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a b s t r a c t 

Fuzzy median graph is an important new concept that can represent a set of fuzzy graphs by a represen- 

tative fuzzy graph prototype. However, the computation of a fuzzy median graph remains a computation- 

ally expensive task. In this paper, we propose a new approximate algorithm for the computation of the 

Fuzzy Generalized Median Graph (FGMG) based on Fuzzy Attributed Relational Graph (FARG) embedding 

in a suitable vector space in order to capture the maximum information in graphs and to improve the 

accuracy and speed of document image retrieval processing. In this study, we focus on the application 

of FGMGs to the Content-based Document Retrieval (CBDR) problem. Experiments on real and synthetic 

databases containing a large number of FARGs with large sizes show that a CBDR using the FGMG as a 

dataset representative yields better results than an exhaustive and sequential retrieval in terms of gains 

in accuracy and time processing. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

During the recent years, the widespread use of digital devices

(smartphones, cameras, tablet computers, etc.) and the tremen-

dous growth in digitizing various collections of documents (in-

voices, books, historical documents, etc.) have resulted in the cre-

ation of large databases of document images. Browsing and retriev-

ing from such large-scale document images is more than ever a

challenging problem in data mining research. There is still a grow-

ing need for efficient and fast methods for searching information in

these huge databases. Traditional approaches for Document Image

Retrieval (DIR) are text-based [1–3] . However, fully text-based ap-

proaches are not practical enough for DIR applications due to many

limitations such as time consumption, subjectivity of the annotator,

ambiguity (same words but not in the same place in a document

image), etc. Therefore, Content-based Document Retrieval (CBDR)
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pproaches have been proposed to overcome the shortcomings of

he text-based retrieval [4–10] . Most document image content rep-

esentation methods are based on the vector space model of in-

ormation. One of the most important advantages of this represen-

ation model is the computation time and memory consumption.

owever, this popular method of document representation does

ot capture important structural information, such as the location

f an object within the document image or the spatial relation-

hips between document image regions. Also, vector based repre-

entations suffer from the constraint of fixed dimensionality of fea-

ure vectors [11] . Therefore, structural signature represents some

nteresting alternatives to construct faith documents representa-

ion, through the use of document image regions and their topo-

ogical relationships. Indeed, graph-based document image repre-

entation model can preserve document image structural and spa-

ial information and furthermore it doesn’t require a predefined

ize of the representation. It provides a rich and holistic descrip-

ion of the layout and content of the analyzed document images. It

as shown to outperform the traditional vector representation for

everal applications in many fields [11,12] . However, graph-based

epresentations are usually computationally more expensive than

ector-based representations as they require exponential time and

pace due to the NP completeness of the problem. For further read-
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ng on graph-based representations and applications we refer the

nterested reader to [11,12] . 

Due to many particularities of document images (for example:

oise and degradation, overlapping layouts, presence of handwrit-

ng, etc.), eventual segmentation errors may occur after the seg-

entation of document regions. Segmentation results are highly

ependent on the performance of the segmentation algorithm

hich might be unstable over various document images. There-

ore, the use of fuzzy graph-based description (instead of a clas-

ic graph-based representation which is a rigid description) could

e helpful to add flexibility against these errors. Moreover, a doc-

ment image content may generally be submitted to variations

hat introduce some vagueness or uncertainty in the way to de-

cribe the information. Therefore, representing the content by

uzzy graphs allows to capture the maximum information from

 document image with a certain error-tolerance. Structural and

isual features should be represented by fuzzy concepts, such as

Near” and “Far”, “Big” and “Small”, etc. These concepts are de-

cribed with the use of the fuzzy set theory. A crisp description

an be represented as a special case of a fuzzy description. For

urther reading on fuzzy graphs and its applications we refer the

nterested reader to [13–15] . 

Generally, the CBDR process is composed of three main phases:

xtracting features, structuring feature space and retrieving. The

rst two phases are usually performed off-line. In this paper, we

ssume that all document images are represented by Fuzzy At-

ributed Relational Graphs (FARGs). We will focus on the second

hase which aims at organizing the input fuzzy graphs into an ef-

cient data structure in order to improve and accelerate retrieval

esults. The proposed approach avoids the sequential search in a

ARG database by direct access to a reduced set containing the

ARGs most similar to a query FARG. Therefore, we used the con-

ept of median graph for the structuring phase of a CBDR sys-

em. Median graph aims at representing an input set of graphs

ith no constraint on the set size. It is frequently used to indi-

ate the graph that best captures the information presented in all

nput graphs. In other words, the median graph of a given set of

raphs is the graph that minimizes the sum of distances to all

ther graphs in this set. Median graphs have wide-spread appli-

ations in diverse fields such as pattern recognition, classification,

mage analysis, etc. [16–19] . In recent years, more and more re-

earch efforts have been devoted to median graph problem. A brief

eview of some strategies for median graph construction will be

utlined in the related work section. 

In this study, we propose a new algorithm for the computation

f the Fuzzy Generalized Median Graph (FGMG) in order to im-

rove the speed and accuracy of retrieval processing. The first con-

ribution of this paper consists in representing query and database

ocument images by FARGs. One motivation for the FARG repre-

entation is to keep advantages from both the graph and the vector

omains (power of representation of graphs and easiness manipu-

ation of the vector representations). Besides, FARGs allow to rep-

esent document images with a fuzzy approach which is similar

o human perception [9,10,13] . FARGs provide both syntactic and

emantic information. Syntactic information is held by the layout

f the graph (nodes and edges), while semantic information is ex-

ressed by attributes associated to nodes and edges in the graph.

escribing images by exploiting these two informations will re-

uce the semantic gap between low-level features and high-level

oncepts and therefore improve the retrieval results. Also, the FARG

epresentation is very useful for reducing the effect of possible seg-

entation errors which may be occurred after the segmentation

hase [13] . The second contribution of this paper is a new algo-

ithm for the computation of the FGMG based on FARG embedding

nto a vector space. In the context of dealing with a large mass of

ocument image datasets, it is not trivial to perform an exhaus-
ive and sequential comparison of the query with all document

mages in the database due to the high computational complex-

ty requirements. Thus, we have developed a new FGMG compu-

ation algorithm in order to contribute to the structuration of the

ARG space. The third contribution of this paper is a new FARG

mbedding method in order to reduce the computation time of

he FGMG. FGMG computation is based on computing the distance

etween every pair of FARGs. Since all the possible combinations

f FARGs need to be explored, the computation of the FGMG will

e therefore exponential in the number and size of input FARGs.

mbedding FARGs into a vector space solves this problem since

ARGs are represented by feature vectors [14,20,21,22] . Thanks to

his new method, we are able to keep power of representation of

ARGs while manipulating the vector representation of the FARGs. 

The remaining of this paper is organized as follows. The

ext section gives some preliminaries for the new FGMG algo-

ithm and a detailed presentation of the concept of the median

raph. Section 3 presents a literature review of related work.

ection 4 describes the FGMG computation algorithm in detail.

ection 5 introduces an example of application of FGMGs to the

BDR problem. Experimental results are evaluated and discussed

n Section 6 . Finally, concluding remarks and future work are given

n the last section of this paper. 

. Fuzzy median graph theory 

In this section, we present some preliminaries for the new

GMG algorithm, including the definition of the Fuzzy Attributed

elational Graph (FARG) and those of a Fuzzy Set Median Graph

FSMG) and of a Fuzzy Generalized Median Graph (FGMG). 

.1. Fuzzy attributed relational graph 

A FARG is a graph whose nodes (also called vertices) and edges

also called arcs) are both represented with fuzzy attributes. Given

 finite fuzzy attribute set A, a FARG G can be defined as a quadru-

le ( N, E, μ, υ) where N is a non-empty finite set of nodes, E ⊆
 × N is the set of edges, μ: N → A is a function that associates a

uzzy attribute value in A to each node, and υ: E → A is a function

hat associates a fuzzy attribute value in A to each edge. In this

aper, FARG nodes represent document image regions and FARG

dges represent spatial relationships between the regions. 

.2. Fuzzy median graph 

Given a set of graphs, the median graph is frequently used to

ndicate the graph that best represents the set. In other words, the

edian graph is the graph that best captures the information pre-

ented in all graphs. Intuitively, the median graph is located in the

enter of the given graph set. Basically, two different definitions for

edian graphs have been presented: the set median graph and the

eneralized median graph. One difference between them is in the

earch space of graphs where the median is looked for. The gen-

ralized median graph is usually constructed from a larger set of

raphs. 

.2.1. Fuzzy set median graph 

Let U be the set of FARGs that can be constructed using a given

et of attributes A . Given a set S = { G 1 , G 2 , . . . , G i } ⊆ U , the Fuzzy

et Median Graph (FSMG) of S is defined as the FARG 

ˆ G ∈ U that

inimizes the Sum Of Distances (SOD) to all FARGs in S . 

ˆ 
 = argmin 

G ∈ S 

| S | ∑ 

i =1 

d ( G, G i ) = argmin 

G ∈ S 
SOD ( G ) (1) 

here d ( G, G i ) denotes a distance or a dissimilarity measure be-

ween a candidate median FARG G and a FARG G ∈ S . 
i 
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2.2.2. Fuzzy generalized median graph 

The FSMG is only computed from the set S ⊆ U of FARGs in

question. Another alternative to represent all FARGs in U is to com-

pute the FGMG. It is defined as follows: 

Ḡ = argmin 

G ∈ U 

| S | ∑ 

i =1 

d ( G, G i ) = argmin 

G ∈ U 
SOD ( G ) (2)

The FGMG is computed from a larger set of potential fuzzy me-

dian graphs. Therefore, it is usually a better representative of a set

of FARGs than the FSMG [23–27] and gives a more accurate de-

scription of the FARG set. However, the computational complexity

of finding the FGMG is significantly higher than that of the FSMG

because the search space is extended to the whole set U . 

2.3. Distance between two FARGs 

As shown in Eqs. (1 ) and (2) , a distance measure d(G,G i ) be-

tween a candidate median FARG G and each FARG G i ∈ S must

be computed. The concept of FARG similarity is of great impor-

tance in the computation of FSMG and FGMG. Different distance

measures may be used to calculate the SOD for the fuzzy median

graph. In this study, we improved the tree-based graph matching

distance that we proposed in [13] to measure the similarity be-

tween two FARGs. Basically, the tree-based graph matching dis-

tance d(G 1 ,G 2 ) between two FARGs G 1 and G 2 takes into account

the total node and edge distances between G 1 and G 2 and their as-

sociated weights. The total node and edge distances are computed

using Eqs. (3 ) and (4) , respectively. 

T ND = 

N ∑ 

i=1 

d n i ( q n , s n ) (3)

T ED = 

W ∑ 

i=1 

d e i ( q e , s e ) (4)

where d n i ( q n , s n ) and d e i ( q e , s e ) are the distance between a pair

of nodes and the distance between a pair of edges, respectively. N

and W are the number of matched node pairs and the number of

matched edge pairs, respectively. 

The total matching distance d(G 1 ,G 2 ) between G 1 and G 2 is de-

fined as follows: 

d ( G 1 , G 2 ) = w G 1 × T ND + w G 2 × T ED (5)

where w G 1 
and w G 2 

are properly selected weights of G 1 and G 2 . De-

pending on the values of w G 1 
and w G 2 

different matching strategies

can be applied: 

• w G 1 
> w G 2 

: Matching is done by focusing on regions content

more than their position in the document image. 
• w G 1 

< w G 2 
: Matching is done by focusing on structural similar-

ities rather than on visual similarities. 
• w G 1 

= w G 2 
: Visual and structural similarities are taken into con-

sideration for matching with the same importance degree. 

3. Related work 

Recently, the median graph approaches have gained great atten-

tion of many researchers in document image retrieval field. For in-

stance, Hlaoui and Wang [16] proposed an approximate algorithm

for computing the generalized median graph from a set of graphs.

The proposed algorithm allows the extension of standard algo-

rithms such as k-means to graph clustering in order to bridge the

gap between statistical and structural representations. The experi-

mental evaluation on a synthetic image database shows the effec-

tive use of the proposed algorithm in correctly classifying graphs
nto sets of clusters. However, the proposed algorithm still suffers

rom the large complexity of its preparation step which includes

he determination of the size of the median graph and the reduc-

ion of the set of possible nodes used in the search step. In ad-

ition, all experiments were done with synthetic data and graphs

f a relatively small size (5–10 nodes per graph) and with a low

umber of labels. Jouili and Tabbone [17] introduced a prototype-

ased clustering algorithm to cluster a set of graphs. The pro-

osed algorithm detects automatically the number of classes in

he graph database using the concept of the median graph and a

iven threshold. Besides, the proposed algorithm allows the multi-

ssignment of one graph, i.e. one graph can be assigned to more

han one cluster. In subsequent work, Jouili et al. [18] proposed a

raph clustering algorithm by adapting the mean-shift algorithm

nto the domain of graphs. They used the notion of a set median

nd a generalized median graph to implement the shifting opera-

ion instead of the mean in the classical mean-shift clustering. The

roposed algorithm is experimentally evaluated on three datasets

sing two validation indices and a comparison with the k-means

lgorithm is provided. It is a deterministic and non-parametric al-

orithm that does not require a-priori knowledge of the number

f clusters. However, it largely depends on the bandwidth selection

uring clustering. Ferrer et al. [28] proposed an exact algorithm us-

ng a distance based on the maximum common subgraph for the

xact median graph computation. They have applied the proposed

xact algorithm to a set of real data using a database of graphs rep-

esenting molecules. The obtained results show that the proposed

lgorithm outperforms the previous existing exact algorithms us-

ng synthetic data. Nevertheless, the exact computation of the me-

ian graph has an exponential complexity. In addition, the appli-

ation of the exact algorithm to real databases is still limited. To

vercome these drawbacks, the authors [23,24,25,29] proposed it-

rative algorithms for approximate median graph computation. For

nstance, they used spectral-based approaches [19,30,31] and ge-

etic algorithms [29] to solve the problem. Although the spectral-

ased approaches allow to synthesize an approximation of the me-

ian graph with linear complexity with respect to the number of

raphs, these approaches suffer from two main limitations. The

rst limitation is that the number of nodes of the graphs must

e equal. The second limitation of these approaches is that they

an only be used with weighted graphs. The authors also ap-

lied heuristic functions in order to reduce the complexity of the

raph distance computation and the size of the search space. In

25,32,33] , they used graph embedding methods in order to keep

he representational power of graphs while being able to operate

ith vector space representations. Further, a comparative study be-

ween the set median and the generalized median approaches is

ade. Using two standard clustering performance measures (the

and index and the Dunn index), the experimental results show

hat the generalized median graph approach yields better perfor-

ance than the set median graph approach. The proposed algo-

ithms provide some remarkable improvements over other exact

lgorithms for the median graph computation. However, all these

lgorithms can only be applied to restricted sets of graphs, regard-

ng either the type or the size of the graphs. In a graph classi-

cation context, some recent studies have been dedicated to the

omputing of graph prototypes. As an example, Raveaux et al.

26] proposed an approach for graph prototypes extraction using

 graph based genetic algorithm. The experiments have been car-

ied out using three real databases and one synthetic database. Ex-

erimental results show that the generalized median graphs out-

erform the set median graphs. In 2015, Musmanno and Ribeiro

27] proposed two heuristics for solving the generalized median

raph problem: a greedy adaptive algorithm and a Greedy Ran-

omized Adaptive Search Procedure (GRASP) heuristic. They used

he graph edit distance to measure the similarity between two
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Fig. 1. The three main steps of the proposed FGMG computation algorithm. 
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raphs. Experimental results demonstrate that the generalized me-

ian graph gives better results than those provided by the median

raph. 

As a conclusion, the generalized median graph usually yields

etter performance than the set median graph and it can be used

n a large number of applications such as classification, retrieval

nd pattern recognition. While the generalized median graph has

 large number of advantages, its main disadvantage is that its

omputation is exponential both in the number of input graphs

nd their size. A number of exact algorithms for the median graph

omputation have been reported in the past [28] . The major draw-

ack of such algorithms is their computational complexity which is

xponential in the number of nodes of the involved graphs. Conse-

uently, exact algorithms cannot deal with large graphs. Therefore,

heir application has been restricted to small problems involving

ets of graphs with no more than 25 vertices altogether. As the

omputational cost of these exact algorithms is very high, a set

f approximate algorithms have also been proposed in the past

ased on different approaches such as spectral-based approaches

19,30,31] , genetic algorithms [26,29] and greedy-based algorithms

27] . Such approximate algorithms apply some heuristics in or-

er to reduce the complexity of the graph distance computation

nd the size of the search space. However, all these algorithms

re very limited in their application. They can only be applied to

estricted sets of graphs concerning either the number, the size

r the type of the graphs. None of them have been applied us-

ng fuzzy graphs. In this paper, we propose a new approximate

lgorithm for the computation of the FGMG. The proposed algo-

ithm provides some remarkable improvements over previous al-

orithms for the median graph computation. First, it deals with

ARGs in order to model the vagueness and/or uncertainty asso-

iated with the attributes of document image regions and their re-

ationships. This solves the problem of “all-or-nothing” representa-

ion that leads to unsatisfactory results in several situations. Fur-

her, as we will show later in the experiments, this new algorithm

s applicable to a large number of FARGs which have no constraints

egarding the number of nodes and edges. Furthermore, it is based

n a new FARG embedding method in order to get the main ad-

antages of both the vector and graph representations. Finally, we

ill show that this new algorithm is able to obtain a good ap-

roximation for the FGMG by testing its applicability to the CBDR

roblem. 
. Fuzzy generalized median graphs computation 

In this section, we present a detailed description of the pro-

osed FGMG computation algorithm. First, we briefly introduce the

verview of the three main steps of the proposed algorithm. Then,

e describe each of these steps in detail. 

.1. General schema 

Fig. 1 shows the three main steps of the proposed FGMG com-

utation algorithm. Let be S = { G 1 , G 2 , …, G m 

} a set of m FARGs.

irst, all FARGs in S are embedded into an n -dimensional vector

pace. Each FARG is mapped to a set of points in R 

n . Then, the

ectors obtained in the first step are clustered into K clusters us-

ng a clustering method such as K-Means, Fuzzy C-Means (FCM),

tc. After this, the weight of each cluster is computed and becomes

 new attribute of node in FGMG. Finally, the obtained clusters are

epresented as the nodes and edges of the obtained FGMG. 

.2. Fuzzy generalized median graph algorithm 

Fuzzy Generalized Median Graph Algorithm: 

Inputs: Datasets containing a large number of FARGs 

Outputs: FGMG for each dataset 

Step 1: Embedding of FARGs in a vector space 

Each FARG is represented by a set of vectors (one vector per node). 

Step 2: Clustering of the FARG vectors 
•Clustering the FARG vectors using a clustering algorithm such as FCM, 

K-Means, etc. 
•Computing the weight of each cluster. 

Step 3: Converting to FGMG 
•Each cluster becomes a node of the FGMG. 
•Add each obtained weight of each cluster as an attribute of node in 

FGMG. 

The three main steps are further explained in detail in the fol-

owing subsections. 

.2.1. FARG embedding in a vector space 

The first step consists of embedding all FARGs in S into a suit-

ble vector space. The vectorial representation of the correspond-

ng FARGs aims at combining advantages from both the FARG and

he vector representations. Each FARG G i ( i ∈ {1, 2, …, m }) is en-

oded by equal size vectors (one vector per node). We denote by

V ij a vector representation which corresponds to a node j in FARG

 i . A matrix M i containing all the vectors FV ij associated to all

odes in the FARG G i is then constructed. The obtained vectors can

e graphically represented by points in a suitable vector space. Fi-

ally, all FARGs in S are mapped to appropriate points in the vec-

or space. More formally, for a given FARG G = ( N, E, μ, υ), FARG

mbedding can be defined as a function �, which maps the FARG

 i from graph space GS to a matrix M i into n -dimensional vector

pace R 

n . It is given as: 

: GS → R 

n 

 i → �( G i ) = M i = 

⎛ 

⎜ ⎜ ⎝ 

F V i 1 

F V i 2 

. . . 
F V i J i 

⎞ 

⎟ ⎟ ⎠ 

(6) 

here J i is the number of nodes in G i . 

A block diagram of FARG embedding is presented in Fig. 2 . As

nput, it accepts a collection of m FARGs { G 1 , G 2 , …, G e , …, G m 

}

here the e th FARG is denoted by G e = ( N e , E e , μe , υe ). As out-

ut, it produces a set of m matrices, given by { M 1 , M 2 , …, M e , …,

 m 

}. Each matrix contains J ( i ∈ {1, 2, …, m }) equal size feature
i 
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Fig. 2. Overview of FARG embedding in vector space. 
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vectors{ FV i1 , FV i2 , …, FV iJi }. The e th input FARG G e is embedded into

a matrix M e containing J e feature vectors: 

G e → �( G e ) = M e = 

⎛ 

⎜ ⎜ ⎝ 

F V i 1 

F V i 2 

. . . 
F V i J e 

⎞ 

⎟ ⎟ ⎠ 

(7)

Each vector representation FV ij is composed of two main parts:

fuzzy intrinsic features of node j in FARG G i and fuzzy relationship

information between this node and other nodes in G i . Each FV ij 

can be graphically represented by a point in n -dimensional vector

space R 

n . It is given as: 

F V i j = 

(
f F V i j 

( 1 ) f F V i j 

( 2 ) · · · f F V i j 

( n ) 
)

(8)

where n is the total number of features in FV ij . 

Therefore, each matrix M i ( i ∈ {1, 2, …, m }) can be expressed in

terms of features as follows: 

M i = 

⎛ 

⎜ ⎜ ⎝ 

F V i 1 

F V i 2 

. . . 
F V i J i 

⎞ 

⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

f F V i 1 
(1) 

f F V i 1 
(2) 

. . . f F V i 1 
(n ) 

f F V i 2 
(1) 

f F V i 2 
(2) 

. . . f F V i 2 
(n ) 

. . . 
. . . 

. . . 

f F V i J i 
(1) 

f F V i J i 
(2) 

. . . f F V i J i 
(n ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(9)

Fig. 3 depicts an example of embedding three FARGs G 1 , G 2 and

G 3 into an n -dimensional vector space R 

n . M 1 , M 2 and M 3 are three

matrix containing all the feature vectors associated to G 1 , G 2 and

G 3 , respectively. 

4.2.2. Embedded fuzzy graphs clustering 

Once all FARGs G i have been embedded into a vector space, the

corresponding FARG points can then be used as inputs to a clus-

tering algorithm to cluster these points into K partitions (clusters).

First, the optimal K for a given set of FARGs is calculated. Then, a

FCM algorithm is used for clustering. Finally, a weight measure is

associated to each cluster. 

Automatic computation of the optimal K: 

Given a set S = { G 1 , G 2 , …, G m 

} of m FARGs. The number of

nodes in a FARG G i is calculated as follows: 

N N i = Card 
({

F V i j 

})
(10)

Let K S be the optimal K for the set S and S NN = { NN 1 , NN 2 , …,

NN m 

} be the set of the numbers of nodes associated with S. K S can

be automatically calculated from the set of underlying FARGs by

using one of the following possible measures: 

• Mean: 

K S is the mean value of the numbers of nodes associated with S .

For the former, the obtained value of K S is rounded to the nearest

integer value. 

K S = 

1 

m 

×
m ∑ 

i =1 

N N i (11)
p  
• Maximum: 

K S is equal to the maximum number of nodes that can be found

n a FARG G i . 

 S = arg max 
N N i ∈ S NN 

{ N N i } ; i ∈ { 1 , 2 , . . . , m } (12)

• Minimum: 

K S is equal to the minimum number of nodes that can be found

n a FARG G i . 

 S = arg min 

N N i ∈ S NN 

{ N N i } ; i ∈ { 1 , 2 , . . . , m } (13)

• Median: 

K S is equal to the median number of nodes that can be found

n a FARG G i . 

 S = arg med 

N N i ∈ S NN 

{ N N i } ; i ∈ { 1 , 2 , . . . , m } (14)

Clustering : 

We used the FCM algorithm to group the points obtained in

he first step into K S subsets. The FCM algorithm is well explored

n the literature and has been proved to have good clustering per-

ormance on a wide range of datasets that are uncertain, over-

apped and hard to cluster [34,35] . The FCM algorithm introduces

he fuzziness for the membership of each data point to all clus-

ers with different membership grades between 0 and 1. The sum

f the membership grades for each data point must be equal to 1.

he FCM algorithm is composed of the following steps [34,35] : 

FCM algorithm: 

Step 1: Initialize the membership matrix U = [ u ij ], U 
(0) 

Step 2: At k -step: calculate the centers vectors C (k) = [ c j ] with U (k) 

c j = 

∑ N 
i =1 u i j 

m × x i ∑ N 
i =1 u i j 

m 
(15) 

Step 3: Update U (k) , U (k + 1) 

u i j = 

1 ∑ C 
k =1 ( 

x i −c j 
x i −c k 

) 
2 

m −1 

(16) 

Step 4: If || U (k + 1) - U (k) || < ε then STOP; otherwise return to step 2. 

where m is any real number greater than 1, u ij is the degree of membership o

x i in the cluster j, x i is the i th of d -dimensional measured data and c j is the 

d -dimension center of the cluster. 

Computing the weight of each cluster: 

Let S C be the obtained set of clusters. For each obtained cluster

 i ( i ∈ {1, 2, …, K S }), the weight associated to C i is calculated using

he following formula: 

 C i = 

N N C i ∑ K S 
i =1 

N N C i 

(17)

here N N C i 
is the number of points associated to the cluster C i . 

An example of clustering of FARG vectors is presented in Fig. 4 .

.2.3. Converting to FGMG 

After clustering the FARG vectors, the final step is to represent

ach obtained cluster C i ( i ∈ {1, 2, …, K S }) in the previous step as

 node of the FGMG. Since each feature vector FV ij is composed of

wo main parts: fuzzy intrinsic features and fuzzy spatial informa-

ion associated to a node j in FARG G i , each obtained cluster C i is

omposed of fuzzy intrinsic features and fuzzy spatial information

ssociated to a node i in the FGMG. The obtained FGMG is a com-

lete graph. The spatial relationship between each pair of nodes in



R. Chaieb et al. / Pattern Recognition 72 (2017) 266–284 271 

Fig. 3. A detailed example of the first step (FARG embedding in a vector space). 

Fig. 4. A detailed example of the second step (Clustering of FARG vectors). 
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he obtained FGMG is determined using the obtained spatial infor-

ations in each cluster C i . The obtained FGMG is considered as an

pproximation of the fuzzy median graph of the set S . Finally, each

btained weight W C i 
is added as an attribute of node in FGMG as

hown in Fig. 5 . 

. Application of fuzzy generalized median graphs to content 

ased document retrieval 

FGMGs can be used in many document analysis fields such

s CBDR, document image classification, pattern recognition, com-

uter vision, etc. In this paper, we focus only on the application of

GMGs to CBDR. First, we start by presenting the overall schema of

he proposed CBDR approach using FGMGs. Then, we will present

 comparison between using or not FGMGs for CBDR. Finally, we

ill define two evaluation measures in order to compare the per-

ormance of a CBDR using the proposed FGMG algorithm with a
lassical CBDR using one-to-one matching in terms of performance

ain and time-processing gain. 

Fig. 6 shows an overview of all the steps of the proposed

BDR approach using FGMGs. The proposed approach is composed

f two main phases: offline indexing phase and online retrieval

hase. The first phase starts with segmenting each document im-

ge into a number of regions. After this, each document image is

epresented by a FARG whose nodes represent the segmented re-

ions and edges represent the spatial relations between these re-

ions. A detailed description of node and edge attributes will be

resented in the experimental section. Then, the obtained FARGs

re indexed into a FARG database. Finally, a FGMG is computed

or each document image dataset and a FGMG database contain-

ng all the obtained FGMGs is constructed. In the online retrieval

hase, three types of query specification are used. These types al-

ow the user firstly to specify a query by selecting a number of

egions of interest (ROIs) in a document image, choosing an ex-

mple document image or drawing a sketch of a document image

ith a graphic editing tool. Then, a FARG representing the user’s

uery FARG 

q is generated and compared to each FGMG FGMG i ( i

 {1, 2, …, N }) in the FGMG database. After this, the FARGs asso-

iated to FGMGs that have the smallest distance d ( FARG 

q , FGMG i )

o FARG 

q are selected and compared to FARG 

q . Finally, the most

imilar FARGs belonging to the selected FARGs are retrieved and

isplayed to the user. An example of a CBDR using FGMGs is illus-

rated in Fig. 7 . 

In order to compare the performance of a CBDR using the pro-

osed FGMG algorithm with a classical CBDR using one-to-one

atching, we defined two evaluation measures: Accuracy Gain

 AG ) and Time-processing Gain ( TG ). These two measures are ex-

ressed as percentages as follows: 

G = 

[
1 −

(
A F GMG 

A OT O ) 

)]
× 100 (18) 

 G = 

[ 
1 −

(
T F GMG 

T OT O ) 

)] 
× 100 (19) 

here A FGMG and T FGMG are the accuracy and the time-processing

f a CBDR using the proposed FGMG algorithm, respectively. Simi-

arly, A OTO and T OTO are the accuracy and the time-processing of a

BDR using one-to-one matching, respectively. 

. Experimental results and analysis 

This section is devoted to the experimental evaluation of the

roposed FGMG algorithm. We present in this section three ex-

eriments using two synthetic databases and one real database of
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Fig. 5. A detailed example of the third step (Converting to FGMG). 

Fig. 6. Block diagram of the proposed CBDR approach using FGMGs. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. An example of a CBDR using FGMGs. 
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FARGs representing synthetic and real document images, respec-

tively. Our experiments are organized in a three step methodology.

First, a simple example of the FGMG computation is presented in

details in order to clarify the proposed algorithm. Second, we have

investigated the influence of the number of nodes in a FARG and

the number of FARGs in a dataset values on the runtime process-

ing of the FGMG computation. Finally, an evaluation of the CBDR

performance that can be reached with or without using FGMG as

prototype is carried out. The two retrieval scenarios have been ex-

perimentally compared according to several criteria on both syn-

thetic and real databases. 

6.1. Databases 

The experiments described in this section have been carried out

on two synthetic databases and one real database which are de-

tailed as follows: 
.1.1. Databases description 

.1.1.1. Synthetic database (Base A). This database is composed of

hree datasets of document images. Each dataset contains a large

umber of FARGs that represent real-world document images

dataset 1: journals, dataset 2: book pages and dataset 3: invoices).

ach dataset template corresponds to a real-world template of a

ocument image. Each dataset template is composed of a num-

er of two types of regions: constant region and variable region.

 constant region must contain at most one subregion belonging

o one of two types: “Text” or “Non-Text”, whereas a variable re-

ion may contain at most one subregion belonging to one of two

ypes: “Text” or “Non-Text”. Figs. 8–10 illustrate the templates of

he three datasets, respectively. 

• Dataset 1: Journals 

As shown in Fig. 8 , each document image is composed of eight

egions: four “Non-Text” regions in the left and four “Text” regions

n the right. 

• Dataset 2: Book pages 

As shown in Fig. 9 , each document image is composed of five

egions: one “Non-Text” region in the left, three “Text” regions in

he middle and one “Non-Text” region in the right. 

• Dataset 3: Invoices 

As shown in Fig. 10 , each document image is composed of five

egions: two “Non-Text” regions and one “Text” region in the up,

ne “Text” region in the middle and one “Text” region in the bot-

om. 
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Fig. 8. An example of a document image belonging to dataset 1. 

Fig. 9. An example of a document image belonging to dataset 2. 

Fig. 10. An example of a document image belonging to dataset 3. 

Fig. 11. An example of a document image belonging to a dataset of Base B . 
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.1.1.2. Synthetic database (Base B). This second database is com-

osed of a number of datasets of document images. This number

an be specified by the user before generating the database. Each

ataset contains a large number of FARGs that do not necessarily

orrespond to real-world templates of document images. A dataset

emplate is randomly generated for each dataset of document im-

ges. Each dataset template is composed of a randomly generated

umber of two types of regions: constant region and variable re-

ion. A constant region must contain at most one subregion be-

onging to one of two types: “Text” or “Non-Text”, whereas a vari-

ble region may contain at most one subregion belonging to one

f two types: “Text” or “Non-Text”. Fig. 11 illustrates an example

f a template of a document image dataset. In this example, each

ocument image belonging to a dataset of Base B is composed of

even regions: four “Text” regions and three “Non-Text” regions. 

.1.1.3. Real database (Base C). This third database is domain spe-

ific. It is derived from the Tobacco-800 dataset [36,37] . Tobacco-

00 is a public subset of the Illinois Institute of Technology Com-

lex Document Information Processing (IIT-CDIP) Test Collection

36,37] . It is a realistic and complex dataset for document anal-

sis and retrieval. It consists of 1290 real-world documents. The

mage resolutions range from 150 to 300 DPIs. We tested our ap-

roach using a total of 15 document images across 3 classes from

he Tobacco-800 dataset. Each class contains 5 document images

ith similar structures and contents. Similarly to the two previous

atabases, each document image in Base C contains a number of

onstant and variable regions. Three examples from the three dif-

erent classes are shown in Figs. 12–14 . 

• Dataset 1 

As shown in Fig. 12 , each document image is composed of

even regions: four “Text” regions and three “Non-Text” regions. 

• Dataset 2 

As shown in Fig. 13 , each document image is composed of six

egions: four “Text” regions and two “Non-Text” regions. 

• Dataset 3 

As shown in Fig. 14 , each document image is composed of

leven regions: five “Text” regions and six “Non-Text” regions. 

It is important to note that all regions in the input document

mages were manually cropped using a ground truthing editor:
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Fig. 12. An example of a document image belonging to dataset 1: (a) Input document image, (b) Selected regions, (c) Ground truth. 

Fig. 13. An example of a document image belonging to dataset 2: (a) Input document image, (b) Selected regions, (c) Ground truth. 

Fig. 14. An example of a document image belonging to dataset 3: (a) Input document image, (b) Selected regions, (c) Ground truth. 
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Groundtruthing Environment for Document Images (GEDI) [38] . Af-

ter selecting rectangular regions in each document image and as-

signing them to a number of pre-defined attributes, GEDI generates

an XML schema representing the nature and the location of each

region in a document image. Finally, each FARG representing a doc-

ument image is constructed using its correspondant XML schema. 

6.1.2. FARG attributes 

Let G be a FARG representing a document image in one of pre-

vious databases. Node and edge attributes are given as follows: 
.1.2.1. Node attributes. Node attributes represent intrinsic infor-

ations of a region. In this paper, two node attributes are used:

ype and Area . More formally, for each node n i in G , the set of node

ttributes is given as αi : 

i = { αi 1 , αi 2 } (20)

here αi 1 and αi 2 represent the Type and Area attributes associ-

ted with the node n i , respectively. 

As shown in Figs. 15 and 16 , a trapezoidal fuzzy membership

unction is defined for each node attribute. The sum of the values
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Fig. 15. Trapezoidal fuzzy membership function of Type attribute. 

Fig. 16. Trapezoidal fuzzy membership function of Area attribute. 
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Fig. 17. Trapezoidal fuzzy membership function of Distance attribute. 

Fig. 18. Trapezoidal fuzzy membership function of Direction attribute. 
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f the membership functions corresponding to a node attribute is

qual to 1. Type attribute is represented as a vector μαi 1 
: 

αi 1 
= 

[
μαi 1 

( 1 ) , μαi 1 

( 2 ) 
]

(21) 

2 
 

j=1 

μαi 1 

( j ) = 1 (22) 

here μαi 1 
(1) and μαi 1 

(2) are the membership degrees associated

ith αi 1 . μαi 1 
(1) and μαi 1 

(2) represent the percentage of the Type

ttribute to be “Text” or “Non-Text”, respectively. 

Similarly, Area attribute is represented as a vector μαi 2 
: 

αi 2 
= 

[
μαi 2 

( 1 ) , μαi 2 

( 2 ) 
]

(23) 

2 
 

j=1 

μαi 2 

( j ) = 1 (24) 

here μαi 2 
(1) and μαi 2 

(2) are the membership degrees associated

ith αi 2 . μαi 2 
(1) and μαi 2 

(2) represent the percentage of the Area

ttribute to be "Big" or "Small", respectively. 
.1.2.2. Edge attributes. Edge attributes represent the spatial posi-

ion informations of a region. In this paper, two edge attributes

re used: Distance and Direction . More formally, for each edge e i in

 , the set of edge attributes is given as β i : 

i = { βi 1 , βi 2 } (25) 

here β i 1 and β i 2 represent the Distance and Direction attributes

ssociated with the edge e i , respectively. 

As shown in Figs. 17 and 18 , trapezoidal and triangular fuzzy

embership functions are defined for Distance attribute and Di-

ection attribute, respectively. The sum of the values of the mem-

ership functions corresponding to an edge attribute is equal to 1.

istance attribute is represented as a vector μβi 1 
: 

βi 1 
= 

[
μβi 1 

( 1 ) , μβi 1 

( 2 ) 
]

(26) 

2 
 

j=1 

μβi 1 

( j ) = 1 (27) 

here μβi 1 

(1) and μβi 1 

(2) are the membership degrees associated

ith βi 1 . μβi 1 

(1) and μβi 1 

(2) represent the percentage of the Dis-

ance attribute to be “Far” or “Near”, respectively. 
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Table 1 

A brief summary of each of the three databases. 

Database 

Base A Base B Base C 

Dataset 1 Dataset 2 Dataset 3 Specified number of 

datasets 

Dataset 1 Dataset 2 Dataset 3 

Synthetic / Real Synthetic Synthetic Synthetic Synthetic Real Real Real 

Document images Journals Book pages Invoices Randomly generated Tobacco-800 

dataset 

Tobacco-800 

dataset 

Tobacco-800 

dataset 

No. of FARGs Specified 

number 

Specified 

number 

Specified 

number 

Specified number for 

each dataset 

5 5 5 

No. of “Text” regions in each FARG 4 3 3 Randomly generated 4 4 5 

No. of “Non-Text” regions in each FARG 4 2 2 Randomly generated 3 2 6 

No. of constant regions in each FARG 6 3 4 Randomly generated 6 5 9 

No. of variable regions in each FARG 2 2 1 Randomly generated 1 1 2 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Three input FARGs G 1 , G 2 and G 3 . 
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Similarly, Direction attribute is represented as a vector μβi 2 
: 

μβi 2 
= 

[
μβi 2 

( 1 ) , μβi 2 

( 2 ) , μβi 2 

( 3 ) , μβi 2 

( 4 ) 
]

(28)

4 ∑ 

j=1 

μβi 2 

( j ) = 1 (29)

where μβi 2 

(1) , μβi 2 

(2) , μβi 2 

(3) and μβi 2 

(4) are the membership

degrees associated with βi 2 . μβi 2 

(1) , μβi 2 

(2) , μβi 2 

(3) and μβi 2 

(4) 

represent the percentage of the Direction attribute to be “Right”,

“Left”, “Top” or “Bottom”, respectively. 

In order to synthesize the descriptions of all the databases, we

provide in Table 1 a brief summary of each of the three databases

we have presented. 

6.2. Experimentations 

For the experiments, the CBDR domain is used as the applica-

tion area by using two synthetic databases and one real database

of document images. 

Experiment 1: An example of the FGMG computation 

In this experiment, we present a simple example to illustrate

how the proposed FGMG algorithm works. As shown in Fig. 19 ,

suppose that we have three input FARGs G 1 , G 2 and G 3 . 

The three steps of the FGMG computation are explained in de-

tail as following: 

Step 1: FARG Embedding in a Vector Space 

M 1 = 

( 

μα11 

(1) μα11 

(2) μα12 

(1) μα12 

(2) μβ11 

(1) μβ11 

(2) 

μα21 

(1) μα21 

(2) μα22 

(1) μα22 

(2) μβ21 

(1) μβ21 

(2) 

μα31 

(1) μα31 

(2) μα32 

(1) μα32 

(2) μβ31 

(1) μβ31 

(2) 

M 2 = 

⎛ 

⎜ ⎝ 

μα11 

(1) μα11 

(2) μα12 

(1) μα12 

(2) μβ11 

(1) μβ11 

(2)

μα21 

(1) μα21 

(2) μα22 

(1) μα22 

(2) μβ21 

(1) μβ21 

(2)

μα31 

(1) μα31 

(2) μα31 

(2) μα32 

(2) μβ31 

(1) μβ31 

(2)

μα41 

(1) μα41 

(2) μα42 

(1) μα42 

(2) μβ41 

(1) μβ41 

(2)

M 3 = 

⎛ 

⎜ ⎜ ⎜ ⎝ 

μα11 

(1) μα11 

(2) μα12 

(1) μα12 

(2) μβ11 

(1) μβ11 

(2) 

μα21 

(1) μα21 

(2) μα22 

(1) μα22 

(2) μβ21 

(1) μβ21 

(2) 

μα31 

(1) μα31 

(2) μα32 

(1) μα32 

(2) μβ31 

(1) μβ31 
(2) 

μα41 

(1) μα41 

(2) μα42 

(1) μα42 

(2) μβ41 

(1) μβ41 

(2) 

μα51 

(1) μα51 

(2) μα52 

(1) μα52 

(2) μβ51 

(1) μβ51 

(2) 
The first step consists of embedding all FARGs G 1 , G 2 and G 3 

nto a suitable vector space. Let FV ij be the obtained feature vector

hich corresponds to the node j in FARG G i . Three matrix M 1 , M 2 

nd M 3 containing all the feature vectors FV ij of all nodes in G 1 , G 2 

nd G 3 are constructed as follows: 
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Step 2: Embedded Fuzzy Graphs Clustering 
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Fig. 20. Obtained clusters using FCM algorithm. 

Table 2 

Obtained weight of each cluster. 

Cluster No. of associated nodes No. of nodes Weight 

C 1 3 12 W C 1 = 3/12 = 0.25 

C 2 3 12 W C 2 = 3/12 = 0.25 

C 3 4 12 W C 3 = 4/12 = 0.33 

C 4 2 12 W C 4 = 2/12 = 0.16 
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Table 3 

Runtime performance of the proposed FGMG algorithm on Base A comprising 30 0 0 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 10 0 0 10 0 0 10 0 0 

Maximum no. of nodes in each FARG 8 5 5 

No. of constant nodes in each FARG 6 3 4 

No. of variable nodes in each FARG 2 2 1 

Maximum no. of nodes in all FARGs 80 0 0 50 0 0 50 0 0 

Minimum no. of nodes in all FARGs 60 0 0 30 0 0 40 0 0 

No. of nodes in all FARGs 6997 3999 4521 

No. of variable nodes in all FARGs 997 999 521 

No. of nodes in the FGMG 7 4 5 

Computation time of generation (s) 25.34 17.88 20.01 

Computation time of the FGMG (s) 1.14 0.20 0.26 

t  

T  

u  

o  

B

Table 4 

Runtime performance of the proposed FGMG algorithm on Base A comprising 90 0 0 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 30 0 0 30 0 0 30 0 0 

Maximum no. of nodes in each FARG 8 5 5 

No. of constant nodes in each FARG 6 3 4 

No. of variable nodes in each FARG 2 2 1 

Maximum no. of nodes in all FARGs 24 ,0 0 0 15 ,0 0 0 15 ,0 0 0 

Minimum no. of nodes in all FARGs 18 ,0 0 0 90 0 0 12 ,0 0 0 

No. of nodes in all FARGs 21 ,025 11 ,998 13 ,479 

No. of variable nodes in all FARGs 3025 2998 1479 

No. of nodes in the FGMG 7 4 4 

Computation time of generation (s) 85.20 63.01 70.35 

Computation time of the FGMG (s) 3.56 0.34 0.36 
The second step consists of clustering the obtained feature vec-

ors ( FV 11 , FV 12 , FV 13 , FV 21 , FV 22 , FV 23 , FV 24 , FV 31 , FV 32 , FV 33 , FV 34 

nd FV 35 ) into K clusters using the FCM algorithm. In this example,

e used the Eq. (11 ) to calculate K. The obtained value of K is 4.

et S C = { C 1 , C 2 , C 3 , C 4 } be the obtained set of clusters. As shown

n Fig. 20 , three feature vectors ( FV 11 , FV 21 and FV 31 ) are associated

o C 1 , three feature vectors ( FV 12 , FV 22 and FV 32 ) are associated to

 2 , four feature vectors ( FV 13 , FV 24 , FV 34 and FV 35 ) are associated to

 3 and two feature vectors ( FV 23 and FV 33 ) are associated to C 4 . 

As shown is Eq. (36 ), we denote by M FGMG the matrix containing

ll the obtained clusters in S C . 

 F GMG = 
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(36) 
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⎜ ⎝ 

μα11 

(1) μα11 

(2) μα12 

(1) μα12 

(2) μβ11 

(1) μβ11 

μα21 

(1) μα21 

(2) μα22 

(1) μα22 

(2) μβ21 

(1) μβ21 

μα31 

(1) μα31 
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Finally, we used the Eq. (17 ) to calculate the weight of each

luster C i ( i ∈ {1, 2, 3, 4}). Table 2 summarizes the obtained

eights W C i 
( i ∈ {1, 2, 3, 4 }). 

Step 3: Converting to FGMG 

In the final step, a FGMG composed of all clusters C i ( i ∈ {1, 2,

, 4}) obtained in the previous step is created as shown in Fig. 21 .

ach obtained weight W C i 
(i ∈ {1, 2, 3, 4}) is then added as an

ttribute of node in the FGMG. 

Experiment 2: Computation time of a FGMG 

This experiment was intended to quantitatively evaluate the

calability of the proposed FGMG algorithm in terms of computa-

ion time with respect to the size of the input FARGs. To this end,

xperiment 2 was performed on different sized datasets from the

hree databases: Base A, Base B and Base C . A closer look is given to

he impact of dataset sizes on time complexity of the FGMG com-

utation. Therefore, the processing time is benchmarked though
μβ12 

(1) μβ12 

(2) μβ12 

(3) μβ12 
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μβ22 
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(2) μβ22 
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(3) μβ32 
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μβ42 

(1) μβ42 

(2) μβ42 

(3) μβ42 

(4) 

⎞ 

⎟ ⎠ 

(37) 

he number of nodes and the number of FARGs in each dataset.

ables 3 –9 present the basic characteristics of the three databases

sed to compute the FGMG and the runtime processing values

btained for different number of FARGs in Base A, Base B and

ase C . 
• Base A: 
• Base B: 
• Base C: 
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Fig. 21. The obtained FGMG (the weight belonging to each cluster is given in parenthesis). 

Table 5 

Runtime performance of the proposed FGMG algorithm on Base A comprising 

15,0 0 0 FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 50 0 0 50 0 0 50 0 0 

Maximum no. of nodes in each FARG 8 5 5 

No. of constant nodes in each FARG 6 3 4 

No. of variable nodes in each FARG 2 2 1 

Maximum no. of nodes in all FARGs 40 ,0 0 0 25 ,0 0 0 25 ,0 0 0 

Minimum no. of nodes in all FARGs 30 ,0 0 0 15 ,0 0 0 20 ,0 0 0 

No. of nodes in all FARGs 34 ,981 20 ,033 22 ,495 

No. of variable nodes in all FARGs 4981 5033 2495 

No. of nodes in the FGMG 7 4 4 

Computation time of generation (s) 373.32 273.74 316.43 

Computation time of the FGMG (s) 13.14 1.37 1.51 

Table 6 

Runtime performance of the proposed FGMG algorithm on Base B comprising 1500 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 500 500 500 

Maximum no. of nodes in each FARG 100 100 100 

Maximum no. of constant nodes in each FARG 91 91 91 

Maximum no. of variable nodes in each FARG 9 9 9 

Maximum no. of nodes in all FARGs 50 ,0 0 0 50 ,0 0 0 50 ,0 0 0 

Maximum no. of constant nodes in all FARGs 45 ,500 45 ,500 45 ,500 

Maximum no. of variable nodes in all FARGs 4500 4500 4500 

No. of nodes in all FARGs 8473 12 ,662 17 ,397 

No. of nodes in the FGMG 17 25 35 

Computation time of generation (s) 20.44 36.11 57.62 

Computation time of the FGMG (s) 3.15 6.76 14.44 

Table 7 

Runtime performance of the proposed FGMG algorithm on Base B comprising 30 0 0 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 10 0 0 10 0 0 10 0 0 

Maximum no. of nodes in each FARG 100 100 100 

Maximum no. of constant nodes in each FARG 91 91 91 

Maximum no. of variable nodes in each FARG 9 9 9 

Maximum no. of nodes in all FARGs 100 ,0 0 0 100 ,0 0 0 100 ,0 0 0 

Maximum no. of constant nodes in all FARGs 91 ,0 0 0 91 ,0 0 0 91 ,0 0 0 

Maximum no. of variable nodes in all FARGs 90 0 0 90 0 0 90 0 0 

No. of nodes in all FARGs 26 ,496 37 ,174 48 ,032 

No. of nodes in the FGMG 26 37 48 

Computation time of generation (s) 83.59 130.66 198.01 

Computation time of the FGMG (s) 16.92 33.46 55.13 

Table 8 

Runtime performance of the proposed FGMG algorithm on Base B comprising 90 0 0 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 30 0 0 30 0 0 30 0 0 

Maximum no. of nodes in each FARG 100 100 100 

Maximum # of constant nodes in each FARG 91 91 91 

Maximum no. of variable nodes in each FARG 9 9 9 

Maximum no. of nodes in all FARGs 300 ,0 0 0 300 ,0 0 0 300 ,0 0 0 

Maximum no. of constant nodes in all FARGs 273 ,0 0 0 273 ,0 0 0 273 ,0 0 0 

Maximum no. of variable nodes in all FARGs 27 ,0 0 0 27 ,0 0 0 27 ,0 0 0 

No. of nodes in all FARGs 191 ,691 149 ,088 45 ,929 

No. of nodes in the FGMG 64 50 15 

Computation time of generation (s) 1123 757.97 139.71 

Computation time of the FGMG (s) 342.03 203.99 20.12 

Table 9 

Runtime performance of the proposed FGMG algorithm on Base C comprising 15 

FARGs. 

Dataset 1 Dataset 2 Dataset 3 

No. of FARGs 5 5 5 

Maximum no. of nodes in each FARG 7 6 11 

No. of constant nodes in each FARG 6 5 9 

No. of variable nodes in each FARG 1 1 2 

Maximum no. of nodes in all FARGs 35 30 55 

Minimum no. of nodes in all FARGs 30 25 45 

No. of nodes in all FARGs 31 28 50 

No. of variable nodes in all FARGs 1 3 5 

No. of nodes in the FGMG 6 6 10 

Computation time of generation (s) 4.05 3.81 5.69 

Computation time of the FGMG (s) 0.01 0.01 0.02 
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Tables 3–9 present some interesting results of the FGMG com-

utation. For instance, we can observe that the number of nodes

f all the FARGs used to compute the FGMG in Base A and Base B

ange from 3999 to 191,691, while the computation times of the

GMG range from 0.20 to 342.03 s. Such results indicate that the

GMG algorithm is able to handle large datasets containing a big

umber of large FARGs in reasonable computation times. The main

eason for this is the usefulness and applicability of FARG embed-

ing to the FGMG computation. It is important to notice that pre-

iously existing methods to compute the median graph could only

e applied to small datasets due to their high computational re-

uirements. For instance, the genetic approach [29] could only be

pplied to a number of nodes between 400 and 1000 (from 100 to
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Table 10 

Obtained gain in terms of performance and computation time (Dataset 1 of Base A comprising 10 0 0 FARGs). 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 906 919 912 956 945 927.6 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 90.60 91.90 91.20 95.60 94.50 92.76 

Time processing (s) 16.94 17.13 17.81 17.78 17.79 17.49 

CBDR using FGMG No. of Relevant Retrieved Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 6.15 6.02 5.86 6.23 6.17 6.08 

Accuracy gain (%) 7.24 

Gain in computation time (%) 65.20 

Table 11 

Obtained gain in terms of performance and computation time (Dataset 2 of Base A comprising 10 0 0 FARGs ) . 

Query Number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 778 825 833 774 746 791.2 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 77.80 82.50 83.30 77.40 74.60 79.12 

Time processing (s) 17.76 18.76 17.80 17.91 16.94 17.84 

CBDR using FGMG No. of Relevant Retrieved Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 5.77 5.81 6.30 5.65 5.54 5.81 

Accuracy gain (%) 20.88 

Gain in computation time (%) 67.39 

Table 12 

Obtained gain in terms of performance and computation time (Dataset 3 of Base A comprising 10 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 556 575 593 626 453 560.6 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 55.60 57.50 59.30 62.60 45.30 56.06 

Time processing (s) 18.44 23.34 18.42 17.95 17.85 19.20 

CBDR using FGMG No. of Relevant Retrieved Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

No. of Relevant Images 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 10 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 10.79 6.30 5.90 5.91 6.01 6.98 

Accuracy gain (%) 43.94 

Gain in computation time (%) 63.63 
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Fig. 22. Accuracy gain ( Base A comprising 10 0 0 to 50 0 0 FARGs). 

 

T

00 nodes per graph), while the computation times of the median

raph range from 13 to 30 0 0 s. 

Experiment 3: Merits of FGMGs in CBDR 

The third experiment which has been performed presents an

xample of an application of the proposed FGMG algorithm to

he CBDR problem. This experiment aims at comparing the accu-

acy and time complexity of a CBDR with or without using FGMG

s prototype. It is important to notice that each CBDR operation

query generation and retrieving process) was run five times for

ach dataset in Base A and Base B in order to better evaluate the

etrieval results of these two synthetic databases. Tables 10 –18 give

xamples of the retrieval results for each query and the average

alues obtained from these queries. 

• Base A: 

The obtained retrieval results from Base A are reported in

ables 19 –21 and illustrated in Figs. 22 and 23 . 

• Base B: 

The obtained retrieval results from Base B are reported in

ables 22 –24 and illustrated in Figs. 24 and 25 . 
• Base C: 

The obtained retrieval results from Base C are reported in

able 25 and illustrated in Fig. 26 . 
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Table 13 

Obtained gain in terms of performance and computation time (Dataset 1 of Base A comprising 30 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 2857 2826 2863 2850 2903 2859.8 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 95.23 94.20 95.43 95.00 96.77 95.33 

Time processing (s) 120.99 122.54 122.58 121.88 129.62 123.52 

CBDR using FGMG No. of Relevant Retrieved Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 41.56 41.43 42.46 41.45 42.77 41.94 

Accuracy gain (%) 4.67 

Gain in computation time (%) 66.05 

Table 14 

Obtained gain in terms of performance and computation time (Dataset 2 of Base A comprising 30 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 2607 2032 2477 2402 2347 2373 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 86.90 67.73 82.56 80.06 78.23 79.10 

Time processing (s) 118.24 119.61 119.53 119.64 231.59 141.72 

CBDR using FGMG No. of Relevant Retrieved Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 39.33 39.25 39.21 40.08 89.04 49.38 

Accuracy gain (%) 20.90 

Gain in computation time (%) 65.15 

Table 15 

Obtained gain in terms of performance and computation time (Dataset 3 of Base A comprising 30 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 1652 1646 1601 1828 1874 1720.2 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 55.06 54.86 53.36 60.93 62.46 57.34 

Time processing (s) 276.98 275.14 273.16 272.53 282.34 276.03 

CBDR using FGMG No. of Relevant Retrieved Images 1689 30 0 0 30 0 0 30 0 0 30 0 0 2737.8 

No. of Relevant Images 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 30 0 0 

Accuracy (%) 56.30 100 100 100 100 91.26 

Time processing (s) 186.33 90.57 90.20 90.79 91.02 109.78 

Accuracy gain (%) 37.17 

Gain in computation time (%) 60.23 

Table 16 

Obtained gain in terms of performance and computation time (Dataset 1 of Base A comprising 50 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 4732 4585 4633 4546 4539 4607 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 94.64 91.70 92.66 90.92 90.78 92.14 

Time processing (s) 303.94 301.78 302.34 300.53 314.18 304.55 

CBDR using FGMG No. of Relevant Retrieved Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 102.87 101.25 101.51 102.05 104.70 102.48 

Accuracy gain (%) 7.86 

Gain in computation time (%) 66.35 
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We performed CBDR experiments using two approaches: a

CBDR using the FGMG as a dataset representative and an exhaus-

tive and sequential CBDR. The first approach presents the advan-

tage that the number of comparisons between FARGs is greatly re-

duced, since each query FARG is compared only to a small number

of FARGs, while with the second approach the query FARG is com-

pared with every FARG of all datasets. The obtained results show
hat a CBDR using the FGMG as a dataset representative yields bet-

er results than an exhaustive and sequential retrieval in terms of

ccuracy and computation time. With these results in hand, we

an conclude that we obtain good approximations of the FGMG

hat can be effectively com puted by the FGMG computation al-

orithm proposed in this paper. In addition, we have applied the

GMG computation to synthetic and real databases containing a
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Table 17 

Obtained gain in terms of performance and computation time (Dataset 2 of Base A comprising 50 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 3901 3955 3303 4217 3802 3835.6 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 78.02 79.10 66.06 84.34 76.04 76.71 

Time processing (s) 300.15 305.31 302.59 306.18 302.58 303.36 

CBDR using FGMG No. of Relevant Retrieved Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 100 100 100 100 100 100 

Time processing (s) 100.93 101.06 100.26 101.84 99.67 100.75 

Accuracy gain (%) 23.29 

Gain in computation time (%) 66.79 

Table 18 

Obtained gain in terms of performance and computation time (Dataset 3 of Base A comprising 50 0 0 FARGs ) . 

Query number Average 

1 2 3 4 5 

CBDR using sequential matching No. of Relevant Retrieved Images 2558 2787 3063 2941 2971 2864 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 51.16 55.74 61.26 58.82 59.42 57.28 

Time processing (s) 341.77 306.37 300.42 300.37 308.39 311.46 

CBDR using FGMG No. of Relevant Retrieved Images 2560 50 0 0 3104 50 0 0 50 0 0 4132.8 

No. of Relevant Images 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 50 0 0 

Accuracy (%) 51.20 100 62.08 100 100 82.66 

Time processing (s) 201.68 101.64 202.99 99.88 100.35 141.31 

Accuracy gain (%) 30.70 

Gain in computation time (%) 54.63 

Fig. 23. Gain in computation time ( Base A comprising 10 0 0 to 50 0 0 FARGs). 

Fig. 24. Accuracy gain ( Base B comprising 500 to 3000 FARGs). 

Fig. 25. Gain in computation time ( Base B comprising 500 to 3000 FARGs). 

Fig. 26. Gain in computation time ( Base C comprising 15 FARGs). 
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Table 19 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 1 of Base A . 

No. of FARGs in each dataset 

10 0 0 30 0 0 50 0 0 

CBDR using sequential 

matching 

Accuracy (%) 92.76 95.33 92.14 

Time processing (s) 17.49 123.52 304.55 

CBDR using FGMG Accuracy (%) 100 100 100 

Time processing (s) 6.08 41.94 102.48 

Accuracy gain (%) 7.24 4.67 7.86 

Gain in computation time (%) 65.20 66.05 66.35 

Table 20 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 2 of Base A . 

No. of FARGs in each dataset 

10 0 0 30 0 0 50 0 0 

CBDR using sequential 

matching 

Accuracy (%) 79.12 79.10 76.71 

Time processing (s) 17.84 141.72 303.36 

CBDR using FGMG Accuracy (%) 100 100 100 

Time processing (s) 5.81 49.38 100.75 

Accuracy gain (%) 20.88 20.90 23.29 

Gain in computation time (%) 67.39 65.15 66.79 

Table 21 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 3 of Base A . 

No. of FARGs in each dataset 

10 0 0 30 0 0 50 0 0 

CBDR using sequential 

matching 

Accuracy (%) 56.06 57.34 57.28 

Time processing (s) 19.20 276.03 311.46 

CBDR using FGMG Accuracy (%) 100 91.26 82.66 

Time processing (s) 6.98 109.78 141.31 

Accuracy gain (%) 43.94 37.17 30.70 

Gain in computation time (%) 63.63 60.23 54.63 

Table 22 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 1 of Base B . 

No. of FARGs in each dataset 

10 0 0 + 500 30 0 0 

CBDR using sequential 

matching 

Accuracy (%) 91.40 45.20 71.77 

Time processing (s) 39.54 9.53 713.56 

CBDR using FGMG Accuracy (%) 100 53.20 100 

Time processing (s) 11.79 6.34 218.57 

Accuracy gain (%) 8.60 15.04 28.23 

Gain in computation time (%) 70.17 33.47 69.37 

Table 23 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 2 of Base B . 

No. of FARGs in each dataset 

10 0 0 500 30 0 0 

CBDR using sequential 

matching 

Accuracy (%) 60.90 84.20 92.10 

Time processing (s) 60.27 13.11 927.01 

CBDR using FGMG Accuracy (%) 100 100 100 

Time processing (s) 20.04 4.37 312.01 

Accuracy gain (%) 39.10 15.80 7.90 

Gain in computation time (%) 66.74 66.66 66.34 

Table 24 

Obtained performance and computation time according to the input number of 

FARGs in Dataset 3 of Base B . 

No. of FARGs in each dataset 

10 0 0 500 30 0 0 

CBDR using sequential 

matching 

Accuracy (%) 44.30 65.00 64.37 

Time processing (s) 78.81 17.70 349.45 

CBDR using FGMG Accuracy (%) 44.90 100 100 

Time processing (s) 55.96 7.06 100.60 

Accuracy gain (%) 1.34 35.00 35.63 

Gain in computation time (%) 28.99 60.09 71.21 

Table 25 

Obtained performance and computation time for each dataset in Base C . 

Dataset 1 Dataset 2 Dataset 3 

CBDR using sequential 

matching 

Accuracy (%) 100 100 100 

Time processing (s) 0.10 0.10 0.11 

CBDR using FGMG Accuracy (%) 100 100 100 

Time processing (s) 0.05 0.05 0.06 

Accuracy gain (%) 0 0 0 

Gain in computation time (%) 41.56 42.98 39.70 

l  

o  

f  

“  

r  

w  

i  

o  

t  

F  

a  

n  

c  

t  

t  

s  

m  

p  

g  

o

7

 

p  

T  

n  

F  

t  

n  

i  

f  

t  

p  

t  

m  

t  

i  

t  

n  

t  
arge number of FARGs with no constraints regarding the number

f nodes and edges. The FARG representation allows node and edge

eatures to be represented by fuzzy concepts such as “Near” and

Far”, “Big” and “Small”, etc. Up to now, some of the existing algo-

ithms could only be applied to very limited sets of labeled graphs

ith no fuzzy attributes in neither the nodes nor the edges. All

nput FARGs have been embedded into a suitable vector space in

rder to improve the accuracy and speed of document image re-

rieval processing. Also, different weights have been associated to

GMG nodes in the final step of the proposed FGMG computation

lgorithm in order to rather focus on the most important FGMG

odes in the retrieval process. As a future work, more visual (e.g.

olor and texture) and structural (e.g. inclusion relationship) at-

ributes might be incorporated in the proposed FARG representa-

ion. Such new attributes may lead to more accurate FARG repre-

entations of document images and more computation time and

emory consumption. In addition, the obtained results open the

ossibility of extending the application of the proposed FGMG al-

orithm to other real applications where a representative of a set

f graphs is needed. 

. Conclusion 

In this paper, we have proposed a new algorithm for the com-

utation of the FGMG on large-scale document image databases.

his algorithm is based on embedding of input FARGs into an

 -dimensional vector space. The vectorial representation of input

ARGs aims to keep advantages from both the graph and the vec-

or domains (power of representation of graphs and easiness ma-

ipulation of the vector representations). The proposed algorithm

s composed of three main steps. It starts by mapping each FARG

rom graph space to a set of feature vectors into a suitable vec-

or space. The obtained vectors can be graphically represented by

oints in the vector space. The second step consists of clustering

he obtained points into a number of clusters using a clustering

ethod. In this study, we have used the FCM algorithm for clus-

ering. Then, we computed the weights of the obtained clusters

n order to rather focus on the most important clusters in the re-

rieval process. Each obtained weight becomes a new attribute of

ode in FGMG. Finally, the obtained clusters become the nodes of

he FGMG. The proposed algorithm can be applied to many appli-
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ations where a representative of a set could be needed. In this

aper, we studied its applicability to the CBDR problem. Experi-

ents on two synthetic databases and one real database contain-

ng a large number of FARGs with large sizes demonstrated that

ur algorithm is able to obtain good approximations of the FGMG.

he experimental results prove the scalability and effectiveness of

he proposed algorithm in terms of gains in accuracy and time pro-

essing. 

In spite of the advantages of the FGMG construction we have

ntroduced, we believe there are still some improvements that can

e further developed in the future. A future research line is to

xtend the FARG representation in order to be able to deal with

ARGs with more visual and structural attributes. Further, in spite

f the good properties of the proposed similarity function be-

ween two FARGs, it would be desirable to extend the obtained

esults to other similarity functions. Furthermore, the new FGMG

omputation algorithm potentially allows the use of the FGMG in

ther graph-based applications in pattern recognition and machine

earning that require to compute a FGMG, for instance, classifica-

ion and clustering using big real databases. 
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