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Introduction

The electron, proton, and neutron possess a number of physical properties, such as mass, magnetic moment, quantum spin, and (for the former two particles) charge [START_REF] Data Group | Review of Particle Physics[END_REF] . Within the Standard Model, all of these are considered axiomatic: they are not predicted by the theory but instead constrain it [START_REF] Burgess | The Standard Model: A Primer[END_REF] . To go beyond the Standard Model these properties must therefore be derived or demonstrated to be fundamental.

In the macroscopic realm, a moving charge creates a magnetic field according to µ 0 j = ∇ × B, while a charge loop creates a magnetic moment according to τ = µ × B 3 . While the magnetic moment of fundamental particles appears to stem from the movement of charges [START_REF] David | The Nature of Intrinsic Magnetic Dipole Moments: What Can the Famous 21 Cm Astrophysical Spectral Line of Atomic Hydrogen Tell Us about the Nature of Magnetic Dipoles? CERN Yellow Reports: Monographs[END_REF] , attempts to model the movement of classical current loops at the microscopic scale have proven incomplete, as this leads to angular acceleration and an accelerating charge emits light [START_REF] Griffiths | Introduction to Electrodynamics[END_REF][START_REF] Larmor | On the theory of the magnetic influence on spectra; and on the radiation from moving ions[END_REF][START_REF] Podgoršak | Rutherford-Bohr Model of the Atom[END_REF] .

However, there are at least two instances in which an accelerating charge does not emit light: the oscillation of complementary charges within a standing wave and the movement of a continuous charge within a circuit [START_REF] Larmor | On the theory of the magnetic influence on spectra; and on the radiation from moving ions[END_REF][START_REF] File | Observation of Persistent Current in a Superconducting Solenoid[END_REF][START_REF] Goedecke | Classically Radiationless Motions and Possible Implications for Quantum Theory[END_REF] . Of the two the former is more reasonable as a physical model, but given the wealth of theory behind the modeling of charged circuits in this work I will focus on the latter, bringing in elements of the former only when necessary to further the derivation.

The electron

The electron as a solenoid

Begin with an infinitely thin, ethereal wire with no electrical resistance, curved into a two loop solenoid whose path is described by,

x (θ) = r * sin θ cos θ y (θ) = r * sin θ sin θ z (θ) = r e * sin θ (1) 
Where the radius of the loops is equal to r = λ e 4π and the distance between loops is set by the classical electron radius, r e = 2 * 2.8179 x 10 -15 9 . Let λ e be the Compton wavelength of the electron, 2.426 x 10 -12 m 10 . This topology is depicted in Fig 1A . It is the simplest knot, the unknot, twisted such that it forms two loops that are separated according to 2r e * sin θ. This general topology has been previously used to describe the electron as point-particles moving through curved space [START_REF] Hu | The nature of the electron[END_REF][START_REF] Williamson | Is the electron a photon with toroidal topology[END_REF] .

To this wire add charge equal to -2e, twice the expected amount. This charge will move through the wire at the speed of light, c, creating a current equal to,

I = qv l = - 2ec λ e (2) 
In an external magnetic field this solenoid will experience torque proportional to the current in the wire [START_REF] Griffiths | Introduction to Electrodynamics[END_REF] . The magnetic dipole moment of a macroscopic current loop is given by,

µ = nIA = -2 * 2ec λ * πr 2 (3) 
As r = λ 4π for this wire this formula simplifies to:

µ = -ecr = - ecλ e 4π (4) 
This is exactly equivalent in value to the Bohr magneton, µ B = -9.274 x 10 -24 J/T 1 . Notably, this derivation of the Bohr magneton does not require a consideration of angular momentum, as the solenoid is assumed to be at rest.

Opposing forces

The magnetic field at the end of the loops can be similarly calculated as the field at the end of a solenoid, B = nµ 0 I 2d , where d is the distance between the loops 3 . To maintain a constant magnetic field regardless of position around the solenoid we will assume that the charge distribution varies by sin θ,

B = nµ 0 I * sin θ 2r e * sin θ = - µ 0 ec λ e r e (5) 
This field is 1.1093 x 10 11 T, well above the Schwinger limit for a magnetic field (4.41 x 10 9 T). [START_REF] Sauter | Über das Verhalten eines Elektrons im homogenen elektrischen Feld nach der relativistischen Theorie Diracs[END_REF][START_REF] Schwinger | On Gauge Invariance and Vacuum Polarization[END_REF] While the current of a superconducting wire cannot vary by position while remaining at a constant charge density, a spinning charge distribution or oscillating standing wave of charge can [START_REF] Goedecke | Classically Radiationless Motions and Possible Implications for Quantum Theory[END_REF][START_REF] Long | Fundamentals of Acoustics[END_REF] . This suggests that while this superconducting wire may serve as a useful model, it is at best an incomplete description of reality.

Regardless, as the current moves around the ring it will experience centripetal force, F = mc 2 r . Counterbalance this force with the Lorentz force from a charge moving through a magnetic field of equivalent strength to that created at the ends of the solenoid, F = qvB 3 :

F = mc 2 r a = qvB = µ 0 e 2 c 2 λ a r e (6) 
Rearranging for m gives,

m = µ 0 e 2 4πr e (7) 
This is the rest mass of the electron.

This model also provides a geometric derivation of the fine structure constant [START_REF] Sommerfeld | Zur Quantentheorie der Spektrallinien[END_REF] . It is the ratio between the solenoid's diameter and half its height [START_REF] Hu | The nature of the electron[END_REF] ,

α = r e 2r = 2πr e λ e (8) 
By inserting ( 8) into ( 7) and generalizing, we arrive at the previously established formula for the relationship between the rest mass of any particle and its Compton wavelength [START_REF] Arthur | A Quantum Theory of the Scattering of X-rays by Light Elements[END_REF] :

mλ = µ 0 e 2 2α = h c (9)

The anomalous magnetic moment

To account for the anomalous magnetic moment of the electron consider electrostatic repulsion equal to,

F e = e 2 16π 2 ε 0 r 2 (10)
Incorporating this into (7) gives a modified radius, r a :

m e c 2 r a = µ 0 e 2 c 2 λ a r e + e 2 16π 2 ε 0 r 2 a (11)
As r e = αλ 2π and λ a = 4πr a ,

m e c 2 r a = µ 0 e 2 c 2 8παr 2 a + e 2 16π 2 ε 0 r 2 a (12)
By rearranging for r a and incorporating the relationship c 2 = 1 µ 0 ε 0 this becomes,

r a = µ 0 e 2 8πm e * ( 1 α + 1 2π ) (13) 
Incorporating this new radius into (4),

µ e = -ecr a = -ec * λ e + r e 4π (14) 
This gives a µ e = -9.2847810029 x 10 -24 . While this is close to the experimental value of -9.2847647043 x 10 -24 J/T, [START_REF]CODATA Value: Electron magnetic moment[END_REF] the discrepancy between these values will require further study.

3 The proton and neutron

A superconducting trefoil knot

To determine the magnetic moment of the proton and neutron, we begin with the simplest prime knot after the unloop, the trefoil knot. This can be mathematically described by,

x = sin θ + 2 * sin 2θ y = cos θ -2 * cos 2θ z = -3 * sin 3θ (15) 
Create an ethereal, infinitely thin wire with no electrical resistance along this path. Let the length of this wire equal the Compton wavelength of the proton, λ p = 1.3214 x 10 -15 m, and the charge of the wire equal to -2e [START_REF]CODATA Value: Proton magnetic moment[END_REF] . Contort this knot to match that of the electron, ie. such that it consists of two loops that are at most 2 * r p apart, where r p = αλ p 2π . Because the wire is ethereal it may freely superimpose with itself, creating cross points with zero displacement. This wire is depicted in Fig. 1B, and may be described by,

x = r * sin 2θ y = r * cos 2θ z = r p * sin 3θ (16)
As this trefoil consists of two circular loops, the magnetic moment is µ = nIA = -ecr. This is exactly equal in magnitude to the nuclear magneton [START_REF]CODATA Value: Nuclear magneton[END_REF] .

Assume that as with the electron the charge distribution varies according to sin θ, and that the magnetic field is reduced when ∆z r p * sin θ. Because z = r p * sin 3θ the average magnetic field along the z-axis is then,

B net = B max * 1 - π 2 0 ||sin (θ + u)| -|sin (3θ)|| dθ ( 17 
)
Where u determines the phase of the charge distribution and B max is the magnetic field of an unloop with equivalent wavelength. This yields two maxima: one at u = 0,

B net = 1 -4 3 √ 2 -1 ≈ 0.447715B max and another at u = π 2 , B net = 3 + 2 √ 2 /3 - 4 3 4 + 2 √ 2 ≈ 0.458641B max .
As the magnetic field weakens the centripetal force will exceed the Lorentz force, elongating the path of the wire at each cross point. This will in turn reduce the curvature between cross points, weakening the centripetal force in these regions and giving the overall structure three-fold symmetry. The path of the wire is therefore, and a = B max B netb. This topology is depicted in Fig. 1C. The cross-section in the xy plane has been previously inferred from deep inelastic scattering between electrons and nucleons [START_REF] Breidenbach | Observed Behavior of Highly Inelastic Electron-Proton Scattering[END_REF][START_REF] Bloom | High-Energy Inelastic e -p Scattering at 6°and 10°[END_REF] , and the arms are commonly classified as up and down quarks in current representations of the proton and neutron 2,22-24 .

x =

Magnetic moments of the proton and neutron

To calculate the magnetic moments of the structures described by u = 0 and u = π 2 we begin with the formula for the magnetic moment of a solenoid, µ = nIA = -ecr.

To derive the magnetic moment for u = 0 bisect the structure. Place an axis of rotation along the x-intercept and integrate along the y-axis, multiplying the y-coordinate by cos θ to take into account the variation in charge density as a function of position (Fig. 2A). When r = λ n , the Compton wavelength for the neutron 1 , this value is -9.65833 x 10 -27 J/T, which compares favourably to the experimentally measured magnetic moment for the neutron, µ n = -9.66236 x 10 -27 J/T. [START_REF]CODATA Value: Neutron magnetic moment[END_REF] . Unlike this superconducting wire the neutron has no net charge, again indicating that this model, while useful, is fundamentally aphysical. To determine the magnetic moment of the structure described by u = π 2 we break the structure into two subcomponents. For the first, the axis of rotation is as far as possible from the middle cross point, such that it intersects the two side cross points (Fig. 2B). The displacement needed for this may be calculated by,

d = sin( π 6 ) * a * sin( π 2 ) + b = 1.09001963155 (20) 
For the second component we place the central anti-node on the axis of rotation. This occurs at d = 0.

We then integrate both components along the x-axis,

µ = -ecr * π π 3 sin(θ - π 6 ) * sin(2θ + π 6 ) * (a * sin(6θ + π 2 + b) -1.0900176963155 dθ = 3.00938374141 * ecr (21) 
For the first component, and,

µ = -ecr * 2 π 6 0 sin(θ - π 6 ) * sin(2θ + π 6 ) * (a * sin(6θ + π 2 + b) dθ = 0.312807503321 * ecr (22) 
For the second component.

The net axis rotation is the weighted average of these two contributions, 

d
When r is the Compton wavelength for the proton, the magnetic moment is 1.405825060 x 10 -26 J/T, approximately 99.66% that of the recorded magnetic moment for the proton, 1.410606797 x 10 -26 J/T. [START_REF]CODATA Value: Proton Compton wavelength[END_REF] .

Conclusion

In this work I have shown that it is possible to derive the magnetic moment of electron and the fine structure constant from a simple geometric model of a closed two-loop solenoid, and the magnetic moments of the proton and neutron from a similar wire folded into a trefoil knot. Inherent in these derivations is a charge distribution that varies based on position within wire, implying that these magnetic moments may be better represented as the result of oscillating standing waves or rotating charges. Work in this vein will be reported in due course. Bauer, J J Beatty, V I Belousov, J 

Figure 1 :

 1 Figure 1: The paths described by equations A) (1), B) (16) and C) (18). Images are shown to scale, with the Z axis elongated for clarity. The magnetic moments of A and C correspond to the electron and proton/neutron, respectively.

  r * sin 2θ * (a * sin(6θ + b) y = r * cos 2θ * (a * sin(6θ + b) z = r p * sin 3θ

Figure 2 :

 2 Figure 2: Axes of rotation for the A) neutron and B) proton when the particles are considered as superconducting wires. The wire loops are shown as cross-sections in the xy plane. The charge density is approximated by thick lines, while the cross points are shown with A) orange or B) blue circles.

  net = d minor * µ minor * ecr µ minor + µ ma jor + d ma jor * µ ma jor * ecr µ minor + µ ma jor = 0.987384910135 (23) Incorporate d net into the combined equation, offset by π 6 to maintain a consistent phase over the entire integral: µ = -ecr * sin(6θ + π 2 + b) -0.987384910135 dθ = 2.783380027 * ecr
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