inequality can be checked as in [GKPT20, pp. 1086–1087] by considering the
(orbifold) normal sequences

0 −→ T(S,∆) −→T(X,∆)

∣∣
S
−→ N(S,∆)|(X,∆) −→ 0,(6.6)

0 −→ T(Σ,∆can) −→T(Xcan,∆can)

∣∣
Σ
−→ N(Σ,∆can)|(Xcan,∆can) −→ 0.(6.7)

It is worth noting that both sequences (6.6) and (6.7) are exact sequences of orbifold
vector bundles, since the surface S (resp. Σ) is contained in the orbifold locus of (X,∆)
(resp. (Xcan,∆can)) and the terms in the middle are thus genuine orbifold bundles. Now
it is enough to remark that the normal bundles N(S,∆)|(X,∆) and N(Σ,∆can)|(Xcan,∆can)

satisfy

(6.8) N(S,∆)|(X,∆)
∼= π∗

(
N(Σ,∆can)|(Xcan,∆can)

)
.

Together with (6.2) and (6.5), this finally proves that the inequality (6.4) holds true.
This concludes the proof of Lemma 6.2. �

Remark. In general, the canonical morphism π|S : (S,∆) → (Σ,∆can) is not an orbi-
fold morphism, but the normal bundles are actual locally free sheaves defined on S
(resp. on Σ) and not only on the orbifold (S,∆) (resp. (Σ,∆can)). The Chern classes of
N(Σ,∆can)|(Xcan,∆can) thus come from Σ and can be pulled back to S in the usual way.

7. Characterization of torus quotients

In this final section, we first establish the positivity of the orbifold second Chern class
for Calabi–Yau and for irreducible holomorphic symplectic varieties. Using the Decom-
position Theorem [BGL22], we can then easily deduce Theorem 1.6 and Theorem B.
Finally, we prove Corollary 1.7.

7.A. Positivity of the second Chern class — the projective case. If X is projec-
tive, then we know that it has an orbi-resolution in the sense of Definition 3.6, and we
can use this to understand the orbifold second Chern class of X.

Proposition 7.1. Let X be a projective irreducible Calabi–Yau (resp. irreducible holo-
morphic symplectic) variety of dimension n with klt singularities and let β ∈ H2(X,R)
be a Kähler class. Then we have

c̃2(X) · βn−2 > 0.
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Proof. Let π : X̂ → X be an orbi-resolution, whose existence is garanteed by [LT19] since

X is projective. Let β̂ be a Kähler class on X̂ and let ω ∈ β (resp. ω̂ ∈ β̂) be a Kähler
form. Recall that it follows easily from the Bochner principle [CGGN22, Thm. A] that
TX is stable with respect to β. This implies that TX̂ is stable with respect to π∗β, hence

TX̂ is stable with respect to π∗β+ εβ̂ for ε > 0 small enough, cf e.g. [CGG22, Prop. 3.4].
In particular, as explained in [ES18, Thm. 4.2], there exists an orbifold Hermite–Einstein
metrics hε on TX̂ with respect to ωε := π∗ω + εω̂. From Lemma 3.7, we have

c̃2(X) · βn−2 = lim
ε→0

∫

X̂
corb2

(
T
X̂
, hε

)
∧ ωn−2

ε .

The exact same arguments as in [CGG22, Prop. 3.11] using orbifold forms instead of
usual forms shows that the latter quantity is non-negative, and if it is zero, then we have
c̃2(X) ·γn−2 = 0 for any Kähler class γ on X. We claim that this cannot happen. Indeed,
since X is projective, this applies to classes of the form c1(H) for an ample divisor H
on X. Then [LT18] would imply that X is the quotient of an Abelian variety, clearly a
contradiction. �

7.B. Positivity of the second Chern class — the IHS case. We will derive the
general Kähler case from the projective one using a deformation argument, as in [CGG22,
Prop. 4.4].

Proposition 7.2. Let X be an irreducible holomorphic symplectic variety of dimension
n with klt singularities and let β ∈ H2(X,R) be a Kähler class. Then we have

c̃2(X) · βn−2 > 0.

Proof. We will first prove that there exists a constant CX ∈ R such that

(7.1) c̃2(X) · a = CXqX(a)
n
2
−1

for any a ∈ H2(X,R), where qX : H2(X,R) → C is the Beauville–Bogomolov–Fujiki
quadratic form. Moreover, we will see that CX is constant when X moves in a locally
trivial family.

The result follows from standard arguments (see e.g. [CGG22, Prop. 4.4] and references
therein) once one has proved that the formation of c̃2(X) · a is invariant under parallel
transport along a locally trivial deformation, which we now prove.

Let π : X → D be a proper surjective map which is a locally trivial deformation of
X = π−1(0). We denote by X

orb (resp. Xorb
t ) the orbifold locus of X (resp. Xt), which is

a Zariski open subset of X (resp. Xt) according to Lemma 3.8. Next, we set Z := X\Xorb

and Zt = Z ∩Xt. The family being locally trivial, we infer that X
orb ∩Xt = Xorb

t and
thus that Zt = Xt \X

orb
t .

Claim 7.3. Up to shrinking D, there exists a C∞ diffeomorphism F : X → X0 × D

commuting with the projection to D such that

(i) F preserves the orbifold locus, i.e. F (Xorb
t ) = Xorb

0 × {t}.

(ii) F |Xorb
t

: Xorb
t → Xorb

0 is smooth in the orbifold sense.

In this singular context, we mean that F is the restriction of a smooth map under
local embeddings in CN which induces an homeomorphism between X and X0 ×D.
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Proof of Claim 7.3. Let us start with the existence of the diffeomorphism F . To do so,
one can find a proper C∞ embedding ι : X →֒ CN thanks to [ABT79]. Next, extend π
smoothly to a smooth map f with support in a neighborhood of ι(X). Since π : X → D

is locally trivial, one can stratify X such that the restriction of π to each stratum is
proper and smooth (in the analytic sense, i.e. it is a submersion). The existence of F
then follows from Thom’s first isotopy lemma, cf [Mat12, Prop. 11.1].

In order to prove the two items in the claim, let us briefly recall the construction of
F in loc. cit. while emphasizing on the important points for our purposes. Start with
local holomorphic trivializations gα : Uα → (Uα∩X0)×D for a covering of analytic open

sets (Uα)α∈A of X, and let Z = ⊔Z(k) be the standard stratification of the analytic set

Z ⊂ X. The maps gα induces a local biholomorphism between Z(k) and Z
(k)
0 × D for all

k; in particular the holomorphic vector fields vα := g∗α
∂
∂t satisfy

vα
∣∣
Z(k) ∈ H0

(
Z(k),TZ(k)

)

Next, let (χα) be a partition of unity subordinate to the open cover (Uα)α∈A. The C∞

vector field v :=
∑
χαvα still satisfies

v|Z(k) ∈ C∞(Z(k), TZ(k)).

As showed in [Mat12], its flow (Ft) is well-defined over π−1(D1/2) for |t| < 1/2, and it

preserves Z(k) for all k, hence it preserves Z as well. Equivalently, the flow of v preserves
X
orb, which proves (i).
Moreover, v|Xorb is smooth in the orbifold sense (i.e. when pulled back to the local

smooth covers), a property which need not be true for arbitrary vector fields. This is
straightforward since the vα satisfy this property (they lift to holomorphic vector fields
on the quasi-étale local covers), and multiplying by smooth functions is harmless. In
order to prove (ii), let x0 ∈ Xorb

0 be an arbitrary point and let U ⊂ X
orb be a small

connected open neighborhood of x0 admitting a smooth quasi-étale cover p : Û → U .
We can find U ′ ⋐ U such that for |t| ≤ s (with s > 0 small enough) the flow Ft is defined
on U and satisfies Ft(U

′) ⊂ U . Remember that v̂ := p∗v|Ureg extends to a smooth vector

field on Û which we still denote by v̂, and whose flow we denote by F̂t. Since p is étale
over Ureg, uniqueness of flow ensures that we have a commutative diagram

p−1(U ′) p−1(Ft(U
′))

U ′ Ft(U
′).

p

F̂t

p

Ft

Indeed, since p is a local diffeomorphism over Ureg, we get

Ft ◦ p = p ◦ F̂t on p−1(Ureg),

hence everywhere by continuity of the above maps. In summary, Ft : U
′ → Ft(U

′) is an

homeomorphism which therefore lifts to the diffeomorphism F̂t between the manifolds
p−1(U ′) and its image p−1(Ft(U

′)). That is, Ft induces an orbifold diffeomorphism
between U ′ and Ft(U

′). Item (ii) is now proved. �
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Let us now consider the orbifold diffeomorphisms F orb
t : Xorb

t → Xorb
0 , and let h0 be

an orbifold Hermitian metric on TXorb
0

. Finally, let α0 be a closed orbifold form with

compact support on Xorb
0 representing a class a0 ∈ H2n−4(X0,R). We have

c̃2(X0) · a0 =

∫

Xorb
0

corb2

(
Xorb

0 , h0

)
∧ α0

=

∫

Xorb
t

(F orb
t )∗

(
corb2

(
Xorb

0 , h0

)
∧ α0

)

=

∫

Xorb
t

corb2

(
Xorb
t , (F orb

t )∗ht

)
∧ (F orb

t )∗α0

= c̃2(Xt) · F
∗
t a0

where the last line comes from the fact that we have a commutative diagram

H2n−4
dR, c

(
Xorb
t ,C

)
H2n−4(Xt,C)

H2n−4
dR, c

(
Xorb

0 ,C
)

H2n−4(X0,C)

∼

(F orb
t )∗

∼

F ∗

t

so that (7.1) is proved.
Finally, we must show that CX > 0. Since CX is invariant under locally trivial

deformation, one can use [BL22, Cor. 1.3] and [BGL22, Cor. 3.10] to deform X locally
trivially to a projective IHS variety Y . Proposition 7.1 shows that CY > 0, which
concludes the proof of the proposition. �

7.C. Simultaneous proof of Theorem 1.6 and Theorem B. Here we closely follow
the arguments from [CGG22, proof of Thm. 5.2].

Let (X,∆) be as in Setup 1.5 and such that c̃1(X,∆) = 0. We denote by X◦ :=
(X,∆)orb the open locus where the pair has quotient singularities, and set ∆◦ := ∆|X◦ .
It has been proved in [CGP23, Cor. 1.18] that abundance holds for such a pair and in
particular KX +∆ is torsion. We can then apply Proposition 2.5 and infer the existence
of an orbi-étale map f : Y → X such that

OY
∼= KY

∼= f∗(KX +∆).

Arguing as in the proof of formula (4.5), one has:

Lemma 7.4. We have the identity

(7.2) c̃2(Y ) · f∗(α)n−2 = deg(f) c̃2(X,∆) · αn−2.

Proof. Let a be an orbifold differential form of degree 2n − 4 with compact support in
X◦ representing αn−2 and let h be an orbifold Hermitian metric on Ω1

(X◦,∆◦). Consider

the space Y ◦ = f−1(X◦); by taking a fiber product with local smooth charts of X◦, it
follows easily from purity of branch locus that Y ◦ admits a smooth orbistructure and
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that f∗h induces an smooth Hermitian metric on ΩY ◦ . In particular, we have

c̃2(Y ) · f∗(α)n−2 =

∫

Y ◦

c2(ΩY ◦ , f∗h) ∧ f∗a

=

∫

Y ◦\f−1(supp∆)
c2(ΩY ◦ , f∗h) ∧ f∗a

= deg(f)

∫

X◦\supp∆
c2
(
Ω(X◦,∆◦), h

)
∧ a

= deg(f)

∫

X◦

c2
(
Ω(X◦,∆◦), h

)
∧ a

= deg(f) c̃2(X,∆) · αn−2,

which proves the lemma. �

Both members of the equation (7.2) being simultaneously non-negative or zero (and
f∗(α) still being a Kähler class on Y ), we shall replace X with Y and assume from now
on that there is no orbifold structure in codimension one, i.e. that ∆ = 0.

By [BGL22, Thm. A], there exists a finite, Galois quasi-étale cover f : X ′ → X such
that X ′ ∼= T ×

∏
i∈I Yi×

∏
j∈J Zj where T is a torus, Yi are CY varieties and Zj are IHS

varieties. By [GK20, Prop. 5.6], we have

c̃2
(
X ′

)
· f∗βn−2 = deg(f) c̃2(X) · βn−2,

while f∗β is still a Kähler class by [GK20, Prop. 3.5]. All in all, there is no loss in
generality assuming that X = X ′ is split, which we do from now on.

Since H1(Yi,R) = H1(Zj,R) = 0, the Künneth decomposition on the space H2(X,R)
enables us to write

β = p∗TβT +
∑

i∈I

p∗YiβYi +
∑

j∈J

p∗Zj
βZj

where βT , βYi and βZj
are Kähler classes on T, Yi and Zj respectively. In particular, we

get

c̃2(X) · βn−2 =
∑

i∈I

λi c̃2(Yi) · β
dim(Yi)−2
Yi

+
∑

j∈J

µj c̃2(Zj) · β
dim(Zj)−2
Zj

,

where λi, µj > 0 are positive combinatorial coefficients. Proposition 7.1 and Propo-
sition 7.2 imply that the above quantity is non-negative, and strictly positive unless
I = J = ∅; i.e. unless X = T is a torus. Theorem 1.6 and Theorem B are now proved. �

7.D. Proof of Corollary 1.7. To finish, we prove Corollary 1.7 by proving the various
implications separately, similar to Corollary 1.3.

(1.7.1) ⇒ (1.7.2). This is Theorem B.

(1.7.2) ⇒ (1.7.3). Let π : Cn → (X,∆) be the universal cover of (X,∆). Endowing the
orbifold (X,∆) with a metric, we infer that the group Γ := πorb1 (X,∆) is then (isomorphic
to) a discrete cocompact subgroup of Cn ⋊ U(n). We can then resort to Bieberbach’s
theorem and exhibit a finite index normal subgroup Λ ⊂ Γ that is a lattice Λ ⊂ Cn acting
by translation. The universal cover factors through the corresponding quotient:

Cn −−−−→ Cn
/
Λ

f
−−−−→ Cn

/
Γ = X,
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where f is the quotient by the action of the finite group G := Γ
/
Λ on the complex torus

T := Cn
/
Λ. Combining this with the fact that π is branched exactly at ∆, we infer that

f is orbi-étale.

(1.7.3) ⇒ (1.7.1). If f : T → X is a Galois orbi-étale map (for the pair (X,∆)) from
a complex torus, the section (dz1 ∧ · · · ∧ dzn)

⊗m is G-invariant, where G := Gal(f) and
m := |G|. This proves that m(KX +∆) ∼ 0 and thus that c1(KX +∆) = 0. Let ωT be
any Kähler metric on T and let us consider

ωf :=
∑

g∈G

g∗ωT .

It descends to an orbifold Kähler metric ωX on (X,∆) and, the map f being orbi-étale,
we have:

c̃2(X,∆) · [ωX ]
n−2 =

1

deg(f)
c̃2(T ) · [ωf ]

n−2 = 0.

Since [ωX ] is a Kähler class, this ends the proof. �
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