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Abstract

There are two classical very different extensions of the well-known Gaussian fractional
Brownian motion to non-Gaussian frameworks of heavy-tailed stable distributions: the
harmonizable fractional stable motion (HFSM) and the linear fractional stable motion
(LFSM). As far as we know, while several articles in the literature, some of which appeared
a long time ago, have proposed statistical estimators for the parameters of LFSM, no
estimator has yet been proposed in the framework of HFSM. Among other things, what
makes statistical estimation of parameters of HFSM to be a difficult problem is that, in
contrast to LFSM, HFSM is not ergodic. The main goal of our work is to propose a new
strategy for dealing with this problem and obtaining solutions of it. The keystone of our
new strategy consists in the construction of new transforms of HFSM which allow to obtain,
at any dyadic level, a sequence of independent stable random variables.

Running head: Estimation of Harmonizable Fractional Stable Motion

AMS Subject Classification (MSC2020 database): 60G22, 60F15, 60H05.

Key words: Heavy-tailed stable distributions, hamonizable fractional processes, non-ergodicity,
laws of large numbers, discrete wavelet transforms.

1 Introduction and statement of the two main results

A real-valued harmonizable fractional stable motion1 (HFSM), denoted by {X(t)}t∈R, is a
paradigmatic example of a continuous symmetric stable self-similar stochastic process with
stationary increments. It was introduced, about 35 years ago, by Cambanis and Maejima in
[9]. Basically, it depends on two parameters: the Hurst parameter H belonging to the open
interval (0, 1), and the stability parameter α belonging to the interval (0, 2]. Among other

1Notice that the HFSM is somtimes called harmonizable fractional stable process.
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things, the parameter H governs roughness of sample paths of {X(t)}t∈R and its self-similarity
property: {

a−HX(at)
}
t∈R

d
= {X(t)}t∈R, for any fixed a ∈ (0,+∞),

where
d
= means that the equality holds in the sense of the finite-dimensional distributions.

While the parameter α determines heaviness of tails of marginal distributions of {X(t)}t∈R:
except in the very particular Gaussian case α = 2 in which the probability P

(
|X(t)| ≥ z

)
vanishes exponentially fast when z → +∞, for any other value of α, one has, for each fixed
t 6= 0 (notice that X(0)

a.s.
= 0),

c′(t)z−α ≤ P
(
|X(t)| ≥ z

)
≤ c′′(t)z−α, for all z ∈ [1,+∞),

where 0 < c′(t) < c′′(t) are two finite constants.
The HFSM {X(t)}t∈R is defined, for all t ∈ R, through the stable stochastic integral in the

frequency domain:

X(t) := Re
(∫

R

eitξ − 1

|ξ|H+1/α
dM̃α(ξ)

)
, (1.1)

where M̃α is a complex-valued rotationally invariant α-stable random measure with Lebesgue
control measure. A detailed presentation of such a random measure and the corresponding
stable stochastic integral and related topics can for instance be found in Chapter 6 of the
well-known book [19]. The following remark, which provides two very important properties of
this stochastic integral, will play a fundamental role in our work.

Remark 1.1

(i) The stable stochastic integral
∫
R
(
·
)
dM̃α is a linear map on the Lebesgue space Lα(R)

such that, for any deterministic function g ∈ Lα(R), the real part Re
( ∫

RN g(ξ) dM̃α(ξ)
)

is a real-valued Symmetric α-Stable (SαS) random variable with a scale parameter sat-
isfying

σ
(

Re
{∫

R
g(ξ) dM̃α(ξ)

})α
=

∫
R

∣∣g(ξ)
∣∣α dξ. (1.2)

The equality (1.2) is reminiscent of the classical isometry property of Wiener integrals;

in particular, it implies that Re
{ ∫

R gn(ξ) dM̃α(ξ)
}

converges to Re
{ ∫

R g(ξ) dM̃α(ξ)
}

in
probability, when a sequence (gn)n converges to g in Lα(R).

(ii) Let m ∈ N be arbitrary and let f1, . . . , fm be arbitrary functions of Lα(R) whose supports
are disjoint up to Lebesgue negligible sets, then the real-valued SαS random variables
Re
{ ∫

R f1(ξ) dM̃α(ξ)
}
, . . . ,Re

{ ∫
R fm(ξ) dM̃α(ξ)

}
are independent.

In the very particular Gaussian case where the stability parameter α = 2, the HFSM repre-
sented by (1.1) reduces to the very classical Gaussian fractional Brownian motion (FBM) with
Hurst parameter H, denoted by {BH(t)}t∈R. It is well-known that, up to a deterministic mul-
tiplicative constant, the Gaussian process {BH(t)}t∈R can also be represented as a moving av-
erage stochastic Wiener integral in the time domain, whose integrand is no longer the complex-

valued function ξ 7→ eitξ−1
|ξ|H+1/α but the real-valued function s 7→

(
(t − s)H−1/2+ − (−s)H−1/2+

)
.
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One recalls, in passing, the usual convention that, for all (x, β) ∈ R2,

(x)β+ := xβ when x > 0 and (x)β+ := 0 else.

When the stability parameter α 6= 2, the HFSM in (1.1) can no longer be represented as
a moving average stable stochastic integral in the time domain. Actually, it is very different
from the real-valued linear fractional stable motion (LFSM) {L(t)}t∈R defined, for each t ∈ R,
by

L(t) :=

∫
R

(
(t− s)H−1/α+ − (−s)H−1/α+

)
dMα(ds), (1.3)

where Mα is a real-valued α-stable random measure. The large differences between the two
processes {X(t)}t∈R and {L(t)}t∈R can be explained by several reasons. Let us mention two
important ones of them: (1) in contrast to the process {L(t)}t∈R the process {X(t)}t∈R is
not ergodic, (2) behavior of sample paths of {L(t)}t∈R and {X(t)}t∈R is far from being the
same. Indeed, sample paths of {L(t)}t∈R are multifractal functions (see [7]) which become
discontinuous when H ≤ 1/α and even unbounded on any interval when H < 1/α (see for
example [19, 12]). While those of {X(t)}t∈R are Hölder continuous of any order strictly less
than H for any value of H ∈ (0, 1) (see [13, 14, 19, 12]), namely, for each fixed δ > 0 and
T > 0, one has almost surely

sup
−T≤t′<t′′≤T

{∣∣X(t′)−X(t′′)
∣∣

|t′ − t′′|H−δ

}
< +∞ . (1.4)

Moreover, sample paths of {X(t)}t∈R are monofractal functions; the latter fact results from
their Hölderianity property combined with Corollary 4.4 in [6]. Also, for later purposes, one
mentions that as regards their behavior at infinity, one can derive from Corollary 4.2 in [1],
that, for all fixed δ > 0, one has, almost surely,

sup
|t|≥1

{∣∣X(t)
∣∣

|t|H+δ

}
< +∞ . (1.5)

Let us now present the main motivations behind our present work and its main contribu-
tions. Statistical estimators for the parameters H and α of the LFSM {L(t)}t∈R and related
moving average stable processes have been proposed in several articles in the literature (see
for instance [21, 20, 3, 2, 10, 17, 16, 15]), some of which appeared a long time ago. However,
as far as we know, in the framework of the HFSM {X(t)}t∈R and related harmonizable stable
processes and fields no statistical estimator for any one of these two parameters has yet been
proposed in the literature. Also, according to what is mentioned in Remark 1.2 (D) and on
page 2 of the very recent preprint [8], their statistical estimation in such a framework is far
from being an obvious problem due to the fact that HFSM and related harmonizable stable
processes and fields are not ergodic. The main idea behind our strategy for dealing with the
latter problem is to construct new transforms of HFSM which allow to obtain, at any dyadic
level j ∈ N, a sequence Yj,k, k ∈ N, of independent real-valued SαS random variables whose
scale parameters σ(Yj,k), k ∈ N, are closely connected to the unknown parameters H and α
of HFSM through simple formulas which are rather easy to handle. Roughly speaking, these
new transforms Yj,k, (j, k) ∈ N2, of HFSM are at the same time inspired by discrete wavelet
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transforms Wj,k, (j, k) ∈ N2, of HFSM and significantly different from them. Indeed, while
Wj,k is defined (see e.g. [11, 18]), up to normalizing factor, as

Wj,k :=

∫
R
ψj,k(t)X(t) dt,

where ψj,k(t) := ψ(2jt− k), for all t ∈ R, with ψ being a ”nice” real-valued function; we define
Yj,k as

Yj,k :=
2

2π

∫
R

Re
(
ψ̂j,k(t)

)
X(t) dt,

where ψ̂j,k is the Fourier transform of ψj,k. Also, we assume that the function ψ is given by
the formula (2.4); we mention that many other choices for ψ are possible, and there is no need
to impose to ψ to have any vanishing moment, while such a condition on moment(s) of ψ plays
a crucial role in the case of the discrete wavelet transform Wj,k. Notice that the definition of
Yj,k is given in a more explicit way in (2.8).

Let us now state the main two theorems of our work.

Theorem 1.2 One assumes that α ∈ [α, 2], where the lower bound α ∈ (0, 2] is known. Let
(mj)j∈N be an arbitrary non-decreasing sequence (that is mj ≤ mj+1, for all j ∈ N) of integers
larger than 2 which satisfy the condition

mj ≥ j , for all j ∈ N. (1.6)

For each fixed γ ∈ (0, 4−1α), and for every j ∈ N, the statistics V
mj
j,γ is defined as

V
mj
j,γ :=

mj∑
k=1

∣∣Yj,k∣∣γ , (1.7)

where the Yj,k’s are the real-valued SαS random variables defined in (2.8). Then, the following
two results hold.

(i) Let

Ĥj,γ :=
log2(V

mj
j,γ )

γ j
, (1.8)

where log2 denotes the binary logarithm (that is log2(2) = 1). Under the condition

lim
j→+∞

log2(mj)

j
= 0, (1.9)

Ĥj,γ is a strongly consistent (almost surely convergent) estimator of the Hurst parameter
H of HFSM.

(ii) Let

α̂j,γ :=
γ j

j − log2(V
mj
j,γ )

. (1.10)

Under the condition

lim
j→+∞

log2(mj)

j
= 1, (1.11)

α̂j,γ is a strongly consistent (almost surely convergent) estimator of the stability parameter
α of HFSM.
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Theorem 1.3 Let (mj)j∈N be an arbitrary non-decreasing sequence of integers larger than 2
which satisfies the condition (1.6). For every j ∈ N, the statistics V

mj
j,log2

is defined as

V
mj
j,log2

:=

mj∑
k=1

log2 |Yj,k
∣∣ , (1.12)

where the Yj,k’s are the real-valued SαS random variables defined in (2.8). Then, the following
two results hold.

(i) Let

Ĥj,log2 :=
V
mj
j,log2

j mj
. (1.13)

Under the condition (1.9), Ĥj,log2 is a strongly consistent (almost surely convergent)
estimator of the Hurst parameter H of HFSM.

(ii) Let

α̂j,log2 :=
j mj

V
mj
j,log2

. (1.14)

Under the condition (1.11), α̂j,log2 is a strongly consistent (almost surely convergent)
estimator of the stability parameter α of HFSM.

Remark 1.4

(i) We believe that the new strategy introduced in our present work would open the door to
statistical estimation of parameters of harmonizable stable fields extending the HFSM,
as for instance the harmonizable fractional stable field studied in e.g. [6], or the harmo-
nizable fractional stable sheet studied in e.g. [5].

(ii) Since, for each for each fixed j ∈ N, the random variables Yj,k, k ∈ N, have the very
nice property to be independent, we believe that the centered and standardized versions
of the two statistics V

mj
j,γ and V

mj
j,log2

would be asymptotically normal. This would imply

that the four estimators Ĥj,γ , α̂j,γ , Ĥj,log2 and α̂j,log2 would be asymptotically normal as
well.

(iii) In our present work, the four estimators Ĥj,γ , α̂j,γ , Ĥj,log2 and α̂j,log2 are obtained from
the observation of a sample path of the HFSM X in continuous time, we believe that
it would be possible to extend our estimation procedures to a framework where only a
discretized sample path of X is observed.

We intend to study these three issues (i), (ii) and (iii) in future works.

The remaining of our present work is organized in the following way. In Section 2, basically
we show that the real-valued SαS random variables Yj,k, (j, k) ∈ N2, defined in (2.8), can be

represented in terms of the stable stochastic integral
∫
R
(
·
)
dM̃α (see Lemma 2.2); a straight-

forward consequence of this representation is the independence property, for any fixed j ∈ N,
of the random variables Yj,k, k ∈ N (see Remark 2.3). Section 3 is devoted to the proofs of
Theorems 1.2 and 1.3.
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2 The keystone

Remark 2.1 Throughout our work, we use the very classical convention that, for any function
f ∈ L1(R), the Fourier transform f̂ , also denoted by F(f), is defined as

F(f)(t) = f̂(t) :=

∫
R
e−itxf(x) dx, for all t ∈ R. (2.1)

While, the inverse Fourier transform of f , denoted by F−1(f), is defined as

F−1(f)(ξ) :=
1

2π

∫
R
eiξtf(t) dt, for all ξ ∈ R. (2.2)

It is well-known that the two maps F and F−1 can be extended to L2(R), and satisfy

F−1
(
F(g)

)
= F

(
F−1(g)

)
= g, for every g ∈ L2(R). (2.3)

One denotes by ψ the even piecewise linear continuous function from R into [0, 2] with
defined as

ψ(ξ) := 4
(
1l[−4−1,4−1] ∗ 1l[−4−1,4−1])(ξ) = 2

(
1− |2ξ|

)
1l[−2−1,2−1](ξ), for all ξ ∈ R, (2.4)

where ”∗” denotes the convolution product. It is clear that ψ is compactly supported and that

suppψ = [−2−1, 2−1]. (2.5)

Moreover, it follows from elementary calculations and a classical property of Fourier transform
that

ψ̂(t) =
(
4−1 t

)−2
sin2(4−1 t), for every t ∈ R, (2.6)

which in particular implies that there is a finite deterministic constant c > 0 such that∣∣ψ̂(t)
∣∣ ≤ c(1 + |t|

)−2
, for every t ∈ R. (2.7)

For all (j, k) ∈ N2, the random variable Yj,k is defined through the pathwise Lebesgue integral

Yj,k :=
21−j

2π

∫
R

cos(2−jkt)ψ̂(2−jt)X(t) dt . (2.8)

Notice that the fact that the latter integral is well-defined and finite results from (2.7), (1.5)
and continuity of sample paths of the HFSM {X(t)}t∈R.

Lemma 2.2 For all (j, k) ∈ N2, Yj,k (defined in (2.8)) is a real-valued SαS random variable
which can almost surely be expressed as

Yj,k = Re
(∫

R

ψ̃j,k(ξ)

|ξ|H+1/α
dM̃α(ξ)

)
, (2.9)

where
ψ̃j,k(ξ) := ψ(2jξ + k) + ψ(2jξ − k), for every ξ ∈ R. (2.10)

The following remark is very fundamental.
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Remark 2.3 One knows from (2.10) and (2.4) that, for all (j, k) ∈ N2, ψ̃j,k is an even piecewise
linear continuous function from R into [0, 2] with compact support such that

Ij,k := supp ψ̃j,k =

[
−k − 2−1

2j
,
−k + 2−1

2j

]⋃[
k − 2−1

2j
,
k + 2−1

2j

]
. (2.11)

Then, in view of the fact that k ≥ 1, it turns out that the function ξ 7→ |ξ|−H−1/α ψ̃j,k(ξ)
belongs to the Lebegue space Lα(R), with guarantees that the SαS stochastic integral in (2.9)
is well-defined.

More importantly, observe that, for each fixed j ∈ N, since (see (2.11)) the supports of
the functions ψ̃j,k, k ∈ N, are disjoint (up to Lebesgue negligible sets), the corresponding (via
(2.9)) SαS random variables Yj,k, k ∈ N are independent.

Proof of Lemma 2.2 Throughout the proof the positive integers j and k are arbitrary and
fixed. First observe that, one can derive from (2.10) and standard calculations that the Fourier
transform of ψ̃j,k is given bŷ̃

ψj,k(t) = 21−j cos(2−jkt)ψ̂(2−jt) for all t ∈ R. (2.12)

Thus, (2.8) reduces to

Yj,k =
1

2π

∫
R

̂̃
ψj,k(t)X(t) dt . (2.13)

Moreover, one can derive from (2.12) and (2.7), that, for some finite deterministic constant
c1(j) > 0, only depending on j, one has∣∣̂̃ψj,k(t)∣∣ ≤ c1(j)(1 + |t|

)−2
, for every t ∈ R. (2.14)

For all (n,m) ∈ N × Z, the dyadic number dn,m := 2−nm. Having introduced the latter
notation, for each n ∈ N, the random variable Y n

j,k is defined as the finite sum:

Y n
j,k :=

1

2π

∑
|m|≤4n

X(dn,m)

∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt (2.15)

= Re

∫
R
|ξ|−H−1/α

 1

2π

∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − 1

)̂̃
ψj,k(t) dt

 dM̃α(ξ)

 ,

where the last equality follows from (1.1).

First step: we show that, when n goes to +∞, the random variable Y n
j,k converges almost

surely to the random random variable Yj,k defined through (2.13).
Let N be an arbitrary fixed positive integer. One sets

Y N
j,k :=

1

2π

∫ N

−N

̂̃
ψj,k(t)X(t) dt =

1

2π

N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

X(t)
̂̃
ψj,k(t) dt (2.16)

and, for every integer n ≥ N ,

Y N,n
j,k :=

1

2π

N2n−1∑
m=−N2n

X(dn,m)

∫ dn,m+1

dn,m

̂̃
ψj,k(t) dt. (2.17)
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Then, using (1.4) with T = N , and the fact that dn,m ∈ [−N,N ] when −N2n ≤ m ≤ N2n− 1,
one gets, on an event of probability 1 depending only on N and denoted by Ω∗N , that

∣∣Y N
j,k − Y

N,n
j,k

∣∣ ≤ N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

∣∣X(t)−X(dn,m)
∣∣∣∣̂̃ψj,k(t)∣∣ dt

≤ C∗N,δ

N2n−1∑
m=−N2n

∫ dn,m+1

dn,m

|t− dn,m|H−δ
∣∣̂̃ψj,k(t)∣∣ dt

≤
(
C∗N,δ

∫
R

∣∣̂̃ψj,k(t)∣∣ dt)2−n(H−δ), (2.18)

where δ is an arbitrarily small fixed positive real number, and C∗N,δ is a positive finite random
variable, only depending on N and δ. Next, let Ω∗ be the event of probability 1 defined as
Ω∗ :=

⋂
N∈N Ω∗N . One can derive from (2.18) that

lim
n→+∞

∣∣Y N
j,k(ω)− Y N,n

j,k (ω)
∣∣ = 0, for all N ∈ N and ω ∈ Ω∗. (2.19)

On another hand, it follows from (1.5) that there are Ω∗∗ an event of probability 1 and C∗∗δ a
positive finite random variable only depending on δ, such that∣∣X(t, ω)

∣∣ ≤ C∗∗δ (ω)|t|H+δ, for all t /∈ (−1, 1) and ω ∈ Ω∗∗. (2.20)

Combining (2.15) and (2.17) with (2.20) and (2.14), one obtains, for every ω ∈ Ω∗∗ and positive
integers N and n ≥ N ,∣∣Y n

j,k(ω)− Y N,n
j,k (ω)

∣∣
≤

+∞∑
m=N2n

∣∣X(dn,m, ω)
∣∣ ∫ dn,m+1

dn,m

∣∣̂̃ψj,k(t)∣∣ dt+
−N2n−1∑
m=−∞

∣∣X(dn,m, ω)
∣∣ ∫ dn,m+1

dn,m

∣∣̂̃ψj,k(t)∣∣ dt
≤ C∗∗δ (ω)

(
+∞∑

m=N2n

∣∣dn,m∣∣H+δ
∫ dn,m+1

dn,m

∣∣̂̃ψj,k(t)∣∣ dt+

−N2n−1∑
m=−∞

∣∣dn,m∣∣H+δ
∫ dn,m+1

dn,m

∣∣̂̃ψj,k(t)∣∣ dt
)

≤ C∗∗δ (ω)

(
+∞∑

m=N2n

∫ dn,m+1

dn,m

|t|H+δ
∣∣̂̃ψj,k(t)∣∣ dt+

−N2n−1∑
m=−∞

∫ dn,m+1

dn,m

(
1 + |t|

)H+δ ∣∣̂̃ψj,k(t)∣∣ dt
)

≤ 2c1(j)C
∗∗
δ (ω)

∫ +∞

N

(
1 + t

)H+δ−2
dt ≤ 2(1−H − δ)−1 c1(j)C∗∗δ (ω)N−(1−H−δ). (2.21)

Putting together (2.13), (2.16), (2.20) and (2.14), it follows that, for all ω ∈ Ω∗∗ and positive
integers N , one has∣∣Yj,k(ω)− Y N

j,k(ω)
∣∣ ≤ ∫

{|t|≥N}

∣∣̂̃ψj,k(t)∣∣∣∣X(t)
∣∣ dt

≤ 2c1(j)C
∗∗
δ (ω)

∫ +∞

N

(
1 + t

)H+δ−2
dt

≤ 2(1−H − δ)−1 c1(j)C∗∗δ (ω)N−(1−H−δ). (2.22)

8



Finally, observe that, for all positive integers N and n ≥ N , and for each ω ∈ Ω∗ ∩ Ω∗∗ (the
event Ω∗ ∩Ω∗∗ is clearly of probability 1), using the triangle inequality, (2.21) and (2.22), one
gets that∣∣Yj,k(ω)− Y n

j,k(ω)
∣∣ ≤ ∣∣Yj,k(ω)− Y N

j,k(ω)
∣∣+
∣∣Y N
j,k(ω)− Y N,n

j,k (ω)
∣∣+
∣∣Y N,n
j,k (ω)− Y n

j,k(ω)
∣∣

≤ 4(1−H − δ)−1 c1(j)C∗∗δ (ω)N−(1−H−δ) +
∣∣Y N
j,k(ω)− Y N,n

j,k (ω)
∣∣.

Thus, one can derive from (2.19) that, for all positive integers N and for each ω ∈ Ω∗ ∩ Ω∗∗,

lim sup
n→+∞

∣∣Yj,k(ω)− Y n
j,k(ω)

∣∣ ≤ 4(1−H − δ)−1 c1(j)C∗∗δ (ω)N−(1−H−δ). (2.23)

Finally, when N goes to +∞, (2.23) implies that

lim sup
n→+∞

∣∣Yj,k(ω)− Y n
j,k(ω)

∣∣ = 0, for all ω ∈ Ω∗ ∩ Ω∗∗,

which shows that Y n
j,k converges almost surely to Yj,k, when n tends to +∞.

Second step: we show that for each fixed γ ∈ (0, α), when n goes to +∞, the SαS random
variable Y n

j,k (see (2.15)) converges in Lγ(Ω) (Ω being the underlying probability space) to the

SαS random variable Y̌j,k defined as

Y̌j,k := Re
(∫

R

ψ̃j,k(ξ)

|ξ|H+1/α
dM̃α(ξ)

)
. (2.24)

Observe that, since ψ̃j,k is a continuous function on R (see (2.10) and (2.4)) belonging to

L1(R) ∩ L2(R) whose Fourier transform
̂̃
ψj,k belongs to L1(R) ∩ L2(R) as well (see (2.6)), one

knows from Remark 2.1, and more particularly from (2.3) in it, that the function ψ̃j,k can be
expressed as

ψ̃j,k(ξ) =
1

2π

∫
R
eiξt
̂̃
ψj,k(t) dt, for all ξ ∈ R. (2.25)

Thus combining (2.25) with (2.11) and the fact that k ≥ 1, one obtains that

1

2π

∫
R

̂̃
ψj,k(t) dt = ψ̃j,k(0) = 0. (2.26)

Then (2.25) and (2.26) imply that one has

ψ̃j,k(ξ) =
1

2π

∫
R

(
eiξt − 1

)̂̃
ψj,k(t) dt, for all ξ ∈ R. (2.27)

Next, putting together the second equality in (2.15), (2.24) and (2.27), it follows that

Rnj,k := Y n
j,k − Y̌j,k

is a SαS random variable which can be expressed as

Rnj,k =
1

2π
Re

(∫
R
|ξ|−H−1/α

( ∑
|m|≤4n

∫ dn,m+1

dn,m

(
eidn,mξ − eitξ

)̂̃
ψj,k(t) dt

+

∫
{t/∈[−2n,2n+2−n)}

(
eitξ − 1

)̂̃
ψj,k(t) dt

)
dM̃α(ξ)

)
. (2.28)
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Thus, in view of (3.3) in Remark 3.3 in the next section, for proving that lim
n→+∞

E
(
|Rnj,k|γ

)
= 0,

for each fixed γ ∈ (0, α), it is enough to show that the scale parameter of the SαS random
variable Rnj,k satisfies

lim
n→+∞

σ(Rnj,k) = 0. (2.29)

It follows from Remark 1.1, (2.25) and the inequality |a+ b|α ≤ 2α
(
|a|α + |b|α

)
, for all comlex

numbers a and b, that, for every n ∈ N,

σ(Rnj,k)
α ≤ 2α

(
Unj,k + Vnj,k

)
, (2.30)

where

Unj,k :=

∫
R
|ξ|−αH−1

( ∑
|m|≤4n

∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣∣∣̂̃ψj,k(t)∣∣ dt)α dξ (2.31)

and

Vnj,k :=

∫
R
|ξ|−αH−1

(∫
{|t|≥2n}

∣∣eitξ − 1
∣∣∣∣̂̃ψj,k(t)∣∣ dt)α dξ. (2.32)

For deriving appropriate upper bounds for Unj,k and Vnj,k, we will make use of the inequality∣∣eiθ − 1
∣∣β ≤ min

{
|θ|β, 2β

}
, for all θ ∈ R and β ∈ (0,+∞). (2.33)

Let B0 := [−1, 1] and B1 := R \B0. For l ∈ {0, 1}, one sets

U
n,l
j,k :=

∫
Bl

|ξ|−αH−1
( ∑
|m|≤4n

∫ dn,m+1

dn,m

∣∣ei(dn,m−t)ξ − 1
∣∣∣∣̂̃ψj,k(t)∣∣ dt)α dξ (2.34)

and

V
n,l
j,k :=

∫
Bl

|ξ|−αH−1
(∫
{|t|≥2n}

∣∣eitξ − 1
∣∣∣∣̂̃ψj,k(t)∣∣ dt)α dξ. (2.35)

In view of (2.31) and (2.32), one clearly has that

Unj,k = U
n,0
j,k + U

n,1
j,k and Vnj,k = V

n,0
j,k + V

n,1
j,k . (2.36)

Let us now bound U
n,0
j,k and V

n,0
j,k . To this end, one introduces the positive finite constant c2

defined as

c2 :=

∫
B0

|ξ|α2−1(1−H)−1 dξ. (2.37)

One can derive from (2.37), (2.33) with β = 2−1(1 +H), (2.34) and (2.35) with l = 0, and the
inequality

|t− dn,m| ≤ 2−n, for all (n,m) ∈ N× Z and t ∈ [dn,m, dn,m+1], (2.38)

that one has, for every n ∈ N,

U
n,0
j,k ≤ c2

(
22
−1(1−H)

∫
R

∣∣̂̃ψj,k(t)∣∣ dt)α2−nα2
−1(1+H) (2.39)

and

V
n,0
j,k ≤ c2

(
22
−1(1−H)

∫
{|t|≥2n}

∣∣t∣∣2−1(1+H)∣∣̂̃ψj,k(t)∣∣ dt)α. (2.40)
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Moreover, one can derive from (2.14) that

c3(j, k) := c2

(
22
−1(1−H)

∫
R

∣∣̂̃ψj,k(t)∣∣ dt)α < +∞ (2.41)

and that ∫
{|t|≥2n}

∣∣t∣∣2−1(1+H)∣∣̂̃ψj,k(t)∣∣ dt (2.42)

≤ 2c1(j)

∫ +∞

2n

(
1 + t

)2−1(H−3)
dt ≤ 4(1−H)−1c1(j)2

−n2−1(1−H).

Setting c4(j) := c2

(
22
−1(1−H)4(1 − H)−1c1(j)

)α
, and putting together (2.39), (2.40), (2.41)

and (2.42), one obtains, for all n ∈ N, that

U
n,0
j,k ≤ c3(j, k)2−nα2

−1(1+H) and V
n,0
j,k ≤ c4(j)2

−nα2−1(1−H). (2.43)

Let us now bound U
n,1
j,k and V

n,1
j,k . To this end, one introduces the two positive finite constants

c5 and c6 defined as

c5 :=

∫
B1

|ξ|−α2−1H−1 dξ and c6 :=

∫
B1

|ξ|−αH−1 dξ. (2.44)

One can derive from (2.44), (2.33) with β = 2−1H (for U
n,1
j,k ) and β = 1 (for V

n,1
j,k ), (2.34) and

(2.35) with l = 1, and the inequality (2.38), that one has, for every n ∈ N,

U
n,1
j,k ≤ c5

(
2(1−2

−1H)

∫
R

∣∣̂̃ψj,k(t)∣∣ dt)α2−nα2
−1H = c′5(j, k)2−nα2

−1H (2.45)

and

V
n,1
j,k ≤ c6

(
2

∫
{|t|≥2n}

∣∣̂̃ψj,k(t)∣∣ dt)α ≤ c′6(j)2−nα, (2.46)

where c′5(j, k) and c′6(j) are two finite constants not depending on n. Notice that the last
inequality in (2.46) is obtained similarly to (2.42),

Finally, putting together (2.30), (2.36), (2.43), (2.45) and (2.46), it follows that (2.29) is
satisfied.

Conclusion: combining the main result obtained in the first step with the main one derived
in the second step, it turns out that the almost sure equality (2.9) is valid. �

3 Proofs of the two main results

Lemma 3.1 Under the sole condition (1.6) on the sequence (mj)j∈N, one has

lim
j→+∞

V
mj
j,γ

E(V
mj
j,γ )

= 1, for all fixed γ ∈ (0, 4−1α), (3.1)

where the convergences holds almost surely.
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Lemma 3.2 When the sequence (mj)j∈N satisfies the two conditions (1.6) and (1.9), or when
it satisfies the two conditions (1.6) and (1.11), one has

lim
j→+∞

V
mj
j,log2

E(V
mj
j,log2

)
= 1, (3.2)

where the convergences holds almost surely.

For proving the two Lemmas 3.1 and 3.2, one needs several preliminary results.

Remark 3.3 For any fixed α ∈ (0, 2], let Z be an arbitrary real-valued SαS random variable
with scale parameter σ(Z) ≥ 0. Then, for all γ ∈ (0, α), one has

E
(
|Z|γ

)
= c0(γ, α)σ(Z)γ , (3.3)

where the positive finite constant c0(γ, α) := E
(
|W |γ

)
, which only depends on γ and α, is the

absolute moment of order γ of an arbitrary real-valued SαS random variable W with scale
parameter equals to 1. Moreover, when σ(Z) > 0, letting c1(α) be the finite constant only
depending α defined as c1(α) := E

(
log2 |W |

)
, one has that

E
(

log2(|Z|)) = log2(σ(Z)) + c1(α), (3.4)

where log2 is the binary logarithm (that is log2(2) = 1).

Proof Using the fact that ΦZ and ΦW , the characteristic functions of the random variables
Z and W , satisfy (see e.g. [19]), for all λ ∈ R,

ΦZ(λ) = exp
(
− σ(Z)α|λ|α

)
and ΦW (λ) = exp

(
− |λ|α

)
,

it turns out that the random variable Z has the same distribution as the random variable
σ(Z)W . The two equalities (3.3) and (3.4) are straightforward consequences of the latter fact.
�

Lemma 3.4 Let ν(α) the positive finite constant defined as

ν(α) :=

(
2

∫
R

∣∣ψ(η)
∣∣α dη)1/α

=

(
2

∫ 2−1

−2−1

∣∣ψ(η)
∣∣α dη)1/α

, (3.5)

where the last equality results from the fact that [−2−1, 2−1] is the support of ψ (see (2.4)).
The scale parameter of Yj,k satisfies, for all (j, k) ∈ N2,

ν(α)2jH
(
k + 2−1

)−(H+1/α) ≤ σ(Yj,k) ≤ ν(α)2jH
(
k − 2−1

)−(H+1/α)
. (3.6)
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Proof One knows from (2.9), (2.10), Remark 1.1 and (2.4) that, for all (j, k) ∈ N2, one has

σ(Yj,k)
α =

∫ 2−j(−k+2−1)

2−j(−k−2−1)

∣∣ψ(2jξ + k)
∣∣α

|ξ|αH+1
dξ +

∫ 2−j(k+2−1)

2−j(k−2−1)

∣∣ψ(2jξ − k)
∣∣α

|ξ|αH+1
dξ

Then, using the fact that ψ is an even function and the change of variable η = 2jξ − k i.e
ξ = 2−j(η + k), one gets that

σ(Yj,k)
α = 2

∫ 2−j(k+2−1)

2−j(k−2−1)

∣∣ψ(2jξ − k)
∣∣α

(ξ)αH+1
dξ = 2jαH+1

∫ 2−1

−2−1

∣∣ψ(η)
∣∣α

(η + k)αH+1
dη,

which implies that

2jαH+1
(
k+2−1

)−(αH+1)
∫ 2−1

−2−1

∣∣ψ(η)
∣∣α dη ≤ σ(Yj,k)

α ≤ 2jαH+1
(
k−2−1

)−(αH+1)
∫ 2−1

−2−1

∣∣ψ(η)
∣∣α dη.

Thus, in view of (3.5), it turns out that (3.6) is valid. �

Lemma 3.5 For each fixed γ ∈ (0, 4−1α), the two positive finite constants µ′(γ, α) and µ′′(γ, α)
are defined as

µ′(γ, α) :=
(
1− (3/5)1/4

)
ν(α)γc0(γ, α) and µ′(γ, α) := 8ν(α)γc0(γ, α), (3.7)

where ν(α) and c0(γ, α) are the same positive constants as in (3.5) and (3.3). Then, one has,
for all j ∈ N,

µ′(γ, α) 2jγH m
1−γ(H+1/α)
j ≤ E

(
V
mj
j,γ

)
≤ µ′′(γ, α) 2jγH m

1−γ(H+1/α)
j . (3.8)

Notice that, the condition that γ ∈ (0, 4−1α) implies that

1 > 1− γ(H + 1/α) > 4−1. (3.9)

Remark 3.6 Let γ ∈ (0, 4−1α) be arbitrary and fixed. Two straightforward consequences of
Lemma 3.5 are the following.

(i) When the conditions (1.6) and (1.9) hold, one has

lim
j→+∞

log2
(
E(V

mj
j,γ )

)
γ j

= H. (3.10)

(ii) When the conditions (1.6) and (1.11) hold, one has

lim
j→+∞

log2
(
E(V

mj
j,γ )

)
γ j

=
1

γ
− 1

α
. (3.11)
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Proof of Lemma 3.5 First observe that, one can derive from (1.7), (3.3) and (3.6) that, for
all j ∈ N,

ν(α)γc0(γ, α)2jγH
mj∑
k=1

(
k+2−1

)−γ(H+1/α) ≤ E
(
V
mj
j,γ

)
≤ ν(α)γc0(γ, α)2jγH

mj∑
k=1

(
k−2−1

)−γ(H+1/α)
.

(3.12)
Moreover, using (3.9) and the inequality mj ≥ 2, one has that

mj∑
k=1

(
k + 2−1

)−γ(H+1/α) ≥
mj∑
k=1

∫ k+1

k

(
x+ 2−1

)−γ(H+1/α)
dx =

∫ mj+1

1

(
x+ 2−1

)−γ(H+1/α)
dx

≥
(
mj +

3

2

)1−γ(H+1/α)
−
(3

2

)1−γ(H+1/α)

≥
(
mj +

3

2

)1−γ(H+1/α)
−
(3

5

)1−γ(H+1/α)(
mj +

3

2

)1−γ(H+1/α)

≥
(
1− (3/5)1/4

)
m

1−γ(H+1/α)
j (3.13)

and

mj∑
k=1

(
k − 2−1

)−γ(H+1/α)
= 2

mj∑
k=1

∫ k

k−2−1

(
k − 2−1

)−γ(H+1/α)
dx

≤ 2

mj∑
k=1

∫ k

k−2−1

(
x− 2−1

)−γ(H+1/α)
dx = 2

mj∑
k=1

∫ k−2−1

k−1
x−γ(H+1/α) dx

≤ 2

mj∑
k=1

∫ k

k−1
x−γ(H+1/α) dx = 2

∫ mj

0
x−γ(H+1/α) dx ≤ 8m

1−γ(H+1/α)
j . (3.14)

Putting together (3.12), (3.13) and (3.14), one obtains (3.8). �

Lemma 3.7 The following two results hold

(i) Under the conditions (1.6) and (1.9), one has that

lim
j→+∞

1

j mj
E(V

mj
j,log2

) = H. (3.15)

(ii) Under the conditions (1.6) and (1.11), one has that

lim
j→+∞

1

j mj
E(V

mj
j,log2

) =
1

α
. (3.16)

Proof First notice that, in view of (3.4) and (1.12), the expectation E(V
mj
j,log2

) can be
expressed, for all j ∈ N, as

E(V
mj
j,log2

) = c1(α)mj +

mj∑
k=1

log2
(
σ(Yj,k)

)
. (3.17)
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Also notice that (3.6) implies that, for every j ∈ N,

(H + 1/α)

mj∑
k=1

log2(k − 2−1) ≤ H(j mj) +mj log2(ν(α))−
mj∑
k=1

log2
(
σ(Yj,k)

)
(3.18)

≤ (H + 1/α)

mj∑
k=1

log2(k + 2−1).

Since
lim

j→+∞

mj

j mj
= 0,

combining (3.17) and (3.18), it turns out that for proving the lemma it is enough to show that,
for p ∈ {−1, 1}, one has

lim
j→+∞

Sp,mj
mj log2(mj)

= 1, for p ∈ {−1, 1}, (3.19)

where

Sp,mj :=

mj∑
k=1

log2(k + p2−1). (3.20)

Observe that when the conditions imposed to the sequence (mj)j∈N in Part (i) of the lemma
hold, then (3.19) implies that

lim
j→+∞

Sp,mj
j mj

= 0.

Also, observe that when the conditions imposed to the sequence (mj)j∈N in Part (ii) of the
lemma hold, then (3.19) entails that

lim
j→+∞

Sp,2j

j mj
= 1.

From now on, one focuses on the proof of (3.19). Using the inequality
∣∣ log2(1 + x)

∣∣ ≤ 4|x|, for
all x ∈ [−2−1,+∞), one obtains that

∣∣∣Sp,mj − mj∑
k=2

log2(k)
∣∣∣ ≤ mj∑

k=1

∣∣∣∣ log2

(
1 +

p2−1

k

)∣∣∣∣ ≤ 2

mj∑
k=1

1

k
≤ 2 + 2 log(mj).

Thus, for proving (3.19), it turns out that it is enough to show that

lim
j→+∞

1

mj log2(mj)

mj∑
k=2

log2(k) = 1. (3.21)

One clearly has, for all j ∈ N,∫ mj

1
log2(x) dx ≤

mj∑
k=2

∫ k

k−1
log2(k)dx =

mj∑
k=2

log2(k) =

mj∑
k=2

∫ k+1

k
log2(k)dx ≤

∫ mj+1

2
log2(x) dx.

(3.22)

15



Moreover, since x 7→
(
x log(x)−x

)
/ log(2) is a primitive of x 7→ log2(x), elementary calculations

show that ∫ mj

1
log2(x) dx = mj log2(mj) +

1−mj

log(2)
(3.23)

and ∫ mj+1

2
log2(x) dx = (mj + 1) log2(mj + 1) +

1−mj

log(2)
− 2. (3.24)

Finally, combining (3.23) and (3.24) with (3.22), one obtains (3.21). �

We are now in position to prove the Lemmas 3.1 and 3.2 as well as Theorems 1.2 and 1.3
which are the two main results of our article.

Proof of Lemma 3.1 First notice that using Markov inequality, for each j ∈ N, one has

P
(∣∣∣ V

mj
j,γ

E(V
mj
j,γ )

− 1
∣∣∣ ≥ m−ρj ) = P

(∣∣∣V mj
j,γ − E(V

mj
j,γ )

∣∣∣ ≥ m−ρj E(V
mj
j,γ )

)

≤ m4ρ
j ×

E
(∣∣V mj

j,γ − E(V
mj
j,γ )

∣∣4)(
E(V

mj
j,γ )

)4 , (3.25)

where ρ is a fixed positive constant small enough, which will be chosen more precisely later.

Let now provide an appropriate upper bound for the expectation E
(∣∣V mj

j,γ − E(V
mj
j,γ )

∣∣4).

Noticing that, for each (j, k) ∈ N2, the SαS random variable Yj,k is equal in distribution to
σ(Yj,k)W , where W is an arbitrary real-valued SαS random variable with scale parameter
equals to 1, one gets, for q ∈ {1, 2}, that

E
(∣∣|Yj,k|γ − E(|Yj,k|γ)

∣∣2q) = cq σ(Yj,k)
2qγ , (3.26)

where the positive finite constant cq := E
(∣∣|W |γ − E(|W |γ)

∣∣2q) does not depend on (j, k).

Then, one can derive from (1.7), (3.26), and the fact that, for any fixed j ∈ N, the centered
random variables |Yj,k|γ−E(|Yj,k|γ), k ∈ N, are independent (see the very fundamental Remark
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2.3), and from Lemma 3.4 that

E
(∣∣V mj

j,γ − E(V
mj
j,γ )

∣∣4) =

mj∑
k1,..., k4=1

E
( 4∏
l=1

∣∣|Yj,k|γ − E(|Yj,k|γ)
∣∣)

≤

( mj∑
k=1

E
(∣∣|Yj,k|γ − E(|Yj,k|γ)

∣∣4))+ 6

( mj∑
k=1

E
(∣∣|Yj,k|γ − E(|Yj,k|γ)

∣∣2))2

= c2

( mj∑
k=1

σ(Yj,k)
4γ

)
+ 6c21

( mj∑
k=1

σ(Yj,k)
2γ

)2

≤ c3

( mj∑
k=1

σ(Yj,k)
2γ

)2

≤ c4 2j4γH

( mj∑
k=1

(
k − 2−1

)−2γ(H+1/α)

)2

≤ c4 2j4γH

(
4γ(H+1/α) +

∫ mj

1

(
x− 2−1

)−2γ(H+1/α)

)2

(3.27)

≤ c5 2j4γH

(
1 + 1l{1}

(
2γ(H + 1/α)

)
log
(
mj

)
+m

1−2γ(H+1/α)
j

)2

,

where c3, c4 and c5 are three positive finite constants not depending on j. Next, combining
(3.27) with the first inequality in (3.8), one gets, for all j ∈ N,

m4ρ
j ×

E
(∣∣V mj

j,γ − E(V
mj
j,γ )

∣∣4)(
E(V

mj
j,γ )

)4
≤ c6m−4(1−ρ+γ(H+1/α))

j

(
1 + 1l{1}

(
2γ(H + 1/α)

)
log
(
mj

)
+m

1−2γ(H+1/α)
j

)2

(3.28)

≤ c6

(
m
−2(1−ρ+γ(H+1/α))
j + 1l{1}

(
2γ(H + 1/α)

)
m
−2(1−ρ+γ(H+1/α))
j log

(
mj

)
+m

−(1−2ρ)
j

)2

≤ 3c6

(
m
−4(1−ρ+γ(H+1/α))
j + 1l{1}

(
2γ(H + 1/α)

)
m
−4(1−ρ+γ(H+1/α))
j log2

(
mj

)
+m

−2(1−2ρ)
j

)
.

Next, notice that, in view of (3.9), the positive constant ρ can be chosen small enough so that
one has

4
(
1− ρ− γ(H + 1/α)

)
> 1 and 2(1− 2ρ) > 1 . (3.29)

Then, it follows from (3.28), (3.29), (1.6) and (3.25) that

+∞∑
j=1

P
(∣∣∣ V

mj
j,γ

E(V
mj
j,γ )

− 1
∣∣∣ ≥ m−ρj ) < +∞.

Therefore, (3.1) results from Borel-Cantelli Lemma. �

Proof of Lemma 3.2 First notice that similarly (3.25), it can be shown that, for each j ∈ N,

P
(∣∣∣ V

mj
j,log2

E(V
mj
j,log2

)
− 1
∣∣∣ ≥ m−1/8j

)
≤ m1/2

j ×
E
(∣∣V mj

j,log2
− E(V

mj
j,log2

)
∣∣4)(

E(V
mj
j,log2

)
)4 . (3.30)
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Let now provide an appropriate upper bound for the expectation E
(∣∣V mj

j,log2
− E(V

mj
j,log2

)
∣∣4).

Noticing that, for each (j, k) ∈ N2, the SαS random variable Yj,k is equal in distribution to
σ(Yj,k)W , where W is an arbitrary real-valued SαS random variable with scale parameter
equals to 1, one gets, for q ∈ {1, 2}, that

E
(∣∣ log2 |Yj,k| − E(log2 |Yj,k|)

∣∣2q) = c0,q , (3.31)

where the positive finite constant c0,q := E
(∣∣ log2 |W | − E(log2|W |)

∣∣2q) does not depend on

(j, k). Then, one can derive from (1.12), (3.31), and the fact that, for any fixed j ∈ N, the
centered random variables log2|Yj,k| − E(log2|Yj,k|γ), k ∈ N, are independent (see the very
fundamental Remark 2.3), that

E
(∣∣V mj

j,log2
− E(V

mj
j,log2

)
∣∣4) =

mj∑
k1,..., k4=1

E
( 4∏
l=1

∣∣log2|Yj,k| − E(log2|Yj,k|)
∣∣)

≤

( mj∑
k=1

E
(∣∣log2|Yj,k| − E(log2|Yj,k|)

∣∣4))+ 6

( mj∑
k=1

E
(∣∣log2|Yj,k| − E(log2|Yj,k|)

∣∣2))2

= c0,2mj + 6c20,1m
2
j . (3.32)

Next, combining (3.32) with Lemma 3.7, and (3.30), under the assumptions of Lemma 3.2, it
follows that

+∞∑
j=1

P
(∣∣∣ V

mj
j,log2

E(V
mj
j,log2

)
− 1
∣∣∣ ≥ m−1/8j

)
< +∞.

Therefore, (3.2) results from Borel-Cantelli Lemma. �

Proof of Theorem 1.2 One clearly has, for all γ ∈ (0, 4−1α) and for every j ∈ N,

log2(V
mj
j,γ )

γ j
=

1

γ j
log2

(
V
mj
j,γ

E(V
mj
j,γ )

)
+

log2(E(V
mj
j,γ ))

γ j
. (3.33)

On one hand, when the conditions (1.6) and (1.9) hold, one can derive from (3.33), (3.1) and
(3.10) that

lim
j→+∞

log2(V
mj
j,γ )

γ j
= H , (almost sure convergence),

which means that Ĥj,γ , defined in (1.8), is a strongly consistent estimator of the Hurst param-
eter H. On another hand, when the conditions (1.6) and (1.11) are satisfied, it follows from
(3.33), (3.1) and (3.11) that

lim
j→+∞

log2(V
mj
j,γ )

γ j
=

1

γ
− 1

α
, (almost sure convergence),

which means that α̂j,γ , defined in (1.10), is a strongly consistent estimator of the stability
parameter α. �
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Proof of Theorem 1.3 One clearly has, for all j large enough,

V
mj
j,log2

j mj
=

E(V
mj
j,log2

)

j mj
×

V
mj
j,log2

E(V
mj
j,log2

)
. (3.34)

On one hand, when the conditions (1.6) and (1.9) hold, one can derive from (3.34), (3.2) and
(3.15) that

lim
j→+∞

V
mj
j,log2

j mj
= H , (almost sure convergence),

which means that Ĥj,log2 , defined in (1.13), is a strongly consistent estimator of the Hurst
parameter H. On another hand, when the conditions (1.6) and (1.11) are satisfied, it follows
from (3.34), (3.2) and (3.16) that

lim
j→+∞

V
mj
j,log2

j mj
=

1

α
, (almost sure convergence),

which means that α̂j,log2 , defined in (1.14), is a strongly consistent estimator of the stability
parameter α. �
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