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Abstract—This article demonstrates a confidential data vulner-
ability in integrated circuits, especially in System-on-Chip (SoC)-
field programmable gate array (FPGA) circuits. We demonstrate
that the electromagnetic (EM) emanations of internal Advanced
eXtensible Interface (AXI) standard data buses are exploitable.
Electromagnetic pulses recorded by a near-field probe in the
vicinity of such data buses can be mapped to the underlying data
flux, just as an electrocardiogram (ECG) would map the heart
activity and blood circulation. This vulnerability is demonstrated
by spying on the EM emanations caused by internal buses
while MNIST handwritten digit images are sent through them.
The transmitted MNIST data are found to be framed by pre-
amble and post-amble signals enabling the detection of the
transmitted data themselves. Data (images, in this paper) are
then reconstituted by using a simple algorithm.

Index Terms—Electromagnetic side-channel attacks, near-
field, hardware security, on-chip communication buses, magnetic
probe.

I. INTRODUCTION

In recent years, a trend has developed towards automated ac-
celeration of artificial intelligence (AI) algorithms on special-
ized hardware such as SoC-FPGAs. Nowadays, Convolutional
neural networks (CNNs) are one of the most deployed Al tech-
nologies. They have shown state-of-the-art performance in sev-
eral application domains such as computer vision, autonomous
driving and medical imaging. Due to their extensive use and
rising popularity, many CNNs are now used for processing
a variety of sensitive and confidential data, and in particular,
confidential images. However, as for any computation, during
the inference process of CNNs on hardware accelerators,
unintended signals are produced from hardware, which are
called side-channels. These side-channels include variations
in energy consumption, EM emissions, temperature, etc. Em-
anations in the near-field or the far-field can be observed and
exploited to compromise secret information of the system,
particularly the structure of the CNN or the data processed by
the system. However, regarding the data themselves, they have
to be transmitted within the chip through dedicated buses. To
the best of our knowledge, this article is the first to highlight
the vulnerability of internal communication buses on SoC-
FPGAs, regardless of the process running inside the system.
This paper demonstrates the recovery of SoC-FPGAs internal
images, sent as inputs to the CNN implemented on the FPGA
while exploiting near-field EM emanations of AXI bus.

The paper is organised as follows. The background and
related work are briefly described in section II. The following
sections are devoted to methodology (section III), signal of in-
terest (section IV) and processing of trace signals (section V).
After that, section VI presents the results achieved before the
conclusion in section VII.

II. BACKGROUND AND RELATED WORK

EM side-channel analysis is a technique for spying on
computational activities and private data from unintentional
electromagnetic emissions [1]. In computer security, sensitive
assets should be protected from malicious access. We may
distinguish different types of assets:

(a) confidential, non-encrypted data [2] [3] [4],

(b) confidential, encrypted data with secret key [5] and

(c) confidential details about implemented algorithms and
models [6] [7] [8] [9].

Several research works based on EM side-channels have

proven successfully regarding these different aspects.

A. Non-encrypted data

In 1985, EM eavesdropping of computer display was first
demonstrated to the public by Van Eck using cathode-ray
tubes (CRT) [2]. Authors of [3] proved that this eavesdropping
methodology is not only limited to CRT but can also be applied
to modern flat panel displays. Recently, authors of [4] created
a novel EM-based approach that spies on a mobile device
screen, without a direct line of sight, exposing any private
data that may be displayed on there. It is safe to assume that
this non-encrypted private data from the screens and cables
can be compromised by EM side-channel analysis. In the
frame of TEMPEST, non-encrypted sensitive data are called
red data, and protection against EM eavesdropping requires
zoning protection.

B. Encrypted Data with Secret Key

Sensitive assets can sometimes be protected by encryption.
However, the secret key of an encryption algorithm can be
deduced from unwanted EM traces, strongly jeopardizing
system confidentiality and integrity. In [5], authors make an
investigation of EM side-channels produced by the execution
of Advanced Encryption Standard (AES) by three different im-
plementations 1) by an ARM integer core, 2) by a proprietary
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Fig. 1: Flow-chart of Bus ECG data retrieval from near-field probing.

co-processor and 3) by an ARM NEON Single-Instruction-
Multiple-Data core. The key is recovered by analyzing the
correlation of Hamming Weight to EM emanations. Once the
key is obtained, it enables the decryption of sensitive data. In
the frame of TEMPEST, encrypted data, protected by a secret
key, are called black data and would not require the same
zoning restrictions.

C. Details about implemented algorithms and models

1) Identification of Executed Operations: In addition to
the asset leakage from screens and cryptographic cores, EM
emanations can also expose other confidential information,
such as the operations of the system running inside the
hardware platform. Authors of [6] succeed in the identification
of three different cryptographic algorithms executed on the
two different hardware processor types (micro-controller and
micro-processor) running on Internet of Things (IoT) devices.
They are able to distinguish the executed algorithm between
3DES, AES-128 or AES-256, by processing EM signals. Then,
with the help of a simple neural network based classifier,
authors deduce the corresponding algorithm executed.

2) Recovery of neural network parameters: In the case of
Al application systems, especially neural networks (NNs), EM
side-channels can be associated with the retrieval of differ-
ent non-encrypted information such as NN parameters. CSI-
NN [7] fully reverse engineers the CNN parameters that should
have been kept secret. Authors recover the activation function,
pre-trained weights, number of hidden layers and neurons
in each layer from EM side-channel analysis. DeepEM [§]
demonstrates a new theft attack that uses EM emanations
to retrieve information about network architecture and the
designs inside SoC-based binarized neural network (BNN)
accelerators. Similarly, [9] demonstrates how an attacker can
do a full recovery of the secret BNN weights used in the
network by capturing EM traces emitted from a target FPGA
platform.

D. Current Work: Bus ECG

Unlike previous works mentioned above, our work develops
a new method to retrieve non-encrypted input images sent to a
BNN by taking advantage of the vulnerability of SoC-FPGA
data buses to EM analysis. In our case scenario, the non-
encrypted BNN input data, transferred through the internal
bus, is a private asset that should be kept secret. This would
correspond to red data in the frame of TEMPEST. However,

contrary to the normal TEMPEST scenario, we focus on near-
field attacks, where the embedded system platform executing
the classification operations is physically accessible in the
near-field to a potential attacker. This is the case for many civil
applications such as camera surveillance in train stations and
airports. Such systems are vulnerable as they are not covered
by TEMPEST protection rules.

III. METHODOLOGY

In the case of a typical scenario such as video surveillance,
smart cameras tend to embed more and more processing, im-
plementing near-sensor computing, such as neural network in-
ference, so as to reduce communication requirements between
systems. For these systems to remain low-power, hardware
accelerators such as FPGAs are commonly employed. Real-
time images recorded by the sensor are sent to the FPGA
where neural network inference is done. At the time images are
transferred through internal buses, this creates an opportunity
for capturing data using a near-field probe.

These electromagnetic emanations, converted to electric
signal traces, are collected via an oscilloscope connected
through a coaxial cable and a low-noise amplifier (LNA) to the
near-field probe. It requires a physical access to the targeted
system but remains a non-destructive approach.

The traces are then analyzed with only a partial knowledge
of the victim system. In our experimental case, this includes
the width of the bus and the general characteristics of the
transmitted input image. However, in general, data buses are
widely defined. The default width for standard data buses is
32-bit, whereas newer systems that have to deal with a large
amounts of data now have 64-bit buses [10]. This reduces
the possibilities of attacker’s guess on the bus width. As
for the characteristics of input image, most popular open
datasets, MNIST [11], SVHN [12], etc., disclose their basic
features to the public. Contrary to the majority of the works
in the state-of-the-art, one may note that the proposed side-
channel vulnerability in this work needs neither interacting
with the architecture of CNN, nor triggering its inference. This
significantly lowers the attacker constraints. Furthermore, no
a-priori knowledge of inference inputs and outputs, weights,
layers and neurons of the CNN is required.

The flow-chart of Bus ECG data retrieval is represented
schematically in Fig. 1. The acquisition of signals is triggered
by the bus data transmission protocol itself while the probe is
placed in a zone of interest. The waveform of the trace allows



the acquisition system to trigger and find out positively and
negatively polarized transient signals. This waveform is then
correlated to the Hamming Distance (HD) between successive
binary sequences on the bus. Such information is sufficient to,
at least approximately, reconstitute the transmitted image on
the bus. The principle will be implemented in detail in the
context of an application to a specific SOC-FPGA target.

IV. SIGNAL OF INTEREST
A. Test Bench

The above principle is experimented on a Pynq Z1 target
board which embeds a Zyng-7020 SoC-FPGA. Pynq Z1 is one
of the few boards supported by the FINN, which is a popular
framework by Xilinx for the generation and implementation of
pre-trained CNNs on FPGA targets. A SoC-FPGA contains an
ARM processor, also called Processing System (PS), and an
FPGA called Programmable Logic (PL). Among the default
FINN accelerators designed by Xilinx, we use BNN with
LeNet-5 architecture which is trained on the MNIST hand-
written character database. As mentioned in the section III,
the attacker can already predict that the expected image is in
gray scale formatted with 8 bits per pixel. BNNs are one of
the sub-categories of NNs with their weight values quantized
to either -1 or +1, hence, the name binarized. Pynq Z1 is
a device used specifically for IoT applications and owns the
advantage of not having a build-in heat-sink, which facilitates
the movements of a near field probe on the surface of the chip.
The AXI ports between the PS and the PL are configured with
a 32-bit data width and have access directly from the PL to the
dynamic random access memory (DRAM) memory controller
of the PS. The test bench hardware setup is illustrated in Fig. 2.
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Fig. 2: Hardware setup of the experiment

B. Identification of Signals of Interest

First, it is useful to locate the areas of the chip where the
leakage from AXI data transfer occurs. To do this, the surface
of the SoC-FPGA is scanned by a customized magnetic field
probe which is engraved on a dielectric substrate, as in Fig. 3.

Fig. 3: Customized near field H-probe

According to the documentation of the Xilinx Zyng-
7000 [13] the AXT buses ensuring the communication between
PS and PL is clocked at the frequency of 525 MHz. A
spectral analysis of the captured signals allows to formulate
the hypothesis of localization of the bus. Fig. 4 presents a
typical signature of the trace signals collected in the zone of
interest. This chosen time window illustrates the behavioral
difference between the absence and in the presence of images
transmitted periodically. In the absence of transmission, the
recorded signals are close to the noise floor.
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Fig. 4: Signals observed at the input of the oscilloscope
connected to the near-field magnetic probe (through a cable
and a LNA) in the zone of interest when the target is idle vs.
active.

C. Cartography

The EM cartography is produced with a spatial resolution
of 0.5 mm and the magnetic probe placed in vertical position
Fig. 3. Taking Fig. 5 as reference, the field components H,,
and H, are measured for both horizontal or vertical orientation
of the magnetic loop, respectively. The amplitude reported
in the coloured map represents the average of the positive
peaks of voltage difference in the trace signal when a checker
print image (to induce maximum Hamming Distance (HD)
between two bit sequences) is sent for inference. The measured
signal is indeed composed of a regular train of short pulses.
Fig. 6 shows the cartography with respect to H,, for the zone



indicated by the red box in Fig. 5. Field according to H,
was globally much weaker. This phenomenon is due to the
fact that the highest levels of potential difference are located
on a horizontal axis which, according to the manufacturer’s
datasheet, corresponds to the location of the AXI bus.

refer to
horizontal and vertical axis where field components H, and
H, are measured.
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Fig. 6: Cartography of the voltage difference at the input of
the oscilloscope using an horizontally oriented magnetic field
probe in the region of interest. The probe is sensitive to the
Hy component of the field, with y the vertical axis in Fig. 5.

V. PROCESSING OF TRACE SIGNALS
A. Acquisition and Processing of Traces

In these experiments, 200 traces per input image are cap-
tured. The measured signal comprises a Pre-amble and a Post-
amble which occur before and after data transmission. The
data traces capture is synchronized with the help of these
two data-independent signals, as illustrated in Fig. 7. The pre-
amble therefore allows a systematic triggering of the acquisi-
tion from the oscilloscope without an external synchronization

signal as recourse. Therefore, it is safe to assume that these
two signals define the start and end point of the data transfer
from PS to PL before the inference operation inside PL. After
the removal of pre-amble and post-amble from the collected
traces, the remaining data dependant signals are averaged 200
times to remove Gaussian noise floor.

80

Pre-amble Post-amble

60 7

Voltage in mV

Al

Data Trace

L

100 150 200 250 300 350 400 450

-6 | |
-50 V] 50

Time in ns

Fig. 7: Signal acquired by the oscilloscope at the output of the
near field probe during the transfer of an image on AXI bus.

B. Interpretation of Traces and Partial Recovery of Data

The data width of AXI bus defines the value of X, which
is the number of input pixels sent simultaneously on a single
clock cycle. The HD of two groups of X pixels sent between
two consecutive clock cycles represents the number of bit
positions in which a transition appears (from 0 — 1 or from
1 — 0). HD therefore provides important information about
the pixels transferred on the bus.

The peaks in the recorded trace represent the HD between
two successive groups of X pixels. The higher the amplitude of
the peak, the higher the HD value. Additionally, while placing
the magnetic probe in a specific polarity, if the pixel bit values
transmitted in cycle, #+1/ are greater than the bit values of the
previous cycle #, it can be assumed that a positive peak will
occur in the acquired trace signal. This positive peak represents
the upward transition among the X bits sent. On the contrary, if
the bit values of the pixels sent in the cycle ¢+ are lower than
the values of cycle ¢, the result is a negative transient signal
and it is interpreted as a downward transition. A positive bit
transition (respectively negative) on the AXI bus corresponds
to the the charge (respectively discharge) to the output gate
capacitance and the parasitic capacitance of the bus lines. It
has also been verified that by rotating the probe by 180°, the
polarisation of the peaks are reversed which seems to confirm
the detection of a magnetic flux through the loop. Note that
signed HD is sensitive to the transition of bits between two
successive group of pixels sent per clock cycle and not to the



values of the pixels directly. Thus, some information is lost
in the interception process. Despite this loss, a great deal of
information is disclosed and can be exploited.

The detection of positive and negative peaks requires the
selection of two appropriate thresholds. After observation of
a large number of traces, these thresholds have been set
empirically at 40% of the maximum value of the positive
peaks and 25% of the maximum amplitude of the negative
peaks. These choices ensure a good discrimination between
data signal and noise and decrease the risk of false detection.
These thresholds are to be defined once before the attack, and
do not depend on the application on the targeted PL.

C. Image Reconstruction Algorithm

We propose here a method to reconstruct the binarized
format of the original image. Due to the fact that the transitions
on the least significant bits cannot be distinguished from
the transitions on the most significant bits, the binarization
becomes the best modality as it allows the extraction of
decent amount of information with a limited complexity. The
reconstruction of the image is done in sequence, pixel by
pixel until the image matrix is obtained entirely. This matrix
is first initialized to a certain pixel value, for instance, the
background color (e.g., black). The dimension of the matrix is
assumed to be known beforehand as the standard image size
of MNIST dataset is public knowledge. Let X be the number
of pixels transmitted simultaneously (X = 4 for a 32 bit bus).
The processed trace signal is taken and its amplitude (voltage)
values at each time instant are scanned. Once it has reached the
positive threshold, the detection of a positive peak is triggered.
As a result, the value of the pixel in that specific position, as
well as the next X — 1 pixels in the scanning order of the
image frame are assigned to the white color. This white pixel
value is kept for all the following pixels until the detection of
a new negative threshold is triggered. In the same way, when a
negative threshold is reached, the corresponding pixels group
in the matrix and its following X —1 pixels are set to the black
value until the next positive peak is detected. This procedure
is repeated until the end of the EM trace. Therefore, all pixels
of the image are assigned to either black or white color.

VI. RESULTS

The experimental results presented in this article are ob-
tained from 8-bit pixel images of 28 x 28 in size. Since the AXI
ports are configured to the data width of 32 bits, a group of 4
pixels is sent through the bus per clock cycle. The detection
of peaks in the trace signal therefore represents the HD of
two consecutive groups of 4 pixels sent between two clock
cycles. To start the reconstitution of input images, a 2D image
matrix of 28 x 28 (same size than the original image to be
recovered) is first initialized with all values assigned by an
assumed background color, in this case, black.

The tests have been performed using a set of images from
the MNIST database containing handwritten numbers. This
database serves as a training base for our BNN, implemented
on FPGA. The examples of results obtained with Bus ECG are

Fig. 8: First line: original MNIST images fed to the BNN.
Second line: recovered images from Bus ECG with 200
averaged traces

presented in Fig. 8. The first row of numbers corresponds to
the original input images transmitted to the FPGA by the AXI
bus. The second line of numbers corresponds to the recovery
of the images from the traces acquired using the algorithm
mentioned in Section V-C. Each image is transmitted a certain
number of times in order to increase the signal-to-noise ratio
by averaging. This is a common practice to evaluate the
information carried by a side-channel signal [5]. In our case,
each image is transmitted 200 times, which is realistic in a
video camera surveillance as it will correspond to around 8
seconds for a video camera with standard frame rate of 24
frames per second (FPS). In these conditions, the restitution of
the pixel information carried by the images is almost perfect.

VII. CONCLUSION

This work has shown that the internal AXI bus of a SoC
FPGA can become the target of a malicious exploitation using
an electromagnetic side-channel attack. The EM emanations
of the chip can be extracted and exploited using a near field
magnetic probe located at the surface of the component. A
methodology has been used to demonstrate that internal secret
images can be reconstructed from trace signals. Since the
exploited vulnerability exploits an AXI communication bus,
this attack is likely not to be limited to SoC-FPGAs and may
be applicable to other hardware platforms as long as they
contain similar internal buses for data transmission. Even if the
network exchanged data are encrypted, once the data is inside
the chip, it usually circulates as non-encrypted data on internal
buses. One may also note that the magnetic field sensor can be
made very small, making it possible to hide a surface sensor
inside a package. Countermeasures to prevent this Bus ECG
side-channel analysis are still to be deployed, and may impact
the cost and energy consumption of the system. Future work
will be devoted to the implementation of the attack on different
types of data and different SoC platforms in order to prove that
the threat exists in a large set of systems and applications.
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