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Abstract

The percentage of wildfires that are ignited by an undetermined origin is substantial in Europe and
Mediterranean France. Forest fire experts have recognized the significance of fires with an
unknown ignition source since documentation and research of fire causes are important for
creating appropriate fire policies and prevention strategies. The use of machine learning in wildfire
science has increased considerably and is driven by the increasing availability of large and
high-quality datasets. However, the absence of comprehensive fire-cause data hinders the utility of
existing fire databases. This study trains and applies a machine-learning based model to classify the
cause of fire ignition based on several environmental and anthropogenic features in Southern
France using an eXplainable Artificial Intelligence framework. The results demonstrate that the
source of unknown caused wildfires can be predicted at various levels of accuracy/natural fires have
the highest accuracy (F1-score 0.87) compared to human-caused fires such as accidental (F1-score
0.74) and arson (F1-score 0.64). Factors related to spatiotemporal properties as well as topographic

characteristics are considered the most important features in determining the classification of

unknown caused fires for the specific area.

1. Introduction

In Europe, approximately 50% of all fires were caused
by an unknown origin based on data reported from 19
European countries in the European Forest Fire Data-
base from 1999 to 2016 (De Rigo et al 2017). In Medi-
terranean France, almost 70% of all fires between
1973 and 2020 were recorded without a cause of igni-
tion according to the forest fire database for the Medi-
terranean area (Prométhée.com). Many experts in the
field of fire management in Europe have acknow-
ledged the importance of fires classified as having
an undetermined origin (Tedim et al 2022), since
the lack of information regarding fire causes makes
it difficult for fire managers to determine the most
suitable course of action to prevent similar incidents
from happening in the future. French fire experts,
in particular, have identified fires of unknown ori-
gin as being of paramount importance (Tedim et al

© 2023 The Author(s). Published by IOP Publishing Ltd

2022) among the various categories of fires: natural,
accident, negligence, deliberate, and rekindle of the
harmonized classification scheme of fire causes in
Europe (Camia et al 2013). In southeastern France,
Ganteaume and Guerra (2018) highlighted the fact
that large areas are burned by fires of undetermined
sources, and they argue for enhanced quality and
quantity of investigations into fire ignition causes in
order to improve the accuracy of fire databases. Fire
ignition patterns can vary significantly both tempor-
ally and spatially depending on the cause of ignition
(Curtetal 2016) and can be impacted by a plethora of
environmental and anthropogenic drivers (Syphard
et al 2008, Catry et al 2009, Syphard and Keeley
2015). As such, documentation and research of fire
causes and their spatiotemporal patterns are essential
for establishing meaningful fire policies (Rodrigues
et al 2014) since a better understanding of these
patterns can improve the efficacy of fire prevention
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strategies (Oliveira et al 2012). However, the absence
of comprehensive fire-cause data hampers the utility
of these databases.

Similar to other areas of study, the utilization
of machine learning (ML) methodologies in wild-
fire science has seen a marked increase in popular-
ity in recent years (Jain et al 2020, Bot and Borges
2022) Applications of ML in wildfire science include
classifying and mapping fuel properties (Riley et al
2014) and quantities (Lépez-Serrano et al 2016) as
input variables in fire behavior models; fire and
smoke detection (Zhao et al 2018, Ba et al 2019)
for rapid firefighting response; active or final burned
area and severity mapping based on remote sensing
data for suppression planning and damage assess-
ment (Pereira et al 2017, Collins et al 2018, Ban
et al 2020); forecasting of fire weather variables (Bates
et al 2017, Lagerquist et al 2017); prediction of fire
occurrence (Dutta et al 2016, Vecin-Arias et al 2016),
fire spread/growth rates (Chetehouna et al 2015) and
burned area (Mayr et al 2018, Hodges and Lattimer
2019) for more effective dissemination of suppression
assets; modeling and mapping of fire risk based on
various environmental and anthropogenic variables,
to identify potential drivers of fire ignition and/or
burned area (Curt et al 2016, Ghorbanzadeh et al
2019, Molina et al 2019).

While ML models have demonstrated great effect-
iveness at identifying complex patterns in large data-
sets, some are considered ‘black boxes’ because it can
be difficult to understand how the model arrives at
its predictions or how certain patterns were identi-
fied (Loyola-Gonzalez 2019). This lack of interpretab-
ility can be a barrier to adoption, as it may be difficult
for stakeholders to trust such models without under-
standing the complete algorithm inference pattern.
In recent years, eXplainable Artificial Intelligence
(XAI)/interpretable machine learning has emerged
as an approach that employs various techniques and
strategies to enhance the interpretability, transpar-
ency, and explainability of ML models and their
decision-making processes with the ultimate goal of
fostering trust and accountability in the model’s out-
put. In the context of wildfire science, the application
of XATI has been explored by only two recent studies to
address wildfire occurrence and size (Al-Bashiti and
Naser 2022, Cilli et al 2022).

Research conducted on fire ignition causes is fairly
limited and poorly understood, but some studies
have demonstrated that arson fires can potentially be
predicted both spatially and temporally (Gonzalez-
Olabarria et al 2012, Penman et al 2013). The object-
ive of this study is to develop a ML-based model that
can classify the ignition source of fires that have been
recorded without a known cause in France. Further-
more, this study aims to evaluate the significance and
the effect of various environmental and anthropo-
genic factors in determining the classification of dif-
ferent fire sources utilizing XAI methods.
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2. Method

2.1. Study area

The study area comprises 15 administrative divisions
(departments) in the south of France, with a total
area of just over 80 000 km? (table 1, figure 1). The
specific region is considered the most fire-prone in
France and where most of the burned area is recor-
ded, despite exhibiting decreasing trends in the last
decades (Bountzouklis et al 2022). Environmental
characteristics and landscapes vary significantly with
both mountainous and coastal zones contained in the
study area; the highest altitudes and steepest slopes
are found in the northeastern parts where the French
Alps are located (e.g. Hautes-Alpes, Alpes-de-Haute-
Provence) whereas in the southern portions topo-
graphy is low-lying and relatively flat (e.g. Bouches-
du-Rhone, Hérault). Population density is influenced
by topography: the highest concentrations are located
in areas with low altitudes and gentle slopes, espe-
cially in the southeastern Mediterranean coastal and
near coastal zones (e.g. Bouches-du-Rhone, Alpes-
Maritimes). The French Alps and the island of Cor-
sica are largely covered by forests & semi-natural areas
whereas the largest agricultural areas are concentrated
mainly in the center of the study area.

2.2. Fire database

The current study was based on ‘Prométhée’, the
official forest fire database for Mediterranean area
in France. This database documents fires from 1973
onwards and contains information for each fire
such as burned area, ignition source (known/un-
known), time, date, and location within a 2 x 2 km
grid. Similar to the harmonized European classific-
ation scheme on ignition causes (Camia et al 2013),
‘Prométhée’ includes five major fire ignition sources:
(i) accidental (e.g. power lines, vehicles), (ii) arson
(e.g. pyromania, conflict), (iii) private negligence
(e.g. cigarette butts, leisure), (iv) professional negli-
gence (e.g. industry, agriculture) and (v) lightning.
The total number of fires considered in our study
is 48 038; these were recorded from 1997 to 2020.
Fire records prior to 1997 were excluded from this
study since classification on the origin of fires is con-
sidered less reliable (Ganteaume and Jappiot 2013).
The dataset comprised of records starting in 1997 is
fairly balanced with regards to the number of fires of
known/unknown sources as approximately 60% have
a known cause of ignition. Within the known causes
(n = 27620) frequency varies considerably; arson is
the most frequent (38.4%), followed by private negli-
gence (26.7%), professional negligence (17.2%), acci-
dental (10.1%) and finally lightning (7.6%) (figure 2).

2.2.1. Fire frequency & burned area according to cause
After unknown causes, arson fires are both the most
numerous and account for the greatest annual burned
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Table 1. Physical and human characteristics of the administrative divisions within the study area based on data from.

Population  Artificial Forests &
Area® Mean Mean slope®  density® surfaces” Agricultural semi-natural

Administrative division (km?) elevation® (m) ®) (people/km?) (%) areas’ (%)  areas’® (%)
Alpes-de-Haute-Provence 6995 1150 15.5 23.7 1.1 19.2 79.7
Hautes-Alpes 5691 1665 20.6 24.8 1.3 15.2 83.5
Alpes-Maritimes 4294 1110 20.3 257.0 8.9 4.5 86.6
Corse-du-Sud 4019 536 15.3 40.4 2.2 11.1 86.7
Haute-Corse 4707 592 16.2 39.8 1.9 12.4 85.6
Ardeche 5566 596 11.1 59.4 2.7 28.1 69.3
Aude 6344 359 7.4 59.9 2.8 48.4 48.7
Bouches-du-Rhone 5091 142 3.7 405.1 15.7 422 42.1
Drome 6559 581 11.1 80.0 3.4 41.1 55.5
Gard 5875 248 6.2 128.2 6.5 40.3 53.2
Hérault 6230 264 6.5 195.5 7.2 41.5 51.3
Lozere 5176 1025 9.3 14.8 0.7 255 73.8
Pyrénées-Orientales 4139 855 12.6 117.3 5.2 27.5 67.3
Var 6032 364 7.8 181.6 9.2 20.9 69.9
Vaucluse 3578 339 5.6 157.3 6.8 53.8 39.4

2 French National Institute of Geographic (IGN).

b Corine Land Cover (2018).

¢ National Institute of Statistics and Economic Studies (INSEE).

es-Drientales L
& i

Figure 1. Location map illustrating the administrative division limits of the study area.

area most years (figures 3(a) and (b)). This is fol-
lowed by private negligence, which, even though is the
second most frequent fire source, it does not cause a
proportionate extent of burned area. Despite similar
numbers of accidental and lightning fires, the annual
percentage of area burned by accidental fires is often

significantly greater than that burned by lightning
fires and occasionally greater than the other causes.
Lastly, although the percentage of burned areas by
unknown origin fires is substantial most years, fre-
quently second after arson, it fluctuates widely from
5% to 49% depending on the year.
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Figure 2. Number of fires per cause in the study area (1997-2020).
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Figure 3. Percentage of (a) burned area and (b) fire ignitions according to cause and year.
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2.3. Considered features

Table 2 describes the land cover, topographic, anthro-
pogenic, and spatiotemporal variables that were used
as features to predict the fire ignition source. The
contextual geographic information of the selected

factors was processed for each 2 x 2 km grid initially
in ArcGIS Pro v2.9 and subsequently using python
packages pandas (McKinney 2010) and NumPy
(Harris et al 2020) to preprocess the data for the classi-
fication scheme (e.g. replace missing values, one-hot
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Table 2. List of features used to model the occurrence of forest fires.

Type Name Description Source
Land cover Artificial surfaces Percentage of cover within Corine Land Cover—2006
Agriculture each grid (Raster—100 m spatial resolution)
Forest
Low vegetation
(e.g. shrublands)
Water
Wetlands
Topographic Elevation Mean elevation (m) above National Geographic Institute
sea level (Raster—100 m spatial resolution)
Slope aspect Percentage of cover within
each zone (North, East,
South, West)
Topographic Topographic-driven control
wetness index on soil moisture
(TWI)
Topographic Amount of elevation
ruggedness index difference between adjacent
(TRI) cells of a DEM (Riley et al
1999)
Anthropogenic Population density Number of individuals/area National Institute of Statistics
Gini index Inequality index and Economic
Income Mean taxable income (€) Studies—Sub-municipal
Unemployment Unemployment rate (%) level—2006—(Tabular)
Primary road Total line length/area National Geographic
density Institute—2008 (Vector)
Secondary road
density
Powerline density
Railway density
Spatiotemporal Season Winter (Dec—Feb), spring Fire database ‘Prométhée’

Burned area size

Coordinates
Time of the day

(Mar-May), summer
(Jun—Aug), autumn
(Sep—Nov)

<0.1 ha, 0.1-0.5 ha,
0.6-1 ha, 2-5 ha, 1-25 ha,
>25ha

XY centroid coordinates
Morning (5:00-12:00),
afternoon (12:00-17:00),
evening (17:00-21:00),
night (21:00-5:00)

encoding, etc) and finally for visualization purposes
seaborn (Waskom 2021).

2.4. Fire cause classification based on random
forests (RFs)

ML methodologies learn and adapt through the pro-
cess of experience, where the size and quality of the
input data play a critical role in determining the over-
all effectiveness of the model. RFs (see e.g. Breiman
2001) is a supervised ML algorithm used both for
classification and regression that is well-established in
many disciplines and has grown substantially in pop-
ularity in the field of wildfire science over the last dec-
ade (Jain et al 2020). RF is based on decision trees
(Breiman et al 2017), where each decision tree is a
series of If-Then-Else sequences with several branches
connected by decision nodes and finally by leaf nodes

that eventually determine a value or category such as
the label of a classification task (figure 4). Further-
more, a fundamental characteristic of RF is that a ran-
dom subset of features is used at each node of each
decision tree, resulting in several individually trained
and uncorrelated decision trees, and these are finally
merged into a larger ensemble model to limit overfit-
ting and produce more accurate predictions.

The processing chain of RF (classification, accur-
acy score, confusion matrix, hyperparameter tun-
ing, etc) was carried out using the implementation
of the algorithm in Python module Scikit-Learn
(Pedregosa et al 2011) (figure 5). To address the
unbalanced number of samples between classes,
the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al 2002) was used, which is
implemented under Python package scikit-learn
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Figure 5. Flow chart depicting the processing chain used to classify fire causes.

imbalanced-learn (Lemaitre et al 2017). SMOTE is
a common method to produce synthetic data from a
minority class (e.g. lightning ignitions) by randomly
selecting one of the k-nearest-neighbors and using
it to generate new, but randomly tweaked, similar
samples. To train the classifier, 70% of the dataset
was utilized, while the remaining 30% was used for
testing the accuracy in predicting the cause of a fire.
The synthetic samples created using SMOTE were
utilized only during the training phase and not for

the validation of the model. To finetune the algorithm
hyperparameters such as number of trees, max num-
ber of features considered for splitting a node, max
levels in each decision tree etc, scikit-learn Ran-
dom Search Cross Validation method was used; this
allowed us to evaluate and narrow down a wide range
of values for each hyperparameter. Subsequently, the
Grid Search with Cross Validation method was used
to examine different combinations of specific values
for the selected hyperparameters.
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To evaluate the model, accuracy, precision, recall
and F1-score were used; these are commonly used as
evaluation metrics for classifiers in the field of ML,
which are calculated using the number of instances
classified as true positives (TP), true negatives (TN),
false positives (FP) or false negatives (FN). Accur-
acy is determined by dividing the number of correct
predictions by the total number of instances. Preci-
sion specifies how many of the instances the classi-
fier predicted as positive are actually positive while
recall shows what fraction of the positive instances
in the dataset were correctly identified by the classi-
fier. F1-score serves as a comprehensive measure of
both precision and recall. A Fl-score of 1 denotes
optimal performance, with both precision and recall
being maximized. Conversely, a score of 0 represents
the worst possible outcome, with both precision and
recall being minimal. A score of 0.5, which is equival-
ent to random guessing, is suboptimal performance,
whereas scores above 0.5 are generally considered to
indicate good performance,

A TP+ TN (1)
I =
Y™ Total number of instances
Precision = TP/ (TP + FP) (2)
Recall = TP/ (TP + FN) (3)
Flscore =2 x (Precision x Recall) /
(Precision + Recall) . (4)

To identify which features are driving the classi-
fication but also to comprehend the contribution of
each one, the SHapley Additive exPlanations (SHAPs)
(Lundberg and Lee 2017) method was utilized. SHAP
is an approach based on game theory that is used
to explain the ML model outputs by breaking down
the prediction into contributions from each feature
value. These contributions are combined and help
us understand the overall importance of each feature
value in the final prediction. SHAP values can be visu-
alized using various plots, such as a summary plot,
that allow us to display not only the strength of the
impact a certain feature has but also the direction of
the impact.

3. Results

As elaborated below, the results derived from the RF
model are presented through classification metrics
and a confusion matrix, subsequently followed by the
description of which features drive the classification
and how they influence it.

C BountzouKlis et al

3.1. Fire ignition cause classification

The overall accuracy of the multiclass RF classific-
ation scheme reaches about 70% (69.8%). Detailed
results per ignition cause are presented in table 3 and
evaluated using (i) Fl-score, (ii) precision and (iii)
recall. Concerning the accidental class, the model dis-
plays the second highest F1-score (0.77) and a mod-
erate discrepancy between and precision (0.81) and
recall (0.74). This indicates that the model is able
to correctly identify most of the instances as acci-
dental when it predicts that class, but it misses more
instances that actually belong to that cause. Regard-
ing the arson class, the model shows a lower F1-score
of 0.64 and not very accurate in terms of precision
(0.60), meaning that it may predict some instances as
arson that actually belong to a different class. How-
ever, the model performs better when it comes to
identifying most of the instances that belong to the
arson class (recall score 0.69). The lightning class dis-
plays overall the best classification metrics (F1-score
0f0.88). The precision score (0.85) is fairly lower than
the recall score (0.91), suggesting that lightning fires
are easier for the model to identify and are not con-
fused with another class. On the contrary, the model
performs the worst for the private negligence class,
with a Fl-score of 0.55. In this class, the precision
score (0.59) is higher than the recall score (0.52),
which suggests that the classifier has a higher rate
of correctly identifying positive samples but is miss-
ing a higher proportion of the total number of posit-
ive samples. Finally, the professional negligence class
exhibits relatively low but balanced scores between
precision (0.67) and recall (0.63).

The confusion matrix (figure 6) provides addi-
tional information with regards to the performance
of the classification of ignition causes. More specific-
ally, accidental fires are most frequently misclassified
as arson ones. There is a high number (n = 159) of
arson fires that are wrongly classified as private negli-
gence, and similarly, there are 266 private negligence
fires that are misclassified as arson. This could mean
that there are similarities between the causes of these
fires, or that the model may not have enough inform-
ation to accurately distinguish between these classes.
As the most accurately predicted cause, lightning dis-
plays low misclassification numbers, which are dis-
tributed evenly among the other classes. In contrast,
private negligence, that is a major negative contrib-
utor to the overall classification accuracy, shares its
errors primarily between professional negligence and
arson classes. Finally, professional negligence fires are
also often confused for either arson or private negli-
gence fires.

3.2. Feature importance and effect

Figure 7 illustrates the computed feature importance
of the RF model for all classes, which is expressed
through mean SHAP values that represent the average
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Table 3. Classification metrics per ignition cause.

Ignition cause Precision Recall F1-score Accuracy
Accidental 0.81 0.74 0.77 69.8%
Arson 0.60 0.69 0.64

Lightning 0.85 0.91 0.88

Private negligence 0.59 0.52 0.55

Professional negligence 0.64 0.68 0.65

C BountzouKlis et al
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impact of a feature on the model output across all
the instances in the dataset. Overall, feature import-
ance values vary significantly both per feature type
and ignition cause. The features summer, elevation
and afternoon form a group that stands out signi-
ficantly from the rest, followed by a second cluster
with slightly less impactful features such as spring,
geographic coordinates, BA <0.1 ha and secondary
road density.

In the context of accidental fires, several features
demonstrate comparable significance, with after-
noon, elevation, summer, and primary road density
being slightly more salient than other variables. Sim-
ilarly, the relevance of features for arson fires is widely
distributed, with spatiotemporal characteristics such
as summer, night, and location being the most prom-
inent factors. Regarding fires caused by lightning,
summer and elevation are by far the most impact-
ful variables followed by secondary road density. In

the case of private negligence, summer exhibits the
highest level of importance, although this distinction
is not substantially greater than that of other vari-
ables, such as afternoon, spring, and secondary road
density. Finally, with respect to professional negli-
gence, summer represents the most influential factor
by a significant margin, with only burned area (BA)
size (<0.1 ha) showing discernible differences from
other variables.

Figure 8 depicts the most influential (n = 10) fea-
tures for each class of the model in descending order.
Furthermore, the impact of each feature on the igni-
tion cause is also illustrated through the positive or
negative SHAP values. These values indicate whether
an instance is more or less likely to belong to a partic-
ular class depending on the magnitude of the feature
values. For example, instances with lower elevation
values are more likely to be classified as an accidental
or arson ignition, and less likely to be categorized as

8
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Figure 7. Feature importance (mean SHAP values) for all classes.

a lighting fire. Similarly, a fire that occurred during
the summer is more likely to belong to the arson or
lightning class, but less probable to be classified into
the other categories.

4. Discussion
The performance of the RF classifier varies consid-

erably between natural and human-induced fires.
Lightning fires were classified with the highest

accuracy since ignition dynamics for these fires are
significantly different from human-caused fires. As
reported by Curt et al (2016), lightning fires tend
to have small burned areas, occur on steep, densely
vegetated, mountainous slopes with low anthropo-
genic presence; seasonality also plays a significant role
in the incidence of those fires (summer). This partic-
ular profile, which aligns with the interpretation of
features effects through the SHAP values, enables the
classifier to distinguish it from other causes more
clearly.
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In contrast to natural fires, human-caused igni-
tions are multi-faceted and more complex to model.
Accidental fires are the least difficult human induced
events to classify in our model, potentially attributed
to the greater association of such fires with infra-
structure elements such as power lines and railways
in contrast to other forms of anthropogenic causes.
The most challenging cause to classify is private neg-
ligence, which is most often misclassified as arson
and vice versa. Both arson and private negligence
fires often occur in similar contexts, specifically the
wildland urban interface. The similarity in environ-
mental contexts and conditions between these types

of fires may make it difficult to distinguish between
the two causes. However, this may also reflect a prob-
lem of reliability in the fire databases (Ganteaume
and Guerra 2018): in order to reduce the number of
unknown caused fires the cause is either speculated or
attributed without much physical evidence to support
it (Camia et al 2013). Professional negligence fires are
also confused, but to a lesser extent, with private neg-
ligence. Both causes share common characteristics,
as they tend to burn small/medium areas and occur
mainly outside of the summer season (Curt et al 2016)
which is reflected in the significance and impact those
features hold in the SHAP framework.
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Socioeconomic data used in our model only per-
tains to a single year. While this approach may
have its advantages, such as simplifying data col-
lection and analysis, it can also potentially under-
value the importance of socioeconomic features by
not capturing their temporal fluctuations, especially
considering that most fires in France but also in
the Euro-Mediterranean (95%) region are caused
by humans (Ganteaume ef al 2013, Ganteaume and
Jappiot 2013). Factors such as population density,
unemployment rate, etc represent dynamic phenom-
ena that can change considerably over time in con-
trast to static variables such as topography or even to
other dynamic variables as, for instance, land cover.
The addition of geographic coordinates in our work-
flow not only partly tackles spatial non-stationarity,
as the decision trees of the model in a way incor-
porate geographic space during their creation, but
also enhances the results which is in accordance with
other works that utilize ML algorithms for applic-
ations of spatial nature (Hengl et al 2018). Spatial
approaches of ML algorithms such as Geographic
Random Forests (Georganos et al 2021) and Geo-
graphically Weighted Neural Networks (Hagenauer
and Helbich 2022) would be advantageous for such
applications considering the significance of spatial
location and its strong links with different fire igni-
tion causes.

As a first attempt, the current study utilized only
the first-level causes (5 categories) available from the
hierarchical structure of the ‘Promethee’ fire data-
base, which also includes second-level (15 categor-
ies) and third-level (31 categories) causes. Applying
a similar procedure on selected sub level data could
possibly improve functionality and understanding of
ignition sources and their performance within the
classification scheme. However, this would increase
the complexity of the model and may negatively
impact overall accuracy. Finally, the inclusion of
fuel type characteristics and fire-weather variables
can potentially strengthen and facilitate the distinc-
tion between different fire causes; for instance, arson
fires burn larger areas (Ganteaume and Jappiot 2013,
Syphard and Keeley 2015) and this may indicate these
fires are set under more favorable weather conditions.

The practicality of this model is not intended for
operational use or as a substitute method to conven-
tional field investigation methods as it cannot provide
physical evidence for the proper deduction of the
cause of a forest fire. Instead, it is targeted as a method
to analyze large-scale fire databases that contain a
moderate percentage of unknown caused fires. The
ideal balance would be neither too low, as insufficient
data would result in a restricted training dataset, nor
too high, as that would render the model less use-
ful. Despite the limitations in identifying causes of
unknown ignitions, the results can help to facilitate
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targeted prevention efforts (Oliveira et al 2012).
Moreover, the benefits of harmonized classification
systems, such as the one proposed by the European
Commission (Camia et al 2013) are emphasized. By
utilizing such schemes, ML models can significantly
benefit from increased harmonized data availability,
provided that the data’s reliability stays at an adequate
level. This allows for the combination of historical
national fire databases, leading to the development
of larger databases with enhanced modeling poten-
tial. Other standardized georeferenced data initiatives
in Europe (e.g. the European INSPIRE Directive, the
European Geodata Infrastructure, etc) which aim to
establish a common framework for the management
and sharing of geospatial data across Europe are going
in this direction.

ML algorithms have become increasingly popu-
lar in fire science (Jain et al 2020). These algorithms
can help identify complex relationships between vari-
ous factors that contribute to fire occurrences. How-
ever, the success of these algorithms relies heav-
ily on the availability of large, high-quality datasets.
As fire science continues to advance, access to lar-
ger and more comprehensive datasets is becoming
increasingly common. This includes georeferenced
explanatory feature data which provides important
contextual information that can be used to better
understand the underlying causes of fires. As these
datasets continue to grow in size and quality, ML
algorithms will become even more powerful tools for
analyzing fire occurrences and fire causes.

5. Conclusion

In this study we train and apply a model to classify
fire ignition causes based on several environmental
and anthropogenic features using an XAI framework.
The results suggest that the source of unknown caused
fires can be identified at various levels of accuracy
depending on the nature the forest fire (e.g. F1-score
lightning 0.87, accidental 0.74, arson 0.64). Spati-
otemporal characteristics including geographic loc-
ation, season, time of the day but also topographic
factors like elevation are the most important features
in determining the classification of unknown caused
fires for the specific area and fire regime studied here.
The role of spatial non-stationarity is highlighted
through the importance it holds in our processing
framework and should be treated by implement-
ing models that utilize spatial approaches of ML
algorithms, which are expected to have increased
accuracy over the original ones. The increasing avail-
ability of large, high-quality datasets is an important
factor driving the growth of ML algorithms in wild-
fire science and will likely play a critical role in advan-
cing our understanding of fire causes in the coming
years.
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