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Abstract: Recently, texture features have been widely used for historical document image analysis.1

However, few studies have focused exclusively on feature selection algorithms for historical document2

image analysis. Indeed, an important need has emerged to use a feature selection algorithm in data3

mining and machine learning tasks, since it helps to reduce the data dimensionality and to increase the4

algorithm performance such as a pixel classification algorithm. Therefore, in this paper we propose a5

comparative study of two conventional feature selection algorithms, genetic algorithm and ReliefF6

algorithm, using a classical pixel-labeling scheme based on analyzing and selecting texture features.7

The two assessed feature selection algorithms in this study have been applied on a training set of the8

HBR dataset in order to deduce the most selected texture features of each analyzed texture-based9

feature set. The evaluated feature sets in this study consist of numerous state-of-the-art texture10

features (Tamura, local binary patterns, gray-level run-length matrix, auto-correlation function,11

gray-level co-occurrence matrix, Gabor filters, 3-level Haar wavelet transform, 3-level wavelet12

transform using 3-tap Daubechies filter and 3-level wavelet transform using 4-tap Daubechies filter).13

In our experiments, a public corpus of historical document images provided in the context of the14

historical book recognition contest (HBR2013 dataset) has been used. Qualitative and numerical15

experiments are given in this study in order to provide a set of comprehensive guidelines on the16

strengths and the weaknesses of each assessed feature selection algorithm according to the used17

texture feature set.18

Keywords: benchmarking; texture; feature selection; pixel-labeling; ancient document images19

1. Introduction20

Providing reliable computer-based access and analysis of cultural heritage documents has been21

flagged as a very important need for the library and the information science community, spanning22

educationalists, students, practitioners, researchers in book history, computer scientists, historians,23

librarians, end-users and decision makers. More specifically, there is a consistent and clear need for24

robust and accurate document image analysis (DIA) methods that deal with the idiosyncrasies of25

historical document images [1,2]. Indeed, historical DIA remains an open issue due to the particularities26

Submitted to J. Imaging , pages 1 – 21 www.mdpi.com/journal/jimaging

http://www.mdpi.com/journal/jimaging
http://www.mdpi.com
https://orcid.org/0000-0002-4763-8584
http://www.mdpi.com/journal/jimaging


Version July 21, 2018 submitted to J. Imaging 2 of 21

of historical documents, such as the superimposition of information layers (e.g. stamps, handwritten27

notes, noise, back-to-front interference, page skew) and the variability of their contents and/or layouts.28

Moreover, analyzing historical document images and characterizing their layouts and contents under29

significant degradation levels and different noise types and with no a priori knowledge about the30

layout, content, typography, font styles, scanning resolution or DI size, etc. is not a straightforward31

task. Therefore, researchers specialized in historical DIA keep proposing novel reliable approaches32

and rigorous techniques for historical DIA, segmentation and characterization. Recently, there has33

been increasing interest in using deep architectures for solving various sub-fields and tasks related to34

the issues surrounding computer vision and pattern recognition and particularly document image35

analysis and handwritten text recognition. For instance, deep neural networks have developed for36

feature learning [24] and document layout and content analysis [4,5]. For instance, Chen et al. [5]37

proposed a pixel-labeling approach for handwritten historical document images segmentation based38

on using a convolutional neural network (CNN). Calvo-Zaragoza et al. [4] presented a CNN-based39

method for automatic document processing of music score images. Wei et al. [24] proposed a layout40

analysis method of historical document images using the sequential forward selection algorithm and41

the autoencoder technique as a deep neural network for feature selection and learning. Nevertheless,42

these methods based on deep architectures are hindered by many issues related to the computational43

cost in terms of memory consumption, processing time and computational complexity on the one44

hand, and the need for large datasets.45

In the literature, the methods used for DIA have been classified into two categories: texture46

and non-texture-based [13]. Kise [10] stated that the most relevant DIA methods used to analyze47

documents with unconstrained layouts and overlapping layers are based on texture features. It48

has been demonstrated that the text/graphic region separation task can be performed efficiently by49

using a texture-based method. On the other hand, the textual regions with different fonts can be50

segmented using texture features which are often used for text font characterization. A text font is51

mainly characterized by its weight, style, condensation, width, slant, italicization, ornamentation, and52

designer or foundry [20].53

However, using a texture-based method has quite high computational complexity since it often54

involves a large number of features. Indeed, two criteria can be identified when using a texture-based55

method: object to be analyzed (i.e. foreground or background) and primitive of analysis (i.e. pixels,56

superpixels, connected components, etc.). These two criteria entail large volumes of data to be processed57

when using a texture-based method. Moreover, the processing time of a texture-based method depends58

entirely on the image size and resolution due to the use of a primitive-based computation. However,59

there is awareness that maybe there are redundant and non-relevant indices when extracting and60

analyzing texture features which may reduce the performance of a texture-based algorithm. Feature61

selection meets this real need by selecting relevant features and by removing redundant ones in order62

to reduce the data dimensionality, to improve the quality of the feature set and to increase the algorithm63

performance, such as a texture-based pixel-labeling algorithm.64

Thus, in this paper a comparative study of two conventional feature selection algorithms, genetic65

algorithm (GA) and ReliefF algorithm (RA), is proposed in order to provide a set of comprehensive66

guidelines on the strengths and the weaknesses of each assessed feature selection algorithm according67

to the used texture feature set. The texture-based feature sets which have been compared and evaluated68

in this study have been derived from the Tamura, local binary patterns (LBP), gray-level run-length69

matrix (GLRLM), auto-correlation, gray-level co-occurrence matrix (GLCM), Gabor filters and three70

wavelet-based approaches: 3-level Haar wavelet transform (Haar), 3-level wavelet transform using71

3-tap Daubechies filter (Db3) and 3-level wavelet transform using 4-tap Daubechies filter (Db4).72
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In our comparative study, a public corpus of historical document images (called the HBR201373

dataset) which was provided by the pattern recognition and image analysis research lab (PRIma)1
74

has been used [1,2]. The HBR2013 dataset has been proposed in the context of the historical book75

recognition (HBR) contest held in conjunction with the ICDAR conference (2011 and 2013). The76

HBR2013 dataset is a subset of the IMPACT dataset2, representing key holdings of major European77

libraries and consisting of printed documents of various types (e.g. books, newspapers, journals, legal78

documents), in 25 languages from the 17th century to the early 20th century. It contains a large diversity79

of historical document contents (variety of layouts and contents). The HBR2013 dataset presents many80

particularities and challenges which motivates us to conduct our thorough study on it.81

The remainder of this article is organized as follows. Sections 2 and 3 review firstly the82

texture-based methods and feature selection algorithms proposed in the literature, respectively, with a83

particular focus on those related to historical DIA. A brief report of the different texture-based feature84

sets and feature selection algorithms evaluated in this study is also given. Section 4 describes the85

experimental protocol by firstly presenting the main phases of the proposed pixel-labeling scheme86

used for analyzing and comparing the performance of each texture feature set according to the use of a87

full texture feature set, the use of a subset of texture features selected by means of the GA, and the use88

of a subset of texture features selected by means of the RA (cf. Section 4.1). Secondly, the experimental89

corpus and the defined ground truth used in our experiments are detailed in 4.2. Then, qualitative90

results are given to demonstrate the performance of each texture-based feature set according to the91

use or not of a feature selection algorithm (cf. Section 4.4). Afterwards, we discuss quantitatively92

the obtained performance of the texture feature analysis experiments (cf. Section 4.4). Finally, our93

conclusions and future work are presented in Section 5.94

2. Texture features95

Recently, many DIA issues have been focused on using texture-based approaches for segmentation96

and classification tasks [13]. Indeed, the use of texture analysis techniques for historical document97

images has become an appropriate choice, since it has been shown that texture-based approaches98

work effectively with no a priori knowledge about the layout, content, typography, font and graphic99

styles, scanning resolution, document image size, etc. Moreover, the use of a texture-based approach100

has been shown to be effective with skewed and degraded images. Therefore, the interest in using a101

texture-based method for historical DIA is continuously increasing [12].102

In the literature, based on extracting and analyzing texture features a texture-based method has103

been usually used to partition the analyzed image into regions. The obtained regions have similar104

properties and characteristics with respect to the extracted texture features [3]. Thus, this study is105

based on the two following assumptions: text regions have different texture features from non-text106

ones and textual regions with different fonts are also distinguishable [13].107

Relatively a limited number of comparative studies address the problem of presenting quantitative108

comparisons of texture-based algorithms, although it is commonly agreed that texture analysis plays a109

fundamental role for DIA [6]. Visual or qualitative results of seven texture-based methods (run-lengths,110

multi-channel Gabor filters, texture co-occurrence spectrum, white tiles, texture masks, structured111

wavelet packet analysis and laws masks) have been reported in [13]. Mehri et al. [12] presented112

a benchmarking of the most classical and widely used texture-based feature sets which had been113

conducted using a classical texture-based pixel-labeling scheme on a corpus of historical document114

images. This comparative study has been carried out for selecting the most relevant texture feature set115

based on the best trade-off between the best performance and the lowest computation time.116

1 http://www.primaresearch.org
2 http://www.primaresearch.org/datasets
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Therefore, the texture-based features which are compared and evaluated in this article have been117

derived from the Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters and three wavelet-based118

approaches: Haar, Db3 and Db4.119

3. Feature selection algorithms120

Using a texture-based method often involves a large number of texture features in121

high-dimensional spaces to be analyzed. Indeed, each analyzed image will be described by a set122

of multi-dimensional texture-based feature vectors. This will induce greater computational cost and123

occupy a lot of storage space since a large and complex feature space has been generated. Moreover,124

it is worth noting that the smaller the dimension of the analyzed texture-based space, the easier it125

will be to deal with the specified task. Besides, if the number of dimensions becomes very large, this126

will make it more difficult to compute data similarity and perform data mining tasks. Indeed, the127

data similarity is sensitive to the number of dimensions (curse of dimensionality) since it is based on128

computing distance between vectors (i.e. the higher the number of dimensions, the higher the values129

of distance between vectors and the more difficult it will be to group data).130

Based on these findings, redundant or even irrelevant features may affect the learning process131

and consequently reduce the pixel classification accuracy in the case of our work. For instance, Journet132

et al. [9] extracted three auto-correlation features and two frequency descriptors by using a multi-scale133

analysis for classifying pixels into text, graphics and background in historical document images. Then,134

they proposed to reduce the dimension space of the extracted features using the principal component135

analysis technique. They demonstrated that only 78% of the extracted features are relevant. In order to136

classify pixels from historical document images into four classes (periphery, background, text block,137

and decoration), Wei et al. [23] used the convolutional auto-encoder features and concluded that more138

than 80% of the analyzed features are redundant or irrelevant.139

Therefore, a feature selection phase is often required to avoid these problems by selecting the140

most relevant features and remove redundant ones from the original large set of texture-based features141

[25]. Sequential forward selection, sequential backward selection, tabu search, genetic algorithm and142

ReliefF algorithm are the most well-known and widely used feature selection algorithms [26]. A143

feature selection algorithm is based on using a search technique to evaluate different proposals of144

feature subsets by means of an evaluation measure in order to determine the one that has the best145

performance [8].146

Figure 1 depicts the common key steps of a feature selection process. The general procedure for147

feature selection starts by creating a candidate feature subset for evaluation. Each candidate subset is148

evaluated by using an evaluation criterion to measure the quality of the selected features. The process149

of subset generation and evaluation is repeated until a predefined stopping criterion is satisfied. The150

feature selection process ends by outputting the selected subset of features to a validation procedure.151

Few researchers have addressed feature selection issues for historical DIA. For instance, Tao et al.152

[19] proposed a feature selection algorithm based on using the LBP operator and dimension reduction153

technique for Chinese character font categorization. A hybrid feature selection method was proposed154

by Wei et al. [22] for historical DIA. The proposed feature selection method was based on using an155

adapted greedy forward selection method and the genetic selection algorithm in a cascading way156

to select different kinds of features including color, gradient, and LBP. By comparing their method157

with four conventional feature selection methods (genetic selection, linear forward Selection, best158

first forward selection and best first backward selection), Wei et al. [22] concluded that their method159

selected significantly fewer features and provided lower error rates. They also concluded that the160

most discriminative features for layout analysis of documents of diverse nature are the LBP ones. In161

our paper, we have focused on the multi-scale texture analysis of historical document images using162

nine texture feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and163

Db4). However, Wei et al. [22] investigated three main sets of texture features (color, gradient and LBP164

features) without using a multi-scale analysis. They combined all these features in a 204-dimensional165
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Figure 1. Common key steps of a feature selection process.

feature vector. Furthermore, we have investigated separately the two feature selection algorithms166

(genetic and ReliefF algorithms) on each texture feature set. However, a cascading feature selection167

method (a cascade of an adapted forward selection and a genetic selection algorithms) was proposed168

in [22]. Besides, comparing to [22] we have used more images (60 images) during the training phase.169

To the best of our knowledge, there is no comparative study that has been carried out to investigate170

jointly the most well-known texture-based feature sets and widely used feature selection algorithms171

for historical DIA. Therefore, we propose in this article to evaluate the use of two conventional feature172

selection algorithms, genetic algorithm and ReliefF algorithm, in order to select an optimal subset of173

each texture-based feature set for pixel-labeling task in ancient document images.174

3.1. Genetic algorithm175

The genetic algorithm (GA) is a search heuristic that mimics the process of natural evolution. First,176

a population of chromosomes which encodes candidate solutions is created. A chromosome is a string177

of bits (1 and 0 indicate whether a feature is selected or not, respectively) whose size corresponds to the178

number of features. Then, the solutions are evolved by applying genetic operators such as crossover179

and mutation to find the best solution based on a predefined fitness function. Commonly, the GA180

terminates when either a maximum number of generations has been produced or a satisfactory fitness181

level has been reached for the population [7]. Algorithm 1 details the different parameters used in the182

GA. More details were given in [14] with a thorough description of the different parameters used in183

the GA.184

Figure 2 presents a flowchart summarizing the fundamental steps of the GA used in this study.
The GA starts by creating an initial population of randomly generated individuals using the following
formula:

P = round((L− 1)× rand(DF, 200× DF)) + 1 (1)

where L and DF represent the number of input features and the desired number of selected features,185

respectively. In the GA experiments, DF is set to L/2.186
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Algorithm 1 Basic genetic algorithm [7]
Input: Crossover probability (Pco)
Input: Mutation probability (Pmut)
Input: Population size (L-chromosomes- or classifier- by N-bits)
Input: Criteria function (Fit())
Input: Fitness threshold (θ)
Output: Set of highest fitness chromosomes (best classifier)

1: repeat
2: Determine the fitness of each chromosome: Fit(i), i = 1, . . . , L
3: Rank the chromosomes
4: repeat
5: Select two chromosomes with highest score
6: if Rand[0, 1] < Pco then
7: Crossover the pair at a randomly chosen bit
8: else
9: Change each bit with the probability Pmut

10: Remove the parent chromosomes
11: until N offspring have been created
12: until Any chromosome’s score Fit() exceeds θ

13: return Highest fitness chromosome (best classifier)

Figure 2. Flowchart of the GA.

In each generation, a proportion of the existing population is selected to breed a new generation.
Each selected individual solution is evaluated on the basis of its overall fitness. In the GA experiments,
a fitness function based on the principle of Minimum Redundancy Maximum Relevance (mRMR)
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is used [14]. The key idea of mRMR is to select the set S with m features {xi} that satisfies the
maximization problem:

max Φi(D, R); Φ(D, R) = D− R (2)

where D and R represent the max-relevance and min-redundancy, respectively. D and R are defined as187

follows:188

D =
1
|S| ∑

xi∈S
I(xi, y) (3)

R =
1
|S|2 ∑

xi ,xj∈S
I(xi, xj) (4)

where I(xi, y) and I(xi, xj) represent the mutual information, which is the quantity that measures the
mutual dependence of the two random variables and is calculated as follows:

I(x, y) = H(x) + H(y)− H(x, y) (5)

where H(.) is the entropy.189

3.2. ReliefF algorithm190

The ReliefF algorithm (RA) is one of the most famous feature weighting methods. It assigns a191

weight to each feature, and the features values over a particular threshold are selected. The key idea of192

the RA is to select features randomly, and then based on nearest neighbors the relevance of features193

according to how well their values distinguish among the instances of the same and different classes194

that are near to each other is estimated [17]. The bigger the weight value, the better the feature is.195

Algorithm 2 gives a more detailed description of the process of the RA method. More details were196

given in [18] with a thorough description of the key steps of the investigated RA.197

Algorithm 2 ReliefF algorithm [18]
Input: For each training instance:
Input: Vector of attribute values (Ai, i = 1, . . . , a)
Input: Class value (C)
Output: Vector W of the estimations of the qualities of attributes

1: Set all weights W[A] := 0.0
2: for i:=1 to m do
3: Randomly select an instance Ri
4: Find k nearest hits Hj
5: for each class C 6= class(Ri) do
6: From class C find k nearest misses Mj(C)
7: for A:=1 to a do

W[A] := W[A]−
k

∑
j=1

di f f (A, Ri, Hj)

m× k
+ ∑

C 6=class(Ri)

P(C)
1−P(class(Ri))

k
∑

j=1
di f f (A, Ri, Mj(C))

m× k

where m is a user-defined parameter. di f f (A, I1, I2) is a function that computes the difference between

the values of the attribute A for two instances I1 and I2. P(.) denotes the prior probability.
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4. Evaluation and results198

In this section, a brief description of the main phases of the pixel-labeling scheme used for199

analyzing and selecting texture features is presented. Then, qualitative results are given to demonstrate200

the performance of each texture-based feature set according to the use or not of a feature selection201

algorithm. Subsequently, the performance of each texture feature set according to the use of a full202

texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a203

subset of texture features selected by means of the RA is discussed after describing our experimental204

corpus and its associated ground truth, and presenting the used accuracy metrics for performance205

evaluation.206

4.1. Pixel-labeling scheme207

In order to investigate the importance of using a feature selection algorithm for historical DIA,208

a generic and standard framework that ensures a fair analysis and comparison of performance is209

required. The proposed framework is presented in this study as a pixel-labeling scheme based on210

analyzing and selecting texture features. It aims at analyzing and comparing of the performance of211

each texture feature set according to the use of a full texture feature set, the use of a subset of texture212

features selected by means of the GA, and the use of a subset of texture features selected by means of213

the RA.214

The main goal of the proposed pixel-labeling consists of structuring the texture feature space215

within a clustering technique in order to group pixels sharing similar characteristics. The proposed216

pixel-labeling scheme forms the basis of a classical layout analysis approach and cornerstone of217

different DIA tasks related to segmentation, analysis, classification and recognition of historical218

document images, etc. The pixel-labeling scheme used in our experiments to analyze and select texture219

features is illustrated in Figure 3.220

Figure 3. Pixel-labeling scheme based on analyzing and selecting texture features.
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First of all, each historical document image of our experimental corpus is fed as input of our221

proposed pixel-labeling scheme. Then, texture feature have been extracted only from the foreground222

pixels of gray-scale images without using any binarization step. By using analysis windows of varying223

sizes (i.e. a pixel-wise technique), the texture feature extraction step is performed in order to adopt a224

multi-resolution/multi-scale approach. By using a multi-scale approach, more reliable information225

can be obtained and region boundaries can be identified more accurately since textural characteristics226

can be perceived differently at varying scales. A border replication step is applied on each image in227

order to deal with foreground pixels located at image borders when computing texture features.228

Then, all extracted features have been used as input for both the GA and the RA individually.229

Two separate datasets, namely, the training dataset (60%) and the testing dataset (40%) that our230

experimental corpus comprises have been used separately in our experiments. A learning phase231

is introduced in the proposed pixel-labeling scheme that the most selected texture features will be232

identified according to the textural characteristics of a 60% of document images selected randomly233

from the HBR2013 dataset. For each document image in the training dataset, only 50% of all the features234

have been selected when performing separately the GA and the RA iterations. Afterwards, the subset235

of the most selected texture features used on evaluating the testing dataset is deduced based on the236

following heuristic: a texture feature would be counted among the subset of the most selected texture237

features by using a feature selection algorithm, if it was chosen by over half the images of the training238

dataset.239

Given the results of the most selected texture features from the training dataset, an unsupervised240

clustering step is afterwards performed based on analyzing the subset of the most selected texture241

features extracted from the foreground pixels of the testing dataset. The clustering step is performed242

by using the hierarchical ascendant classification (HAC) algorithm and by setting the number of243

homogeneous and similar content regions (k) equal to the one defined in the ground truth in order244

to avoid inconsistencies and bias in assessments caused by estimating automatically the number of245

homogeneous and similar content regions and subsequently to ensure an objective understanding of246

the behavior of the evaluated texture feature sets and feature selection algorithms. The HAC algorithm247

is performed on the computed texture features without taking into account the spatial coordinates.248

The HAC algorithm process consists of successively merging pairs of existing clusters where at each249

cluster grouping step, the choice of cluster pairs depends on the smallest distance (i.e. clusters are250

grouped if the intra-cluster inertia is minimal). This linkage between clusters is performed using the251

Ward criterion along with the weighted Euclidean distance [21].252

By using the HAC algorithm the obtained texture-based feature vector sets are partitioned into k253

compact and well-separated clusters in the multi-dimensional feature space, producing a pixel-labeled254

image as output. Since the used classifier process in the pixel-labeling scheme is unsupervised, the255

colors attributed to the different document image contents (text or graphics) may differ from one256

document image to another.257

4.2. Corpus and preparation of ground truth258

In our experiments, a public corpus of historical document images provided in the context of the259

HBR contest (HBR2013 dataset) has been used. The HBR2013 dataset contains 100 binary, gray-scale or260

color historical document images which were digitized at 150/300 dpi. Table 1 details the HBR2013261

dataset characteristics. Figure 4 illustrates samples of pages of the HBR2013 dataset.262

To analyze the performance of each texture-based feature set according to the use or not of263

a feature selection algorithm in the proposed pixel-labeling scheme, a pixel-based ground truth is264

required. For this purpose, the ground truthing environment for document images (GEDI)3 has been265

used in our experiments.266

3 http://gedigroundtruth.sourceforge.net/

http://gedigroundtruth.sourceforge.net/
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Table 1. Composition of the HBR2013 dataset.

Content Number
of pages

Number
of fonts

Graphics

Only one font (cf. Figure 4[a]) 3 1 No

Only two fonts (cf. Figure 4[b]) 17 2 No

Graphics and text with two different fonts (cf. Figure 4[c]) 9 2 Yes

Only three fonts (cf. Figure 4[d]) 20 3 No

Graphics and text with three different fonts (cf. Figure 4[e]) 6 3 Yes

Only four fonts (cf. Figure 4[f]) 11 4 No

Graphics and text with four different fonts (cf. Figure 4[g]) 15 4 Yes

Only five fonts (cf. Figure 4[h]) 5 5 No

Graphics and text with five different fonts (cf. Figure 4[i]) 14 5 Yes

Our ground truth has been manually outlined by labeling spatial boundaries of regions annotating267

the textual and graphical contents. Figure 5 illustrates few examples of the defined ground truth.268

Different labels for regions with different fonts have been also annotated for evaluating the performance269

of texture feature to separate various text fonts. Then, to provide a pixel-accurate representation of the270

analyzed images of the HBR2013 dataset, each selected foreground pixel is annotated according to the271

label of the region to which it belongs.272

Analyzing the nine sets of texture descriptors and two feature selection algorithms using the273

HBR2013 dataset gives a total of 1800 analyzed images (100 images × 9 different texture-based274

approaches × 2 different feature selection algorithms).275

4.3. Qualitative results276

A visual comparison of the resulting images of historical document examples of the training and277

testing datasets of the HBR2013 dataset using the proposed pixel-labeling scheme is discussed in this278

section.279

Figure 6 depicts the resulting images of a historical document example of the “Three fonts and280

graphics” category of the training dataset of the HBR2013 dataset, while Figure 7 illustrates the resulting281

images of a historical document example of the “Three fonts and graphics” category of the testing282

dataset of the HBR2013 dataset. The number of class labels in the resulting images is equal to 4. Since283

the pixel-labeling task is unsupervised, the colors attributed to text or graphics may differ from one284

document to another.285

From the series of the resulting images given in the two Figures 6 and 7, we see that the obtained286

results are slightly astounding. For instance, the best pixel-labeling results are given by analyzing287

the selected Gabor features by means of the GA when the analyzed document belongs to the training288

dataset (i.e. graphical regions in blue color are more homogeneous), which is not the case when289

the analyzed document belongs to the testing dataset (cf. Figure 6[s]). This can be justified by the290

particularities of the HBR2013 dataset (strong heterogeneity, with differences in layout, typography,291

illustration style, complex layouts and historical spelling variants, etc.) since it consists of printed292

documents of various types (e.g. books, newspapers, journals, legal documents). It represents a wide293

variety of layouts that reflect several particularities of historical document images. This points out that294

applying a global selection on the HBR2013 dataset is not quite relevant that it is necessary to train on295

documents having similar characteristics in terms of the layout structure and/or typographic/graphical296

properties of the historical document image content. The quality of the pixel-labeling task will be more297

convincing if we use a feature selection algorithm on documents having some similarities of document298
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[a] [b] [c] [d]

[e] [f] [g] [h]

[i]

Figure 4. Historical document image examples of the HBR2013 dataset. Figures 4[a], 4[b], 4[c], 4[d],
4[e], 4[f], 4[g], 4[h], and 4[i] illustrate examples of historical document images of the HBR2013 dataset
containing only two fonts, two fonts and graphics, only three fonts, three fonts and graphics, only four
fonts, four fonts and graphics, only five fonts and five fonts and graphics, respectively.

content type (some similarities of document content type can be deduced from many book pages since299

a document content type can be repeated on many pages of the same book).300

By comparing the visual results of a document belonging to the testing dataset, we note a drop in301

performance in terms of homogeneity when the analyzed features are given by selecting the LBP and302

Gabor features by means of the GA (cf. Figures 7[g] and 7[s]) and by means of the RA (cf. Figures 7[h]303

and 7[t]). In Figure 7[s], we show that some foreground pixels characterizing a textual content (cyan)304

has been labeled as graphical one (green and blue), while in Figure 7[t] we see that some foreground305

pixels characterizing a graphical content (red, green, and blue) has been labeled as textual one (cyan).306

We also show that the results have significantly improved when using in the proposed307

pixel-labeling scheme the Tamura features selected using the RA on documents of the training and308

testing datasets (cf. Figures 6[e] and 7[e]). We observe that when using the selected GLRLM features309

by means of the GA and RA algorithms on a document of the testing dataset, the pixel-labeling310

quality has improved considerably (cf. Figures 7[j] and 7[k]), unlike when using the selected311

auto-correlation features (cf. Figures 7[m] and 7[n]). The pixel-labeling results given by analyzing the312
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[a] [b] [c]

[d] [e] [f]

Figure 5. Example of the defined ground truth and obtained pixel-labeling result. Figures 5[a] and 5[b]
illustrate an original historical document image and its associated ground truth, respectively. Figure
5[c] shows the final result of the pixel-labeling task by analyzing the Gabor features. Figures 5[d], 5[e],
and 5[f] illustrate zoomed regions of Figures 5[a], 5[b], and 5[c], respectively.

full auto-correlation feature set (cf. Figure 7[l]) on the proposed pixel-labeling scheme on a document313

of the testing dataset are relatively similar to those based on selecting auto-correlation features by314

means of a feature selection algorithm (cf. Figures 7[m] and 7[n]).315

We see that the Gabor and Db4 features give the best results in terms of the homogeneity of the316

textual region content when using in the proposed pixel-labeling scheme the full texture feature set (cf.317

Figures 7[r] and 7[aa]) and the texture features selected using the RA (cf. Figures 7[t] and 7[ac]) on318

a historical document example of the testing dataset. We also note that in the case of using the full319

Gabor and Db4 feature sets, the Gabor and Db4 features selected using the RA, the textual regions320

with different sizes and fonts have not been separated properly and particularly when the documents321

also contain graphics (more than one cluster is assigned for graphical regions by discriminating many322

orientations that are present to different extents in graphical regions). This confirms that the Gabor323

and Db4 features characterize specifically the main orientation of a texture. A suitable alternative is to324

use a recursive clustering method in order to ensure the distinction between distinct text fonts and325

various graphic types when the documents under consideration are complex and contain graphics and326

various kinds of fonts.327

4.4. Benchmarking and performance evaluation328

The dimensionality and performance evaluation of each texture-based feature set in the following329

three cases: with full texture feature set, with texture features selected using the GA, and with texture330

features selected using the RA, using the proposed pixel-labeling scheme on the HBR2013 dataset are331

presented in Table 2.332

The Gabor and GLRLM signatures have the largest dimensions equal to 192 and 176, respectively,
while the Tamura and auto-correlation signatures have the smallest dimensions equal to 16 and 20,
respectively. By applying the GA and RA on a document of the training dataset, the number of features
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has been reduced by half. We note that the number of features has been significantly reduced. The
reduction ratio (RD) is computed using the following equation:

RD = 1−
N′f
Nf

(6)

where Nf and N′f note the total number of features and the final number of features after reduction,333

respectively.334

The RD of Tamura, LBP, GLRLM, auto-correlation, GLCM, Gabor filters, Haar, Db3 and Db4335

are: 50%, 57%, 46%, 50%, 58%, 53%, 42%, 47% and 43%, respectively when using the GA, and 56%,336

50%, 49%, 50%, 50%, 48%, 50%, 45% and 52%, respectively when using the RA on a document of the337

testing dataset. As a consequence, we conclude that using a feature selection algorithm helps to reduce338

the dimensionality of the data, which entails lower computational cost in terms of lighter memory339

consumption, processing time and numerical complexity.340

It is inherently a subjective evaluation to use a visual inspection of the pixel-labeling results of a341

texture-based method to draw some conclusions about which set of texture features deduced by using342

a feature selection algorithm is well suited for historical DIA. Thus, in this study several per-pixel343

and per-block accuracy metrics, namely, the silhouette width (SW) [16], purity per-block (PPB) [11],344

and F-measure (F) [15], have been computed based on the defined pixel-accurate ground truth of the345

analyzed images of the HBR2013 dataset.346

The silhouette width (SW) assesses the pixel-labeling quality by computing the level of data347

compactness and separation based on the intrinsic information concerning the distribution of the348

observations into different clusters. The purity per-block (PPB) measures the homogeneity rate of349

regions by evaluating the matching regions between the defined pixel-based ground truth and the350

obtained pixel-labeling results. The F-measure (F) assesses both the homogeneity and the completeness351

criteria of the pixel-labeling results by computing a score resulting from the combination of the precision352

and recall accuracies. SW, PPB, and F are computed. The higher the values of the computed metrics,353

the better the results. In Table 2, we have used three different colors (red, green, and blue), to quote the354

highest SW, PPB, and F values deduced by comparing the performances of each accuracy measure for355

each texture-based feature set in the following three cases: with full texture feature set, with texture356

features selected using the GA, and with texture features selected using the RA.357

Good performance has been noted for documents of the training dataset when analyzing the358

selected texture features by means of the GA and particularly the Gabor features. However, there is no359

significant improvement in performance for documents of the testing dataset due to the complexity360

and the wide variety of layouts of the HBR2013 dataset. This confirms our observation about the361

need to train on documents having similar characteristics in terms of the layout structure and/or362

typographic/graphical properties of the historical document image content.363

To highlight the similarities of the behavior of the different evaluated texture features according to364

the use of a full texture feature set, the use of a subset of texture features selected by means of the GA,365

and the use of a subset of texture features selected by means of the RA, the correlation analyses of the366

F-measure performance of each texture-based feature set are illustrated in Figures 8[a], 8[b], and 8[c],367

respectively. Each figure represents a matrix of plots showing the different Pearson’s linear correlations368

among pairs of the nine texture-based feature sets (Tamura, LBP, GLRLM, auto-correlation, GLCM,369

Gabor, Haar, Db3 and Db4). Histograms of the nine evaluated texture-based feature sets appear along370

the matrix diagonal, while scatter plots of the texture-based feature set pairs appear in the off-diagonal.371

Each dot in each correlation plot represents one historical document image of the testing dataset of the372

HBR2013 dataset. The displayed Pearson’s linear correlation coefficients in the scatter plots highlighted373

indicate which pairs of texture-based feature sets have correlations significantly different from zero374

(equal to the slopes of the least-squares reference lines in red).375

Table 3 summarizes the minimum, average, and maximum Pearson’s linear correlation coefficient376

values of the F-measure performance of pairs of texture-based feature sets according to the use of a full377
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texture feature set, the use of a subset of texture features selected by means of the GA, and the use of a378

subset of texture features selected by means of the RA.379

By comparing the different correlation plots and obtained Pearson’s linear correlation coefficients380

when using the full texture feature set, the subset of texture features selected by means of the GA, and381

the subset of texture features selected by means of the RA, we observe that the Gabor and the three382

wavelet-based approaches are still highly correlated even if a feature selection algorithm is introduced.383

This confirms that by using a feature selection algorithm in the Gabor and wavelet approaches only a384

small subset of relevant features from the original large set of features characterizing the localization385

of the spatial frequency of a texture have been selected. Nevertheless, we observe higher correlation386

coefficient values between the Tamura and other investigated features on the one hand and between387

the LBP and other investigated features on the other hand when selecting features by means of the388

GA and the RA. This confirms that by using a feature selection algorithm a significant number of389

texture features which are redundant or irrelevant have been removed. An interesting conclusion390

that can be deduced from the correlation plots in Figure 8, is that combining the different selected391

texture feature sets can significantly improve the pixel-labeling quality. Indeed, each feature set has its392

own particularities. For instance, since Gabor filters is known to be sensitive to the stroke width, they393

have the advantage to present the best performance in discriminating text in a variety of situations394

of different fonts and scales. On the other side, the auto-correlation feature set has the advantage395

to present the best performance for segmenting the graphical contents from textual ones since it396

highlights interesting information concerning the principal orientations and periodicities of texture397

[12]. Therefore, combining the different selected texture features from the auto-correlation and Gabor398

descriptors can be more adequate for segmenting the graphical contents from textual ones on the one399

hand, and discriminating text in a variety of situations of different fonts and scales on the other hand.400
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Table 2. Dimensionality and performance evaluation of each texture-based feature set for documents
of the training and testing datasets in the following three cases: with full texture feature set, with
texture features selected using the genetic algorithm (GA), and with texture features selected using
the ReliefF algorithm (RA), using the proposed pixel-labeling scheme on the HBR2013 dataset. Internal
and external accuracy measures are computed, silhouette width (SW), purity per-block (PPB) and
F-measure (F). Nf and N′f note the total number of features and the final number of features after
reduction, respectively. The higher the values of the internal and external accuracy measures, the
better the pixel-labeling performances. For each table (i.e. the training and testing datasets), the values
which are quoted in red, green, and blue colors, are considered as the highest SW, PPB, and F values,
respectively by comparing the performances of each accuracy measure for each texture-based feature
set in the following three cases: with full texture feature set, with texture features selected using the
GA, and with texture features selected using the RA.

Training dataset

Tamura LBP GLRLM Auto-correlation GLCM Gabor Haar Db3 Db4

Full
texture

feature set

SW 0.35 0.21 0.13 0.07 0.21 0.26 0.26 0.31 0.28

PPB 0.71 0.78 0.79 0.73 0.84 0.90 0.80 0.79 0.81

F 0.38 0.38 0.35 0.43 0.42 0.52 0.45 0.46 0.46

Nf 16 40 176 20 72 192 80 80 80

Texture
features
selected

using the
GA

SW 0.40 0.04 0.14 0.12 0.20 0.29 0.29 0.28 0.31

PPB 0.73 0.72 0.82 0.80 0.87 0.92 0.83 0.83 0.84

F 0.39 0.36 0.35 0.42 0.42 0.54 0.45 0.45 0.46

N′f 8 20 88 10 36 96 40 40 40

Texture
features
selected

using the
RA

SW 0.30 0.07 0.14 0.11 0.26 0.26 0.24 0.29 0.28

PPB 0.73 0.74 0.77 0.77 0.85 0.88 0.81 0.83 0.83

F 0.40 0.38 0.34 0.42 0.42 0.49 0.43 0.43 0.44

N′f 8 20 88 10 36 96 40 40 40

Testing dataset

Tamura LBP GLRLM Auto-correlation GLCM Gabor Haar Db3 Db4

Full
texture

feature set

SW 0.38 0.33 0.35 0.17 0.30 0.28 0.30 0.34 0.30

PPB 0.77 0.83 0.82 0.81 0.86 0.91 0.83 0.83 0.84

F 0.40 0.39 0.37 0.43 0.43 0.52 0.44 0.45 0.46

Nf 16 40 176 20 72 192 80 80 80

Texture
features
selected

using the
GA

SW 0.42 0.01 0.42 0.24 0.35 0.33 0.29 0.33 0.36

PPB 0.76 0.72 0.85 0.85 0.85 0.91 0.86 0.85 0.85

F 0.40 0.37 0.37 0.43 0.41 0.51 0.43 0.42 0.43

N′f 8 17 95 10 30 90 46 42 45

Texture
features
selected

using the
RA

SW 0.35 0.15 0.39 0.22 0.36 0.28 0.31 0.34 0.37

PPB 0.79 0.76 0.81 0.80 0.87 0.89 0.85 0.85 0.86

F 0.41 0.38 0.36 0.42 0.43 0.49 0.42 0.42 0.42

N′f 7 20 89 10 36 98 40 44 38
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[a] Input [b] Ground truth

[c] Tamura [d] Tamura + GA [e] Tamura + RA [f] LBP [g] LBP + GA [h] LBP + RA

[i] GLRLM [j] GLRLM + GA [k] GLRLM + RA [l] Auto-correlation [m] Auto-correlation + GA [n] Auto-correlation + RA

[o] Co-occurrence [p] Co-occurrence + GA [q] Co-occurrence + RA [r] Gabor [s] Gabor + GA [t] Gabor + RA

[u] Haar [v] Haar + GA [w] Haar + RA [x] Db3 [y] Db3 + GA [z] Db3 + RA

[aa] Db4 [ab] Db4 + GA [ac] Db4 + RA

Figure 6. Resulting pixel-labeling images without and with using a feature selection algorithm on a
historical document image of the “Three fonts and graphics” category from the training dataset of the
HBR2013 dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised,
the colors attributed to text or graphics may differ from one document to another. Figures 6[a] and 6[b]
illustrate the input image and its associated ground truth, respectively. The remaining figures depict
the resulting pixel-labeling images.
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[a] Input [b] Ground truth

[c] Tamura [d] Tamura + GA [e] Tamura + RA [f] LBP [g] LBP + GA [h] LBP + RA

[i] GLRLM [j] GLRLM + GA [k] GLRLM + RA [l] Auto-correlation [m] Auto-correlation + GA [n] Auto-correlation + RA

[o] Co-occurrence [p] Co-occurrence + GA [q] Co-occurrence + RA [r] Gabor [s] Gabor + GA [t] Gabor + RA

[u] Haar [v] Haar + GA [w] Haar + RA [x] Db3 [y] Db3 + GA [z] Db3 + RA

[aa] Db4 [ab] Db4 + GA [ac] Db4 + RA

Figure 7. Resulting pixel-labeling images without and with using a feature selection algorithm on a
historical document image of the “Three fonts and graphics” category from the testing dataset of the
HBR2013 dataset. The number of class labels is equal to 4. Since the pixel-labeling task is unsupervised,
the colors attributed to text or graphics may differ from one document to another. Figures 7[a] and 7[b]
illustrate the input image and its associated ground truth, respectively. The remaining figures depict
the resulting pixel-labeling images.
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[a] Full texture feature set

[b] Texture features selected using the GA

[c] Texture features selected using the RA

Figure 8. Correlation analysis of the F-measure performance of each texture-based feature set according
to the use of a full texture feature set (cf. Figure 8[a]), the use of a subset of texture features selected by
means of the GA (cf. Figure 8[b]), and the use of a subset of texture features selected by means of the
RA (cf. Figure 8[c]).
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Table 3. Minimum, average, and maximum Pearson’s linear correlation coefficient values of the
F-measure performance of pairs of texture-based feature sets according to the use of a full texture
feature set, the use of a subset of texture features selected by means of the GA, and the use of a subset
of texture features selected by means of the RA.

Full texture feature set Texture features selected using the GA Texture features selected using the RA

Features Minimum Average Maximum Minimum Average Maximum Minimum Average Maximum

Tamura
0.50
(Gabor) 0.58

0.63
(GLCM)

0.47
(Gabor) 0.75

0.87
(LBP)

0.58
(Gabor) 0.78

0.87
(Haar)

LBP
0.61
(GLCM) 0.67

0.72
(GLRLM)

0.41
(Gabor) 0.74

0.88
(GLCM)

0.51
(Gabor) 0.75

0.86
(GLRLM)

GLRLM
0.61
(Tamura) 0.73

0.86
(Haar)

0.47
(Gabor) 0.74

0.83
(Tamura)

0.62
(Gabor) 0.78

0.86
(LBP)

Auto-correlation
0.60
(GLCM) 0.68

0.76
(Haar)

0.49
(Gabor) 0.69

0.75
(Db3)

0.58
(Gabor) 0.74

0.83
(Tamura)

GLCM
0.60
(Auto) 0.7

0.82
(Haar)

0.53
(Gabor) 0.72

0.88
(LBP)

0.63
(Gabor) 0.78

0.83
(LBP)

Gabor
0.50
(Tamura) 0.67

0.77
(Db3)

0.41
(LBP) 0.49

0.56
(Db3)

0.51
(LBP) 0.59

0.63
(GLCM)

Haar
0.58
(Tamura) 0.78

0.93
(Db4)

0.50
(Gabor) 0.75

0.88
(Db4)

0.62
(Gabor) 0.81

0.93
(Db4)

Db3
0.59
(Tamura) 0.78

0.92
(Db4)

0.56
(Gabor) 0.77

0.93
(Db4)

0.61
(Gabor) 0.79

0.94
(Db4)

Db4
0.53
(Tamura) 0.76

0.93
(Haar)

0.53
(Gabor) 0.76

0.93
(Db3)

0.63
(Gabor) 0.8

0.94
(Db3)

5. Conclusions and further work401

This paper has presented a comparative study of using two conventional feature selection402

algorithms for selecting a number of commonly and widely used texture features. This comparative403

study has been conducted on the HBR2013 dataset, using a classical pixel-labeling scheme based on404

analyzing and selecting features. The proposed pixel-labeling scheme integrates a feature selection405

step, which has been applied on a training set of the HBR2013 dataset in order to select the most relevant406

texture features of each analyzed texture-based feature set.407

We conclude that the performance of a particular feature selection algorithm is highly dependent408

upon the used texture features. It is admittedly that the proposed pixel-labeling scheme selects409

fewer texture features with comparable performance. This study has shown that when the numerical410

complexity and pixel-labeling quality are taken into account, good performance has been noted for411

documents of the training dataset when analyzing the selected texture features by means of the genetic412

algorithm and particularly the Gabor features. These results could be explained by the fact that using413

the genetic operators (such as the crossover and mutation operators) in the GA, guarantee a high414

diversity of the succeeding populations, and thus more immune to be trapped in a local optima and415

faster in reaching the global optima. Moreover, the Gabor features perform better than the other416

features, since they characterize specifically the orientation and spatial frequency of a texture without417

taking into account the spatial relationships between pixels as concluded in [12].418

However, it is not the case for documents of the testing dataset; there is no significant improvement419

in performance due to the complexity and the wide variety of contents and layouts of the HBR2013420

dataset. Indeed, it is worth noting that there is awareness that we need a larger database containing421

documents having similar characteristics in terms of the layout structure and/or typographic/graphical422

properties of the historical document image content in order to train the different feature selection423

algorithms. Thus, conducting this study on a larger public annotated dataset of historical books such424
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as the HBA dataset4 is among the first aspect of our future work. Finally, we intend to extend our425

investigation to recent feature selection algorithms.426
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Abbreviations435

The following abbreviations are used in this manuscript:436

437

Db3 3-level wavelet transform using 3-tap Daubechies filter
Db4 3-level wavelet transform using 4-tap Daubechies filter
DIA Document image analysis
F F-measure
GA Genetic algorithm
GLCM Gray-level co-occurrence matrix
GLRLM Gray-level run-length matrix
Haar 3-level Haar wavelet transform
HAC Hierarchical ascendant classification
HBR Historical book recognition
LBP Local binary patterns
RA ReliefF algorithm
SW Silhouette width
PPB Purity per-block
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