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In [START_REF] Kozubowski | A generalized sibuya distribution[END_REF], Kozubowski and Podgorski state that a random variable X on N has a Sibuya probability distribution if, and only if, for any t ∈ (0, 1],

t • X |t•X =0 D = X, (1) 
where • and D = respectively denote the usual thinning operation for discrete random variables and the equality between probability distributions.

In this document, we take advantage of the characterization (1) in order to:

• dene and explore levels of attractiveness for discrete random variables,

• dene and characterize Cox-Sibuya point processes, a consistent adaptation of Sibuya distributions to point processes,

• link these new objects and their properties to discrete stability theory.

For more exhaustive reviews on the present notions, the reader may refer to the works of Steutel and Van Harn [START_REF] Steutel | Discrete Analogues of Self-Decomposability and Stability[END_REF] about discrete stability for random variables, the respective works of Sibuya [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF], Christoph and Schreiber [START_REF] Christoph | Discrete Stable Random Variables[END_REF][START_REF] Christoph | Scaled Sibuya distribution and discrete self-decomposability[END_REF], Devroye [START_REF] Devroye | Random variate generation for the digamma and trigamma distributions[END_REF][START_REF] Devroye | A triptych of discrete distributions related to the stable law[END_REF] and more recently Kozubowski and Podgorski [START_REF] Kozubowski | A generalized sibuya distribution[END_REF] about discrete Sibuya distributions, and the works of Davydov, Molchanov and Zuyev [START_REF] Davydov | Stability for random measures, point processes and discrete semigroups[END_REF] about stability for random measures, in particular point processes. [START_REF] Christoph | Discrete Stable Random Variables[END_REF] Sibuya and discrete stable random variables

Sibuya random variables

Introduced in 1979 by Sibuya [START_REF] Sibuya | Generalized hypergeometric, digamma and trigamma distributions[END_REF], the discrete Sibuya distribution may be dened as follows: a discrete random variable Y on N has a Sibuya distribution with exponent α, if its probability generating function is given, for any s ∈ [0, 1], by

g Y (s) = E[s Y ] = 1 -(1 -s) α ,
that we denote Y ∼ Sib(α).

Such a distribution only exists for α ∈ (0, 1], and a random variable Y ∼ Sib(1) equals 1 almost surely. This set of probability distributions may be extended as follows: for t ∈ [0, 1], a random variable Y on N 0 has a t-scaled Sibuya distribution with exponent α if its probability generating function is given, for any s ∈ [0, 1], by

g Y (s) = E[s Y ] = 1 -t(1 -s) α .
In particular, a 1-scaled Sibuya distribution is a Sibuya distribution with the same exponent α. Furthermore, a random variable with a t-scaled Sibuya distribution with exponent α may be built as a t 1 α -thinning of a random variable with Sibuya distribution. We recall that, for any t ∈ [0, 1], the t-thinning of a discrete random variable X on N is denoted by t • X and, conditionnally to X, has a binomial distribution with parameters X and t. The respective probability generating functions of X and t • X are linked by the following identity: for any

s ∈ [0, 1], g t•X (s) = E[s t•X ] = g X (1 -t(1 -s)).
It is also known that if a random variable Y has a t-scaled Sibuya distribution, then

P(Y = 0) = 1 -t, P(Y = 1) = αt and, for any n ∈ N such that n ≥ 2, P(Y = n) = (1 -α) 1 - α 2 . . . 1 - α n -1 α n t
from which we deduce that, if t ∈ (0, 1] and α ∈ (0, 1), then, for any n ∈ N,

P(Y = n + 1) P(Y = n) = n -α n + 1 .
If α = 1, then Y has a Bernoulli distribution with parameter t and, in particular, if Y has a Sibuya distribution with exponent 1, then Y = 1 almost surely, which corresponds to the only Sibuya distribution with a nite expectation.

If α ∈ (0, 1), it is stated in [START_REF] Kozubowski | A generalized sibuya distribution[END_REF] that a random variable X ∼ Sib(α) has moments of order γ only for γ ∈ (0, α).

A characterization of the Sibuya distribution with exponent α, etablished in [START_REF] Devroye | A triptych of discrete distributions related to the stable law[END_REF] and given by the next theorem, provides an explicit way to simulate some realizations of a random variable with Sibuya distribution. Theorem 1.1. Let α ∈ (0, 1). Let E, G, H be independent random variables such that E has an exponential distribution and G, H have gamma distributions with respective parameters α and 1 -α. Let P be a random variable such that, conditionally to E, G, H, P has a Poisson distribution with parameter EH G . Then, 1 + P has a Sibuya distribution with exponent α.

Concluding this general framework on Sibuya distribution, let focus on two results providing ways to identify a link between Sibuya distributions with different exponents α. The rst result, from [START_REF] Christoph | Scaled Sibuya distribution and discrete self-decomposability[END_REF], is given in the following theorem. Theorem 1.2. Let (X (n) ) n∈N be a sequence of i.i.d. Sibuya random variables with exponent α and Y be a Sibuya random variable with exponent β and independent of (X (n) ) n∈N . Then, the random variable Z dened by Z = Y n=1 X (n) is a Sibuya random variable with exponent αβ.

The second result, from [START_REF] Kozubowski | A generalized sibuya distribution[END_REF], provides a characterization of the family of probability distributions (Sib(α)) α∈(0,1] . Theorem 1.3. Let X be a random variable of N such that P(X = 0) > 0.

Then,

∀t ∈ (0, 1], t • X |t•X =0 D = X ⇐⇒ ∃!α ∈ (0, 1] : X ∼ Sib(α)
where D = denotes the equality between probability distributions. Proof. The proof of the theorem is based on the two following lemmas, which are respectively deduced from standard operations on probability generating functions and a classical algebraic result on real functions. Lemma 1.4. Let X be a random variable of N such that P(X = 0) > 0. Then, for any s ∈ [0, 1] and t ∈ (0, 1],

g t•X |t•X =0 (s) = g X (1 -t(1 -s)) -g X (1 -t) 1 -g X (1 -t) = 1 - 1 -g X (1 -t(1 -s)) 1 -g X (1 -t) .
Lemma 1.5. Let f : (0, 1] → (0, +∞) be a continuous function such that, for

any x 1 , x 2 ∈ (0, 1], f (x 1 x 2 ) = f (x 1 )f (x 2 ).
Then, there exists a unique α ∈ R such that, for any x ∈ (0, 1],

f (x) = x α .
(⇐) Since X ∼ Sib(α), we have, for any s ∈ [0, 1],

g X (s) = 1 -(1 -s) α .
By Lemma 1.4, it follows that, for any s ∈ [0, 1] and t ∈ (0, 1],

g t•X |t•X =0 (s) = 1 - 1 -g X (1 -t(1 -s)) 1 -g X (1 -t) = 1 - 1 -(1 -t α (1 -s) α ) 1 -(1 -t α ) = 1 -(1 -s) α = g X (s).
(⇒) For any s ∈ [0, 1] and t ∈ (0, 1],

g t•X |t•X =0 (s) = g X (s) ⇐⇒ g X (1 -t(1 -s)) -g X (1 -t) 1 -g X (1 -t) = g X (s) ⇐⇒ g X (1 -t(1 -s)) = g X (s) + g X (1 -t)(1 -g X (s)) ⇐⇒ 1 -g X (1 -t(1 -s)) = (1 -g X (1 -t))(1 -g X (s)) ⇐⇒ f X (t(1 -s)) = f X (t)f X (1 -s),
where, for any x ∈ [0, 1],

f X (x) = 1 -g X (1 -x).
Since g X is a probability generating function, then g X is continuous and so do f X . Moreover, applying the left hypothesis of the theorem for t = 1, one gets that P(X = 0) = 0, and then one has, for any x ∈ [0, 1),

g X (1 -x) = E[(1 -x) X ] < 1, then, for any x ∈ (0, 1], f X (x) > 0.
Then, by Lemma 1.5, there exists a unique α ∈ R such that, for any x ∈ (0, 1],

f X (x) = x α .
Then, since g X (1) = 1, for any s ∈ [0, 1],

g X (s) = 1 -(1 -s) α .
Since g X is a nonnegative and not identically null functional, it follows that α > 0. If α > 1, then, for any s ∈ (0, 1], g X (s) > s, which is absurd since from the left hypothesis almost surely X ≥ 1. Then α ∈ (0, 1], and then X ∼ Sib(α).

Levels of attractiveness for discrete random variables

The characterization of the Sibuya distribution provided by Theorem 1.3 leads to the following asymptotic result, according to the convergence in distribution, denoted by D -→ and which coincides with the convergence of the probability generating functions.

Theorem 1.6. Let X be a random variable of N 0 such that P(X = 0) > 0 and

Y be a random variable of N. If t • X |t•X =0 D ----→ t→0+ Y, then, ∃!α ∈ (0, 1] : Y ∼ Sib(α).
Proof. For any s ∈ [0, 1] and any t ∈ (0, 1], by Lemma 1.4,

g t•Y |t•Y =0 = g Y (1 -t(1 -s)) -g Y (1 -t) 1 -g Y (1 -t) .
By assumption,

g Y (s) = lim t →0+ g t •X |t •X =0 = lim t →0+ g X (1 -t (1 -s)) -g X (1 -t ) 1 -g X (1 -t ) .
Then,

g Y (1 -t) = lim t →0+ g X (1 -t t) -g X (1 -t ) 1 -g X (1 -t ) and g Y (1 -t(1 -s)) = lim t →0+ g X (1 -t t(1 -s)) -g X (1 -t ) 1 -g X (1 -t ) .
It follows that

g t•Y |t•Y =0 = = lim t →0+ g X (1 -t t(1 -s)) -g X (1 -t ) -g X (1 -t t) -g X (1 -t ) 1 -g X (1 -t ) -g X (1 -t t) -g X (1 -t ) = lim t →0+ g X (1 -t t(1 -s)) -g X (1 -t t) 1 -g X (1 -t t) = lim t→0+ g X (1 -t(1 -s)) -g X (1 -t) 1 -g X (1 -t) = lim t→0+ g t•X |t•X =0 (s) = g Y (s),
which, by Theorem 1.3, concludes the proof. This last result allows to associate to a discrete random variable satisfying assumptions of Theorem 1.6 the corresponding exponent α of the asymptotic Sibuya distribution, from which we can in a natural way introduce the following denition of weak attractiveness. Denition 1.7. A discrete random variable X is said to have a level α of weak

attractiveness if t • X |t•X =0 D ----→ t→0+ Sib(α).
For any α ∈ (0, 1], A * (α) denotes the set of discrete random variables with a level α of weak attractiveness.

This notion of weak attractiveness may be linked to the following alternative denition of attractiveness, whom we show it is stronger than the previous one. Denition 1.8. A discrete random variable X is said to have a level α of (strong) attractiveness if there exists a > 0 such that

lim t→0+ 1 -g X (1 -t) t α = a. (2) 
For any α ∈ (0, 1] and a > 0, A(α) denotes the set of discrete random variables with a level α of attractiveness and A(α, a) denotes the set of discrete random variables with a level α of attractiveness and a verifying the equation (2). In particular, for any α ∈ (0, 1],

A(α) = a>0 A(α, a). Theorem 1.9. Let α ∈ (0, 1]. If X ∈ A(α), then X ∈ A * (α).
Proof. For any s ∈ [0, 1] and t ∈ (0, 1], by Lemma 1.4,

g t•X |t•X =0 (s) = 1 - 1 -g X (1 -t(1 -s)) 1 -g X (1 -t) = 1 - 1 -g X (1 -t(1 -s)) t α (1 -s) α (1 -s) α t α 1 -g X (1 -t) .
Applying Denition 1.8, since there exists a > 0 such that

lim t→0+ 1 -g X (1 -t) t α = a, it follows that lim t→0+ g t•X |t•X =0 (s) = 1 -(1 -s) α = g Y (s),
where Y ∼ Sib(α), from which we can conclude.

Remark 1.10. The converse of this theorem is not true : consider for example a discrete random variable X whose the probability distribution is given for any n ∈ N such that n ≥ 2 by

P(X = n) = 1 n(n -1)
.

Its probability generating function g X is given for any s ∈ [0, 1] by

g X (s) = +∞ k=2 s k k(k -1)
, which is the double primitive function such that g X (0) = 0 and lim s→1 g X (s) = 1 of the functional given for any s ∈ [0, 1] by

+∞ k=0 s k = 1 1 -s .
We thus obtain that, for any s ∈ [0, 1],

g X (s) = (1 -s) log(1 -s) + s.
On one hand, by Lemma 1.4, for any s ∈ [0, 1] and t ∈ (0, 1],

g t•X |t•X =0 (s) = 1 - 1 -g X (1 -t(1 -s)) 1 -g X (1 -t) ,
and then

g t•X |t•X =0 (s) = 1 - 1 -[t(1 -s) log(t(1 -s)) + 1 -t(1 -s)] 1 -(t log t + 1 -t) = 1 + [t(1 -s) log(t(1 -s)) -t(1 -s)] t -t log t = 1 + [t(1 -s)[log(t(1 -s)) -1] t(1 -log t) = 1 -(1 -s) 1 -log(t(1 -s)) 1 -log t = 1 -(1 -s) 1 - log(1 -s) 1 -log t .
Then, for any s ∈ [0, 1], lim

t→0+ g t•X |t•X =0 (s) = s
and we deduce that t • X |t•X =0 tends to 1 as t tends to 0, which leads to

t • X |t•X =0 D ---→ t→0 Sib (1) 
, from which we deduce that X ∈ A * (α).

On the other hand, for any t ∈ (0, 1],

1 -g X (1 -t) t = 1 -[1 -(t log t + 1 -t)] t = 1 -log(t), then lim t→0+ 1 -g X (1 -t) t = +∞,
and then X / ∈ A(1).

According to the previous statement, strong attractiveness is more restrictive than the weak one, but has also good stability properties, as stated in the following theorem.

Theorem 1.11. Let α, β ∈ (0, 1] and a, b ∈ (0, +∞). If X ∈ A(α, a) and

Y ∈ A(β, b) are independent, then X + Y ∈ A(α ∧ β, a + b1 {α=β} ) and X k=1 Y (k) ∈ A(αβ, ab α ) where (Y (k) ) k∈N is a sequence of independant copies of Y . Proof. Since X ∈ A(α, a) and Y ∈ A(β, b), lim t→0+ 1 -g X (1 -t) t α = a.
and

lim t→0+ 1 -g Y (1 -t) t β = b.
Let us show the rst assertion. We can suppose without loss of generality that α ≤ β. For any s ∈ [0, 1], by independence of X and Y ,

g X+Y (s) = g X (s)g Y (s).
Then, for any t ∈ (0, 1],

1 -g X+Y (1 -t) t α = 1 -g X (1 -t)g Y (1 -t) t α = 1 -g X (1 -t) t α + g X (1 -t)(1 -g Y (1 -t)) t α .
Since X ∈ A(α, a), the rst term converges to a as t tends to 0. Since

Y ∈ A(β, b) and α ≤ β, then lim t→0+ 1 -g Y (1 -t) t α = b1 {α=β} and, since g X is continuous in 1, then lim t→0+ g X (1 -t) = g X (1) = 1.
Thus,

lim t→0+ 1 -g X+Y (1 -t) t α = a + b1 {α=β} > 0,
and then X + Y ∈ A(α, a + b1 {α=β} ), which concludes the proof of the rst assertion.

Let us now show the second assertion. For any s ∈ [0, 1], it is known that

g X k=1 Y (k) (s) = g X (g Y (s)). It follows that 1 -g X k=1 Y (k) (1 -t) t αβ = 1 -g X (g Y (1 -t)) t αβ = 1 -g X (1 -(1 -g Y (1 -t))) (1 -g Y (1 -t)) α 1 -g Y (1 -t) t β α .
On one hand, since g Y is continuous in 1, we have

lim t→0+ 1 -g Y (1 -t) = 0,
and then, by hypothesis on X,

lim t→0+ 1 -g X (1 -(1 -g Y (1 -t))) (1 -g Y (1 -t)) α = a.
On the other hand, by hypothesis on Y ,

lim t→0+ 1 -g Y (1 -t) t β = b.
Thus, we deduce that

lim t→0+ 1 -g X k=1 Y (k) (1 -t) t αβ = ab α > 0,
from which we can conclude that X k=1 Y (k) ∈ A(αβ, ab α ). The following statement provide a characterization of the space A(1).

Theorem 1.12. Let X be a random variable in N 0 such that P(X = 0) > 0.

Then,

E[X] < +∞ ⇐⇒ X ∈ A(1) ⇐⇒ X ∈ A(1, E[X]).
Proof. It is known that X has a nite expectation if and only if there exists

a ≥ 0 such that lim t→0+ 1 -g X (1 -t) t = g X (1) = a,
and, in this case, a = E[X]. Moreover, since P(X = 0) > 0, E[X] = 0. Hence, the result.

The previous theorem implies that the sets A(α) with α ∈ (0, 1) contain only probability distributions with innite exceptions and then provide a way to classify explicitly such any distributions. It also shows that most of classical discrete probability distributions belong to the set A(1). For any xed α ∈ (0, 1], we can however always exhibit at least one explicit example of a discrete probability distribution with a level α of strong attractiveness.

Theorem 1.13. Let α ∈ (0, 1]. If X ∼ Sib(α), then, X ∈ A(α, 1). Proof. Since X ∼ Sib(α), for any t ∈ (0, 1], 1 -g X (1 -t) t α = 1 -(1 -(1 -(1 -t)) α ) t α , then 1 -g X (1 -t) t α = 1,
from which we deduce that X ∈ A(α, 1).

1.3

Stability for discrete random variables Discrete stable distributions are introduced in [START_REF] Steutel | Discrete Analogues of Self-Decomposability and Stability[END_REF], where is given a more exhaustive framework on these probability distributions. We only recall a few statements which will be useful in the following results. For α ∈ (0, 1], a random variable X on N 0 has a discrete stable distribution with exponent α if, for any t ∈ [0, 1],

t 1 α • X (1) + (1 -t) 1 α D = X,
where X (1) and X (2) are two independant copies of X. The probability generating function of such a X may then be written, for any s ∈ [0, 1], by:

g X (s) = e -a(1-s) α
where a is a nonnegative real number, and then the notation

X ∼ DSt(α, a)
identies the probability distribution of X. If α = 1, X has a Poisson distribution with parameter a. More generally, a discrete stable probability distribution with parameter a ∈ [0, +∞) and exponent α ∈ (0, 1] admits the following representation: if X ∼ DSt(α, a), then

X D = Z k=1 Y (k) , (3) 
where Z is a Poisson random variable with parameter a and (Y (k) ) k∈N is a sequence of independent copies of a Sibuya random variable Y with exponent α.

Since the Poisson random variable Z may be seen as a particular case of a discrete stable random variable (with exponent 1), our following result provides an extension of the previous representation. Theorem 1.14. Let α, β, γ ∈ (0, 1] such that α = βγ, a ∈ [0, +∞) and independent random variables Z ∼ DSt(γ, a) and Y ∼ Sib(β). Then,

Z k=1 Y (k) ∼ DSt(α, a), where (Y (k) ) k∈N is a sequence of independant copies of Y . Proof. For any s ∈ [0, 1], denoting X = Z k=1 Y (k) , g X (s) = g Z (g Y (s)),
and the respective expressions of the probability generating functions provide

g X (s) = e -a(1-(1-(1-s) β )) γ = e -a(1-s) βγ ,
hence, the result.

The representation of discrete stable distributions given by (3) provides a way to connect discrete stability and attractiveness, as stated in the two followings results.

Theorem 1.15. Let α ∈ (0, 1] and a > 0. If X ∼ DSt(α, a), then

X ∈ A(α, a).
Proof. This result is a consequence of the fact that the distribution of X admits the characterization given by (3). It is then sucient to combine Theorem 1.13 with the second assertion of Theorem 1.11. Theorem 1.16. Let α ∈ (0, 1] and a > 0. If X ∈ A(α, a), then

1 n 1 α • n k=1 X (k) D -----→ n→+∞ DSt(α, a).
Proof. For any s ∈ [0, 1] and n ∈ N, combining standard operations on probability generating functions, one has

g 1 n 1 α • n k=1 X (k) (s) = g X 1 - 1 n 1 α (1 -s) n . It follows that g 1 n 1 α • n k=1 X (k) (s) = exp n log g X 1 - 1 n 1 α (1 -s) = exp n log h n (s) 1 n (1 -s) α + 1
where

h n (s) = g X 1 - 1 n 1 α (1 -s) -1 1 n (1 -s) α
, and then

g 1 n 1 α • n k=1 X (k) (s) = exp log h n (s) 1 n (1 -s) α + 1 h n (s)(1 -s) α 1 n h n (s)(1 -s) α . Since X ∈ A(α, a), for any s ∈ [0, 1], lim n→+∞ h n (s) = a, then lim n→+∞ h n (s)(1 -s) α n = 0,
and then, since

lim x→0+ log(1 + x) x = 1, it follows that lim n→+∞ log h n (s) 1 n (1 -s) α + 1 h n (s)(1 -s) α 1 n = 1,
from which we can deduce that, for any s ∈ [0, 1], The following notions concern point process theory and come essentially from [START_REF] Daley | An Introduction to the Theory of Point Processes: Volume I: Elementary Theory and Methods[END_REF]. We consider a locally compact metric space X endowed with its Borel tribe X , a (not necessarily diuse) Radon measure on X. The family of relatively compact Borel sets is denoted by X 0 . The space of measures on X will be denoted M, the space of probability measures on X denoted M 1 , the space of sub-probability measures on X denoted M * 1 , the space of probability measures on M denoted M 1 , and B + (X) denotes the set of bounded measurable functions from X to [0, +∞) with compact support. If µ ∈ M and f is a function on X integrable with respect to µ, then f, µ designs the integral of f with respect to µ.

lim n→+∞ g 1 n 1 α • n k=1 X (k) (s) = e -a(
A counting measure ξ on X is a measure on X such that, for any A ∈ X 0 , ξ(A) ∈ N 0 . A conguration (respectively nite conguration) on X is a locally nite (respectively nite) counting measure on X.

A point process Φ on X is a random conguration on X. Its intensity measure is the measure M on (X, X ) dened, for any A ∈ X , by

M (A) = E[Φ(A)]. Its probability generating functional G Φ is dened on the space T = {u : X → (0, 1] : 1 -u ∈ B + (X)} ∪ {0} X
and given for any function u ∈ T by:

G Φ (u) = E exp ˆX log u(x)Φ(dx) .
If β is a function from X to [0, 1], the point process on X denoted β • Φ and built by keeping with probability β(x) and deleting with probability 1 -β(x) each point x of Φ independently is called the β-thinning of Φ. Its probability generating functional is given for any u ∈ T by:

G β•Φ (u) = G Φ (1 -β(1 -u)).
Let M be a Radon measure on X. The Poisson point process Φ with intensity measure M is dened as the unique point process on X with intensity measure M such that, for any disjoint relatively compact subsets Λ 1 , Λ 2 , the random variables Φ(Λ 1 ) and Φ(Λ 2 ) are independent.

A Poisson point process on X with nite intensity measure M may be dened as a nite point process Φ on X such that its total number of points N has a Poisson distribution with parameter M (X) and, conditionally to N , Φ is a binomial point process on X with parameter N and supported by M (•) M (X) . Let Φ be a Poisson point process on X with intensity measure M . Then, its probability generating functional is given for any u ∈ T by:

G Φ (u) = exp -ˆX(1 -u(x))M (dx)
from which we can easily deduce that, for any t ∈ [0, 1],

t • Φ (1) + (1 -t) • Φ (2) D = Φ,
where Φ (1) and Φ (2) are independent copies of the point process Φ.

Stability for point processes

It is shown in [START_REF] Davydov | Stability for random measures, point processes and discrete semigroups[END_REF] that Poisson point processes may be included in a larger class of point processes, which is described as follows. A point process Φ is said to be discrete α-stable if, for any t ∈ [0, 1] and any independent copies Φ (1) and Φ (2) of the point process Φ,

t 1 α • Φ (1) + (1 -t) 1 α • Φ (2) D = Φ,
which it is equivalent to say that its probability generating functional G Φ veries, for any u ∈ T ,

G Φ (1 -t 1 α (1 -u))G Φ (1 -(1 -t) 1 α (1 -u)) = G Φ (u). (4) 
More explicitly, a nite point process Φ is discrete α-stable if and only if its probability generating functional is given for any function u ∈ T by:

G Φ (u) = exp - ˆM1 1 -u, µ α σ(dµ) , (5) 
for some locally nite spectral measure σ on M 1 such that, for any B ∈ X 0 , ˆM1 µ(B) α σ(dµ) < +∞.

Since the probability distribution of such a point process Φ is then only depending on the exponent α and the spectral measure σ, we may from now denote Φ ∼ DSt(α, σ).

Spectral measures of sums and thinnings of discrete stable point processes, are given explicitly as follows: if

Φ (1) , . . . , Φ (n) are independent copies of Φ ∼ DSt(α, σ) and t ∈ [0, 1], then n k=1 Φ (k) ∼ DSt(α, nσ), t • Φ ∼ DSt(α, t α σ), 1 n 1 α • n k=1 Φ (k) D = Φ.
The representation provided by (3) for discrete stable random variables may be adapted for discrete stable point processes, but we need to give rst the denition of a Sibuya point process, introduced in [START_REF] Davydov | Stability for random measures, point processes and discrete semigroups[END_REF] for this purpose. Denition 2.1. Let µ be a probability distribution on X. A point process Υ on X is called a Sibuya point process with exponent α and parameter measure µ, if its probability generating functional is given for any function u ∈ T by:

G Υ (u) = 1 -1 -u, µ α , denoted Υ ∼ Sib(α, µ).
In order to get a realization of a Sibuya point process, the number Y of points is drawn according to a Sibuya distribution with exponent α, and the Y points are placed independently according to the parameter measure µ on X. In particular, a Sibuya point process on with exponent 1 and parameter measure µ ∈ M 1 has exactly one point, which is placed on X according to µ.

Let us note that this denition may be a bit extended. Indeed, if t ∈ [0, 1] and Υ ∼ Sib(α, µ), then the t-thinning of Υ has a probability generating functional dened for any function u ∈ T by:

G t•Υ (u) = 1 -1 -u, tµ α ,
and then we can enlarge the previous denition for the case where the parameter measure µ is such that µ(X) ≤ 1 (denoted µ ∈ M * 1 ).

Denition 2.2. Let µ ∈ M * 1 . A point process Υ on X is called the Sibuya point process with exponent α and parameter measure µ (also denoted Υ ∼ Sib(α, µ)) if its probability generating functional is given for any function u ∈ T by:

G Υ (u) = 1 -1 -u, µ α .
This extension of the denition of a Sibuya point process to sub-probability measures allows to state the two following results, using probability generating functional. On one hand, if Υ µ is a Sibuya point process with exponent α and parameter measure µ, then t • Υ µ is a Sibuya point process with exponent α and parameter measure tµ. One the other hand, if Z is a random variable with Bernoulli distribution with parameter t α , then the point process Φ t dened by Φ t = 1 {Z=1} Υ µ is a Sibuya point process with exponent α and parameter measure tµ.

An analog of Theorem 1.2 for Sibuya point processes is now stated in which follows.

Theorem 2.3. Let (Υ (n) ) n∈N be a sequence of i.i.d. Sibuya random variables with exponent α and parameter measure µ ∈ M * 1 , and Y be a Sibuya random variable with exponent β and independent of (Υ (n) ) n∈N . Then, the point process Ψ dened by

Ψ = Y n=1 Υ (n)
is a Sibuya point process with exponent αβ and parameter measure µ.

Proof. For any function

u ∈ T , G Ψ (u) = E E x∈ Y n=1 Υ (n) u(x) Y = E[(1 -1 -u, µ α ) Y ]. Then, since E[s Y ] = 1 -(1 -s) β , G Ψ (u) = 1 -(1 -(1 -1 -u, µ α )) β = 1 -1 -u, µ αβ .
This proof is thus complete.

We may now recall the cluster representation of a nite discrete stable point process. This result is stated in [START_REF] Davydov | Stability for random measures, point processes and discrete semigroups[END_REF] also for point processes which are not necessarily nite, but our investigations only focus on the nite case.

Theorem 2.4. A nite point process Φ ∼ DSt(α, σ) can be represented as a cluster process with a Poisson center process on M 1 driven by intensity measure σ and daughter processes being Sibuya point processes Υ µ with exponent α and parameter measure µ ∈ M 1 . Put another way, the point process Φ may be represented as:

Φ = µ∈ζ Υ µ ,
where ζ is a Poisson point process on M 1 with intensity measure σ. Its probability generating functional is given for any function u ∈ T by:

G Φ (u) = exp ˆM1 (G Υµ (u) -1)σ(dµ) .
Noting that the Poisson point process ζ in the previous theorem is a particular case of a discrete stable point process (with exponent 1), we provide both a generalization of the previous result and an analog of Theorem 1.14 for point processes in the following theorem. Theorem 2.5. Let α, β, γ ∈ (0, 1] such that α = βγ. Let σ be a locally nite measure on M 1 such that, for any B ∈ X 0 , ˆM1 µ(B) α σ(dµ) < +∞.

Let ι : µ ∈ M 1 → δ µ ∈ M 1 and Φ be a discrete stable point process on M 1 with exponent γ and spectral measure σ = σ • ι -1 . Then, the point process

Φ = µ∈Φ Υ β
µ is a discrete stable point process on X with exponent α and spectral measure σ.

Proof. For any function

u :∈ T , since Φ = µ∈Φ Υ β µ , G Φ (u) = G Φ (G Υ β µ (u))
, and the respective expressions of the probability generating functionals provide

G Φ (u) = exp - ˆM 1 1 -u, µ β , µ γ σ (dµ ) . Then, since σ = σ • ι -1 , G Φ (u) = exp - ˆM1 1 -u, µ β , δ ν γ σ(dν)
and nally

G Φ (u) = exp - ˆM1 1 -u, ν βγ σ(dν) = exp - ˆM1 1 -u, ν α σ(dν) ,
hence, the result.

Cox-Sibuya point processes

The denition of Sibuya point processes (Denition 2.1) proposed by Davydov et al. [START_REF] Davydov | Stability for random measures, point processes and discrete semigroups[END_REF] appears for several reasons as the most natural way to extend Sibuya probability distributions from discrete random variables to point processes: rstly, the similarity between the expressions of their respective probability generating functions; secondly, the fact that a Sibuya point process is the simplest point process such that the number of points has a Sibuya distribution (these points are then independent and identically distributed); thirdly, the compatibility with the extension of the compound Poisson representation of a discrete stable distribution given by (3) to the Poisson cluster representation of a discrete stable point process (Theorem 2.3). An alternative method is to consider the characterization of a Sibuya distribution given by Theorem 1.3 and relative to thinning, which is easily transposed from discrete random variables to point processes, as follows.

Denition 2.6. Let Φ be a point process on X such that P(Φ = 0) > 0. We say that Φ is a Cox-Sibuya point process if, for any t ∈ (0, 1],

t • Φ |t•Φ =0 = Φ.
In order to identify more explicitly such any point processes, we state rst the two following lemmas. Lemma 2.7. A Cox-Sibuya point process Φ on X is almost surely nite.

Proof. Supposing that P(Φ(X) = +∞) > 0, we can dene the point process Ψ as Ψ = Φ |Φ(X)=+∞ .

If a conguration φ of X is such that φ(X) = +∞, then, for any t ∈ (0, 1],

P(t • φ = 0) = 0.
It follows that, almost surely,

(t • Φ |t•Φ =0 ) |Φ(X)=+∞ = t • Φ |t•Φ =0,Φ(X)=+∞ = t • Φ |Φ(X)=+∞ ,
and we deduce that, almost surely,

t • Φ |Φ(X)=+∞ = Φ |Φ(X)=+∞ = Ψ.
Moreover, one hand hand, for any u ∈ T and t ∈ (0, 1], On the other hand,

G t•Ψ (u) = G Ψ (1 -t(1 -u)) = E x∈Φ (1 -t(1 -u))(x)
G t•Ψ (u) = G Ψ (1 -t(1 -u)) ----→ t→0+ 1,
then, Ψ = 0 almost surely, which is absurd (by construction of Ψ) and concludes the proof. Lemma 2.8. Let Φ be a point process on X such that P(Φ = 0) > 0. Then, for any u ∈ T and t ∈ (0, 1],

G t•Φ |t•Φ =0 (u) = G Φ (1 -t(1 -u)) -G Φ (1 -t) 1 -G Φ (1 -t) = 1 - 1 -G Φ (1 -t(1 -u)) 1 -GΦ(1 -u) .
where F Φ (•) = 1 -G Φ (1 -•).

Let now (Φ (k) ) k∈N be a sequence of independent copies of Φ. Let Z be a Poisson random variable with parameter 1. We dene the point process Ψ as

Ψ = Z k=1 Φ (k) .
Let show that Ψ is a discrete α-stable, that is to show, for any u ∈ T and t ∈ [0, 1], that

G Ψ (1 -t 1 α (1 -u))G Ψ (1 -(1 -t) 1 α (1 -u)) = G Ψ (u).
Noting that, for any u ∈ T ,

G Ψ (u) = g Z (G Φ (u)) = exp{-(1 -G Φ (u))},
it follows that, for any u ∈ T and t ∈ [0, 1],

G Ψ (1 -t 1 α (1 -u))G Ψ (1 -(1 -t) 1 α (1 -u)) = = exp{-(1 -G Φ (1 -t 1 α (1 -u)))} exp{-(1 -G Φ (1 -(1 -t) 1 α (1 -u)))} = exp{-F Φ (t 1 α (1 -u))} exp{-F Φ ((1 -t) 1 α (1 -u))}.
Hence, according to [START_REF] Devroye | Random variate generation for the digamma and trigamma distributions[END_REF], Moreover, since G Φ (0) = P(Φ = 0) = 0, it follows that σ 1 (M 1 ) = 1. The random probability measure M on M 1 is then chosen such that its probability distribution is σ 1 , from which we can conclude.

G Ψ (1 -t 1 α (1 -u))G Ψ (1 -(1 -t)

1 {Φ

 1 )1 {Φ(X)=+∞} P(Φ(X) = +∞) = G t•Φ |Φ(X)=+∞ (u) = G Ψ (u).

1 α ( 1

 11 -u)) = = exp{-tF Φ ((1 -u))} exp{-(1 -t)F Φ ((1 -u))} = exp{-F Φ (1 -u)} = exp{-(1 -G Φ (u))} = G Ψ (u),then, according to the characterization provided by (4), Ψ is a discrete α-stable point process. Thus, since Ψ is almost surely nite (as a consequence of Lemma 2.7), by equality (5), there exists a measure σ 1 on M 1 such that, for any u ∈ T ,G Ψ (u) = exp{-ˆM1 1 -u, µ α σ 1 (dµ)}, then exp{-(1 -G Φ (u))} = exp{-ˆM1 1 -u, µ α σ 1 (dµ)},and thenG Φ (u) = 1 -ˆM1 1 -u, µ α σ 1 (dµ).

Proof. For any u ∈ T and t ∈ (0, 1], by combining basic operations on probability generating functionals,

We can now state the following characterization of a Cox-Sibuya point process.

Theorem 2.9. Let Φ be a point process on X such that P(Φ = 0) > 0. Then, Φ is a Cox-Sibuya point process if, and only if, there exist α ∈ (0, 1] and a random element M of M 1 with probability law σ 1 such that conditionally to M ,

In this case, its probability generating functional is given, for any u ∈ T , by

Proof. (⇐) Since, conditionally to M , Φ ∼ Sib(α, M ), we have, for any u ∈ T ,

By Lemma 2.8, it follows that, for any u ∈ T and t ∈ (0, 1],

.

from which we can conclude.

(⇒) Let Φ be a Cox-Sibuya point process on X. Since, by Lemma 2.7, Φ is almost surely nite, it makes sense to determine the probability distribution of Φ(X). Firstly, P(Φ = 0) = 0, then P(Φ(X) = 0) > 0. By Lemma 1.4, for any s ∈ [0, 1] and t ∈ (0, 1],

We deduce, by Lemma 2.8, that

and then, since Φ is a Cox-Sibuya point process,

Hence, Φ(X) is a Cox-Sibuya discrete random variable, and then, by Theorem 1.3, there exists α ∈ (0, 1] such that Φ(X) ∼ Sib(α).

It follows that, for any u ∈ T and t ∈ (0, 1], applying Lemma 2.8,

Then, since Φ is a Cox-Sibuya point process,

and then

and nally

Denition 2.10. Let Φ be a Cox-Sibuya point process with coecient α and random measure M given by Theorem 2.9. The coecient α and the probability distribution σ 1 of M are respectively called the exponent and the spectral law of Φ, that we denote Φ ∼ CSib(α, σ 1 ).

Remark 2.11. The terminology "Cox-Sibuya" refers to Cox point processes [START_REF] Cox | Point processes[END_REF].

Such a point process is dened as a Poisson point process conditionally to its random intensity measure. The previous theorem states that a Cox-Sibuya point process may be seen in a similar way as a Sibuya point process conditionally to its random parameter measure.

An equivalent of Theorem 1.6 for point processes is provided in the next theorem.

Theorem 2.12. Let Φ be a point process on X such that P(Φ = 0) > 0 and Ψ be a point process on X. If

then Ψ is a Cox-Sibuya point process. Proof. For any u ∈ T and any t ∈ (0, 1], by Lemma 2.8,

By assumption,

Then,

It follows that

which, by Theorem 2.9, concludes the proof.

Adapting the Poisson cluster representation given by Theorem 2.3 with Cox-Sibuya point processes, a new characterization of discrete stable point processes is stated in the following theorem. Theorem 2.13. Let Ψ be a nite point process on X. Then, the two following assertions are equivalent:

• there exist a Poisson random variable Z with parameter c ∈ [0, +∞) and a point process Φ ∼ CSib(α, σ 1 ) such that

where (Φ (k) ) k∈N is a sequence of independent copies of Φ.

In this case, σ = cσ 1 and c = σ(M 1 ).

Proof. A nite point process Ψ is a discrete α-stable point process, if and only if, by formula (5), its probability generating functional is given for any function u ∈ T by:

for a nite measure σ on M 1 . Using Denition 2.1 and standard operations on probability generating functionals, it is equivalent to say that, for any u ∈ T ,

where Z has a Poisson distribution with parameter c = σ(M 1 ) and (Φ (k) ) k∈N is a sequence of independent copies of a Cox-Sibuya point process Φ with exponent α and spectral law σ 1 = σ σ(M1) .