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Abstract: Identifying fungal clones propagated during outbreaks in hospital settings is a problem that
increasingly confronts biologists. Current tools based on DNA sequencing or microsatellite analysis
require specific manipulations that are difficult to implement in the context of routine diagnosis.
Using deep learning to classify the mass spectra obtained during the routine identification of fungi
by MALDI-TOF mass spectrometry could be of interest to differentiate isolates belonging to epidemic
clones from others. As part of the management of a nosocomial outbreak due to Candida parapsilosis in
two Parisian hospitals, we studied the impact of the preparation of the spectra on the performance of
a deep neural network. Our purpose was to differentiate 39 otherwise fluconazole-resistant isolates
belonging to a clonal subset from 56 other isolates, most of which were fluconazole-susceptible,
collected during the same period and not belonging to the clonal subset. Our study carried out on
spectra obtained on four different machines from isolates cultured for 24 or 48 h on three different
culture media showed that each of these parameters had a significant impact on the performance of
the classifier. In particular, using different culture times between learning and testing steps could
lead to a collapse in the accuracy of the predictions. On the other hand, including spectra obtained
after 24 and 48 h of growth during the learning step restored the good results. Finally, we showed
that the deleterious effect of the device variability used for learning and testing could be largely
improved by including a spectra alignment step during preprocessing before submitting them to the
neural network. Taken together, these experiments show the great potential of deep learning models
to identify spectra of specific clones, providing that crucial parameters are controlled during both
culture and preparation steps before submitting spectra to a classifier.

Keywords: MALDI TOF; epidemiology; Candida parapsilosis; neural network; artificial intelligence;
outbreak; deep learning
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1. Introduction

Candida parapsilosis is one of the most common yeasts responsible for human infections.
Some studies rank it second just behind Candida albicans among the species most frequently
responsible for candidemia [1]. Notably, this yeast has been implicated in nosocomial
infection epidemics [2], including several outbreaks due to isolates resistant to fluconazole
and other azoles, which are the first line of treatment [3–6]. Furthermore, some of these
outbreaks are responsible for high mortality rates in intensive care units, especially if
the patients are immunocompromised [7,8]. Recent publications report up to 30% of
fluconazole-resistant isolates carrying an A395T mutation (Y132F substitution) in the erg11
gene to explain the observed phenotype. This mutation is likely the main mechanism
that confers azole resistance to these isolates. In 2021, our team [9] described an outbreak
of Candida parapsilosis resistant to fluconazole in the La Pitié Salpêtrière hospital (PSL)
in Paris. Two clones infecting mainly ICU patients were identified; one was identified
between 2012 and 2017 and the other emerged in 2017 and is unfortunately still active. The
worrying spread of these resistant epidemic clones makes it necessary to build appropriate
diagnostic tools for detecting clonal resistant isolates among all nonclonal fluconazole-
susceptible C. parapsilosis identified in the routine flow of our microbiology departments.
For now, allocating a given isolate to a clonal set requires the use of molecular methods
such as microsatellite typing [10,11] or DNA sequencing. However, these methods are too
expensive and time consuming to be implemented as routine activities.

We therefore set out to find a method that would allow clones to be identified di-
rectly in the flow of routine analyses without having to implement additional biological
assays based on molecular biology. Detecting an epidemiological cluster of drug-resistant
microorganisms directly through routine analysis methods would allow microbiologists
to alert clinicians, making it possible to rapidly adapt the treatment administered to the
patient and thus improve infection management. Currently, matrix-assisted laser desorp-
tion/ionization time-of-flight mass spectrometry (MALDI-TOF MS) represents the main
routine approach to identify bacteria and yeasts in almost all microbiology laboratories
around the world. MALDI-TOF mass spectrometry generates mass spectra corresponding
to the main proteins and glycoproteins extracted from microorganisms [12–15]. The mass
spectra can be considered as species-specific fingerprints, allowing accurate identification
of purified isolates at the genus and species levels. Recent studies have opened the door
for new applications of MALDI-TOF typing approaches with the use of machine learning
algorithms. Delavy et al. selected a machine learning model that qualitatively detects
fluconazole resistance in the azole-tolerant species C. albicans [16]. Most recently, Nor-
mand et al. developed a simple deep learning model to identify a clonal population of
Aspergillus flavus by MALDI-TOF mass spectrometry with a high performance [17]. Un-
fortunately, unlike the examples cited above, we have quickly discovered that in the case
of Candida parapsilosis, the protein profiles obtained after MALDI-TOF mass spectrometry
were so similar that it was impossible to obtain a good discrimination between the isolates
belonging to the resistant clone and others using the model that successively discriminated
Aspergillus flavus clones.

In this study, we investigated the methods used during the preparation of samples
and during the computer analysis of mass spectra to improve the learning phase and,
consequently, the discriminatory power of the trained neural network. This study partic-
ularly focused on the experimental steps that can influence the performance of epidemic
clone identification using deep learning applied to the MALDI-TOF MS spectra. This
work constitutes the first effort to analyze the conditions required for the optimal use of
MALDI-TOF MS and deep learning in investigating outbreaks in medical mycology. It may
be useful for other teams experiencing difficulties in successfully distinguishing between
microbial entities with highly similar MALDI-TOF MS patterns.
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2. Materials and Methods

Isolates. Ninety-six isolates that were either susceptible or resistant to fluconazole
were selected for this study (Supplemental Data Table S1). Some of the isolates used in
the present study have been previously described [9,18]. Among the resistant isolates,
39 belong to the clonal set that recently spread in different ICUs of two hospitals located in
Paris (the La Pitié-Salpêtrière hospital (PSL) and Bichat Claude Bernard hospital (BCH)).
The remaining isolates were selected from the daily activity of three hospitals (PSL and
BCH in Paris and the Pellegrin Hospital in Bordeaux). All Candida parapsilosis isolates
were cultured in parallel on three types of culture media (Sabouraud Chloramphenicol
Gentamycin (SAB-CG; Oxoid, Dardilly, France), Chromagar (CHR; BD, Le Pont de Claix,
France) and Blood Agar (BLOOD; BioMérieux, Craponne, France)).

Genetic diversity. Microsatellite genotyping was performed as previously described [10].
Briefly, a panel of 6 short tandem repeats was used, resulting in a 12-marker microsatel-
lite profile for each isolate. The resulting microsatellite profiles were then exported and
submitted to an unweighted pair group method with arithmetic mean (UPGMA) cluster
analysis (Dendro-UPGMA, available at http://genomes.urv.es/UPGMA/, accessed on
12 February 2023) to generate a dendrogram, considering data as categorical values. Isolates
with ≥11 identical genotypes by microsatellite typing were grouped and considered to
belong to the same clonal set.

Fluconazole susceptibility. The minimal inhibitory concentrations of fluconazole
were determined by a gradient concentration strip method (Etest; bioMérieux). Isolates
were classified as susceptible, intermediate, or resistant according to the EUCAST clinical
breakpoints available at http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/
(accessed on 12 February 2023).

MALDI-TOF mass spectra acquisition. All positive cultures were subjected to the
MALDI-TOF MS extraction protocol as previously described by Normand et al. [19] after
24 and/or 48 h of growth. Briefly, C. parapsilosis was inactivated in a 70% EtOH solution and
proteins were extracted using formic acid and acetonitrile (v/v). One microliter of protein
extract was deposited on one spot of two polished steel targets (two deposits per isolate
per culture medium) and covered with one microliter of HCCA matrix. In each experiment,
samples from the clone set and from the other category were alternatively deposited to
avoid having all clonal spectra in one-half of the target and all nonclonal spectra in the other
half. Spectra were acquired using Microflex machines located in four different Parisian
laboratories: the mycology department (MYCO-PSL) and the bacteriology department
(BACT-PSL) in the Pitié Salpêtrière hospital, the bacteriology department in the Bichat
Claude Bernard hospital (BICHAT) and the bacteriology department in Saint-Antoine
hospital (SAINT-ANTOINE). For the four mass spectrometers, the default acquisition
method (MBT-AutoX) was selected. One default spectrum acquisition parameter from the
Flex Control software (version 3.4) was altered as follows: when none of the 800 shots led
to a spectrum that met the manufacturer requirements, the sum of the rejected spectra
was saved instead of selecting the default option (i.e., do not save), allowing a systematic
acquisition of a spectrum, regardless of the wear of the machine. Each deposit identification
was checked using the MSI-2 database (https://msi.happy-dev.fr/).

MALDI-TOF mass spectrometry data analysis.
Preprocessing. MALDI-TOF raw data were preprocessed using python environment

3.8 with smoothing using Fourier transformation, the asymmetric least squares method [20]
for the baseline correction and peak picking with the detection of the sign changes in the
spectra derivative [21] (Figure 1).

Alignment. Alignment of the spectra was performed after the preprocessing step
with MSIWarp, a Python package provided with C++ implementation. MSIWarp is a
flexible tool compatible with multiple instrument types to perform mass alignment of
mass spectrometry imaging spectra [22]. The alignment approach works on TOF data and
reduces the mass range shift by applying a recalibration function on mass (m/z) data and
by maximizing a similarity score that considers both the intensity and m/z position of

http://genomes.urv.es/UPGMA/
http://www.eucast.org/astoffungi/clinicalbreakpointsforantifungals/
https://msi.happy-dev.fr/
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peaks matched between two spectra. It can be applied using a reference spectrum. Here,
the chosen reference spectrum was the spectrum with the highest correlation coefficient
with all other spectra.
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Figure 1. Step-by-step preprocessing of the spectra from the raw spectrum to the processed spectra
before use in the machine learning phase.

Machine learning. To further differentiate clone and nonclone spectra, a deep learning
method involving ANN was implemented with TensorFlow 2.7.0. It was composed of
a convolutional part and a fully connected part (architecture typical of a convolutional
neural network (CNN)). The classifier (Figure 2) was a very simple CNN [23] model taking
a spectrum of 18,000 values as input (this accepts the preprocessed spectra and passes them
on to the remaining network). The convolutional block was used to assist in the detection of
patterns. It was composed of several layers (3 filters and a kernel size of 6): a convolutional
layer to extract the characteristics, a max-pooling layer to reduce and pass on the main
information [24] (pool size = 100) and a flatten layer followed by two fully connected
layers (512 and 1024 units). A rectified linear unit function (ReLU) [25] was used in the
convolutional and fully connected layers as the activation function. Classification was then
performed with a normalization layer [26] to improve the class score with a final dense layer
of dimension 2, followed by a softmax [27] function to produce the prediction probability
over the 2 output classes (clones/others). The learning rate was set by default to 0.001 and
the maximum number of epochs was set to 50 with early stopping with patience = 20. We
used the Adam optimizer and the categorical cross-entropy loss [28]. The batch size was
set to 60.

The preprocessed spectra were fed into a neural network with a convolutional layer, a
max-pooling layer and a flattening layer to extract the main features and reduce captured
information. The flattened layer was used as a transition to two fully connected layers
to optimize classification. Features from the previous layer were then normalized by the
normalizing layer followed by the output layer to produce results. The shape of the output
layer was added with the batch size, n, set to 1 to simplify the illustration.

MALDI-TOF mass spectrometry data analysis cross-validation. For each test, the
isolates were divided into five equally sized sets using random selection to preserve
the clone/nonclone distribution. We validated our classification system using a nested
cross-validation (CV) technique stratified by clone/nonclone classification. Each CV fold
was made of a training set composed of the data from 80% of the spectra depending on
the criteria tested and a test set comprising the remaining 20% of the spectra. In total,
20 folds were performed with strict separation between the training and the test set, both
in terms of isolates, culture media, age of the culture and mass spectrometers. On each
fold, the clone/others classification system was trained on the training set and validated
on the test set.
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Evaluation metrics. For each impact assessment, we used the accuracy (percentage of
correct identifications), the F1-score, which is a synthesis score used in machine learning,
the recall (sensitivity) and the specificity. Confidence intervals at the 95% confidence level
were computed using the empirical bootstrap method [29].

Accuracy =
TP + TN

TP + TN + FP + FN

Specificity =
TN

TN + FP

Precision (PPV) =
TP

TP + FP

Recall (Sensitivity) =
TP

TP + FN

F1score = 2 ∗ Precision ∗ Recall
Precision + Recall
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where TP are true positives, FP are false positives, TN are true negatives, FN are false-
negatives and PPV is the positive predictive value.

Study design. The study was designed in four steps (Figure 3). First, using all the
spectra that were acquired after 24 h of growth on the three culture media, we compared the
machine effect. We used spectra obtained with three of the four machines for the learning
phase and we tested the neural network with spectra obtained with the fourth machine.
Second, using the same process, we applied the MSIWARP alignment method prior to the
learning and testing phases. Third, to test the effect of the culture medium, we detailed the
results depending on the culture media used for the growth of the isolates. Finally, using
two of the four machines, we acquired the spectra from the 96 isolates at 24 and 48 h of
growth to assess the impact of the age of the culture.
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Ethical considerations. This study was carried out in accordance with the Declaration
of Helsinki. The current study was not considered a study involving humans according to
French law No. 2012-300, as no clinical or identifying data were used. All the strains were
stored anonymously in the Pitié Salpêtrière Hospital Mycology Laboratory.

3. Results
3.1. Genetic Diversity

Among the 96 selected isolates, 39 were closely related and belonged to our set of
clones that we called R2 (Figure 4 and Supplemental Data Table S1). A total of 37 of
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the 39 isolates corresponded to two widespread clones varying by only seven repeats on
one of the alleles (26 isolates with the R2a profile (3A: 28-28; 3B: 49-82; 3C: 48-51; 6A: 8-8;
6B: 7-7; 6C: 7-7) and 11 isolates with the R2b profile (3A: 28-28; 3B: 49-75; 3C: 48-51; 6A: 8-8;
6B: 7-7; 6C: 7-7)). Two other isolates appeared to be close to those two clones and varied in
the 3B microsatellite: isolate 307 (3A: 28-28; 3B: 49-76; 3C: 48-51; 6A: 8-8; 6B: 7-7; 6C: 7-7)
and isolate 329 (3A: 28-28; 3B: 46-82; 3C: 48-51; 6A: 8-8; 6B: 7-7; 6C: 7-7).
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Figure 4. Dendrogram of the 96 Candida parapsilosis isolates selected for this study and typed by a
microsatellite approach.

3.2. Fluconazole Susceptibility

Among our 96 isolates, 51 showed resistance to fluconazole (minimum inhibitory con-
centration (MIC) ≥ 4 mg/L) and 45 isolates were susceptible or intermediate to fluconazole
(MIC < 4 mg/L) (Supplemental Data Table S1). All of the isolates belonging to the R2 set of
clones were resistant to fluconazole, and 38/39 showed resistance ≥ 256 mg/L. Only R2
isolate 329 had an MIC of 16 mg/L s. Most isolates of the R2a profile (25/26) were from the
La Pitié-Salpêtrière Hospital between November 2017 and October 2020, while one isolate
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of this clone was identified at Bichat-Claude Bernard Hospital in June 2021. Isolates of the
R2b profile were detected starting in February 2020 in La Pitié-Salpêtrière and May 2021 at
Bichat-Claude Bernard. The outbreaks of C. parapsilosis from both profiles are still ongoing
in the two hospitals.

3.3. MALDI-TOF Mass Spectrometry Data Analysis

A total of 2258 spectra were acquired and used for determining the machine, alignment
and culture medium impacts, and 768 new spectra were acquired for the assessment of the
impact of the age of the culture.

3.4. Impact of the Machine and of the Alignment with MSIWarp

The results of the CV realized for each of the four machines are compiled in Table 1.
Without alignment, the performance of the CNN model showed results ranging from 68%
to 89% for the mean accuracy, depending on the tested machine. This experiment shows
that all machines were not equal, even though the acquisition parameters were the same.
MSIWarp alignment significantly improved the performance of the CNN model, especially
for the two machines that showed lower performances without alignment. Notably, the
recall (sensitivity) of the BACT-PSL and BICHAT machines improved from 0.30 to 0.64 and
from 0.29 to 0.75, respectively, both without a loss in specificity.

Table 1. Impact of the machine and of the alignment with MSIWarp. Performance of the identification
of isolates belonging to the set of clones by the CNN model (cross-validation on five folds). Mean
training sets of 1355 spectra obtained on three machines and mean testing set of 113 spectra obtained
on the fourth machine.

Accuracy F1-Score Recall
(Sensitivity) Specificity

Machine Tested; Performance Without Alignment
MYCO-PSL 0.89 [0.87, 0.92] 0.87 [0.84, 0.90] 0.90 [0.86, 0.94] 0.86 [0.83, 0.90]
BACT-PSL 0.70 [0.66, 0.73] 0.44 [0.37, 0.51] 0.30 [0.24, 0.37] 0.95 [0.93, 0.97]
SAINT-ANTOINE 0.83 [0.80, 0.86] 0.74 [0.71, 0.80] 0.65 [0.59, 0.71] 0.90 [0.87, 0.93]
BICHAT 0.68 [0.65, 0.72] 0.42 [0.36, 0.50] 0.29 [0.24, 0.35] 0.88 [0.84, 0.91]
Machine Tested; Performance With Alignment
MYCO-PSL 0.91 [0.88, 0.93] 0.89 [0.86, 0.92] 0.92 [0.88, 0.95] 0.88 [0.84, 0.91]
BACT-PSL 0.81 [0.78, 0.85] 0.74 [0.68, 0.78] 0.64 [0.57, 0.70] 0.92 [0.89, 0.95]
SAINT-ANTOINE 0.91 [0.89, 0.93] 0.89 [0.86, 0.92] 0.92 [0.88, 0.95] 0.87 [0.83, 0.90]
BICHAT 0.84 [0.81, 0.87] 0.79 [0.75, 0.83] 0.75 [0.68, 0.80] 0.87 [0.84, 0.91]

3.5. Impact of the Culture Medium per Machine

Keeping the alignment with MSIWarp, we compared the results obtained on the
three culture media per machine (Table 2). Depending on the culture medium and the
machine tested, the mean accuracy of the CNN model ranged from 0.77% to 0.96%. Except
for the MYCO-PSL machine, for which the sensitivity was equivalent in the three culture
media, greater performances were obtained on Sabouraud-GC for an equivalent specificity.

3.6. Impact of the Age of the Culture on Sabouraud Medium

Keeping the alignment with MSIWarp, we compared the performances obtained after
24 h and 48 h of growth on two machines (MYCO-PSL and SAINT-ANTOINE). Spectra
from both machines were pooled and CV was performed only on the age of the culture
(Table 3). When considering the same ages of the culture for training and testing, the
performances were found to be equal, regardless of the metric taken into account (>90%).
When the ages of the culture were crossed, especially when the CNN was trained with
spectra from cultures grown for 48 h and tested with spectra from cultures grown for 24 h,
the performance was disastrous, with all spectra identified as nonclones.
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Table 2. Impact of the culture medium per machine. Performance of the identification of isolates
belonging to the set of clones by the CNN model (cross-validation on five folds). Mean training
sets of 452 spectra obtained on three machines and mean testing set of 38 spectra obtained on the
fourth machine.

Accuracy F1-Score Recall
(Sensitivity) Specificity

Machine Tested With Alignment; Performance On Chromagar
MYCO-PSL 0.91 [0.86, 0.94] 0.89 [0.83, 0.94] 0.88 [0.80, 0.95] 0.83 [0.75, 0.90]
BACT-PSL 0.77 [0.71, 0.83] 0.62 [0.55, 0.75] 0.47 [0.37, 0.59] 0.96 [0.92, 0.99]
SAINT-ANTOINE 0.88 [0.83, 0.92] 0.84 [0.78, 0.90] 0.80 [0.71, 0.88] 0.90 [0.84, 0.95]
BICHAT 0.81 [0.75, 0.86] 0.72 [0.64, 0.82] 0.61 [0.50, 0.71] 0.96 [0.91, 0.99]
Machine Tested With Alignment; Performance On Sabouraud-CG
MYCO-PSL 0.88 [0.84, 0.93] 0.86 [0.80, 0.92] 0.84 [0.75, 0.91] 0.89 [0.83, 0.94]
BACT-PSL 0.93 [0.89, 0.96] 0.92 [0.87, 0.96] 0.95 [0.89, 0.99] 0.88 [0.82, 0.94]
SAINT-ANTOINE 0.89 [0.84, 0.93] 0.89 [0.83, 0.93] 0.95 [0.89, 0.99] 0.84 [0.76, 0.90]
BICHAT 0.89 [0.85, 0.94] 0.88 [0.82, 0.92] 0.89 [0.81, 0.95] 0.92 [0.87, 0.97]
Machine Tested With Alignment; Performance On Blood Agar
MYCO-PSL 0.92 [0.88, 0.96] 0.89 [0.86, 0.96] 0.87 [0.79, 0.94] 0.95 [0.90, 0.98]
BACT-PSL 0.86 [0.81, 0.90] 0.81 [0.74, 0.88] 0.73 [0.63, 0.83] 0.97 [0.94, 1.00]
SAINT-ANTOINE 0.93 [0.89, 0.96] 0.92 [0.87, 0.96] 0.96 [0.91, 1.00] 0.87 [0.81, 0.93]
BICHAT 0.96 [0.94, 0.99] 0.95 [0.91, 0.99] 0.93 [0.87, 0.99] 0.87 [0.81, 0.93]

Table 3. Impact of the age of the culture. Performance of the identification of isolates belonging to
the set of clones by the CNN model (cross-validation on five folds). L = training set; T = testing set. A
total of 307 spectra were used per age of the culture for the training set, while 77 spectra were used
per age of the culture for the testing set.

Accuracy F1-Score Recall
(Sensitivity) Specificity

Age of the culture tested with alignment; Performance by ages of the culture
L24 h/T24 h 0.92 [0.90, 0.95] 0.91 [0.87, 0.94] 0.91 [0.86, 0.94] 0.95 [0.92, 0.98]
L48 h/T48 h 0.94 [0.91, 0.96] 0.92 [0.89, 0.95] 0.93 [0.89, 0.97] 0.95 [0.92, 0.97]
L(24 h + 48 h)/T(24 + 48 h) 0.93 [0.91, 0.94] 0.91 [0.88, 0.93] 0.91 [0.87, 0.94] 0.96 [0.94, 0.97]
Age of the culture tested with alignment; Performance by mixed ages of the culture
L24 h/T48 h 0.70 [0.65, 0.74] 0.71 [0.65, 0.76] 0.90 [0.85, 0.94] 0.56 [0.50, 0.63]
L48 h/T24 h 0.59 [0.54, 0.64] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 1.00 [1.00, 1.00]
L(24 h + 48 h)/T24 h 0.92 [0.90, 0.95] 0.90 [0.86, 0.94] 0.87 [0.82, 0.92] 0.96 [0.93, 0.98]
L(24 h + 48 h)/T48 h 0.91 [0.89, 0.94] 0.89 [0.86, 0.93] 0.89 [0.84, 0.94] 0.93 [0.90, 0.96]

4. Discussion

Artificial intelligence includes the field of machine learning, which is the develop-
ment of mathematical algorithms capable of solving problems based on learning from
data samples. In this regard, deep learning algorithms (DLs), which use artificial neural
networks (ANNs), are a subset of machine learning. In microbiology, particularly in the de-
tection of antimicrobial resistance, these techniques have provided interesting insights [30].
These ANNs are a set of interconnected neurons that are capable of classifying output
data from input signals. There are a number of different architectures that can be used,
including convolutional neural networks (CNNs), which are known to be very powerful in
image recognition [31]. For example, these algorithms have demonstrated their utility in
microbiology for automated Gram stain reading [32].

However, in contrast to image recognition, experimental data on MALDI-TOF mass
spectra remain scarce. Although MALDI-TOF mass spectrometry has become the main
method used for the routine identification of bacteria, yeasts and filamentous fungi, only a
few studies have explored the benefit of deep learning algorithms in MALDI-TOF spectra
classification. This observation can be applied either in studies designed to distinguish
closely related species or to identify a particular characteristic within a microbial species,
such as resistance to certain antimicrobial molecules or belonging to an epidemic clone.
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To date, no study has focused on the preanalytical steps involved in classifying spectra
using a neural network. We show here that these steps are important by highlighting the
role of the culture media, the growth time, the machine used to acquire the spectra and,
finally, the mathematical treatment applied to the spectrum, in particular its alignment
with a reference spectrum before its classification by the neural network.

The result can be excellent, mediocre or disastrous depending on whether these
parameters are controlled. Thus, a learning process performed on two machines (MYCO-
PSL and SAINT ANTOINE) from colonies grown 48 h on Sabouraud-GC agar allowed us
to correctly classify 94% of the spectra acquired following the same conditions, while trying
to classify spectra acquired after 24 h of growth using the same trained neural network
led to disastrous results (all spectra were classified as nonclones). Our results also show
that this pitfall could be circumvented by including the two culture times in the learning
process, making it possible to obtain a satisfactory classification of the isolates after both
24 and 48 h of culture. The impact of the age of the culture on the shape of the spectrum
has already been observed in studies designed to assess the identification performances in
medical microbiology, especially for dermatophytes [33,34]. In some cases, this has led to
the inclusion of spectra acquired at various ages of the culture in the reference databases to
improve the identification performances. In the special case of the search for clones within
a yeast species, the degree of precision makes it essential to control this parameter.

Beyond the colony’s time of growth, our study showed the importance of the culture
medium on which the colonies are grown in obtaining the most reliable results. This was
not a surprise for us, as this parameter has often been pointed out in studies, even though
those studies concluded that the impact of such variation on identification reliability was
not a hurdle. In the case of the search for clones, the level of precision is such that it would
be better to consider this parameter. Our study shows that classifying clones was possible
either by extending the learning process to several culture media or by restricting the use
of the model to spectra obtained from isolates cultured on the same medium as that used
for learning.

The same conclusions can be drawn about the machines used for the learning phase
and for the tests. In a previous study on Aspergillus flavus clonal detection, we highlighted a
machine effect for the learning and testing phases and pointed out difficulties in obtaining
satisfactory results with one of the tested machines (BACT-PSL) that was overused [17].
Nevertheless, we show here that by using several machines in the learning phase (leading
to an increase in spectra analyzed), it was possible to obtain a satisfactory classification of
the spectra for another machine, with 81 to 91% of correctly classified spectra, depending
on the machine used to test the model. However, to obtain these results, classification by
the neural network should be preceded by an alignment step of the spectra to minimize
the variability of the spectra from one machine to the other. Fortunately, such a step can
be performed automatically and only takes a fraction of a second for each new spectrum
tested on the trained model. Quite unexpectedly, we were able to observe that our neural
network could very easily identify the machine on which the spectra had been acquired
and the culture medium on which the colony had been grown.

Altogether, these results show that it is possible to use deep neural networks to carry
out epidemiological studies at a local level or even on several centers, provided that some
parameters are monitored. On the basis of the research carried out in this study, we
recommend that any center searching for specific clones in the context of the local spread
of an outbreak should perform the learning phase using locally acquired spectra and then
test the subsequent model using the same Maldi-ToF mass spectrometer. In addition, the
conditions, i.e., culture medium and culture time, under which the colonies were obtained
must be identical between the learning and the test phases. In the event that the spectra
to be tested are expected to correspond to various acquisition conditions (for example,
use of several culture media or several mass spectrometers), we recommend taking into
account these conditions in the learning phase. The high impacts of parameters such as
culture media or time of growth have also been observed with infrared spectrometry and
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bacterial typing [35], for which it is recommended to run all samples to be typed in the
same experiment. Here, we show that it was possible to obtain satisfactory results when
learning and testing were not performed at the same time or on the same machine. This is
an interesting finding that needs to be highlighted. The other notable advantage is that a
technology commonly used in biomedical laboratories was used as a starting point, which
was not the case with the infrared spectrometry study.

However, our study has limitations. First, the number of tested isolates (96, 39 of
which corresponded to an outbreak) is low. This certainly restricted the learning abilities
of our neural network, as it is well known that the more elements that are included in
the learning phase, the better the results are. However, outbreaks occurring in hospital
settings usually involve a limited number of cases, especially those involving fungal agents;
hence, there is a need to develop approaches suitable for helping with epidemiological
investigations as soon as the outbreak is discovered and when the number of cases is still
low. Thus, an outbreak involving 39 cases in two different hospitals is already a problem,
which is why it is necessary to establish good detection tools.

All isolate identifications in our study were confirmed by MALDI TOF mass spec-
trometry using both the Bruker database and MSI-2 online, and all obtained C. parapsilosis
identifications with high scores, confirming the species. Nevertheless, we acknowledge
that the MALDI-TOF, even with a high score, may not be enough to ensure the quality of
the identification results. Therefore some of the isolates used for this study have been sent
to the Belgian collection of microorganisms (IHEM 28980; IHEM 28981; IHEM 28982; IHEM
28983; IHEM 28984; IHEM 28985; IHEM 28986; IHEM 28987; IHEM 28988; IHEM 28989;
IHEM 28990; IHEM 28991; IHEM 28992; IHEM 28993). For those 14 isolates now in collec-
tion, MALDI-TOF identification was confirmed. We believe that they can be considered as
positive controls for our experiment. We did not use an outgroup for our microsatellite ex-
periment nor for our neural network. Indeed, we used very specific microsatellites primers
that could not match with any other Candida spp.. Hence, the phylogenic tree could not in-
clude such outgroups and the very essence of supervised deep learning requires excluding
outliers. Including an outgroup in the neural network risks giving uninterpretable results.

In this study, we did not explore the possibilities that artificial intelligence approaches
different from deep neural networks could provide (such as support vector machine, PLS
discriminant analysis, K nearest neighbors or random forest). We also did not try to de-
velop more sophisticated deep neural networks (recurrent neural network, Siamese neural
network, etc.). The focus of this article was rather to explore the different steps preceding
the learning phase, as those steps are often overlooked in publications on the matter.

5. Conclusions

This study should be considered as a proof of concept aiming to highlight the issues
in the use of deep learning methods with MALDI-TOF mass spectrometry for the differen-
tiation of clonal strains from non-clonal strains in an epidemic context. The study focuses
on the variations that can lead to misidentification by deep learning in the experimental
phase prior to acquisition of the spectra. These are crucial elements to integrate into our
knowledge in order to build a neural network model that is robust to these constraints.
That being said, nothing prevents microbiologists from using a two-step sequential ap-
proach when investigating outbreaks of a certain magnitude. Firstly, the use of CNNs could
make it possible to identify the strains potentially related to the epidemic and secondly,
confirmation molecular methods could be implemented to confirm a strain belongs to the
epidemic clone. In such cases, it is of importance to ensure that the CNN model is sensitive
enough for detecting clonal strains.

Overall, the optimization of MALDI-TOF mass spectrum preparation before classifica-
tion using deep learning techniques is a newly emerging subject, and much remains to be
explored on this topic. However, with this study, we demonstrate that such optimization
may enhance deep learning results and should eventually allow pushing the limits of
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MALDI-TOF mass spectrometry. This may open the way to further improvements in the
diagnosis of fungal and bacterial outbreaks as a complement to molecular methods.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/microorganisms11041071/s1, Table S1: Origin and charac-
teristics of the 96 isolates used for this study.
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