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Abstract— A specific moving horizon estimation scheme is
proposed for reconstructing the axial xenon concentrations
in pressurized water nuclear reactors (PWR). The model
considered is continuous time, with a parcimonious spatial
discretization. The estimation scheme involves continuous time
integration while using low frequency sampling of measure-
ments. The results support a sensitivity analysis. The quality
of the estimation is shown to be good, even though the model
is particularly stiff, and the implementation altogether light.

I. Introduction

A. Context

Operation of nuclear power plants (NPP) requires that
many variables be kept within specific bounds in order to
provide safe and efficient production of electricity. One such
quantity is the build-up of xenon as a fission product. No
measurement of xenon in the fuel is available.

Fission of 235U produces mostly 135I with rate γI , which
β−-decays into xenon with half-life λI . In smaller proportions
uranium directly produces xenon with rate γX . 135Xe has
a half-life of λX = 9.2 hours and is also transmuted into
stable 136Xe upon absorbing a neutron with rate σX , which
makes it a neutron poison. The xenon/iodine equations are
the following, as can be described in [1]:

İ(t, z) = γIΣ f Φ(t, z) − λI I(t, z)
Ẋ(t, z) = γXΣ f Φ(t, z) + λI I(t, z) − (λX + σXΦ)X(t, z) .

(1)

The terms ΓI = γIΣ f and ΓX = γXΣ f are introduced to
simplify the expressions. Σ f depends on the cross-section
of the fuel, which is dependent on the fuel cycle. Φ(t, z),
X(t, z) and I(t, z) describe the densities in neutrons, xenon
and iodine in the core as functions of time t and altitude z.

The interaction between xenon and neutron flux is to be
considered in power plant operation in order to avoid a
phenomenon called xenon oscillations. Such oscillations can
be triggered by a small change in power distribution that
alternatively causes xenon to accumulate in one part of the
core and be depleted in another part. If left uncontrolled,
such oscillations can diverge in a positive feedback loop and
lead to safety issues.

Common ways to reduce the risks associated with xenon
are appropriate control of the axial offset (AO) of power
as well as sufficient downtime after shutdown. Generally,
operators have to wait dozens of hours before powering up a
plant again. Correct estimation of the xenon in the core can

therefore provide valuable information to power producers
for diagnostics, start-up and safety.

B. Contributions of the paper

In the presented work, we implement moving horizon es-
timation (MHE) in order to estimate the axial xenon concen-
tration and distribution in a pressurized water reactor (PWR).
The performance of MHE requires a continous-time system
to be numerically integrated over "large" time intervals to
account for frequently varying inputs and fast dynamics
while simultaneously accomodating the slow xenon/iodine
dynamics. We rely on a judicious choice of integrator to
accelerate the numerical integration between the sampled
measurements. This as opposed to a costlier evaluation of
a high-frequency discretized model, and for better control of
the integration error. We also extend previously used MHE
implementations for the xenon estimation task, providing
sensitivity analysis on the model parameters.

C. Related works

Estimation of xenon in nuclear reactors has been tackled
both by academics and industry practitioners. The work in
[2] is notable as it uses variational methods to estimate xenon
in the core, which are essentially MHE methods developed
by the meteorology community. It introduces two methods
called "3D-Var" and "4D-var", which are moving horizon
estimators with respective estimation horizon 1 and N > 1.
The model uses 30 nodes core and includes neutronics,
thermodynamics and xenon poisoning. In the same vein,
we aim in the current paper to resume this work with
the underlying objective of computation effort parsimony.
Moreover, a sensitivity analysis of the estimator to parametric
model uncertainty is proposed, which are not presented in the
previous work.

The authors of [3] use Kalman filtering to carry joint
state and parameter estimation on a two-points model of
the core. In [4], a sliding mode observer is synthesized on
the same kind of two-point model. Two-points models are
the bare minimum in order to model AO of the core but
are imprecise. Finer spatial discretization can help bridge
the representativity gap, which is the point of the model
we present. MHE proves to outperform Kalman filtering
and sliding-mode observation, which motivates our choice
of MHE over them.



In [5] an infinite dimension Luenberger high-gain observer
is designed. The authors use a linearized model of the one-
dimensional one-group diffusion equation and xenon/iodine
dynamics about the steady-state xenon and flux distributions
and manage to successfully reconstruct xenon, iodine and
flux distributions. Our model is less conservative as we
do not perform linearization. While it is interesting that
the observer is designed on an infinite-dimensional model,
Luenberger observers suffer from the same drawbacks as the
Kalman filter and require rather strong assumptions to be
applied on non-linear models.

The work in [6] addresses moving horizon estimation
for singularly perturbed systems by taking a distributed ap-
proach, requiring the design of a MHE for the fast dynamics
and a MHE for the "slow" dynamics. Our application is
slightly different as we are not primarly interested in the
fast dynamics (neutrons in our case) and focus instead on
the slower dynamics of xenon. We implement and design a
single estimator to estimate both slow and fast states, which
is a less demanding design approach.

II. Model
We provide details on the model of the nuclear plant that

will support the moving horizon estimation scheme, repre-
sented on figure 1. The reader can find more in-depth expla-
nations on the model in [7] and [8] . The model was used for
predictive control in the previous works and was validated to
be a good compromise between representativity with respect
to the true physics of the core and complexity. The model
assumes one delayed neutron group and includes neutron
diffusion equation, thermal equations, xenon/iodine dynam-
ics and counter-reactions through moderator and doppler
effects, control rods action, boron concentration and xenon
poisoning. We include a modelisation of the chemical and
volumetric control system (CVCS), which is responsible for
the boration and dilution in the core.

Fig. 1: Simplified model for the nuclear core, according to
[7]

The model is discretized into 6 axial nodes. In each node a
state comprising xenon concentration, iodine concentration,

neutron power density and delayed neutrons is considered.
We include temperatures between the nodes for a total of
7 temperatures, as well as the steam generator dynamics:
cold and hot leg temperatures. Additionally, two boron
concentrations are modeled : one for the CVCS system and
one inside the core. The boron concentration in the core is
considered to be uniform. The model has a total of 35 states.

Temperatures between meshes are obtained by assuming
that all the power produced in the mesh is transfered to
the coolant. This heat transfer is modeled through a first-
order model in each node. The neutron density obeys a
diffusion equation, which is implemented by considering an
exchange rate D between adjacent nodes. Delayed neutrons
are produced as the result of the disintegration of the fuel
and other fission products with half-life β. A single delayed
group is considered. Model parameters have been calibrated
with the help of the neutronics codes available at Framatome.

While reactivity is usually a macro-level term in the whole
core, we introduce a reactivity term in each node, which
impact the neutron density in each node. This reactivity term
can be broken down into five sub-terms:
• doppler anti-reactivity: depending on the local power

level, the probability of fission is impacted.
• moderator anti-reactivity: a local increase in temperature

in the coolant decreases the density of the water. Its
ability to slow neutrons down impacts the probability
of fission.

• xenon anti-reactivity: local build-up of xenon in the fuel
will result in poisoning of the node, which will consume
a considerable amount of neutrons, thus decreasing the
number of fissions. The parameter KX relates xenon
concentration to anti-reactivity.

• boron anti-reactivity: the diluted boron absorbs neutrons
and limits fissions.

• control rods anti-reactivity: the control rods contain
neutron absorbing material. Inserted from the top, they
locally limit the number of fissions that can happen.

We have hinted on the stiffness of the model and will ex-
pand on this topic now. The model is an ordinary differential
equation, to be simulated by numerical integration. Stiffness
arises from the different time-scales in the physics of the
system. Xenon dynamics is orders of magnitude slower than
the neutronics in the core. Integrating this model requires
to use a very short integration interval in order to simulate
the system. We leverage variable-step integrators as a way
to speed up implementation of the estimator and limit the
number of terms in the cost function.

The measurements which will be used in the cost function
are 6 axial neutron flux measurements n1..6 from excore
neutronics chambers, as well as the cold leg and hot leg
temperatures (Tout and Tin) of the steam generator, for a total
of 8 measurements.

We consider the power extracted at the steam generator
Pturb, control rods position hrods and dilution and boration
flowrates uD/B as inputs to the system.

III. Moving horizon estimation



A. Principles

Moving horizon estimation was proposed in [9] back in
1968, making the case for least-square optimization to solve
state estimation and improve robustness to model uncertainty
compared with extended Kalman filtering [10]. Kalman fil-
tering and its variants such as the extended and "sigma-point"
filters [11], [12], [13] have been the go-to techniques for non-
linear estimation due to their relative ease of implementation
and good practical performances. At the same time, the
drawbacks are the difficulties to consider hard constraints
on the estimates and in dealing with non-linearity. On the
other hand, MHE can elegantly include these characteristics
in the optimization problem that it solves online. Another
practical advantage of MHE over other estimation techniques
is explored in [14], in which MHE is shown to be an
interesting choice for multi-rate and time-delayed systems.

An overview of MHE is available in [15], this estimation
method has seen increasing attention thanks to model predic-
tive control (MPC) and its breakthrough among practitioners
and academia. MHE is considered to be the dual of MPC and
as such most of the progress on predictive control, such as
software availability and execution speed has been carried
over to MHE without extra costs. Consider the following
non-linear state-space model and its discretization :

ẋ(t) = f (x(t), u(t))
y(t) = h(x(t), u(t))

⇒
xk+1 = Φ(xk, uk)

yk = h(xk, uk) .
(2)

Moving horizon estimation is most often formulated in
discrete-time so it is convenient to introduce a discretization
of the model, which can be obtained from numerical or exact
integration. At each time tk = k × dt, past measurements
[yk−N+1, ..., yk] and inputs [uk−N+1, ..., uk−1] are used to es-
timate all the past states in [tk−N+1, tk]. Hence, at time tk,
N estimates of the state are produced. We introduce the
notation x̂[k − i|k], ∀i ∈ [0,N − 1] to designate the state
estimates obtained from running the MHE at time tk and
X̂k = {x[k − N + 1|k] . . . x[k|k]} is the set of all estimates
produced. xk−N+1 is a prior estimate of the beginning of the
estimation window. The following optimization problem is
solved online:

min
X̂k

J =

N−1∑
i=0

‖wi‖
2
Q +

N∑
i=0

‖vi‖
2
R

+ ‖x̂[k − N + 1|k] − xk−N+1‖
2
S k

st. wi = x̂[k − i + 1|k] − Φ(x̂[k − i|k], uk−i)
vi = yk−i − h(x̂[k − i|k], uk−i)

x[i] ∈ X, u[i] ∈ U, w[i] ∈W, v[i] ∈ V .

(3)

The estimation window is shifted forward in time as
new measurements are available on the system, and a new
optimization problem is solved. Three terms can be outlined
from the cost function:
• The term

∑N−1
i=0 ‖wi‖

2
Q is optionnal depending on the

implemented algorithm. It is used when state distur-
bances are considered. Confidence in the model is
tuned through the matrix Q: if confidence is lower the

contribution of this term in the cost function should be
lower, and conversly.

• The second term
∑N

i=0‖vi‖
2
R is used to compare the esti-

mates with the available measurements on the system,
weighted with matrix R which tunes the confidence in
the measurements.

• The term ‖x̂[k − N + 1|k] − xk−N+1‖
2
S k

is called "arrival
cost". Ideally, the data used for filtering would go consist
in all past measurements available on the system. This
estimation scheme is called Full Information Estimation
(FIE) [15]. In practice, both memory and computation
requirements would grow too large to solve the problem
in finite-time. Therefore in MHE, a finite-sized window
of past measurements is introduced. The arrival cost
can be seen as a way to "approximate" the rest of the
cost function of FIE. Important results on stability and
robustness of MHE depend on the design of the arrival
cost, especially when the system is only detectable.

We present a common implementation of the arrival cost.
Consider xk−N+1 = x̂[k−N +1|k−1], obtained at the previous
MHE step as prior estimate. The term S k is given by running
an extended Kalman filter in parallel, setting S k = P−1

k where
Pk is the solution to the Riccati Equation associated with
the EKF. Since Pk approximates the covariance cov(εk) of
the estimation error εk, S k gives the confidence level in the
previous estimation. The usual limitations on the EKF apply
here, since Pk is only a local approximation of cov(εk) of
the actual state. The other common issue of the EKF is
that the estimation error is assumed to be gaussian whereas
transformation of white noise by a nonlinear function is not
gaussian in the general case. Other methods to compute the
arrival cost are explored in [16], comparing EKF, UKF and
particule filter. In [17], the arrival cost is computed using
adaptive estimation techniques. It should also be noted that
stability of MHE can be ensured even with a choice of a
constant value for S k (diagonal in the proof in [18]).

Under mild assumptions on uncertainties and noise
(boundedness and compactness) [18], the estimation scheme
shows good stability and robustness properties that make
this method attractive despite the associated costs in compu-
tation. Efforts to reduce the computational burden leverage
sensitivity results from non-linear programming, leading to
implementations using suboptimal optimization [18], real-
time iteration [19] or "one-step" MHE [20].

B. A formulation for stiff systems

The dynamics of xenon is slow, due to the half-lives of
135Xe and 135I in the range of several hours. Such time
constants call for long estimation windows. In doing so,
we can have significant contribution of the xenon effect in
the estimation scheme, whereas shorter windows will imply
less xenon variation over time, which discards the xenon
dynamics. In [21], the author use an estimation horizon of
two hours with successful xenon estimation.

Input signals applied to the system have faster frequency
rates than the xenon dynamics and impact the neutron
dynamics. Assuming a discretization of the continuous-time



model with frequency Ts ∼ 1s would imply N >> 1 to
achieve horizons in the range of mere minutes. This is not
desirable as the optimization problem would be difficult to
solve in a short timespan. Because of the slow dynamics of
xenon, such a fast-paced estimator is not necessary anyway.

As such, we have to alter the MHE formulation we
presented in the previous section. The estimated states in the
estimation window are the result of a numerical simulation
instead of a discretized model.

xk+1 = xk +

tk+1∫
tk

f (x(τ), u(τ))dτ (4)

yk = h(xk, uk) . (5)

Since the model is stiff, we use a variable-step numeri-
cal integrator between the considered measurement instants
and let the integrator choose appropriate time-steps. This
implementation imposes that the input signals are to be
interpolated at the right time-steps, but ensures a correct
input value is used. The integration error is controlled thanks
to adaptive schemes, which is essential when long estimation
windows are considered.

We assume that the design model is purely deterministic,
that is, without process noise. This hypothesis is consistent
with the first validation step, which is based on this model.
That being said, most of the noise contributions are precisely
known on a real installation: the dilution and boration
rates are well known, the power extracted from the steam
generator is known and the position of the rods is well
controlled in normal operation. We also assume that only
the beginning of the window is estimated, the remainder of
the window can be obtained through integration. Under the
previous considerations, MHE is formulated as:

min
x̂[k−N+1|k]

J =

N∑
i=0

‖vi‖
2
R + ‖x̂[k − N + 1|k] − xk−N+1‖

2
S k

st. x̂[i + 1|k] = x̂[i|k] +

tk+Ts∫
tk

f (x(τ), u(τ))dτ

vi = yk−i − h(x̂[k − i|k], uk−i)
x[i] ∈ X, u[i] ∈ U, v[i] ∈ V .

(6)

The estimation horizon is a tuning parameter for design.
Longer horizons mean that we include more measurements
on the system in the cost function and that we are able to
capture longer dynamics. The cost function becomes closer
to FIE, which is desirable. At the same time, the longer
the horizon, the more computation to solve the optimization
problem. Horizon length has to be carefully assessed in order
to reach satisfactory performances in terms of estimation and
time-requirements.

In the current formulation, compared with the "usual"
MHE, the designer has an additional parameter to tune: the
sampling rate Ts = tk+1 − tk of the measurements included in
the cost function. Regardless of the actual measurement rate,
we can choose to downsample measurements as to control

the complexity of the optimization problem. Horizon length
now refers to the quantity (N−1)T s, which corresponds to the
actual time spanned by the estimation window, contrary to
most implementations for which "N" and "horizon length"
are used interchangeably. We will assess the trade-off be-
tween higher sampling rate, horizon length and computation
time.

IV. Results
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Fig. 2: Reference power throughout the validation transient

The load-follow scenario described on figure 2 is used
for validation. This scenario is interesting as the successive
power variations will disrupt the xenon and iodine dynamics
from the equilibrium. Simulation data is representative of
actual plant operation as it is obtained in closed-loop using
the predictive controller in [22]. We use additive gaussian
noise on the measured output, standard deviation for temper-
ature measurements and neutron power being σt = 0.5 and
σn = 0.2 respectively. Arrival cost is implemented through
the constant matrix P. The weigting matrices are :

R =

[
σtI2 0

0 σnI6

]−1

P1/2 =


I12 0 0 0 0
0 102I9 0 0 0
0 0 103I2 0 0
0 0 0 105I6 0
0 0 0 0 I6


−1

.

The estimator is initialized with an erroneous estimate x̂0
with 15% relative error to x0, the true initial state. Boron
concentration is the only exact initial estimate. Boron absorbs
neutrons therefore on the dynamics of the core is similar
to xenon. Our tests show that convergence is much slower
when starting from an erronated boron concentration. We
choose to initialize with a known value, which is a reasonable
hypothesis as measurements of the boron concentration are
available. Other states could be initialized similarly but do
not impact the convergence of the estimator as much as
boron.

Relative normalized error ε(rel)
k on the whole state is

a weighted norm using P1/2 so that states have similar
contributions to the error, despite their difference in scale
(7). For other states we compute the relative error ε(rel)

i,k with
respect to the quantity i ∈ {X, I,T,Cb, n, c} (8).

ε(rel)
k =

‖P1/2(x̂[k|k + N − 1] − xk)‖
‖P1/2xk‖

, (7)



ε(rel)
i,k =

‖x̂i[k|k + N − 1] − xi,k‖

‖xi,k‖
. (8)

Implementation relied on MATLAB® [23], using fmincon
(MATLAB Optimization Toolbox™) with interior-point algo-
rithm to solve the non-linear optimization problem. Numer-
ical integration of the model was handled by the variable-
step integrator ode15s. Consumer-grade hardware was used,
consisting of an Intel® Core™ i5-8365U CPU clocked at
1.6GHz and 16Gb of DDR4 RAM. We provide the average
MHE iteration time titer, which is the average solution time
of each optimization problem over the 24h long transient.

A. Trade-off between measurement rate and horizon size

The first validation on the estimation scheme supposes no
model mismatch between the design and validation model.
We want to assess the tradeoff between horizon length,
measurement rate and computation effort. Table I shows
the results from running the estimator with different tuning
parameters.

TABLE I: Comparison of different MHE tuning
Experiment # N Ts (s) (N − 1)Ts (s) titer(s)

1 5 300s 1200 7.1
2 9 150s 1200 8.6
3 5 150s 800 5.1
4 5 600s 2400 12.1
5 9 300s 2400 10.3
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Fig. 3: Relative normalized state error (in %)

0 5 10 15 20

Time (hours)

0.1%

1%

10%

R
e

la
tiv

e
 e

st
im

a
tio

n
 e

rr
o

r 
(%

)

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Fig. 4: Relative xenon error (in %)

We see that all estimators are able to reconstruct the
state from the noisy measurements (figure 3), with a final
relative normalized error ε(rel)

f inal ranging between 0.5% and

1.1%. Focusing on the estimation of xenon, on figure 4, we
observe the error decreasing very rapidly in the first iterations
of MHE, due to the fact that xenon strongly impacts the
dynamics. Experiment 5 yields the best results on relative
normalized estimation error. This is to be expected since the
horizon in this setting is longer than the others; estimation
error at the beginning of the window accumulates in the
cost function. When running the same experiments without
measurement noise, this difference is even more notice-
able. Experiment 4 shows that choosing a "long" horizon
is not sufficient, only having half the sampling frequency
as experiment 5 while performing significantly worse. We
could expect longer horizons to imply significantly longer
execution times. It is not the case, showing that the numerical
integrator is very effective at choosing the appropriate time-
steps, speeding up the evalution of the cost function. The
result is a performant MHE execution regardless of the
choice of horizon length and sampling period.

B. Sensitivity analysis: a multi-model approach

We assess the robustness of the estimator to model un-
certainties. We consider a multi-model approach, in which
different models will support MHE, each slighly off from the
actual system. As we focus on the xenon/iodine dynamics,
we only consider the parameters associated with it. We refer
the reader to sections I and II where the parameters are
introduced. Table II contains the different model mismatch
situations and the error that was introduced on each param-
eter. Empty entries mean that nominal value was used. The
MHE uses the same parameters as experiment 1, as we found
that these values produced the best results in this case.

TABLE II: Sensitivity analysis of the estimator
Experiment # β KX ΓX σX titer(s)

6 -10% 9.1
7 -10% 8.4
8 +5% 6.2
9 +5% -10% 6.6

10 +10% 6.3
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Fig. 5: Relative normalized state error (in %) with model
mismatch

Robustness of the estimator to parameter uncertainty ap-
pears from figure 5. In all situations, ε(rel)

f inal < 2%, while xenon
itself is estimated to within an acceptable error level (figure
6): even the worst case scenario (experiment 7) provides
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xenon estimations such that ε(rel)
X, f inal < 6%. Considering noises

on the measurements and the stiff nature of the system, we
deem this loss of estimation quality acceptable for real-world
application, falling below the noise level of the available
measurements.

V. Conclusions

We have designed and implemented a moving horizon
estimator for xenon concentration in pressurized water nu-
clear reactors. The proposed scheme calls for an adapted
implementation, taking advantage of variable-step integra-
tion. This makes it capable of operating in practise, both
because of the quality of the estimate produced, and the
computational cost required. Robustness to parameter un-
certainties was confirmed through a multi-model sensitivity
analysis. This supports suitability of the estimator for real-
world applications.
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