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Abstract—Image and video compression aims at finding an
optimal trade-off between rate and distortion. This is done
through Rate-Distortion Optimization (RDO) in traditional en-
coders with the use of Image Quality Assessment (IQA) metrics.
While it is known that most IQA metrics are designed to be
correlated with human perception, there is no evidence that this
observation can be generalized in a Video Coding for Machines
(VCM) context, where the receiver is not a human anymore but
a machine. In this paper, we propose an evaluation protocol
to measure the correlation level between conventional Full-
Reference (FR) IQA metrics and machine perception through
the semantic segmentation vision task. Experiments showed a
relatively low correlation between them when measured on
the block-level. This observation implies the need of RDO
algorithms that are better suited for Machine-to-Machine (M2M)
communications. In order to facilitate the emergence of IQA
metrics that better reflect machine perception, the code and
dataset used to perform this study is made freely available at
https://github.com/albmarie/iqa m2m segmentation.

Index Terms—Image Quality Assessment (IQA), Video Coding
for Machines (VCM), Machine-to-Machine (M2M), block-based,
compression, Rate-Distortion Optimization (RDO)

I. INTRODUCTION

For decades, large gains in image and video coding ef-
ficiency have been accomplished with modern compression
standards such as Advanced Video Coding (AVC), High
Efficiency Video Coding (HEVC) or Versatile Video Coding
(VVC). The pursued goal is to achieve an optimal trade-off
between the rate and the quality as perceived by the Human
Visual System (HVS). However, new kind of transmissions
known as Machine-to-Machine (M2M) communications is
growing exponentially, with a 4-fold increase in the last 5
years [3]. In 2023, M2M connections represents half of the
global connected devices and connections. The objective of
visual content compression in the M2M context is now to
preserve the quality as perceived by the machines, which refers
to the vision task performance of machines. To this end, the
Motion Picture Expert Group (MPEG) created the Video Cod-
ing for Machines (VCM) group in 2019 to propose a bitstream
standardization in the context of M2M transmissions [36].

In conventional compression for HVS, Rate-Distortion Op-
timization (RDO) is employed, where the distortion level can

be quantified by comparing the distorted image to its corre-
sponding pristine reference using Full-Reference (FR) Image
Quality Assessment (IQA) metrics. Two of the most common
ones are Peak Signal to Noise Ratio (PSNR) and Structural
SIMilarity (SSIM) [29]. While existing IQA metrics have
shown good correlation with human perception measured by
the Mean Opinion Score (MOS) on multiple large-scale IQA
datasets [13], [20], there is no evidence that this observation
generalizes to machine perception. A low correlation between
IQA metrics and vision task algorithms performance would
imply at the very least a sub-optimality in the optimization
problems using such metrics as a distortion measure in a VCM
context.

This paper aims to assess the relevance of existing FR IQA
metrics used in RDO methods for the VCM context. More
precisely, the correlation between conventional metrics and
machines performance when images are subject to various
compression artifacts is evaluated. We also propose to measure
the correlation on a block-level, since RDO based encoders
determine the best encoding modes according to a FR metric
for each block separately. To the best of our knowledge, no
existing works in the literature have evaluated the correlation
between existing metrics and machine perception. Conflicting
conclusions could be drawn from the state of the art, as some
studies might suggest that the correlation would be high while
other studies might indicate the opposite. On top of performing
a deep quantitative evaluation, the built dataset used to perform
this study is made freely available to facilitate the emergence
of novel IQA metrics that better reflect machine perception.

Our work is presented as follows. Related works are
presented in Section II. Section III presents the evaluation
protocol. Experimental results are presented and discussed in
Section IV. Finally, Section V concludes the paper.

II. RELATED WORK

Image Quality Assessment (IQA) is a research field that
aims at finding visual content quality models that match the
HVS perception. One metric group, referred to as FR metrics,
consists of measuring the degradation within an image com-
pared to a pristine reference image. As it was observed that the
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Fig. 1: Used pipeline to compute Image-level (left) and Block-level (right) correlation between conventional metrics and
accuracy values pairs. S0 denotes a segmentation algorithm where model weights were trained using pristine images. Models
SCi are obtained by using images compressed by the lossy compression scheme Ci at training, as described in Section III-A.
Note the presence of pseudo Ground Truth (GT) P and not the real GT to compute accuracy.

TABLE I: Considered hyper-parameters for the lossy compres-
sion scheme.

Downsampling JPEG JM, x265 and
factors qualities VVenC QPs
0.25 5, 7, 10, 15 0, 5, 10, 15

0.5, 0.75 20, 25, 30, 35 20, 25, 30, 35
1.0 50, 70, 90 40, 45, 50

legacy PSNR metric lacks correlation with human perception,
many IQA metrics have been proposed over the years. These
metrics include similarity based metrics such as the SSIM [29]
index and its multi-scale variant MS-SSIM [28], Feature SIM-
ilarity (FSIM) [34], Spectral Residual based SIMilarity (SR-
SIM) [32]. More recently, Learned Perceptual Image Patch
Similarity (LPIPS) [35] Deep Image Structure and Texture
Similarity (DISTS) [6], which are deep learning based metrics,
have shown good performance on many IQA databases such
as TID2013 [20], CSIQ [13] or LIVE [24].

While it is well established that existing IQA metrics
correlate well with human perception, few studies related to
machine perception have been conducted. Fischer et al. [8]
proposed to replace default distortion metric in VVC Test
Model (VTM) by a learning based feature extractor and
they showed that 5.49% bitrate saving can be achieved at
equivalent vision task accuracy compared to VTM anchor.
Other work [9], [14] showed that remarkable bitrate reduction
of around 40% is achievable over VTM at equivalent vision
task performance. This is done by training in a end-to-end
fashion an auto encoder followed by a network performing
a vision task where the objective is to jointly minimize the
prediction error and the rate. Studies related to the concept
of utility [12], [22] found that a metric optimized to predict
quality scores might not be able to predict utility scores
accurately. On another side, Leszczuk et al. showed that a set
of IQA metrics are able to predict with high confidence the
performance of machine in a face recognition task [16] and a

license plate recognition task [15], indicating that correlation
between existing metrics and machines performance may be
high.

III. EVALUATION PROTOCOL

This section introduces the method used to evaluate the
correlation of FR IQA metrics with the accuracy of Deep
Neural Network (DNN) performing a vision task algorithm.

A. Built dataset

Figure 1 presents the pipeline that is used to measure the
correlation between IQA metrics and DNN performance.

First, a set of pristine images I must be selected to perform
the evaluation. The #D = 500 validation images from the
Cityscapes [5] dataset are considered in this study, which con-
tains urban landscapes as seen from a driving car perspective.

In the context of VCM, it is desirable to send a minimal
amount of information through M2M transmission. Trans-
mitted images are thus compressed images Î , containing
compression artifacts compared to raw images I . Thus, a lossy
compression scheme C is used to obtain compressed images
Î from pristine images I . We refer to a lossy compression
scheme as a scheme involving the following steps: image
downsampling, encoding, decoding and upsampling back to
original image resolution. As it has been shown that image
downsampling was a crucial part to obtain optimal trade-
off between rate and DNN performance [14], [18], we in-
clude it in the lossy compression scheme through bicubic
interpolation under 4 different downsampling factors. JPEG,
JM, x265 and VVenC lossy compression algorithms, each
with 11 different levels of quantification are applied. For JM,
x265 and VVenC that are respectively AVC, HEVC and VVC
based video encoders, all-intra configuration is used as the
Cityscapes dataset is composed of still images. JM-19.0 [26],
VideoLAN organisation implementation for x265 [19] with
preset slow and VVenC [1] with preset fast are used. In total,
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Fig. 2: (a) Example of an original image I , (b) associated real
GT and (c) pseudo GT P .

#C = 4 × 4 × 11 = 176 coding configurations for the lossy
compression scheme are involved to encode all #D = 500
images from the dataset. More details are provided in Table I
for hyper-parameters such as downsampling factors, JPEG
qualities, and JM/x265/VVenC Quantization Parameter (QP)
within each codec.

In this study, a DNN performing semantic segmentation
vision task is considered as a measure of machine perception
in a VCM context. Since pixel-wise predictions are obtained
through the segmentation vision task, correlation measurement
can be performed on a local scale as depicted is Section III-E.
This does not apply for other vision tasks such as classi-
fication or object detection where some image areas may
not contain any object. DNN model DeepLabV3+ [2] with a
ResNet50 [11] backbone is employed for this purpose, using
MMSegmentation [4] implementation. We denote the model
trained with pristine image I and GT labels as S0. Once
trained, pseudo GT predictions P can be obtained by inputting
the #D validation images I to the DNN model S0.

As shown by the literature, a DNN trained on losslessly
compressed images I such as original Cityscapes dataset
generalizes poorly to compressed images Î , as DNN would
encounter artifacts that were not present at training time [7],
[17], [18]. To mitigate this bias, progressive training [18] is
employed to obtain segmentation models SCi

that are resilient
to artifacts generated from coding configuration Ci, i ∈
{1, 2, 2 . . . ,#C}. In a nutshell, progressive training allows
training one DNN model on multiple coding configurations at
once by progressively strengthening the degradation level as
training progresses. Once trained, predictions on compressed
images P̂ are obtained by inputting the #D validation images
I to SCi

. Note that the design choice of having separate
DNN weights for each coding configuration is a limitation
in a real world application. However, this design choice does
not introduce any bias about the DNN ability to generalize on
broad set of distortions.

B. Considered IQA metrics

Multiple FR IQA metrics are considered in this study,
namely PSNR, SSIM [29] and its multiscale variant Mul-
tiScale Structural SIMilarity (MS-SSIM) [28], FSIM [34],
SR-SIM [32], Gradient Magnitude Similarity Deviation
(GMSD) [30] and its multiscale variant MultiScale Gradient
Magnitude Similarity Deviation (MS-GMSD) [31], Visual
Saliency based Index (VSI) [33], Haar Perceptual Similar-
ity Index (HaarPSI) [21], Mean Deviation Similarity Index
(MDSI) [37], LPIPS [35] and DISTS [6]. For LPIPS, the
VGG [25] network is used. Metrics are computed using
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Fig. 3: Probability density functions of 212 blocks of size
32 × 32 using (a) uniform random distribution, proposed
block sampling (b) without exclusion of blocks containing
unlabeled pixels in real GT and (c) with exclusion. Brighter
areas indicates areas that happened to be within a large number
of randomly drawn blocks.

grayscale component for both image and block level. PIQ
and PIQA [23] libraries are considered for IQA metrics
implementation.

C. Machine perception measure

To measure DNN performance, one could simply use the
mean Intersection over Union (mIoU) score, as it is one of
the reference DNN performance measure for segmentation.
However, mIoU comes with several limitations, especially for
the block-level experiment where blocks may contains very
few classes if not only one. mIoU is computed by averaging
the IoU of each class within an image. IoU is given by the
formula:

IoU =
p ∩ t

p ∪ t
(1)

where p and t are general notations that represents a
prediction image and a true label image, respectively. Consider
an extreme case where a true label block contains only one
class e.g. road, except for one pixel belonging to another class,
such as car. In this example where the block contain a total of
N2 pixels, predicting the class road for the whole block would
give an IoU of N2−1

N2 for the class road, and an IoU of 0 for
the class car. The final mIoU would be N2−1

2N2 ≈ 1/2. Note
that the mIoU is far from a perfect score of 1, even though
only one pixel was misclassified. Similar case can occur since
predictions P̂ tends to be unstable on object edges when Î
is subject to various artifacts. Therefore, instead of mIoU,
pixel-wise accuracy ∈ [0, 1] is used as the DNN performance
measure to measure correlation with IQA metrics. In the above
example, accuracy would be 1− 1/N2, which is close to 1.

Accuracy can be computed by comparing prediction P̂ with
a reference denoted as real GT. However, it should be noted
that predictions P on losslessly compressed images I may
differ from real GT, whereas a IQA metric would return a
score indicating no degradation if an image I is compared
to itself. In order to mitigate the bias where DNN prediction
on pristine images I are not always equal to real GT, pseudo
GT is used as proposed by Fischer et al. [10]. Pseudo GT
consists of using DNN prediction on pristine data I as a GT
instead of using the real GT at evaluation. Figure 2 illustrates
the difference between real GT and pseudo GT for one given
image. Using pseudo GT ensures that a score indicating
no degradation is obtained for the DNN performance when



an undistorted image I is fed to the vision task algorithm,
similarly to FR IQA metrics.

Correlation between IQA metrics and DNN performance is
measured with Spearman Rank-Order Correlation Coefficient
(SROCC), Pearson Linear Correlation Coefficient (PLCC) and
Kendall Rank-Order Correlation Coefficient (KROCC). The
correlation measurement is also performed both on image-
level and block-level, as described in Section III-D and Sec-
tion III-E.

D. Image Level

On the image-level, the whole images I and Î are used
to compute FR IQA metrics, and the whole pseudo GT P
and prediction P̂ are used to compute accuracy. For this
experiment, conventional metrics and accuracy on all #D
images across the dataset are computed exhaustively, using
all #C compression schemes as described in Section III-A.
Therefore, correlation is measured on a total of #C × #D
pairs of values.

E. Block Level

When image or video is encoded using RDO, conventional
metrics are not computed on the whole image I and Î , but
rather on smaller images sections denoted as blocks [27].
Ultimately, an optimal trade-off between the rate and the
quality as perceived by the used metric is found. For this
reason, a block-level experiment is conducted on a subpart
of images I , Î , P and P̂ . Using a block sampling algorithm
explained below, correlation is then measured on blocks BI ,
BÎ , BP and BP̂ . A total of #B blocks for each considered
block size is considered for this experiment.

The proposed block sampling algorithm aims at drawing
the same number of blocks with low and high accuracy of a
fixed size N×N . Let k ∈ N be a parameter used to divide the
possible set of accuracy values ∈ [0, 1] into k disjoint sets such
that the jth subset with 0 ≤ j < k corresponds to the subset
[ jk ,

j+1
k [ of accuracy scores, except for j = k−1 where j+1

k =
1 is included in the subset. First, let j be the jth subset drawn
with a uniform probability distribution function out of the k
subsets. Then, an image I and a coding configuration Ci is
drawn with a uniform probability distribution among the #D
images from the dataset and the #C coding configurations,
respectively. Once corresponding pseudo GT P and prediction
P̂ are obtained, a mask M is built such that:

M(x, y) =

{
1 if P (x, y) = P̂ (x, y)

0 else
(2)

where x and y refers to coordinates in the image domain. In
order to count the number of correctly classified pixels in a
N × N window around each pixel, an image S = M ∗ K
is obtained by performing a convolution on mask M with a
separable kernel K = 1N×N containing only ones. Let IW
and IH be the image width and height in pixel respectively.
Based on S, we can determine a set V of valid block
coordinates x ∈ [0, IW [, y ∈ [0, IH [ with an accuracy in the
jth subset, such that (x, y) ∈ V if:
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Fig. 4: Obtained accuracy scores for 212 blocks of size 32×32
using (a) uniform random and (b) proposed block sampling.

{
S(x, y) ∈ [jN2/k,N2] if j = k − 1

S(x, y) ∈ [jN2/k, (j + 1)N2/k[ else
(3)

Finally, a block with coordinates (x, y) can be drawn with
a uniform probability distribution from all candidates in V .
If no valid candidates were found and #V = 0, then the
block search is performed again with the same subset j, but
on a new image I and coding configuration Ci till #V ≠ 0.
As this block sampling algorithm allows to find exhaustively
all valid block coordinates within a image, any infinite loop
problem when #V = 0 is avoided. As shown in Figure 4.b,
accuracy of drawn blocks are now perfectly balanced across
the k subsets. Note that sampling blocks randomly within an
image using a uniform probability distribution function would
have lead to a very strong imbalance of accuracies values.
Figure 4.a highlight that more than 80% of blocks would have
an accuracy greater than 0.9 with such uniform block sampling
strategy, which is not ideal to compute correlation.

Figure 2 illustrates the difference between real GT and
pseudo GT P . As it can be seen, some pixels do not belong
to any class in the real GT, i.e. pixels of the car being driven.
Since DNN was trained only with labeled pixels, pseudo GT
tends to be noisy in these areas with only slight artifacts.
Consequently, unlabelled areas seem to be privileged by the
proposed block sampling algorithm, since these noisy areas
tend to have a wide range of accuracy scores from low to high,
as opposite to other part of the image where there are mostly
blocks with high accuracy. This phenomenon can be observed
in Figure 3.b. To mitigate this bias of selecting mostly blocks
of low relevance, a block coordinate in V is considered valid
if the corresponding block in the real GT does not contain
any pixel with unlabelled data. Figure 3.c illustrates the new
probability density function, where most blocks are drawn in
meaningful areas, i.e. in areas that are the most critical when
driving.

For this experiment, a total of #B = 212 blocks are
sampled for each block size using the proposed block sampling
algorithm with k = 10. Considered block sizes are 32 × 32,
64× 64 and 128× 128.



TABLE II: Image-level and block-level correlations scores.

Image-level Block-level, 32× 32 Block-level, 64× 64 Block-level, 128× 128
Metric PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC PLCC SROCC KROCC
PSNR 0.5807 0.6992 0.5065 0.0036 0.0008 0.0003 0.0474 0.0500 0.0330 0.1589 0.1567 0.1042
SSIM 0.6060 0.6723 0.4823 0.0032 0.0031 0.0023 0.0245 0.0222 0.0149 0.1058 0.1099 0.0736

MS-SSIM 0.6527 0.6975 0.5038 NaN NaN NaN 0.0425 0.0693 0.0456 0.1308 0.1696 0.1129
FSIM 0.6748 0.6805 0.4887 0.0153 0.0312 0.0213 0.1234 0.1355 0.0903 0.2491 0.2575 0.1732

SR-SIM 0.6617 0.6922 0.4999 0.0095 0.0062 0.0041 0.0182 0.0175 0.0122 0.0715 0.0903 0.0612
GMSD 0.6669 0.6973 0.5047 0.0515 0.0438 0.0294 0.1075 0.1193 0.0788 0.2273 0.2340 0.1568

MS-GMSD 0.6718 0.6989 0.5063 0.0497 0.0377 0.0255 0.1032 0.1116 0.0739 0.2258 0.2315 0.1550
VSI 0.6148 0.6538 0.4664 0.0372 0.0383 0.0258 0.1202 0.1299 0.0870 0.2420 0.2603 0.1760

HaarPSI 0.6679 0.6820 0.4900 0.0658 0.0530 0.0356 0.1301 0.1347 0.0894 0.2711 0.2738 0.1840
MDSI 0.6630 0.6888 0.4968 0.0293 0.0224 0.0154 0.0742 0.0728 0.0484 0.1712 0.1652 0.1108
LPIPS 0.5821 0.6636 0.4742 0.0561 0.0552 0.0371 0.1751 0.1747 0.1165 0.3067 0.3181 0.2139
DISTS 0.6633 0.6692 0.4781 0.0496 0.0441 0.0296 0.1629 0.1634 0.1092 0.3160 0.3276 0.2216

(a) Pseudo GT P (b) Comp. image Î (c) Prediction P̂

Fig. 5: Example indicating that blocks containing simple
areas such as road, building or vegetation can stay correctly
classified even under extreme degradation. It is possible to find
blocks with perfect accuracy where Î is composed of a single
luminance value.

IV. RESULTS AND DISCUSSION

Correlation of IQA metrics with DNN accuracy for image-
level and block-level is given in Table II. Note that absolute
value of IQA metrics are used to compute SROCC, PLCC
and KROCC in order to obtain positive correlation scores
for all metrics. As it can be seen, there is a quite high
correlation between IQA metrics and DNN accuracy on the
image-level experiment, with SROCC scores lower but close
to 0.7 for most metrics. In other terms, given a IQA metric
score, one can predict with a relatively high confidence the
proportion of correctly classified pixels. Intuitively, a low level
of degradation in compressed images Î keep predictions P̂
close to pseudo GT P , while a higher level of degradation
will generally imply lower accuracies.

On the block-level, correlation is much lower. As block
size gets lower, IQA metrics and accuracy become less and
less correlated. While LPIPS and DISTS manage to achieve a
correlation above 0.3 using SROCC or PLCC on 128 × 128
blocks, no metric is able to reach a correlation of 0.1 on 32×32
blocks. Indeed, the block-level experiment highlight the lack
of ability of existing IQA metrics to predict DNN accuracy on
a local standpoint. Figure 5 shows that it is possible to find
blocks where IQA metrics indicate a very poor quality while
the accuracy is perfect. In contrast, slightly distorted image Î
could alter predictions P̂ from pseudo GT P since DNN can
lack of resilience to adversarial attacks. Therefore, the higher
correlation on the image-level comes from the greater content
diversity within each image, since conventional metrics are
unable to give accurate predictions on a local scale.

The lack of correlation on the block-level has profound
implication on encoder design. Nowadays, most encoders are
based on AVC, HEVC or VVC standards, which imply the
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Fig. 6: Scatter plots between accuracy and (a) LPIPS on 64×64
blocks, (b) DISTS on 128× 128 blocks.

use of a RDO algorithm to determine appropriate encoding
decisions. RDO aims at minimizing blocks degradation ac-
cording to a FR metric under a given rate constraint. Note
that the RDO algorithm may have to tackle even smaller
blocks than considered ones in this study. As an example,
some VVC based encoders may use blocks down to 4 × 4,
where correlation would be even harder to obtain. Since all
considered metrics fails to achieve high level of correlation
with DNN accuracy, minimizing such metric may not translate
in better DNN performance.

Figure 6 presents scatter plots with FR metrics against
accuracy. Considered metrics are the ones with the best corre-
lation, namely LPIPS and DISTS. Even though these metrics
are the ones with the best correlation, DNN accuracy cannot
be inferred based on the metric score since a clear relation
between the two variable cannot be found. Note that LPIPS
and DISTS are based on deep models such as VGG [25],
which are unsuited for RDO since the distortion measure may
be called millions of times in modern codecs for each frame
in a video when a high quality is desired.

Based on the observation that existing metrics are not
correlated with machine perception, it is desirable to propose
a suitable metric in the VCM context. To this end, the built
dataset to perform this study is made freely accessible to
facilitate future works on this topic.

V. CONCLUSION

In this paper, we evaluated correlation of FR IQA metrics
with DNN prediction accuracy for the semantic segmentation
vision task on various coding configurations including multiple
image resolutions and multiple encoders. A novel evaluation



protocol in the context of VCM is used to perform this
experiment, using pseudo GT and DNN trained on distorted
data. Experiments indicate a low correlation of conventional
IQA metrics with machine perception, especially on a block-
level. Therefore, existing FR metrics used in RDO process or
end-to-end encoders appear inappropriate in the VCM context.
Novel FR metrics that achieve higher correlation with machine
perception would enable better encoding choice and therefore
greater trade-offs between rate and DNN accuracy. In order to
encourage the emergence of such metrics, the dataset used in
this work is made publicly available.
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Image Compression for Machines Using Latent Space Masking. IEEE
Transactions on Circuits and Systems for Video Technology, pages 1–1,
2022.

[10] Kristian Fischer, Markus Hofbauer, Christopher Kuhn, Eckehard Stein-
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