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Abstract: Recently, texture features have been widely used for historical document image analysis.
However, few studies have focused exclusively on feature selection algorithms for historical document
image analysis. Indeed, an important need has emerged to use a feature selection algorithm in data
mining and machine learning tasks, since it helps to reduce the data dimensionality and to increase the
algorithm performance such as a pixel classification algorithm. Therefore, in this paper we propose a
comparative study of two conventional feature selection algorithms, genetic algorithm and ReliefF
algorithm, using a classical pixel-labeling scheme based on analyzing and selecting texture features.
The two assessed feature selection algorithms in this study have been applied on a training set of the
HBR dataset in order to deduce the most selected texture features of each analyzed texture-based
feature set. The evaluated feature sets in this study consist of numerous state-of-the-art texture
features (Tamura, local binary patterns, gray-level run-length matrix, auto-correlation function,
gray-level co-occurrence matrix, Gabor filters, 3-level Haar wavelet transform, 3-level wavelet
transform using 3-tap Daubechies filter and 3-level wavelet transform using 4-tap Daubechies filter).
In our experiments, a public corpus of historical document images provided in the context of the
historical book recognition contest (HBR2013 dataset) has been used. Qualitative and numerical
experiments are given in this study in order to provide a set of comprehensive guidelines on the
strengths and the weaknesses of each assessed feature selection algorithm according to the used
texture feature set.

Keywords: benchmarking; texture; feature selection; pixel-labeling; ancient document images

1. Introduction

Providing reliable computer-based access and analysis of cultural heritage documents has been
flagged as a very important need for the library and the information science community, spanning
educationalists, students, practitioners, researchers in book history, computer scientists, historians,
librarians, end-users and decision makers. More specifically, there is a consistent and clear need for
robust and accurate document image analysis (DIA) methods that deal with the idiosyncrasies of
historical document images [1,2]. Indeed, historical DIA remains an open issue due to the particularities
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of historical documents, such as the superimposition of information layers (e.g. stamps, handwritten
notes, noise, back-to-front interference, page skew) and the variability of their contents and/or layouts.
Moreover, analyzing historical document images and characterizing their layouts and contents under
significant degradation levels and different noise types and with no a priori knowledge about the
layout, content, typography, font styles, scanning resolution or DI size, efc. is not a straightforward
task. Therefore, researchers specialized in historical DIA keep proposing novel reliable approaches
and rigorous techniques for historical DIA, segmentation and characterization. Recently, there has
been increasing interest in using deep architectures for solving various sub-fields and tasks related to
the issues surrounding computer vision and pattern recognition and particularly document image
analysis and handwritten text recognition. For instance, deep neural networks have developed for
feature learning [24] and document layout and content analysis [4,5]. For instance, Chen et al. [5]
proposed a pixel-labeling approach for handwritten historical document images segmentation based
on using a convolutional neural network (CNN). Calvo-Zaragoza et al. [4] presented a CNN-based
method for automatic document processing of music score images. Wei et al. [24] proposed a layout
analysis method of historical document images using the sequential forward selection algorithm and
the autoencoder technique as a deep neural network for feature selection and learning. Nevertheless,
these methods based on deep architectures are hindered by many issues related to the computational
cost in terms of memory consumption, processing time and computational complexity on the one
hand, and the need for large datasets.

In the literature, the methods used for DIA have been classified into two categories: texture
and non-texture-based [13]. Kise [10] stated that the most relevant DIA methods used to analyze
documents with unconstrained layouts and overlapping layers are based on texture features. It
has been demonstrated that the text/graphic region separation task can be performed efficiently by
using a texture-based method. On the other hand, the textual regions with different fonts can be
segmented using texture features which are often used for text font characterization. A text font is
mainly characterized by its weight, style, condensation, width, slant, italicization, ornamentation, and
designer or foundry [20].

However, using a texture-based method has quite high computational complexity since it often
involves a large number of features. Indeed, two criteria can be identified when using a texture-based
method: object to be analyzed (i.e. foreground or background) and primitive of analysis (i.e. pixels,
superpixels, connected components, etc.). These two criteria entail large volumes of data to be processed
when using a texture-based method. Moreover, the processing time of a texture-based method depends
entirely on the image size and resolution due to the use of a primitive-based computation. However,
there is awareness that maybe there are redundant and non-relevant indices when extracting and
analyzing texture features which may reduce the performance of a texture-based algorithm. Feature
selection meets this real need by selecting relevant features and by removing redundant ones in order
to reduce the data dimensionality, to improve the quality of the feature set and to increase the algorithm
performance, such as a texture-based pixel-labeling algorithm.

Thus, in this paper a comparative study of two conventional feature selection algorithms, genetic
algorithm (GA) and ReliefF algorithm (RA), is proposed in order to provide a set of comprehensive
guidelines on the strengths and the weaknesses of each assessed feature selection algorithm according
to the used texture feature set. The texture-based feature sets which have been compared and evaluated
in this study have been derived from the Tamura, local binary patterns (LBP), gray-level run-length
matrix (GLRLM), auto-correlation, gray-level co-occurrence matrix (GLCM), Gabor filters and three
wavelet-based approaches: 3-level Haar wavelet transform (Haar), 3-level wavelet transform using
3-tap Daubechies filter (Db3) and 3-level wavelet transform using 4-tap Daubechies filter (Db4).
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In our comparative study, a public corpus of historical document images (called the HBR2013
dataset) which was provided by the pattern recognition and image analysis research lab (PRIma)’
has been used [1,2]. The HBR2013 dataset has been proposed in the context of the historical book
recognition (HBR) contest held in conjunction with the ICDAR conference (2011 and 2013). The
HBR2013 dataset is a subset of the IMPACT dataset?, representing key holdings of major European
libraries and consisting of printed documents of various types (e.g. books, newspapers, journals, legal
documents), in 25 languages from the 17 century to the early 20t century. It contains a large diversity
of historical document contents (variety of layouts and contents). The HBR2013 dataset presents many
particularities and challenges which motivates us to conduct our thorough study on it.

The remainder of this article is organized as follows. Sections 2 and 3 review firstly the
texture-based methods and feature selection algorithms proposed in the literature, respectively, with a
particular focus on those related to historical DIA. A brief report of the different texture-based feature
sets and feature selection algorithms evaluated in this study is also given. Section 4 describes the
experimental protocol by firstly presenting the main phases of the proposed pixel-labeling scheme
used for analyzing and comparing the performance of each texture feature set according to the use of a
full texture feature set, the use of a subset of texture features selected by means of the GA, and the use
of a subset of texture features selected by means of the RA (cf. Section 4.1). Secondly, the experimental
corpus and the defined ground truth used in our experiments are detailed in 4.2. Then, qualitative
results are given to demonstrate the performance of each texture-based feature set according to the
use or not of a feature selection algorithm (cf. Section 4.4). Afterwards, we discuss quantitatively
the obtained performance of the texture feature analysis experiments (cf. Section 4.4). Finally, our
conclusions and future work are presented in Section 5.

2. Texture features

Recently, many DIA issues have been focused on using texture-based approaches for segmentation
and classification tasks [13]. Indeed, the use of texture analysis techniques for historical document
images has become an appropriate choice, since it has been shown that texture-based approaches
work effectively with no a priori knowledge about the layout, content, typography, font and graphic
styles, scanning resolution, document image size, etc. Moreover, the use of a texture-based approach
has been shown to be effective with skewed and degraded images. Therefore, the interest in using a
texture-based method for historical DIA is continuously increasing [12].

In the literature, based on extracting and analyzing texture features a texture-based method has
been usually used to partition the analyzed image into regions. The obtained regions have similar
properties and characteristics with respect to the extracted texture features [3]. Thus, this study is
based on the two following assumptions: text regions have different texture features from non-text
ones and textual regions with different fonts are also distinguishable [13].

Relatively a limited number of comparative studies address the problem of presenting quantitative
comparisons of texture-based algorithms, although it is commonly agreed that texture analysis plays a
fundamental role for DIA [6]. Visual or qualitative results of seven texture-based methods (run-lengths,
multi-channel Gabor filters, texture co-occurrence spectrum, white tiles, texture masks, structured
wavelet packet analysis and laws masks) have been reported in [13]. Mebhri ef al. [12] presented
a benchmarking of the most classical and widely used texture-based feature sets which had been
conducted using a classical texture-based pixel-labeling scheme on a corpus of historical document
images. This comparative study has been carried out for selecting the most relevant texture feature set
based on the best trade-off between the best performance and the lowest computation time.

http:/ /www.primaresearch.org

2 http:/ /www.primaresearch.org/datasets
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Therefore, the texture-based features which are compared and evaluated in this article have been
derived from the Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters and three wavelet-based
approaches: Haar, Db3 and Db4.

3. Feature selection algorithms

Using a texture-based method often involves a large number of texture features in
high-dimensional spaces to be analyzed. Indeed, each analyzed image will be described by a set
of multi-dimensional texture-based feature vectors. This will induce greater computational cost and
occupy a lot of storage space since a large and complex feature space has been generated. Moreover,
it is worth noting that the smaller the dimension of the analyzed texture-based space, the easier it
will be to deal with the specified task. Besides, if the number of dimensions becomes very large, this
will make it more difficult to compute data similarity and perform data mining tasks. Indeed, the
data similarity is sensitive to the number of dimensions (curse of dimensionality) since it is based on
computing distance between vectors (i.e. the higher the number of dimensions, the higher the values
of distance between vectors and the more difficult it will be to group data).

Based on these findings, redundant or even irrelevant features may affect the learning process
and consequently reduce the pixel classification accuracy in the case of our work. For instance, Journet
et al. [9] extracted three auto-correlation features and two frequency descriptors by using a multi-scale
analysis for classifying pixels into text, graphics and background in historical document images. Then,
they proposed to reduce the dimension space of the extracted features using the principal component
analysis technique. They demonstrated that only 78% of the extracted features are relevant. In order to
classify pixels from historical document images into four classes (periphery, background, text block,
and decoration), Wei et al. [23] used the convolutional auto-encoder features and concluded that more
than 80% of the analyzed features are redundant or irrelevant.

Therefore, a feature selection phase is often required to avoid these problems by selecting the
most relevant features and remove redundant ones from the original large set of texture-based features
[25]. Sequential forward selection, sequential backward selection, tabu search, genetic algorithm and
ReliefF algorithm are the most well-known and widely used feature selection algorithms [26]. A
feature selection algorithm is based on using a search technique to evaluate different proposals of
feature subsets by means of an evaluation measure in order to determine the one that has the best
performance [8].

Figure 1 depicts the common key steps of a feature selection process. The general procedure for
feature selection starts by creating a candidate feature subset for evaluation. Each candidate subset is
evaluated by using an evaluation criterion to measure the quality of the selected features. The process
of subset generation and evaluation is repeated until a predefined stopping criterion is satisfied. The
feature selection process ends by outputting the selected subset of features to a validation procedure.

Few researchers have addressed feature selection issues for historical DIA. For instance, Tao et al.
[19] proposed a feature selection algorithm based on using the LBP operator and dimension reduction
technique for Chinese character font categorization. A hybrid feature selection method was proposed
by Wei et al. [22] for historical DIA. The proposed feature selection method was based on using an
adapted greedy forward selection method and the genetic selection algorithm in a cascading way
to select different kinds of features including color, gradient, and LBP. By comparing their method
with four conventional feature selection methods (genetic selection, linear forward Selection, best
first forward selection and best first backward selection), Wei et al. [22] concluded that their method
selected significantly fewer features and provided lower error rates. They also concluded that the
most discriminative features for layout analysis of documents of diverse nature are the LBP ones. In
our paper, we have focused on the multi-scale texture analysis of historical document images using
nine texture feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and
Db4). However, Wei et al. [22] investigated three main sets of texture features (color, gradient and LBP
features) without using a multi-scale analysis. They combined all these features in a 204-dimensional
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Figure 1. Common key steps of a feature selection process.

feature vector. Furthermore, we have investigated separately the two feature selection algorithms
(genetic and ReliefF algorithms) on each texture feature set. However, a cascading feature selection
method (a cascade of an adapted forward selection and a genetic selection algorithms) was proposed
in [22]. Besides, comparing to [22] we have used more images (60 images) during the training phase.

To the best of our knowledge, there is no comparative study that has been carried out to investigate
jointly the most well-known texture-based feature sets and widely used feature selection algorithms
for historical DIA. Therefore, we propose in this article to evaluate the use of two conventional feature
selection algorithms, genetic algorithm and ReliefF algorithm, in order to select an optimal subset of
each texture-based feature set for pixel-labeling task in ancient document images.

3.1. Genetic algorithm

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. First,
a population of chromosomes which encodes candidate solutions is created. A chromosome is a string
of bits (1 and 0 indicate whether a feature is selected or not, respectively) whose size corresponds to the
number of features. Then, the solutions are evolved by applying genetic operators such as crossover
and mutation to find the best solution based on a predefined fitness function. Commonly, the GA
terminates when either a maximum number of generations has been produced or a satisfactory fitness
level has been reached for the population [7]. Algorithm 1 details the different parameters used in the
GA. More details were given in [14] with a thorough description of the different parameters used in
the GA.
Figure 2 presents a flowchart summarizing the fundamental steps of the GA used in this study.
The GA starts by creating an initial population of randomly generated individuals using the following
formula:
P = round((L — 1) x rand(DF,200 x DF)) +1 1)

where L and DF represent the number of input features and the desired number of selected features,
respectively. In the GA experiments, DF is set to L/2.
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Algorithm 1 Basic genetic algorithm [7]

1:
2
3
4
5:
6
7
8
9

10:
11:

12: until Any chromosome’s score Fit() exceeds 6
13: return Highest fitness chromosome (best classifier)

Input: Crossover probability (P)

Mutation probability (Pyyt)

Population size (L-chromosomes- or classifier- by N-bits)

Criteria function (Fit())
Fitness threshold (6)

repeat
Determine the fitness of each chromosome: Fit(i), i

Rank the chromosomes
repeat

Select two chromosomes with highest score

if Rand|0,1] < P, then

Crossover the pair at a randomly chosen bit

else

Change each bit with the probability Py,
Remove the parent chromosomes

until N offspring have been created

Output: Set of highest fitness chromosomes (best classifier)

1,...

,L

Define variables, fitness function, cost
and select GA parameters

Generate initial population

Decode chromosomes

Calculate fitness for each chromosome

Figure 2. Flowchart of the GA.

Convergence check

In each generation, a proportion of the existing population is selected to breed a new generation.
Each selected individual solution is evaluated on the basis of its overall fitness. In the GA experiments,
a fitness function based on the principle of Minimum Redundancy Maximum Relevance (mRMR)
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is used [14]. The key idea of mRMR is to select the set S with m features {x;} that satisfies the
maximization problem:
max ®;(D,R); ®(D,R) =D —R 2)

where D and R represent the max-relevance and min-redundancy, respectively. D and R are defined as
follows:

Z (xi,y (3)

X;€S
1
k=g L 1) @
xx

where I(x;,y) and I(x;, x;) represent the mutual information, which is the quantity that measures the
mutual dependence of the two random variables and is calculated as follows:

I(x,y) = H(x) + H(y) — H(x,y) ®)
where H(.) is the entropy.

3.2. ReliefF algorithm

The ReliefF algorithm (RA) is one of the most famous feature weighting methods. It assigns a
weight to each feature, and the features values over a particular threshold are selected. The key idea of
the RA is to select features randomly, and then based on nearest neighbors the relevance of features
according to how well their values distinguish among the instances of the same and different classes
that are near to each other is estimated [17]. The bigger the weight value, the better the feature is.
Algorithm 2 gives a more detailed description of the process of the RA method. More details were
given in [18] with a thorough description of the key steps of the investigated RA.

Algorithm 2 ReliefF algorithm [18]

Input: For each training instance:
Vector of attribute values (4;, i =1,...,a)
Class value (C)
Output: Vector W of the estimations of the qualities of attributes

Set all weights W[A] := 0.0
fori:=1 to mdo
Randomly select an instance R;
Find k nearest hits H;
for each class C # class(R;) do
From class C find k nearest misses M;(C)
forA:=1 to ado

) = o) g dif (A, R;, Mj(C))

e k C#class(R;) m < k

where m is a user-defined parameter. dif f (A, I1, I) is a function that computes the difference between

the values of the attribute A for two instances I and I,. P(.) denotes the prior probability.
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4. Evaluation and results

In this section, a brief description of the main phases of the pixel-labeling scheme used for
analyzing and selecting texture features is presented. Then, qualitative results are given to demonstrate
the performance of each texture-based feature set according to the use or not of a feature selection
algorithm. Subsequently, the performance of each texture feature set according to the use of a full
texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a
subset of texture features selected by means of the RA is discussed after describing our experimental
corpus and its associated ground truth, and presenting the used accuracy metrics for performance
evaluation.

4.1. Pixel-labeling scheme

In order to investigate the importance of using a feature selection algorithm for historical DIA,
a generic and standard framework that ensures a fair analysis and comparison of performance is
required. The proposed framework is presented in this study as a pixel-labeling scheme based on
analyzing and selecting texture features. It aims at analyzing and comparing of the performance of
each texture feature set according to the use of a full texture feature set, the use of a subset of texture
features selected by means of the GA, and the use of a subset of texture features selected by means of
the RA.

The main goal of the proposed pixel-labeling consists of structuring the texture feature space
within a clustering technique in order to group pixels sharing similar characteristics. The proposed
pixel-labeling scheme forms the basis of a classical layout analysis approach and cornerstone of
different DIA tasks related to segmentation, analysis, classification and recognition of historical
document images, etc. The pixel-labeling scheme used in our experiments to analyze and select texture
features is illustrated in Figure 3.

[ Document ]
v . Gray-scale conversion |
| Pre-processing —
Border replication |
| Foreground pixel selection —] Otsu's method ]
v
[ Foreground pixels |
— Tamura | 5¢ . g0
N LBP 1 g - Fo
>| GLRLM | d.:_:‘ * lex,y) -Texture indices
v Auto-correlation |§ . ;;n]lx,y)
[ Texture feature extraction GLCM ] 2
= Gabor I'§ * (16x16)
Haar |§4 ° :zixzi;-multi-scaleanalysis
of - X
c
- Db3 |§ . (128x128)
N Db4 | &
\ / \ 4

I Training dataset I I Test dataset I

Genetic algorithm I

I Feature selection
ReliefF algorithm |
\ /
I Selected features ::
[ Pixel-clustering and labeling —>] Hierarchical agglomerative clustering |

Figure 3. Pixel-labeling scheme based on analyzing and selecting texture features.
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First of all, each historical document image of our experimental corpus is fed as input of our
proposed pixel-labeling scheme. Then, texture feature have been extracted only from the foreground
pixels of gray-scale images without using any binarization step. By using analysis windows of varying
sizes (i.e. a pixel-wise technique), the texture feature extraction step is performed in order to adopt a
multi-resolution/multi-scale approach. By using a multi-scale approach, more reliable information
can be obtained and region boundaries can be identified more accurately since textural characteristics
can be perceived differently at varying scales. A border replication step is applied on each image in
order to deal with foreground pixels located at image borders when computing texture features.

Then, all extracted features have been used as input for both the GA and the RA individually.
Two separate datasets, namely, the training dataset (60%) and the testing dataset (40%) that our
experimental corpus comprises have been used separately in our experiments. A learning phase
is introduced in the proposed pixel-labeling scheme that the most selected texture features will be
identified according to the textural characteristics of a 60% of document images selected randomly
from the HBR2013 dataset. For each document image in the training dataset, only 50% of all the features
have been selected when performing separately the GA and the RA iterations. Afterwards, the subset
of the most selected texture features used on evaluating the testing dataset is deduced based on the
following heuristic: a texture feature would be counted among the subset of the most selected texture
features by using a feature selection algorithm, if it was chosen by over half the images of the training
dataset.

Given the results of the most selected texture features from the training dataset, an unsupervised
clustering step is afterwards performed based on analyzing the subset of the most selected texture
features extracted from the foreground pixels of the testing dataset. The clustering step is performed
by using the hierarchical ascendant classification (HAC) algorithm and by setting the number of
homogeneous and similar content regions (k) equal to the one defined in the ground truth in order
to avoid inconsistencies and bias in assessments caused by estimating automatically the number of
homogeneous and similar content regions and subsequently to ensure an objective understanding of
the behavior of the evaluated texture feature sets and feature selection algorithms. The HAC algorithm
is performed on the computed texture features without taking into account the spatial coordinates.
The HAC algorithm process consists of successively merging pairs of existing clusters where at each
cluster grouping step, the choice of cluster pairs depends on the smallest distance (i.e. clusters are
grouped if the intra-cluster inertia is minimal). This linkage between clusters is performed using the
Ward criterion along with the weighted Euclidean distance [21].

By using the HAC algorithm the obtained texture-based feature vector sets are partitioned into k
compact and well-separated clusters in the multi-dimensional feature space, producing a pixel-labeled
image as output. Since the used classifier process in the pixel-labeling scheme is unsupervised, the
colors attributed to the different document image contents (text or graphics) may differ from one
document image to another.

4.2. Corpus and preparation of ground truth

In our experiments, a public corpus of historical document images provided in the context of the
HBR contest (HBR2013 dataset) has been used. The HBR2013 dataset contains 100 binary, gray-scale or
color historical document images which were digitized at 150/300 dpi. Table 1 details the HBR2013
dataset characteristics. Figure 4 illustrates samples of pages of the HBR2013 dataset.

To analyze the performance of each texture-based feature set according to the use or not of
a feature selection algorithm in the proposed pixel-labeling scheme, a pixel-based ground truth is
required. For this purpose, the ground truthing environment for document images (GEDI)? has been
used in our experiments.

3 http://gedigroundtruth.sourceforge.net/
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Table 1. Composition of the HBR2013 dataset.

Content Number Number Graphics
of pages of fonts
Only one font (cf. Figure 4[a]) 3 1 No
Only two fonts (cf. Figure 4[b]) 17 2 No
Graphics and text with two different fonts (cf. Figure 4[c]) 9 2 Yes
Only three fonts (cf. Figure 4[d]) 20 3 No
Graphics and text with three different fonts (cf. Figure 4[e]) 6 3 Yes
Only four fonts (cf. Figure 4[f]) 11 4 No
Graphics and text with four different fonts (cf. Figure 4[g]) 15 4 Yes
Only five fonts (cf. Figure 4[h]) 5 5 No
Graphics and text with five different fonts (cf. Figure 4[i]) 14 5 Yes

Our ground truth has been manually outlined by labeling spatial boundaries of regions annotating
the textual and graphical contents. Figure 5 illustrates few examples of the defined ground truth.
Different labels for regions with different fonts have been also annotated for evaluating the performance
of texture feature to separate various text fonts. Then, to provide a pixel-accurate representation of the
analyzed images of the HBR2013 dataset, each selected foreground pixel is annotated according to the
label of the region to which it belongs.

Analyzing the nine sets of texture descriptors and two feature selection algorithms using the
HBR2013 dataset gives a total of 1800 analyzed images (100 images x 9 different texture-based
approaches x 2 different feature selection algorithms).

4.3. Qualitative results

A visual comparison of the resulting images of historical document examples of the training and
testing datasets of the HBR2013 dataset using the proposed pixel-labeling scheme is discussed in this
section.

Figure 6 depicts the resulting images of a historical document example of the “Three fonts and
graphics” category of the training dataset of the HBR2013 dataset, while Figure 7 illustrates the resulting
images of a historical document example of the “Three fonts and graphics” category of the testing
dataset of the HBR2013 dataset. The number of class labels in the resulting images is equal to 4. Since
the pixel-labeling task is unsupervised, the colors attributed to text or graphics may differ from one
document to another.

From the series of the resulting images given in the two Figures 6 and 7, we see that the obtained
results are slightly astounding. For instance, the best pixel-labeling results are given by analyzing
the selected Gabor features by means of the GA when the analyzed document belongs to the training
dataset (i.e. graphical regions in blue color are more homogeneous), which is not the case when
the analyzed document belongs to the testing dataset (cf. Figure 6[s]). This can be justified by the
particularities of the HBR2013 dataset (strong heterogeneity, with differences in layout, typography,
illustration style, complex layouts and historical spelling variants, efc.) since it consists of printed
documents of various types (e.g. books, newspapers, journals, legal documents). It represents a wide
variety of layouts that reflect several particularities of historical document images. This points out that
applying a global selection on the HBR2013 dataset is not quite relevant that it is necessary to train on
documents having similar characteristics in terms of the layout structure and/or typographic/graphical
properties of the historical document image content. The quality of the pixel-labeling task will be more
convincing if we use a feature selection algorithm on documents having some similarities of document
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Figure 4. Historical document image examples of the HBR2013 dataset. Figures 4[a], 4[b], 4[c], 4[d],
4[e], 4[f], 4[g], 4[h], and 4[i] illustrate examples of historical document images of the HBR2013 dataset
containing only two fonts, two fonts and graphics, only three fonts, three fonts and graphics, only four
fonts, four fonts and graphics, only five fonts and five fonts and graphics, respectively.

content type (some similarities of document content type can be deduced from many book pages since
a document content type can be repeated on many pages of the same book).

By comparing the visual results of a document belonging to the testing dataset, we note a drop in
performance in terms of homogeneity when the analyzed features are given by selecting the LBP and
Gabor features by means of the GA (cf. Figures 7[g] and 7[s]) and by means of the RA (cf. Figures 7[h]
and 7[t]). In Figure 7[s], we show that some foreground pixels characterizing a textual content (cyan)
has been labeled as graphical one (green and blue), while in Figure 7[t] we see that some foreground
pixels characterizing a graphical content (red, green, and blue) has been labeled as textual one (cyan).

We also show that the results have significantly improved when using in the proposed
pixel-labeling scheme the Tamura features selected using the RA on documents of the training and
testing datasets (cf. Figures 6[e] and 7[e]). We observe that when using the selected GLRLM features
by means of the GA and RA algorithms on a document of the testing dataset, the pixel-labeling
quality has improved considerably (cf. Figures 7[j] and 7[k]), unlike when using the selected
auto-correlation features (cf. Figures 7[m] and 7[n]). The pixel-labeling results given by analyzing the
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Figure 5. Example of the defined ground truth and obtained pixel-labeling result. Figures 5[a] and 5[b]
illustrate an original historical document image and its associated ground truth, respectively. Figure
5[c] shows the final result of the pixel-labeling task by analyzing the Gabor features. Figures 5[d], 5[e],
and 5[f] illustrate zoomed regions of Figures 5[a], 5[b], and 5[c], respectively.

full auto-correlation feature set (cf. Figure 7[1]) on the proposed pixel-labeling scheme on a document
of the testing dataset are relatively similar to those based on selecting auto-correlation features by
means of a feature selection algorithm (cf. Figures 7[m] and 7[n]).

We see that the Gabor and Db4 features give the best results in terms of the homogeneity of the
textual region content when using in the proposed pixel-labeling scheme the full texture feature set (cf.
Figures 7[r] and 7[aa]) and the texture features selected using the RA (cf. Figures 7[t] and 7[ac]) on
a historical document example of the testing dataset. We also note that in the case of using the full
Gabor and Db4 feature sets, the Gabor and Db4 features selected using the RA, the textual regions
with different sizes and fonts have not been separated properly and particularly when the documents
also contain graphics (more than one cluster is assigned for graphical regions by discriminating many
orientations that are present to different extents in graphical regions). This confirms that the Gabor
and Db4 features characterize specifically the main orientation of a texture. A suitable alternative is to
use a recursive clustering method in order to ensure the distinction between distinct text fonts and
various graphic types when the documents under consideration are complex and contain graphics and
various kinds of fonts.

4.4. Benchmarking and performance evaluation

The dimensionality and performance evaluation of each texture-based feature set in the following
three cases: with full texture feature set, with texture features selected using the GA, and with texture
features selected using the RA, using the proposed pixel-labeling scheme on the HBR2013 dataset are
presented in Table 2.

The Gabor and GLRLM signatures have the largest dimensions equal to 192 and 176, respectively,
while the Tamura and auto-correlation signatures have the smallest dimensions equal to 16 and 20,
respectively. By applying the GA and RA on a document of the training dataset, the number of features
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has been reduced by half. We note that the number of features has been significantly reduced. The
reduction ratio (RD) is computed using the following equation:

Nj

RD=1- _t
N¢

(6)
where N¢ and N; note the total number of features and the final number of features after reduction,
respectively.

The RD of Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and Db4
are: 50%, 57%, 46%, 50%, 58%, 53%, 42%, 47% and 43%, respectively when using the GA, and 56%,
50%, 49%, 50%, 50%, 48%, 50%, 45% and 52%, respectively when using the RA on a document of the
testing dataset. As a consequence, we conclude that using a feature selection algorithm helps to reduce
the dimensionality of the data, which entails lower computational cost in terms of lighter memory
consumption, processing time and numerical complexity.

It is inherently a subjective evaluation to use a visual inspection of the pixel-labeling results of a
texture-based method to draw some conclusions about which set of texture features deduced by using
a feature selection algorithm is well suited for historical DIA. Thus, in this study several per-pixel
and per-block accuracy metrics, namely, the silhouette width (SW) [16], purity per-block (PPB) [11],
and F-measure (F) [15], have been computed based on the defined pixel-accurate ground truth of the
analyzed images of the HBR2013 dataset.

The silhouette width (SW) assesses the pixel-labeling quality by computing the level of data
compactness and separation based on the intrinsic information concerning the distribution of the
observations into different clusters. The purity per-block (PPB) measures the homogeneity rate of
regions by evaluating the matching regions between the defined pixel-based ground truth and the
obtained pixel-labeling results. The F-measure (F) assesses both the homogeneity and the completeness
criteria of the pixel-labeling results by computing a score resulting from the combination of the precision
and recall accuracies. SW, PPB, and F are computed. The higher the values of the computed metrics,
the better the results. In Table 2, we have used three different colors (red, green, and blue), to quote the
highest SW, PPB, and F values deduced by comparing the performances of each accuracy measure for
each texture-based feature set in the following three cases: with full texture feature set, with texture
features selected using the GA, and with texture features selected using the RA.

Good performance has been noted for documents of the training dataset when analyzing the
selected texture features by means of the GA and particularly the Gabor features. However, there is no
significant improvement in performance for documents of the testing dataset due to the complexity
and the wide variety of layouts of the HBR2013 dataset. This confirms our observation about the
need to train on documents having similar characteristics in terms of the layout structure and/or
typographic/graphical properties of the historical document image content.

To highlight the similarities of the behavior of the different evaluated texture features according to
the use of a full texture feature set, the use of a subset of texture features selected by means of the GA,
and the use of a subset of texture features selected by means of the RA, the correlation analyses of the
F-measure performance of each texture-based feature set are illustrated in Figures 8[a], 8[b], and 8[c],
respectively. Each figure represents a matrix of plots showing the different Pearson’s linear correlations
among pairs of the nine texture-based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM,
Gabor, Haar, Db3 and Db4). Histograms of the nine evaluated texture-based feature sets appear along
the matrix diagonal, while scatter plots of the texture-based feature set pairs appear in the off-diagonal.
Each dot in each correlation plot represents one historical document image of the testing dataset of the
HBR2013 dataset. The displayed Pearson’s linear correlation coefficients in the scatter plots highlighted
indicate which pairs of texture-based feature sets have correlations significantly different from zero
(equal to the slopes of the least-squares reference lines in red).

Table 3 summarizes the minimum, average, and maximum Pearson’s linear correlation coefficient
values of the F-measure performance of pairs of texture-based feature sets according to the use of a full
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texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a
subset of texture features selected by means of the RA.

By comparing the different correlation plots and obtained Pearson’s linear correlation coefficients
when using the full texture feature set, the subset of texture features selected by means of the GA, and
the subset of texture features selected by means of the RA, we observe that the Gabor and the three
wavelet-based approaches are still highly correlated even if a feature selection algorithm is introduced.
This confirms that by using a feature selection algorithm in the Gabor and wavelet approaches only a
small subset of relevant features from the original large set of features characterizing the localization
of the spatial frequency of a texture have been selected. Nevertheless, we observe higher correlation
coefficient values between the Tamura and other investigated features on the one hand and between
the LBP and other investigated features on the other hand when selecting features by means of the
GA and the RA. This confirms that by using a feature selection algorithm a significant number of
texture features which are redundant or irrelevant have been removed. An interesting conclusion
that can be deduced from the correlation plots in Figure 8, is that combining the different selected
texture feature sets can significantly improve the pixel-labeling quality. Indeed, each feature set has its
own particularities. For instance, since Gabor filters is known to be sensitive to the stroke width, they
have the advantage to present the best performance in discriminating text in a variety of situations
of different fonts and scales. On the other side, the auto-correlation feature set has the advantage
to present the best performance for segmenting the graphical contents from textual ones since it
highlights interesting information concerning the principal orientations and periodicities of texture
[12]. Therefore, combining the different selected texture features from the auto-correlation and Gabor
descriptors can be more adequate for segmenting the graphical contents from textual ones on the one
hand, and discriminating text in a variety of situations of different fonts and scales on the other hand.
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Table 2. Dimensionality and performance evaluation of each texture-based feature set for documents

of the training and testing datasets in the following three cases: with full texture feature set, with

texture features selected using the genetic algorithm (GA), and with texture features selected using

the ReliefF algorithm (RA), using the proposed pixel-labeling scheme on the HBR2013 dataset. Internal

and external accuracy measures are computed, silhouette width (SW), purity per-block (PPB) and

F-measure (F). N¢ and N; note the total number of features and the final number of features after

reduction, respectively. The higher the values of the internal and external accuracy measures, the

better the pixel-labeling performances. For each table (i.e. the training and testing datasets), the values

which are quoted in red, green, and blue colors, are considered as the highest SW, PPB, and F values,

respectively by comparing the performances of each accuracy measure for each texture-based feature

set in the following three cases: with full texture feature set, with texture features selected using the

GA, and with texture features selected using the RA.

Training dataset

Tamura LBP GLRLM Auto-correlation GLCM Gabor Haar Db3 Db4

sw| 035 0.21 0.13 0.07 0.21 0.26 0.26 0.31 0.28

Full ees | 0.71 0.78 0.79 0.73 0.84 0.90 0.80 0.79 0.81
texture

featureset | 1 3g 0.38 0.35 0.43 0.42 0.52 0.45 0.46 0.46

Ny 16 40 176 20 72 192 80 80 80

sw| 0.40 0.04 0.14 0.12 0.20 0.29 0.29 0.28 0.31

o | ees| 073 0.72 0.82 0.80 0.87 0.92 0.83 0.83 0.84
se.lecteﬁi

usimgthe | 0.39 0.36 0.35 0.42 0.42 0.54 0.45 0.45 0.46

N 8 20 88 10 36 9% 40 40 40

sw| 030 0.07 0.14 0.11 0.26 0.26 0.24 0.29 0.28

fonore | wes| 073 0.74 0.77 0.77 0.85 0.88 0.81 0.83 0.83
se.lecteﬁi

usivgthe 1 040 0.38 0.34 0.42 0.42 0.49 0.43 0.43 0.44

N 8 20 88 10 36 9% 40 40 40

Testing dataset

Tamura LBP GLRLM Auto-correlation GLCM Gabor Haar Db3 Db4

sw| 038 0.33 0.35 0.17 0.30 0.28 0.30 0.34 0.30

Full e | 0.77 0.83 0.82 0.81 0.86 0.91 0.83 0.83 0.84
texture

featureset | 149 0.39 0.37 0.43 0.43 0.52 0.44 0.45 0.46

Ny 16 40 176 20 72 192 80 80 80

sw | 0.42 0.01 0.42 0.24 0.35 0.33 0.29 0.33 0.36

e | s | 076 0.72 0.85 0.85 0.85 0.91 0.86 0.85 0.85
se}ecte}?

wimsthe | o1 040 0.37 0.37 043 0.41 0.51 043 0.42 043

N 8 17 95 10 30 90 46 42 45

sw| 035 0.15 0.39 0.22 0.36 0.28 0.31 0.34 0.37

e | wes | 0.79 0.76 0.81 0.80 0.87 0.89 0.85 0.85 0.86
se}ecte}?

usiggthe | o 1 0 0.38 0.36 0.42 0.43 0.49 0.42 0.42 0.42

N 7 20 89 10 36 98 40 44 38
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Figure 6. Resulting pixel-labeling images without and with using a feature selection algorithm on a
historical document image of the “Three fonts and graphics” category from the training dataset of the
HBR2013 dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised,
the colors attributed to text or graphics may differ from one document to another. Figures 6[a] and 6[b]
illustrate the input image and its associated ground truth, respectively. The remaining figures depict
the resulting pixel-labeling images.
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Figure 7. Resulting pixel-labeling images without and with using a feature selection algorithm on a

historical document image of the “Three fonts and graphics” category from the testing dataset of the

HBR2013 dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised,

the colors attributed to text or graphics may differ from one document to another. Figures 7[a] and 7[b]

illustrate the input image and its associated ground truth, respectively. The remaining figures depict

the resulting pixel-labeling images.
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Figure 8. Correlation analysis of the F-measure performance of each texture-based feature set according

to the use of a full texture feature set (cf. Figure 8[a]), the use of a subset of texture features selected by
means of the GA (cf. Figure 8[b]), and the use of a subset of texture features selected by means of the

RA (cf. Figure 8[c]).
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Table 3. Minimum, average, and maximum Pearson’s linear correlation coefficient values of the
F-measure performance of pairs of texture-based feature sets according to the use of a full texture
feature set, the use of a subset of texture features selected by means of the GA, and the use of a subset
of texture features selected by means of the RA.

Full texture feature set Texture features selected using the GA Texture features selected using the RA
Features Minimum | Average Maximum| Minimum| Average Maximum| Minimum| Average Maximum
0.50 0.63 0.47 0.87 0.58 0.87
Tamura (Gabor) 0.58 (GLCM) (Gabor) 0.75 (LBP) (Gabor) 0.78 (Haar)
0.61 0.72 0.41 0.88 0.51 0.86
LBP (GLCM) 0.67 (GLRLM) | (Gabor) 0.74 (GLCM) (Gabor) 0.75 (GLRLM)
0.61 0.86 0.47 0.83 0.62 0.86
GLRLM (Tamura) 0.73 (Haar) (Gabor) 0.74 (Tamura) (Gabor) 0.78 (LBP)
0.60 0.76 0.49 0.75 0.58 0.83
Auto-correlation| (GLCM) 0.68 (Haar) (Gabor) 0.69 (Db3) (Gabor) 0.74 (Tamura)
0.60 0.82 0.53 0.88 0.63 0.83
GLCM (Auto) 0.7 (Haar) (Gabor) 0.72 (LBP) (Gabor) 0.78 (LBP)
0.50 0.77 0.41 0.56 0.51 0.63
Gabor (Tamura) | 0.67 (Db3) (LBP) 0.49 (Db3) (LBP) 0.59 (GLCM)
0.58 0.93 0.50 0.88 0.62 0.93
Haar (Tamura) 0.78 (Db4) (Gabor) 0.75 (Db4) (Gabor) 0.81 (Db4)
0.59 0.92 0.56 0.93 0.61 0.94
Db3 (Tamura) | 0.78 (Db4) (Gabor) 0.77 (Db4) (Gabor) 0.79 (Db4)
0.53 0.93 0.53 0.93 0.63 0.94
Db4 (Tamura) | 0.76 (Haar) (Gabor) 0.76 (Db3) (Gabor) 0.8 (Db3)

5. Conclusions and further work

This paper has presented a comparative study of using two conventional feature selection
algorithms for selecting a number of commonly and widely used texture features. This comparative
study has been conducted on the HBR2013 dataset, using a classical pixel-labeling scheme based on
analyzing and selecting features. The proposed pixel-labeling scheme integrates a feature selection
step, which has been applied on a training set of the HBR2013 dataset in order to select the most relevant
texture features of each analyzed texture-based feature set.

We conclude that the performance of a particular feature selection algorithm is highly dependent
upon the used texture features. It is admittedly that the proposed pixel-labeling scheme selects
fewer texture features with comparable performance. This study has shown that when the numerical
complexity and pixel-labeling quality are taken into account, good performance has been noted for
documents of the training dataset when analyzing the selected texture features by means of the genetic
algorithm and particularly the Gabor features. These results could be explained by the fact that using
the genetic operators (such as the crossover and mutation operators) in the GA, guarantee a high
diversity of the succeeding populations, and thus more immune to be trapped in a local optima and
faster in reaching the global optima. Moreover, the Gabor features perform better than the other
features, since they characterize specifically the orientation and spatial frequency of a texture without
taking into account the spatial relationships between pixels as concluded in [12].

However, it is not the case for documents of the testing dataset; there is no significant improvement
in performance due to the complexity and the wide variety of contents and layouts of the HBR2013
dataset. Indeed, it is worth noting that there is awareness that we need a larger database containing
documents having similar characteristics in terms of the layout structure and/or typographic/graphical
properties of the historical document image content in order to train the different feature selection
algorithms. Thus, conducting this study on a larger public annotated dataset of historical books such
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as the HBA dataset* is among the first aspect of our future work. Finally, we intend to extend our
investigation to recent feature selection algorithms.
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Db4
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F
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3-level wavelet transform using 3-tap Daubechies filter
3-level wavelet transform using 4-tap Daubechies filter
Document image analysis
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Genetic algorithm

GLCM Gray-level co-occurrence matrix
GLRLM  Gray-level run-length matrix

Haar
HAC
HBR
LBP
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SW
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3-level Haar wavelet transform
Hierarchical ascendant classification
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ReliefF algorithm
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