Hans-Christian Herbig

PIVOTAL CONDENSATION AND CHEMICAL BALANCING

Keywords: 1991 Mathematics Subject Classification. Primary 15A06; Secondary 11D04, 80A32 Chemical balancing, homogeneous linear systems, pivotal condensation, systems of linear Diophantine equations, matrix inversion, four subspaces. 1

ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

While teaching the basic linear algebra course to chemical engineering students I noticed that for chemical balancing (see, e.g., [START_REF] Fink | Physical chemistry in depth[END_REF][START_REF] Maria | Why Not Stoichiometry" versus "Stoichiometry-Why Not?" part i: General context[END_REF] and references therein) the naive methods, in particular balancing by inspection (see [START_REF] Fink | Physical chemistry in depth[END_REF]Subsection 13.2]), acquired in the chemistry classes are for all practical purposes way more efficient than applying Gaussian elimination to the corresponding homogeneous linear system. For complicated reactions the naive methods can become cumbersome and require skill. The question arose if there is a universal method that is relatively quick and safe for a human computer. I am presenting such a method that works over the integers. It is inspired by the pivotal condensation of Felice Chiò [START_REF] Chiò | Mémoire sur les fonctions connues sous le nom de résultantes ou de déterminants[END_REF] for calculating determinants of square matrices.

In chemical balancing it sometimes makes sense to balance chemical reactions that depend on a parameter, say x. This is for example the case if one has families of compounds. In this situation one has to do linear algebra over the gcd domain R = Z[x], which is not even a principal ideal domain (PID). The suggested algorithms for the kernel of a matrix are elaborated for the case when R is a gcd domain (e.g. a PID). Readers unfamiliar with abstract algebra can assume that the base ring is R = Z with quotient field Q = Q. I emphasize that the pivotal condensation provides a basis for the kernel of a matrix with entries in R that has coefficients in R seen as a vector space over the quotient field Q. But if the dimension of the kernel is > 1 it may happen that the basis is not a basis of the kernel seen as a free R-module. This subtlety is typically swept under the rug in the literature on chemical balancing and for the convenience of the reader I spell out in the more mathematical Section 10 how this this can be handled in practical terms when R is a PID. The only other work that I am aware of that views the chemical balancing problem as a system of linear Diophantine equations is [START_REF] Papp | Effective solution of linear Diophantine equation systems with an application in chemistry[END_REF]. Their empirical analysis relies on computer implementations of certain algorithms. However, I am trying here to convince the reader that all practically relevant examples can be elaborated by a patient human on a sheet of paper.

The plan of the paper is as follows. In Section 2 I review the ideas of pivotal condensation. In Subsection 3 I recall the pivotal condensation method to calculate the determinant |A| of a square matrix A ∈ R n×n . In Subsection 4 I propose a variation of pivotal condensation that allows to re-purpose parts the findings of 3 to determine a basis for the kernel of the transposed matrix A T in case A turns out to be singular. For non-square matrices A T I simplify the scheme notationally and calculate merely ker (A). In Subsection 5 I propose consistency checks that can be utilized to localize computational errors. With this preparation we are ready to turn in Section 6 to chemical balancing and work out some examples. In Section 7 I formulate the balancing by inspection method in mathematical language. In Section 8 I show how to solve inhomogeneous systems, invert matrices and determine the four subspaces using pivotal condensation. In the Section 9 I give a formal justification of the pivotal condensation scheme of Subsection 4. In Section 10 I review how R-module bases can be calculated by hand. This includes a discussion of the saturation of an R-module, a practical guideline to Smith normal form and a quick method to post-process the result of the pivotal condensation the obtain an R-module basis for the kernel.

The practitioners among the readership may focus on Sections 5, 6 and, possibly, 8 and ignore the rest of the paper. To do kernel pivotal condensation (ker pc) and, for example, matrix inversion with ker pc, by hand requires only the knowledge of arithmetic acquired in 5th grade and some patience. One does not need to use the calculus of fractions. To have a completely satisfactory answer the results of ker pc have sometimes to be post-processed by a Smith normal form calculation (see Subsection 10.3). This requires division with remainder. I give a detailed account of the example calculations for those readers with a moderate mathematical background who just want to learn the method.

Acknowledgements. I would like thank the undergraduate crowd at the Escola de Química da UFRJ for helping me to think about the matter, mostly by not paying attention to what I said. The paper is an attempt towards a more just and equitable chemistry. Let us bring the wonders of stoichiometry even to the remotest places of the Amazon rain forest without polluting them with consumer electronics. Those who have seen the movie The Great Race know that 'Push the button, Max!' is an elitist and dangerous attitude. I would like to thank Benjamin Briggs for pointing out to me the notion of saturatedness. The whole project was triggered by a chat [Gro] that I had with Ben Grossman on stackexchange.com. Thanks to Daniel Herden and Chris Seaton for saving me from embarrassments and Ihsen Yengui for a clarification.

Pivotal condensation

Chiò's pivotal condensation (pc) is based on the following determinantal identity (for some historical account of the subject see [START_REF] Abeles | Chiò's and Dodgson's determinantal identities[END_REF]).

A = A 11 A 12 A 21 A 22 = A 11 0 A 21 1 1 A -1 11 A 12 0 A 22 -A 21 A -1 11 A 12
.

Here

n = k + l, A 11 ∈ R k×k is assumed to be invertible, A 12 ∈ R k×l , A 21 ∈ R l×k and A 22 ∈ R l×l . Taking de- terminants we deduce |A| = |A 11 | A 22 -A 21 A -1 11 A 12 . For k = 1 this means |A| = A -n+2 11 |A 11 A 22 -A 21 A 12 | since A 11 is central, proving (2.1).

Determinant

The pc for evaluating determinants, referred to as Chiò's pc, consists of repeated applications of the following loop in order to reduce the size of the determinant.

Step 1 (preparation). If a 11 = 0 search for an i with a i1 = 0. Switch the ith row and the 1st row and keep track of the sign. If a i1 = 0 for all i = 1, . . . , n then stop; in fact, |A| = 0.

Step 2 (pc). Apply formula (2.1) to write |A| as a scalar multiple of a (n -1) × (n -1)-determinant |A |.

Step 3 (cleaning up). Pull out of the determinant |A | common factors of rows or columns (step 3 is not compulsory).

Continue the process recursively with the (n -1) × (n -1)-determinant etc., i.e., apply repeatedly Steps 1,2,3, until obtaining a 2 × 2-determinant, which in turn is to be evaluated. For clarity I put in Step 1 a box around the pivot a i1 .

Example 3.1. To give an example, let us calculate the area A of the triangle with the sides 2, 3, 4 using the Cayley-Menger determinant (see, e.g., [START_REF] Fiedler | Matrices and graphs in geometry[END_REF]

Appendix A.1]) 0 1 1 1 1 0 2 2 3 3 1 2 2 0 4 2 1 3 2 4 2 0 Step 1 = - 1 9 16 0 1 0 4 9 1 4 0 16 0 1 1 1 Step 2 = - 1 1 4-2 -9 -12 9 -5 -16 16 1 1 1 Step 3 = -3 -3 -4 3 -5 -16 16 1 1 1 Step 2 = - 3 (-3) 3-2 28 -33 1 -6 Step 3 = 3 28 -11 1 -2 = 3(-45) = -135 = -(2!) 2 2 2 A 2 .
Here the ring R can be taken to be the integers Z. We conclude that A = √ 135/4.

The scheme provides a compact and safe means to evaluate determinants by hand. Typically the symmetry of the matrix can be preserved in the process, cutting the workload almost in half. It combines excellently with Cramer's rule as most of the minors that appear in the denominator show up in the numerator as well.

Kernel

When one is confronted with a quadratic matrix A ∈ R n×n it is oftentimes unclear if it is regular or singular. In the latter case one is possibly expected to work out the kernel ker Q (A) as well. Throughout the paper we use the notation

ker R (A) = { v ∈ R n | A v = 0}, im R (A) = {A v ∈ R n | v ∈ R m } = AR n , ker Q (A) = { v ∈ Q n | A v = 0} Q ⊗ R ker R (A), im Q (A) = {A v ∈ Q n | v ∈ Q m } = AQ n .
I present here a version of the pc, referred to as the detker pc, that allows to re-purpose findings of Chiò's pc for |A T | to determine the kernel ker Q (A) in case the matrix A turns out to be singular.

At the start of the (l + 1)st condensation, l = 0, 1, . . . , rank(A) -2, one has the pattern

∆ l |X l |Y l ,
where ∆ l ∈ Q, X l ∈ R (n-l)×(n-l) and Y l ∈ R (n-l)×n . Here ∆ l is the product of all the prefactors occuring in the previous steps of the pc, i.e., the signs arising from switching rows, the fractions from Equation (2.1), and the common factors pulled out from rows of the matrix. The matrix X l is the one arising at Chiò's lth condensation. The matrix Y l is capturing the relevant information of the elementary row operations that are involved. At the start of the recursion we put ∆ 0 = 1, X 0 := A T and Y 0 := 1 n . At the (l + 1)st condensation the procedure consists of the following.

Step 1 (preparation). If X l = 0 then stop; rank(A T) = l and ker Q (A T) = Y T l R n-l . Let k l+1 + 1 be the smallest column index of a nonzero column in X l . This means that the first k l+1 columns of X are zero. Pick a row index i with x ik l+1 = 0 and replace ∆ l → ∆ l = (-1) |σ| ∆ l , X l → X l , Y l → Y l where X l and Y l are obtained from X l and Y l , respectively, by applying a row permutation σ to move the ith row to the first row. The resulting pattern is ∆ l |X l |Y l . For clarity I put a box around the pivot x ik l+1 .

Step 2 (pc). The matrix Z l := [X l |Y l] is obtained from Z l := [X l |Y l] as follows. The entry of Z l ∈ R (n-l-k l -1)×(2n-l-1) at the rth row and sth column is

z 1 k l+1 +1 z 1 k l+1 +s z r+1 k l+1 +1 z r+1 k l+1 +s , (4.1)
where

Z l =: [z ij] i=1,...,n-l j=1,...,2n-l . The resulting pattern is ∆ l |X l |Y l with ∆ l := ∆ l z -m+l+1 1 k l+1 +1 .
Step 3 (cleaning up). 1 Let L i be the ith row of Z l := [X l |Y l] and c i be the gcd of the entries of L i if L i is nonzero and put c i = 1 otherwise. Note that for a general integral domain R the existence of the gcd is not guaranteed. If R is a PID it can be calculated using Euclid's algorithm. Let Z l+1 := [X l+1 |Y l+1] be the matrix whose rows are L i /c i and put ∆ l+1 := ∆ l i c i . The resulting pattern is ∆ l+1 |X l+1 |Y l+1 , completing the (l + 1)th condensation.

If X n ∈ R is nonzero the determinant is |A| = ∆ n |X n | and ker Q (A T) is trivial. In practical terms it seems reasonable to work out the ∆ l |X l |'s first and leave some blank space to fill in the Y l 's later in case the matrix turns out to be singular.

Example 4.1. Let R = Z and consider the following pc 1 2 3 4 1 0 0 0 5 6 7 8 0 1 0 0 9 10 11 12 0 0 1 0 1 13 14 15 16 0 0 0 1 → -4 -8 -12 -5 1 0 0 -8 -16 -24 -9 0 1 0 1 -12 -24 -36 -13 0 0 1

→ 0 0 -4 8 -4 0 -1/4 0 0 -8 12 0 -4 → 0 0 -1 2 -1 0 -1/4 0 0 -2 3 0 -1 . It shows that ker Q        
1 5 9 13 2 6 10 14 3 7 11 15 4 8 12 16

        = Q     -1 2 -1 0     ⊕ Q     -2 3 0 -1    
, which by accident coincides with the kernel of the transposed matrix. As the gcd ∆ 2 of the 2 × 2-minors of

    -1 -2 2 3 -1 0 0 -1    
is a unit in Z the above generators also form a basis of the Z-module ker Z (A) (see Theorem 10.9).

Example 4.2. Let R be the ring of convergent power series C{z} in the variable z. The following pc 1 cos(z) cos(2z) 1 0 0 cos(z) 1 cos(z) 0 1 0 1 cos(2z) cos(z) 1 0 0 1 If the matrix A T ∈ R n×m is not quadratic I suggest to apply the same procedure to calculate ker Q (A) while not annotating ∆ l and the first |. The scheme is referred to as the ker pc. The input of the (l + 1)th condensation, l = 0, 1, . . . , rank(A) -2, one is the pattern

→ sin 2 (z) cos(z)(1 -cos(2z)) -cos(z) 1 0 0 1 cos(z)(1 -cos(2z)) sin 2 (2z) -cos(2z) 0 1 1 = sin 2 (z) 2 cos(z) sin 2 (z) -cos(z) 1 0 1 2 cos(z) sin 2 (z) 4 sin 2 (z) cos 2 (z) -cos(2z) 0 1 → sin -2 (z) 4 sin 4 (z) cos 2 (z) -4 sin 4 (z) cos 2 (z) -sin 2 (z) cos(2z) + 2 cos 2 (z) sin 2 (z) -2 cos(z) sin 2 (z) sin 2 (z) = 1 0 1 + sin 2 (z) -2 cos(z) 1 shows that ker C{z}     1 cos(z) cos(2z) cos(z) 1 cos(z) cos(2z) cos(z) 1     = C{z}   1 + sin 2 (z) -2 cos(z) 1   ⊂ C{z} 3 .
X l |Y l ,
where X l ∈ R (m-l)×(n-l) and Y l ∈ R (n-l)×n . At the start of the recursion we put, X 0 := A T and Y 0 := 1 n . The (l + 1)th condensation consists of the following procedure.

Step 1 (preparation). If X l = 0 then stop; rank(A T) = l and ker Q (A T) = Y T l R n-l . Let k l+1 + 1 be the smallest column index of a nonzero column in X l . This means that the first k l+1 columns of X are zero. Pick a row index i with x ik l+1 = 0 and replace X l → X l , Y l → Y l , where X l and Y l are obtained from X l and Y l , respectively, by applying a row permutation σ to move the ith row to the first row. For clarity I put a box around the pivot x ik l+1 .

Step 2 (pc). The matrix Z l := [X l |Y l] is obtained from Z l := [X l |Y l] as follows. The entry of Z l ∈ R (m-l-k l -1)×(n+m-l-1) at the rth row and sth column is

z 1 k l+1 +1 z 1 k l+1 +s z r+1 k l+1 +1 z r+1 k l+1 +s , (4.2)
where Z l =: [z ij] i=1,...,n-l j=1,...,2n-l . The resulting pattern is X l |Y l .

Step 3 (cleaning up).2 Let L i be the ith row of Z l := [X l |Y l] and c i be the gcd of the entries of L i if L i is nonzero and put c i = 1 otherwise. Let Z l+1 := [X l+1 |Y l+1] be the matrix whose rows are L i /c i . The resulting pattern is X l+1 |Y l+1 , completing the lth condensation.

If X m is nonzero (and non-empty) then ker Q (A T) is trivial. Let us look into two examples; more examples are elaborated in Section 6.

Example 4.3. Let R be the polynomial ring Z[x, y, z] with quotient field Q(x, y, z) the field of rational functions in x, y, z and coefficients in Q. From the pc 1 1 1 1 0 0 0 x y z 0 1 0 0 x 2 y 2 z 2 0 0 1 0

x 3 y 3 z 3 0 0 0 1 → y -x z -x -x 1 0 0 y 2 -x 2 z 2 -x 2 -x 2 0 1 0 y 3 -x 3 z 3 -x 3 -x 3 0 0 1 → (y -x)(z -x)(z -y) (y -x)xy -y 2 -x 2 y -x 0 (y -x)(z -x)(z -y)(x + y + z) y 2 -x 2 xy -y 3 -x 3 0 y -x = (z -x)(z -y) xy -y -x 1 0 (z -x)(z -y)(x + y + z) (y + x)xy -y 2 -xy -x 2 0 1 → -(z -x)(z -y)xyz (z -x)(z -y)(xy + yz + xz) -(z -x)(z -y)(x + y + z) (z -x)(z -y) = -xyz xy + yz + xz -x -y -z 1 we see that ker Q(x,y,z)     1 x x 2 x 3 1 y y 2 y 3 1 z z 2 z 3     = Q(x, y, z)     -xyz xy + yz + xz -x -y -z 1     ⊂ Q(x, y, z) 4
. This is a special case of the identities n i=0 (-x j) n-i e i (x 1 , . . . , x n) = 0 for elementary symmetric functions e i (x 1 , . . . , x n), which can in turn easily be checked from the generating function n i=1 (y -x i) = n i=0 (-1) i y n-i e i (x 1 , . . . , x n). I would like to point out some subtleties here. The ring R = Z[x, y, z] is not a PID and it is not guaranteed that the method produces a generating set for the whole kernel as an R-module. It turns out that for this it is sufficient to have a block of a permutation matrix in the matrix whose columns are our generators (more on this in Section 10). In the example at hand this is just the 1 in the last entry of the generator.

Example 4.4. To see that something can go wrong when R is not a PID let us look into an example from physics. Let us consider R = R[q 1 , q 2 , q 3 , p 1 , p 2 , p 3] and define

J = q × p =   q 2 p 3 -q 3 p 2 q 3 p 1 -q 1 p 3 q 1 p 2 -q 2 p 1   .
In physics the vectors q = q 1 q 2 q 3 T , p = p 1 p 2 p 3 T and J are called position, momentum and angular momentum, respectively. Let us apply ker pc to the 1 × 3-matrix J T :

J 1 1 J 2 1 J 3 1 → -J 2 J 1 -J 3 J 1 . The vectors v 1 :=   -J 2 J 1 0   , v 2 :=   -J 3 0 J 1 
 generate a rank two free submodule of ker R J T . But evidently q and p generate another rank two free submodule of ker R J T , and for degree reasons q, p cannot be in

R v 1 + R v 2 .
People typically employ Gröbner bases for determining such kernels (see e.g. [START_REF] Greuel | A singular introduction to commutative algebra[END_REF]). We will not discuss this topic here.

Remark 4.5. In this paper, the focus is on the case when R = Z. Let me make some observations that arise when comparing the ker pc to Gaussian elimination of A ∈ Z n×m :

(1) The ker pc of [A T |1 m], being equivalent to the first half of Gaussian elimination, requires only half as many steps as the Gaussian elimination of A for determining ker Q (A). On the other hand, [A T |1 m] is considerably bigger than A.

(2) In ker pc one can effortlessly avoid fractions3 .

(3) During pc the size of the matrices shrinks step-wise.

(4) When organized properly in situations such as chemical balancing the first steps of the ker pc are typically almost trivial and can be done quickly. (5) The only minor drawback of the ker pc that I see is that for the determination of the image AQ m one has to keep track of the permutations of the rows (see Subsection 8.3). This is irrelevant for chemical balancing. (6) There is also a pc version of the Gaussian elimination of A, but the 2nd half of the process has more tricky signs and the notational protocols are less compact.

Consistency checks

A simple method to spot errors are check sums for rows4 . Here we put at the end of the pattern of ker pc a double bar and another column that records the row sums. This column is included in the condensation procedure. If no error occurred the row sums have to match with the last column at each condensation step. For example, 1 1 1 1 0 0 0 4 1 2 3 0 1 0 0 7 1 3 6 0 0 1 0 11 1 4 10 0 0 0 1 16

→ 1 2 -1 1 0 0 3 2 5 -1 0 1 0 7 3 9 -1 0 0 1 12 → 1 1 -2 1 0 1 3 2 -3 0 1 3 → -1 3 -3 1 0 probably calculates ker Q     1 1 1 1 1 2 3 4 1 3 6 10     = Q     -1 3 -3 1   
 correctly as the check sums match at each step.

If the errors persist one can also use check sums for columns. Here one has to be careful however: rescaling individual rows (cf.

Step 3) messes up the check sums.

Chemical balancing

Before we take a closer look into mathematical stoichiometry (originating from [START_REF] Benjamin | Anfangsgründe der Stöchiometrie: oder, Messkunst chemischer Elemente[END_REF]) let me make a suggestion how to annotate the calculations when using pen and paper. The matrices in chemical balancing are typically sparse, which means one has to write a lot of zeros. I will suppress them in the calculations and therefore it seems appropriate to use checkered paper. Alternatively, one can put dots instead of 0 to keep track of the grid.

In chemical balancing one has given two finite sets: the set of atoms I and the set of compounds J together with an incidence matrix A = [a ij] i∈I,j∈J ∈ Z I×J whose integer entries are given by the rule that a ij counts the number of occurences of atom i in compound j. A vector in the Z-module

ker Q (A) = { v = [v j] j∈J ∈ Z J | ∀i ∈ I : j∈J a ij v j = 0}
is symbolizing a mathematically possible chemical reaction involving the compounds of J. For practical matters it is better to work with generators of the ker Q (A) instead of the infinite set. If dim(ker Q (A)) = 1 our generator is automatically a generator for ker Z (A). For more information on how to determine the generators of ker Z (A) see Section 10. The sets I and J come with an arbitrary chosen total order. The ker pc computations depend on the orders of I and J, some orders being more convenient than others. In elimination the order on I is merely used for presenting A as a table. Typically, the entries of A are from N = {0, 1, 2, . . . }. If the compounds are ions it is convenient to deal also with negative entries (see Example 6.4 below). If dim(ker Q (A)) = 1 the generator of the Z-module ker Z (A) is unique up to multiplication with a unit Z × = {±1}. The two options correspond to the two theoretically possible directions of the chemical reaction. Which one is more likely to be realized in nature is determined by the chemistry.

More generally, the absolute values of the entries of the generators of ker Z (A) are called the stoichiometric factors. Our convention is that negative entries symbolize the reactants and positive entries symbolize reaction products. Mathematically, the choice of the global factor from Z × = {±1} in front of each generator is arbitrary.

Let us now look into some examples. The general principle is to apply ker pc to the pattern A T |1, the matrix A being the incidence matrix of the reaction. To avoid mistakes it makes sense to arrange the compounds into two groups: the reactants and the reaction products, if this grouping is known beforehand. Which one comes first can be decided according to which pivot is more simple. The ordering of the compounds within each group is also to be decided. I find it convenient to order the atoms lexicographically and view the compounds as monomials in the set of atoms, forgetting about indices (i.e. all exponents in the monomial are 0 or 1). The monomials I order lexicographically if I do not see advantages in another ordering. 5 The choice of ordering is of course only a matter of taste.

Example 6.1. Not every reaction is feasible. For example there is no reaction possible among the compounds FeS, H 2 SO 4 , FeSO 4 , H 2 O. The reason is that the kernel of the incidence matrix

FeS H 2 SO 4 FeSO 4 H 2 O Fe 1 1 H 2 2 O 4 4 1 S 1 1 1
is trivial. Let us check this using ker pc

1 1 1 2 4 1 1 1 4 1 1 2 1 1 → 2 4 1 1 4 -1 1 2 1 1 → 8 -2 2 -6 -2 -2 2
→ -16 -12 -16 12 16 .

There are not enough compounds in the list. Maybe one should add some rust.

Example 6.2. There can also be too many compounds. Then the balanced reaction is not unique up to sign. To see an example with two generators let us look into the incidence matrix

Fe O 2 FeO Fe 2 O 3 Fe 1 1 2 O 2 1 3
.

The pivotal condensation gives

1 1 2 1 1 1 1 2 3 1 → 2 1 1 -1 1 3 -2 1 → -2 -1 2 -4 -3 2 .
The reactions corresponding to the generators above are 2Fe + O 2 → 2FeO and 4Fe + 3O 2 → 2Fe 2 O 3 . There is a catch here, however. The reader may readily check that the linear independent vectors

    -2 -1 2 0     ,     1 0 -3 1    
are in the kernel of the incidence matrix. On the other hand,

    -2 1 -1 0 2 -3 0 1     =     -2 -4 -1 -3 2 0 0 2     1 -3/2 0 1/2
is not representing an integer combination of the generators obtained from ker pc. Accordingly, a more fundamental set of generators for the chemical reactions is actually 2Fe + O 2 → 2FeO and 3Fe0 → Fe 2 O 3 + Fe. These resulting generators are unique up the action of GL 2 (Z).

In fact, the problem is visible in the gcd ∆ 2 of the 2 × 2-minors of

X :=     -2 -4 -1 -3 2 0 0 2    
, which is 2. The image im Z (X) = XZ 2 of X cannot be saturated (see Theorem 10.9), and the columns of this matrix cannot form an Z-basis for the kernel of A. If R is a PID, A ∈ R n×m is of rank p, AX = 0 and X has rank n -p, then ker R (A) = im R (X) if and only if the gcd ∆ n-p of the (n -p) × (n -p)-minors is a unit. Sometimes ker pc produces generators whose ∆ n-p is not a unit. For details on how one can repair this see Section 10.

Example 6.3. Out of a head of a chemist come mostly incidence matrices that have just one chemical equation. For example, the Fischer-Tropsch reaction for the synthesis of paraffin involves the following incidence matrix

CO H 2 C n H 2n+2 H 2 O C 1 n H 2 2n + 2 2 O 1 1 . (6.1)
We work symbolically, i.e., over the ring Z[n]. The ker pc is

1 1 1 2 1 n 2n + 2 1 2 1 1 → 2 1 2n + 2 -n -n 1 2 1 1 → -2n -2n -2n -2 2 2 -2 2 = n n n + 1 -1 1 -1 1 → -n -2n -1 1 n and hence nCO+(2n+1)H 2 → C n H 2n+2 +nH 2 O. As 0 -n -2n -1 1 n
T has a unit entry it actually generates the kernel as a Z[n]-module (see Section 10) 6 . We will come back to this example in Section 7.

Example 6.4. In ionic reactions I treat the electric charge as an atom, as in the following example:

H 2 O MnO - 4 SO 2- 3 OH -MnO 2 SO 2- 4 H 2 1 Mn 1 1 S 1 1 O 1 4 3 1 2 4 charge -1 -2 -1 -2
If during ker pc in a row under the pivot there is a zero the corresponding row (with first zero deleted) is simply multiplied with the pivot. This in turn is then divided out. I take the liberty to combine the two steps and simply copy over the row, omitting the first entry. This occurs in the first step of the following ker pc:

2 1 1 1 4 -1 1 1 3 -2 1 1 1 -1 1 1 2 1 1 4 -2 1 → 1 4 -1 1 1 3 -2 1 1 -2 -1 2 1 2 1 1 4 -2 1 → 1 3 -2 1 1 -2 -1 2 -2 1 -1 1 1 4 -2 1 → 1 -2 -1 2 -2 1 -1 1 1 -1 1 → -3 -2 -1 4 1 2 1 -1 -2 1 → 1 2 3 -2 -2 -3 → -1 -2 -3 2 2 3 .
6 The ring Z[n] is not a PID and hence Theorem 10.9 cannot be applied.

The balanced reaction is H

2 O + 2MnO - 4 + 3SO 2- 3 → 2OH -+ 2MnO 2 + 3SO 2- 4 .
Example 6.5. An important related question in the physical sciences is if it is possible to form a rational dimensionless quantity out of a finite set of physical quantities. Such a dimensionless quantity serves as a characteristic number of the corresponding physical system and can be fed into transcendental functions, such as exp. For example, we may ask: Can we make a dimensionless quantity out of viscosity η, density ρ, velocity v and length l? Now physical quantities are compounds of the fundamental units (the analogue of the atoms above). We can form an incidence matrix, which can also have negative entries:

[η] = kg m -1 s -1 [ρ] = kg m -3 [v] = m s -1 [l] = m kg 1 1 m -1 -3 1 1 s -1 -1
The ker pc produces

1 -1 -1 1 1 -3 1 1 -1 1 1 1 → -2 1 -1 1 1 -1 1 1 1 → 1 1 -1 -2 -1 1 -1 -2 → 2 -2 -2 -2 → -1 1 1 1 .
This vector of exponents appears in the famous Reynolds number Re = η -1 ρvl.

Example 6.6. I am taking an example from [START_REF] Stout | Redox challenges: Good times for puzzle fanatics[END_REF] to illustrate that the ker pc method can be used to balance chemical equations that are regarded to be challenging. In the following we use the shorthand Cr 7 N 66 H 96 C 42 O 24 for the complex [Cr(N 2 H 4 CO) 6] 4 [Cr(CN) 6] 3 . We would like to analyze the incidence matrix

CO 2 KMnO 4 MnSO 4 K 2 Cr 2 O 7 KNO 3 H 2 SO 4 K 2 SO 4 H 2 O Cr 7 N 66 H 96 C 42 O 24 C 1 42 Mn 1 1 Cr 2 7 N 1 66 S 1 1 1 H 2 2 96 K 1 2 1 2 O 2 4 4 7 3 4 4 1 24
Here I choose orderings of I and J that seem adequate for keeping the computation as simple as possible (see the remark at the end of Section 7). Using the policy explained in Example 6.4 the first steps involve mostly copying and pasting.

1 2 1 1 1 4 1 1 1 4 1 2 2 7 1 1 1 3 1 1 2 4 1 1 2 4 1 2 1 1 42 7 66 96 24 1 → 1 1 4 1 1 1 4 1 2 2 7 1 1 1 3 1 1 2 4 1 1 2 4 1 2 1 1 7 66 96 -60 -42 1 → 1 -1 -1 1 2 2 7 1 1 1 3 1 1 2 4 1 1 2 4 1 2 1 1 7 66 96 -60 -42 1 → 2 2 7 1 1 1 3 1 1 2 4 1 1 2 4 1 2 1 1 1 -1 -1 1 7 66 96 -60 -42 1 → 1 1 3 1 1 2 4 1 1 2 4 1 2 1 1 1 -1 -1 1 132 192 -14 -169 -84 -7 2 → 1 2 4 1 1 2 4 1 2 1 1 1 -1 -1 1 192 -146 -565 -84 -7 -132 2 → -2 2 -1 1 2 1 1 -2 -1 -4 -1 1 -1 192 -146 -565 -84 -7 -132 2 → -4 -2 2 -2 -
→ 420CO 2 + 1176MnSO 4 + 35K 2 Cr 2 O 7 + 660KNO 3 + 223K 2 SO 4 + 1879H 2 O.
As 4 of 8 atoms in this example occur only in 2 compounds respectively it would also make sense to apply the quivering method of the next section.

Quivered ker pc

When balancing reactions chemists often exploit substitutions arising from all the atoms that only occur in just two compounds. In this way it is often possible to avoid the formalism as the resulting linear systems are quite simple. I am trying here to elaborate the chemist's method as an algorithmic tool to preprocess the linear system of the reaction. The preprocessing is referred to as quivering as there are a quivers (i.e. directed graphs) involved. The difficulty is to find all of the obvious reasons to put variables to zero.

We are aiming to solve the system i∈I a ij v j = 0 (7.1) for all j ∈ J with A = [a ij] ∈ R I×J . Here I and J are finite sets and I, J are understood to carry a total order. For the quivering only the order on J is relevant. The plan is to construct minimal subsets Î ⊆ I, Ĵ ⊆ J and the quivered linear system i∈ Î âij v j = 0 for all j ∈ Ĵ such that all solutions of (7.1) arise from solutions of the quivered system by substitutions.

To this end I am introducing a process referred to as pruning of the subsets I ⊆ I and J ⊆ J. For each integer n ≥ 0 we put

I n := {i ∈ I | n = |{j ∈ J | a ij = 0}|}.
For each i ∈ I 1 there is a unique j ∈ J such that a ij = 0 this defines a map φ : I → J . We put I := I \(I 0 ∪ I 1) and J := J \φ (I). Now I 2 := {i ∈ I | 2 = |{j ∈ J | a ij = 0}|} is a quiver. In fact, we put s(i) for i ∈ I 2 to be the smaller of the two j's such that a ij = 0, the other one is called t(i). This provides source and target the maps s, t : I 2 → J . A path γ = (i 1 , . . . i |γ|) of length |γ| in I 2 is a sequence of edges i 1 , . . . i |γ|) ∈ I 2 such that for each p = 1, . . . , |γ| -1 we have t(i p) = s(i p+1). Two paths γ = (i 1 , . . . , i |γ|) and γ

= (i 1 , . . . , i |γ |) in I 2 are called equivalent, γ ∼ γ , if (1) s(i 1) = s(i 1) and t(i |γ|) = s(i |γ |), (2) and (-1) |γ| |γ| p=1 a ips(ip) a ipt(ip) = (-1) |γ | |γ | q=1 a i q s(i q)
a i q t(i q) . (7.2) If (1) holds and (2) is violated they are called inconsistent , γ ⊥ γ . The set of problematic edges is

I ! 2 := {i | i an edge of γ or γ , γ ⊥ γ }. (7.3)
In the end by Eqn. (7.1) all the v j for j ∈ s(I ! 2) ∪ t(I ! 2) ∪ φ (I) have to be put zero. The pruned sets are pr(I) := I 2 \I ! 2 and pr(J) := J \(s(I ! 2) ∪ t(I ! 2)). The quiver s, t : (pr(I)) 2 → pr(J) has no oriented cycles, since an edge increases the order by construction. All paths in s, t : (pr(I)) 2 → pr(J) with the 7 I now deserve a grade A from Professor Stout (Central College, Pella, IA) for the entire semester! same initial and terminal vertex are equivalent. Unfortunately, the pruning should be iterated in general, to get an optimal result. But starting with I, J there must be a smallest k such that pr k+1 (I) = pr k (I) and pr k+1 (J) = pr k (J); it is referred to as the pruning depth k.

Let γ be a maximal path (possibly trivial) in the quiver s, t : (pr k (I)) 2 → pr k (J). Let us denote by P a set of representatives of equivalence classes of such paths. The quivered system is obtained as follows. We put Î := pr k (I), Ĵ := {in(γ) | γ ∈ P } and define for i ∈ Î, j ∈ Ĵ:

b ij := a ij + γ=(i1,i2,...,i |γ|)∈P :|γ|≥1,in(γ)=j (-1) |γ| a it(i |γ|) |γ| p=1 a ips(ip) a ipt(ip) ∈ Q. (7.4) We get a matrix B = [b ij] ∈ Q Î× Ĵ .
We multiply the rows in B appropriately with scalars in R to obtain a matrix ∈ R Î× Ĵ .

To reconstruct a solution of (7.1) we proceed as follows. By ker pc we find ker Q Â = Ŵ R m for some matrix Ŵ = [w jµ] ∈ R Ĵ×m with m := | Ĵ| -rank(Â) = |J| -rank(A). We put for µ = {1, . . . , m}

w jµ := 0 if j ∈ J\ pr k (J) w in(γ)µ (-1) |γ| |γ| p=1 a ip s(ip) a ipt(ip)
if there is a γ ∈ P (j) (7.5) to obtain W = [w jµ] ∈ Q J×m . We multiply appropriately columns of W with elements of R to arrive at V ∈ R J with coprime columns (this is always possible if R is a gcd domain). The columns of V form a basis of the R-module ker R A.

Example 7.1. We look once again into Example 6.3. The pruning depth of the Fischer-Tropsch incidence matrix (6.1) is 0. Reactions that make sense chemically should not need pruning. We have I 0 = I 1 = ∅ and the quiver s, t :

I 2 → J H 2 O O ← -----CO C -----→ C n H 2n+2 .
The quivered linear system is given by Ĵ = {CO, H 2 } and Î = {H} with = [-2n -1, n] with quivered solution [-n, -2n -1] T . Using Eqn. (7.5) we reproduce the result of Example 6.3.

Example 7.2. To avoid abuse of terrestrial chemistry (it seems important, see [Moo97, MKAM15, Ris09]) I take a look at an incidence matrix proposed by a chemistry student from Betelgeuse:

ACD ABDE B 2 C 3 DE DEF GH E 2 H E 6 F F G 3 GH A 1 1 B 1 2 C 1 3 D 1 1 1 1 E 1 1 1 2 6 F 1 1 1 G 1 3 1 H 1 1 1 .
Note that I 0 = I 1 = ∅ and the two paths While pr(I) 0 = ∅ we have pr(I) 1 = {D} and v DEF GH = 0. On the other hand, the two paths

E 2 H F GH E E 6 F H F G 3 G are equivalent.
The pruning depth is 2. The diagram represents the quiver pr 2 (I) 2 → pr 2 (J). We have Î = ∅, Ĵ = {E 2 H} and the quivered linear system is empty. The solution of the quivered system is without loss of generality w E2H = 1. The coprime integer solution is v E2H = -3, v GH = 3, v E6F = 1 and v F G3 = -1. To avoid mistakes it is convenient to annotate on paper the v's in the diagram in front of the vertices, the sign has to change along an edge. The balanced reaction is

3E 2 H + F G 3 → E 6 F + 3GH. 8
Instead of quivering the practitioner of ker pc can do the following: order I such that 1.) for each p ≥ 1 and I p < I p+1 and 2.) I p < I 0 and order J in some lexicographic order compatible with that of J. The order of I ensures that the ker pc start trivially at I 1 and the complexity of the condensations grows when moving from I p to I p+1 . The order of J ensures that there are no unnecessary row swaps needed. The cost savings of this strategy and quivering seem similar.

Miscellaneous investigations

I would like to point out that other fundamental questions in linear algebra can be solved with pc as well. In fact, with pc one can re-purpose the calculations of less specific investigations for the more specific ones. One can, e.g., calculate the rank of a quadratic matrix with pc. If it turns out to be full then one fills in the necessary details to calculate the determinant or the inverse. Or one figures out the rank of an arbitrary matrix with pc and later decides to determine the four subspaces, or to solve a linear system, just by filling out some extra blocks. I call such a type of analysis modular : you can always build on what you already have achieved.

Inhomogeneous systems. Here I am indicating how the ker pc can be adapted to solve systems of inhomogeneous linear equations

A v = w (8.1)
for A ∈ R n×m and w ∈ R n . The solution v is in Q m (actually it can be assumed to be in (S -1 R) m for a certain localization S -1 R of R.) In principle, we only have to add one new row to the pattern of ker pc. One advantage is that we only have to divide at the very last step. The basic idea is that

A v = w ⇐⇒ [A| w] v -1 = 0,
so that the solution of an inhomogeneous system is equivalent to an appropriately normalized vector in ker

Q [A| w].
In more detail, the pattern at the start of the (l + 1)st condensation is

X l Y l 0 (w l) T (p l) T λ l .
The initial condition is

X 0 = A T , Y 0 = 1, w 0 = w, p 0 = 0, λ 0 = -1.
The ker pc algorithm of Section 4 is applied to this pattern. The pivots however are only be chosen in the upper left block. The recursion stops at l = p when X p is zero or empty, which means rank A = p. If in this case (w p) T is nonzero, then the system has no solution. If (w p) T is zero or empty the general solution v ∈ Q m of Equation (8.1) is an element of

λ -1 p p p + Y T p Q n-p . Note that by construction λ p = 0 and Y T p is injective. Similarly, a solution v ∈ R m λp of Equation (8.1) is in λ -1 p p p + Y T p R n-p λp .
Here R λp denotes the localization of R at the multiplicative subset S = {λ k p | k ≥ 1}.

Example 8.1. From the pc 1 1 1 1 1 2 3 4 5 1 3 5 7 9 1 4 7 10 13 1 10 16 22 28

-1 → 1 2 3 -2 1 2 4 6 -3 1 3 6 9 -4 1 6 12 18 -10 -1 → 1 -2 1 2 -3 1 2 -6 -1 = 1 -2 1 2 -3 1 -2 6 1 we deduce that            v 1 v 2 v 3 v 4     ∈ Q 4    
1 2 3 4 1 3 5 7 1 4 7 10 1 5 9 13

        v 1 v 2 v 3 v 4     =     10 16 22 28            =     -2 6 0 0     +     1 2 -2 -3 1 0 0 1     Q 2 .
A similar statement holds over Z.

Matrix inversion.

Another typical problem is to find a matrix V ∈ Q m×k that solves AV = W for given matrices A ∈ R n×m and W ∈ R n×k . Here the idea is to do the procedure of Subsection 8.1 simultaneously for all the columns of W . In other words, the pattern at the start of the (l +1)st condensation is

X l Y l 0 W T l P T l λ l . The initial condition is X 0 = A T , Y 0 = 1 m , W 0 = W T , P 0 = 0, λ l = [-1, . . . , -1] T .
Again, the pivots can only be chosen in the upper left block. For simplicity I assume that A is injective, i.e., n ≥ m and rank A = m. If W T m is zero or empty the solution exists. In this case V ∈ Q m×k of Equation (8.1) is V = P m D, where D ∈ Q k×k is the diagonal matrix whose entries are the mutiplicative inverses of entries of λ m .

In the special case when n = m = k, A invertible and W = 1 the solution P n D exists and equals A -1 . Alternatively, if one starts the process with the invertible X 0 = A then A -1 = DP T n . Example 8.2. Let R be the ring of integers Z. The following pc 1 2 3 5 1 2 3 5 7 1 3 5 7 11 1 5 7 11 13

1 1 -1 1 -1 1 -1 1 -1 → -1 -1 -3 -2 1 -1 -2 -4 -3 1 -3 -4 -12 -5 1 -2 -3 -5 -1 -1 1 -1 1 -1 1 -1 → 1 1 1 1 -1 1 3 -1 3 -1 1 -1 -3 2 1 1 3 2 -1 1 -1 1 -1 1 → 2 -2 2 1 -1 -2 -4 1 1 1 2 1 -2 1 1 1 1 1 -1 1 -1 1 → -12 6 4 -2 2 6 -8 2 2 4 -3 1 2 -2 2 1 -1 2 shows 9 that    
1 2 3 5 2 3 5 7 3 5 7 11 5 7 11 13

    -1 = 1 2     -12 6 4 -2 6 -8 0 2 4 0 -3 1 -2 2 1 -1     ∈ Q 4×4 .
During the process there were no row swaps and the symmetry of the matrix could be maintained, which makes the procedure more effective. I suggest to call this procedure inv pc.

8.3. The four subspaces. Given a matrix A ∈ R n×m (or ∈ Q n×m) we can use a version of ker pc to actually determine bases for ker Q (A), im Q (A), ker Q (A T) and im Q (A T) in just one calculation. The procedure is similar to that inv pc of the previous subsection and it goes as follows.

Write A = v 1 • • • v m and A T = u 1 • • • u m
and put p := rank(A). Before step l + 1 of the condensation the pattern is

X l Y l W T l .
What is in the lower right block is irrelevant for the four subspaces and we leave it blank. The starting values are

X 0 = A T , Y 0 = 1 m , W T 0 = 1 n .
The ker pc algorithm of Section 4 is applied to this pattern, while the pivots can only be chosen in the upper left block. (What appears in the lower right block is irrelvant for the recursion; the starting value is by default 0.) If for l = 0 there is a pivot in the first column add u 1 to the list of generators of im Q A T and denote by σ 1 row permutation used to move the pivot to the first row. Otherwise, there is a maximal zero block of size m × k 1 in the first columns X 0 . Add the first k 1 columns in W T 0 (that is the columns below the zero block) to the list of generators of ker Q A T . There is a pivot in the (k 1 + 1)th column of X 0 . Apply now Step 2 (pc) and Step 3 (cleaning up) and put l = 1. If there is a pivot in the first column add u 2 to the list of generators of im Q A T and denote by σ 2 row permutation used to move the pivot to the first row. Otherwise, there is a maximal zero block of size (m -1) × k 2 in the first columns X 1 . Add the first k 2 columns in W T 1 (that is the columns below the zero block) to the list of generators of ker Q A T . There is a pivot in the (k 2 + 1)th column of X 1 in the first row. Apply now Step 2 (pc) and Step 3 (cleaning up) and put l = 2. Continue in that manner until l = p. Now X p is zero or empty. Add the columns of W T p to the list of generators of ker Q A T . The transposes of the rows of Y p form a basis for ker Q (A). Putting σ := σ p • • • σ 1 , a basis for im Q (A) is formed by v σ -1 (1) , v σ -1 (1) , . . . , v σ -1 (p) . In this way we obtain simultaneously bases for all the four Q-subspaces ker Q (A), im Q (A), ker Q A T and im Q A T .

I suggest for this procedure the name 4pc. It is actually a pretty quick and clean way to deduce such bases. Let us look at some examples.

Example 8.3. Let me put sort of an academic example that hopefully allows to get an impression what is going on with the row permutations:

A =     0 0 0 1 0 0 1 1 0 0 1 1 1 0 1 1     = v 1 v 2 v 3 v 4 , A T =     0 0 0 1 0 0 0 0 0 1 1 1 1 1 1 1     = u 1 u 2 u 3 u 4 .
In the first step of the 4pc we apply the permutation σ = (1, 3, 2, 4) to the rows of A T . Non-mathematicians might prefer a graphical notation for σ instead of the cycle notation used above. It makes it easy to keep track of compositions and inversions of permutations. Written in cycle form this is σ = (1, 3, 2, 4) = (2, 4)(1, 4)(1, 3) and σ -1 = (4, 2, 3, 1). The 4pc calculation goes as follows

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1         0 0 0 1     → im Q A T     σ → 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 → 1 1 1 1 1 1 1 -1 -1 -1 1 1 1         0 0 1 1     → im Q A T     → 1 1 1 -1 -1 1 1         0 -1 1 0     → ker Q A T ,     1 0 1 1     → im Q A T     → 1 , and hence ker Q (A) = Q     0 1 0 0     , ker Q A T = Q     0 -1 1 0     , im Q (A) = im Q v σ -1 (1) v σ -1 (2) v σ -1 (3) =     1 0 1 0 1 0 1 1     Q 3 , im Q A T = im Q u 1 u 2 u 4 =     0 0 1 0 0 0 0 1 1 1 1 1     Q 3 . Example 8.4. Let us consider 10 A =       0 1 1 2 1 1 2 4 1 2 4 7 2 4 7 13 4 7 13 24       = v 1 v 2 v 3 v 4 , A T =     0 1 1 2 4 1 1 2 4 7 1 2 4 7 13 2 4 7 13 24     = u 1 u 2 u 3 u 4 u 5 .
At the first step we apply the transposition σ = (1, 2) (i.e., a switch of rows):

10 The matrix A is a piece of the Hankel matrix of the tribonacci numbers (entry A000073 in [OEI]). Here I am already trying to write a bit less, when recording the steps of the 4pc:

1 1 2 4 1 1 1 2 4 7 1 1 2 4 7 13 1 2 4 7 13 24 1 1 1 1 1 1 σ → 1 1 2 4 7 1 1 1 2 4 1 1 2 4 7 13 1 2 4 7 13 24 1 1 1 1 1 1 → 1 1 2 4 1 1 2 3 6 -1 1 2 3 5 10 -2 1 -1 -2 -4 -7 1 1 1 1 → 1 1 2 -1 -1 1 1 1 2 -2 -2 1 -1 -2 -3 -1 -2 -4 1 1 1 → -1 -1 -1 1 -1 -1 -1 -2 -1 -2 1 0 0 1 . We conclude that ker Q (A) = Q     -1 -1 -1 1     , ker Q A T =       -1 -1 -1 -2 -1 -2 1 0 0 1       Q 2 , im Q (A) = im Q v σ -1 (1) v σ -1 (2) v σ -1 (3) =       1 0 1 1 1 2 2 1 4 4 2 7 7 4 13       Q 3 , im Q A T = im Q u 1 u 2 u 4 =     0 1 1 1 1 2 1 2 4 2 4 7     Q 3 .
Combining the ideas of Subsections 8.1, 8.2 and 8.3 one can use pc to calculate the general solution to the problem of finding the one-sided inverse of a full rank matrix. The reader is invited to work out the details.

Proof of ker pc and 4pc

Let R be a gcd domain (e.g., a PID). The following argument is based on an idea that I learned from stackexchange user Ben Grossman [Gro].

It is enough to prove 4pc as ker pc is part of it. Recall that one says a matrix A = [a ij] is in echelon form if 1) for pivots a ij , a i j with i < i it follows that j < j and 2) there are no zero rows above a pivot. (A pivot is a non-zero entry a ij such that a ij = 0 for all j < j.) I will define an iteration that brings A T into echelon form. This will be done by the following operations: permuting rows of A T , adding R-multiples of rows to other rows and dividing rows by their gcd's.

By the permutation matrix of the permutation σ ∈ Aut({1, . . . , m}) we mean P σ := m i=1 E σ(i)i ∈ R m×m . By a pc-op matrix we mean a matrix of the form

M i,j (a, b) = (1 -bE ji + (a -1)E jj) ∈ R m×m
for some a, b ∈ R, i, j ∈ {1, . . . , m}. Here E ij is the m × m matrix whose only nonzero entry is a 1 in line i and column j. For i, j, k pairwise distinct and a, b, a , b ∈ R we easily verify

M i,j (a, b)M i,k (a , b) = M i,k (a , b)M i,j (a, b).
For U ∈ R m×n and 1 ≤ j ≤ n, 1 ≤ λ < r ≤ m we define for the integer k ≥ m

Ξ (k)
λ,r,j (U) := M λ,r (u λj , u rj) = 1 -u rj E rλ + (u λj -1)E rr ∈ R k×k . Let B ∈ R n×m , choose a permutation σ ∈ Aut({1, . . . , m}) and put

L λ,B T ,σ := m r=λ+1 Ξ (m) λ,r,j P σ B T ∈ R m×m , R λ,B T ,σ := m r=λ+1 Ξ (n) λ,r,j B T P σ ∈ R n×n .
For the main argument we will use the following.

Lemma 9.1. With the notations above we have

(1) L λ,B T ,σ P σ B T -P σ B T (R λ,B,σ -1) T = * * * 0 , where 0 ∈ R (m-λ)×(n-λ) ,
(2) L λ,B T ,σ P σ B T rj = 0 for r > λ and (3) P σ B T R λ,B T ,σ jr = 0 for r > λ.

Proof. We evaluate

L λ,B T ,σ = m r=λ+1 Ξ (m) λ,r,j P σ B T = m r=λ+1 Ξ (m) λ,r,j p,q b σ(q)p E pq = m r=λ+1 M λ,r (u λj , u rj) = m r=λ+1
(1 + (b σ(j)λ -1)E rr -b σ(j)r E rλ)

Here U = P σ B T and u λj = b σ(j)λ , u rj = b σ(j)r . Expanding the product we obtain

L λ,B T ,σ = 1 + m r=λ+1 ((b σ(j)λ -1)E rr -b σ(j)r E rλ) = λ r=1 E rr + m r=λ+1 (b σ(j)λ E rr -b σ(j)r E rλ). Hence L λ,B T ,σ P σ B T = p,q λ r=1 E rr + m r=λ+1 (b σ(j)λ E rr -b σ(j)r E rλ) b σ(q)p E pq (9.1) = q λ r=1 b σ(q)r E rq + q m r=λ+1 (b σ(j)λ b σ(q)r -b σ(j)r b σ(q)λ)E rq .
If q = j the second sum is zero proving 2). Next, we look at

R λ,B T ,σ := m r=λ+1 Ξ (n) λ,r,j B T P σ = m r=λ+1 Ξ (n) λ,r,j p,q b σ(q)p E pq = m r=λ+1 M λ,r (u λj , u rj) = m r=λ+1 (1 + (b σ(j)λ -1)E rr -b σ(j)r E rλ).
Here U = B T P σ and u λj = b σ(j)λ , u rj = b rσ -1 (j) . Expanding the product we obtain 10.1. A practical guide to Smith normal form. In Gaussian elimination over a field one uses the following operations 1.) switching rows, 2.) adding a multiple of a row to another row, 3.) and multiplying a row with a nonzero element.

Working over a PID R, it is a natural idea to use operation 3.) only for units. Otherwise we are muddying the waters11 . The idea of Smith normal form is to compensate for the lost freedom by admitting also column versions of the operations 1.) and 2.). The operations 1.) and 2.) for rows can be understood by left multiplications with matrices in GL n (R) while the operations 1.) and 2.) for columns correspond to right multiplications with matrices in GL m (R). Obviously, the matrices used for the operations of type 1.) are transpositions 1 -E ii -E jj + E ij + E ji while the matrices used for the operations of type 2.) are of the form 1 + rE ij with r ∈ R, the latter actually being unimodular.

Theorem 10.1 (H.J.S. Smith (1861) [START_REF] John | With a mathematical introduction by the editor[END_REF]). Let n, m ≥ 1 be integers, R be PID and A ∈ R n×m a matrix of rank p. Then there exist matrices U ∈ GL n (R) and V ∈ GL m (R) and a diagonal matrix

D = p i=1 d i E ii ∈ R n×m such that a.) d i = 0 for i = 1, . . . , p, b.) d i | d i+1 for i = 1, . . . , p -1, c.) D = U AV .
The d 1 , . . . , d p are unique up to multiplication by a unit and are called invariant factors.

For simplicity we will only discuss in detail the case when R be a euclidean domain with euclidean function δ : R\{0} → {1, 2, 3, . . . }. We need also the following obvious consequence of the Smith normal form.

Corollary 10.2. With the notations of Theorem 10.1 we have the following.

(1) A basis for the free R-module im R (A) is provided by the first p columns of U -1 D.

(2) If m > p, the last m -p columns of V form a basis for the free R-module ker R (A).

(3) The last n -p rows of U form a (n -p) × n matrix B of rank n -p such that BA = 0.

For a detailed proof of Theoren 10.1 we refer to Jacobson [Jac85, Section 3.7]. For the reader to understand the basic ideas I work out some examples for the case R = Z. Here the euclidean function is δ = | |. I use again the notational trick of adding block matrices to keep track of the row and column operations. Other people have found this before me (see, e.g., the method of Gauß-Jordan for matrix inversion), but I do not know a reference where it is used for Smith normal form calculations. The trick has also the advantage that one can do check sums for rows and columns to spot errors. The first step consists of switching a non-zero entry with minimal δ to position (1, 1) using operations of type 1.). Here it is not necessary since that entry 3 is already there. Next, we want to annihilate everything left of 3 using column operations of type 2.). As 3 4, 5 we cannot do it in one step but use division by 3 with remainder: 3 4 5 6 1 7 8 9 10 1 11 12 13 14 1 15 16 17 18

1 1 1 1 1 → 3 1 2 1 7 1 2 -4 1 11 1 2 -8 1 15 1 2 -12 1 1 -1 -1 -2 1 1 1
.

The unit matrix in the bottom keeps track of the column operations and, as a matter of principle, we only work in the first block. Now we switch the first two columns so that an entry with minimal δ appears at position (1, 1). This enable us to finish the clean up of the first row using column operations of type 2.).

→ 1 3 2 1 1 7 2 -4 1 1 11 2 -8 1 1 15 2 -12 1 -1 1 -1 -2 1 1 1 → 1 1 1 4 -4 1 1 8 -8 1 1 12 -12 1 -1 4 1 -2 1 -3 -2 1 1
.

Next we annihilate everything below the 1 at position (1, 1) using row operations of type 2.). The unit matrix on the right keeps track of the row operations.

→

1 1 4 -4 -1 1 8 -8 -1 1 12 -12 -1 1 -1 4 1 -2 1 -3 -2 1 1
.

Since 1 | 4 we can proceed with the block 4 0 -4 8 0 -8 12 0 -12 (1st row and column become spectators). An entry 4 with minimal δ appear already at the right spot and we can clean what is on the right of it using a column operation of type 2.).

→ 1 1 4 -1 1 8 -1 1 12 -1 1 -1 4 1 2 1 -3 -2 -3 1 1
.

Using row operations of type 2.) we arrive at

→ 1 1 4 -1 1 1 -2 1 2 -3 1 -1 4 1 2 1 -3 -2 -3 1 1 = D U V . Hence A =    
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

    =     1 0 0 0 -1 1 0 0 1 -2 1 0 2 -3 0 1     -1     1 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0         -1 4 1 2 1 -3 -2 -3 0 0 1 0 0 0 0 1     -1 = U -1 DV -1 .
We use inv pc to invert U :

1 1 -1 1 1 1 -2 1 1 2 -3 1 1 1 -1 1 -1 1 -1 1 -1 → 1 1 1 -2 1 -1 1 -3 1 -2 1 -1 -1 1 -1 1 -1 1 -1 → 1 1 2 1 1 1 3 1 -1 -1 -1 -1 -1 1 -1 1 -1 → 1 1 3 1 -1 -1 -1 -1 -1 -1 -2 -1 -1 1 -1 → -1 -1 -1 -1 -1 -1 -2 -1 -1 -1 -3 -1 -1 → 1 1 1 1 1 1 2 1 1 1 3 1 1 , i.e.,     1 0 0 0 -1 1 0 0 1 -2 1 0 2 -3 0 1     -1 =     1 0 0 0 1 1 0 0 1 2 1 0 1 3 0 1     ,
        = Z     1 -2 1 0     ⊕ Z     2 -3 0 1     , im Z        
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

        = Z     1 1 1 1     ⊕ Z     0 1 2 3     .
Transposing the Smith normal form D T = V T A T U T one observes that in this example ker Z (A) = ker Z (A T). To find a basis for the A T Z 4 one has to take the first 2 columns of V -1 . We leave this calculation to the interested reader and say for the record that the solution of the problem of the four submodules with Smith normal form requires two matrix inversions, one for the image of A and one for the image of A T .

Example 10.4. There is a subtlety that we did not have to address in Example 10. Now the problem is that 4 10 (this is the sublety). We add the third row to the second and do column operation of type 2.) dividing by 4 with remainder:

→ 2 1 4 10 1 1 1 10 1 1 -1 -3 -3 1 -1 1 1 → 2 1 4 2 1 1 1 10 1 1 -1 -1 -3 1 -2 -1 1 1
.

Next we have to move the 2 to position (2, 2) and clean up what is on the right of it:

→ 2 1 2 4 1 1 1 10 1 1 -1 -1 -3 -2 1 -1 1 1 → 2 1 2 1 1 1 10 -20 1 1 -1 1 -3 -2 5 -1 1 -2 1 .
It remains to clean up what is below that 2. For aesthetic reasons we multiply the 3rd row by -1: 1 -1 1 -3 0 -2 5 -1 0 1 -2 0 0 0 0 1

→ 2 1 2 1 1 1 -20 -4 -5 -5 1 -1 1 -3 -2 5 -1 1 -2 1 → 2 1 2 1 1 1 20 4 5 5 1 -1 1 -3 -2 5 -1 1 -2 1 = D U V .
    -1 = U -1 DV -1 .
We use inv pc to invert U : Example 10.5. Let us quickly re-examine Example 6.2. We would like to understand the kernel of A = 1 0 1 2 0 2 1 3 as a Z-module using a Smith normal form:

1 1 1 1 1 1 4 5 5 1 1 -1 1 -1 1 -1 → 1 1 1 1 4 5 5 1 1 1 1 -1 1 -1 1 -1 → 1 1 -4 1 1 1 -1 -1 -1 -1 1 -1 1 -1 → 1 1 -5 1 -1 -1 4 -1 -1 1 -1 → -5 -1 -1 1 4 -1 -1 -1 -1 → 5 -1 1 -1 -4 1 1 1 1 , i.
1 1 2 1 2 1 3 1 1 1 1 1 → 1 1 2 1 3 1 1 -1 -2 1 1 1 → 1 1 1 2 3 1 1 -1 -2 1 1 1 → 1 1 1 1 1 -1 2 1 1 1 -2 -3 1 . Hence 1 0 1 2 0 2 1 3 = 1 0 0 1 -1 1 0 0 0 0 1 0 0     1 -1 2 1 0 0 1 0 0 1 -2 -3 0 0 0 1     -1 , ker Z 1 0 1 2 0 2 1 3 = Z     2 1 -2 0     ⊕ Z     1 0 -3 1     .
We leave it to the reader to elaborate the version of what has been said above for the case when R is a PID (see [START_REF] Jacobson | Basic algebra I[END_REF]Section 3.7]). Note that one has to add an extra operation from Bezout's theorem. We need one more detail about the Smith normal form (see [Jac85, Theorem 3.9]). -2 -4 1 -1 -3

1 2 1 2 1 1 1 → -1 -3 1 -2 -4 1 2 1 2 1 1 1 → -1 -3 1 -2 -4 1 2 1 2 1 1 1 → -1 1 -2 2 1 2 -6 1 2 1 1 -3 1 → -1 1 2 1 2 -6 -2 1 2 1 1 -3 1 → -1 1 2 1 2 3 -4 1 -1 2 1 1 -3 1
, so that B = 3 -4 1 0 -1 2 0 1 . Then we calculate a Smith normal form of B

3 -4 1 1 -1 2 1 1 1 1 1 1 → -1 2 1 1 3 -4 1 1 1 1 1 1 → -1 1 3 2 1 3 1 1 2 1 1 1 1 → -1 1 2 1 3 1 3 1 2 1 1 1 1 → -1 1 1 2 3 1 3 1 2 1 1 1 1 → -1 1 1 1 3 1 2 1 1 1 -2 -3 1
and deduce once again ker Z 1 0 1 2

0 2 1 3 = Z     2 1 -2 0     ⊕ Z     1 0 -3 1     .
In the example it looks like that the last method12 to calculate the basis for ker Z (A) is more labour intensive than calculating a Smith normal form of A. But let us say, to be concrete, A is a 100 × 100 matrix and ker Z (A) is of rank 3. Then ker pc seems faster than Smith normal form as it does not need division with remainder (it works with bigger numbers though). The saturation procedure explained here takes only about 6% of the total effort and if, by accident, ∆ 3 of X is in R × it is not needed at all. I do not know a method to obtain a basis for the non-saturated im R (A) by post-processing the result of 4pc.

 and v ACD = v B2C3DE = v ABDE = 0. Hence pr(I) = {D, E, F, G} and pr(J) = {DEF GH, E 2 G, E 6 F, F G 3 , GH}.

R

 λ,B T ,σ = 1 + m r=λ+1 ((b σ(j)λ -1)E rr -b rσ -1 (j) E rλ) = λ r=1 E rr + m r=λ+1 (b σ(j)λ E rr -b σ(j)r E rλ)I indicate how to turn a Q-basis obtained by ker pc into a Z-basis. A clear and accessible reference for the background material is [Jac85, Section 3.7], [Jac89, Sections 7.2,7.3]. Another good reference on Smith normal forms is[START_REF] Newman | Integral matrices[END_REF].

Example 10. 3 .

 3 We would like to find a Smith normal form of the matrix

.

 3. In order to realize condition b.) we occasionally have to work a bit more. Let us calculate the Smith normal form of the matrix A = here essentially [Ash07, Subsection 4.5]. We switch the first and the third row to move a 2 to position (Next we clean up everything to the right of that 2, and afterwards, what is below of it:

 Example 10.11. Let us take a final look at Example 6.2. The kernel of as a Q-vector space. We now use a Smith normal form to calculate B:

 Theorem 2.1. Let n ≥ 2 be an integer, R an integral domain with quotient field Q and A = [a ij] i,j=1,...,n ∈ R n×n with a 11 = 0. Then

			a 11 a 12 a 21 a 22	a 11 a 13 a 21 a 23	• • •	a 11 a 1n a 21 a 2n
	|A| =	1 11 a n-2	a 11 a 12 a 31 a 32	a 11 a 13 a 31 a 33		a 11 a 1n a 31 a 3n

 Formally this expression makes only sense in Q, but of course |A| ∈ R. A straight forward proof of Equation (2.1) in terms of row operations can be found in [Eve12, Paragraph 3.6.1]. I am reproducing here an argument from[START_REF] Abeles | Chiò's and Dodgson's determinantal identities[END_REF] generalizing Equation (2.1). The generalization is based on a block matrix decomposition of Sylvester:

	(2.1)			.
	• • •			• • •
	a 11 a 12 a n2 a n2	a 11 a 13 a n2 a n3	• • •	a 11 a 1n a n2 a nn

 Here we use the fact that since C{z} is a PID our vector generates ker C{z} if and only if it generates ker Q , where Q is the field of convergent Laurent series (see Remark 10.10).

 N 66 H 96 C 42 O 24 + 1176KMnO 4 + 1399H 2 SO 4

		-2 -1			1 -1 -1
	→	3	4	1 -1	1
		-46 565 84		7 132 96 -96	-2
	→	-5 -1176 -168	-2 2		-3 -14 -264 -146 146 -46 4 1 3
	→	-5 -588 -84	-2 2	-3 1 -7 132 -73 73 -23 2 3
	→	420 -1176 1176 35 660 -1399 223 1879 -10
	The balanced reaction is 7				
	10Cr 7				
						2
	6	8		2 -2	2
	-92 1130 168		14 264 192 -192	-4

This is optional up to the last iteration.

This is optional up to the last iteration.

According to L. Kronecker rational numbers are Menschenwerk and require as such a lot of attention, i.e., brain capacity.

I learnt this from my dad.

This does not decide if CO comes before CO 2 . If you want a definite rule take your favourite term order (see, e.g.,[START_REF] Greuel | A singular introduction to commutative algebra[END_REF][START_REF] Yengui | Constructive commutative algebra. Projective modules over polynomial rings and dynamical Gröbner bases[END_REF]), for example.

The Betelgeusian civilization has been saved: all the dangerous F G 3 could be removed from the atmosphere and replaced by the toxic E 6 F .

To me it looks like the matrix is stretching out its arms and crawling under the fraction bar.

This is of course true for ker pc.

How should one call it? I am voting for smitherate.

If p = j the second sum is zero proving 3). For p, q > λ in both formulas, Eqns. (9.1) and (9.2), the second second terms coincide, which proves 1).

Note that the 2 × 2-minors in Eqns. (9.1) and (9.2) are exactly those of pivotal condensation (see Step 1 and 2). So the scheme of pc can be realized by left multiplication with a product of pc-op matrices, or, alternatively, by right multiplication with a product of transposes of pc-op matrices. The catch is that the other terms in Eqns. (9.1) and (9.2) do not coincide. This does not cause any serious problems, however. Now for 0 ≤ l ≤ p -1 we set

The permutations σ l+1 are the ones from Subsection 8.3. We write M l+1 = L l+1 P σ l+1 . By Lemma 9.1 2) the matrix

is in echelon form and of rank p. So the last n -p rows of E are zero. The lower (n -p) × (n -p -

multiplied from the left by an appropriate diagonal matrix equals Y p . But since the last m -p columns of E T are zero we must have AY T p = 0. Note that Y T p is by construction of full rank, so that ker

On the other hand, the matrix

has by Lemma 9.1 3) the property (P): for transposed pivots f ij , f kl with l > j it follows k > i. Here we say that an entry in F is a transposed pivot if it is a pivot in F T . Let I F =: {i 1 , . . . , i n-p } be the set of all column indices of zero columns of F . We deduce from property (P) that ker(F) = R{ e i | i ∈ I F }. By Lemma 9.1 1) and 3) the set I F consists of exactly those column indices where one encounters zero columns in some X l .

Here it is understood that the columns of X l are counted starting with column index

The first p columns of

Multiplying from the right by transposed pc-op or diagonal matrices does not mess up linear independence of columns. Now from

-1 we see that the column vectors of A with column indices σ -1 (1), . . . , σ -1 (p) form a maximally independent set of vectors in im Q (A). Here it is important to keep in mind that a permutation σ acts on columns by right multiplying with P σ -1 . The statement about the image of A T is, in principle, the usual one from Gaussian elimination. In fact, with

there is a transposed pivot in the ith column of F }. This finishes the proof of 4pc.

In general, it is not guaranteed that ker R A T = Y T p R n . A necessary and sufficient criterion for the case when R is a PID is provided by Theorem 10.9. If R is a domain but not a gcd domain it is not guaranteed that the normalizations (i.e., the cleaning up of Step 3) of ker pc are theoretically feasible, even though practically they might be. If in this situation Y T p contains a k × k-submatrix DP , where D is a diagonal matrix of units and P a permutation matrix then ker R A T = Y T p R n follows. The reason are explained in the next section.

The Kernel as a free R-module

For those who would like understand how to calculate a basis for the kernel ker Z (A) of and integer matrix A ∈ Z n×m I collect here some material from commutative algebra. I give a practical account of Smith normal form and discuss the saturation of a submodule of a finitely generated free module. Without some experience with Smith normal form the reader will not be able to appreciate the main point: Subsection 10.3, where Theorem 10.6. With the assumption of Theorem 10.1 let ∆ i be the gcd of the i × i-minors of A. Then d 1 = ∆ 1 and d i = ∆i ∆i-1 for i = 2, . . . , p. 10.2. Saturated submodules of R n . I am pretty sure the following material is written up somewhere. I just could not allocate it.

Let S be a multiplicative subset of the domain R and S -1 R the localization of R at S. An R-module W of R n is called S-saturated if for any r ∈ S we have that r w ∈ W implies w ∈ W . Let us denote by f the canonical R-linear map R n → S -1 R n . It is easy to verify that an R-module W is S-saturated if and only if there is an S -1 R-submodule M of S -1 R n such that W = f -1 (M). More generally, the S-saturation

We now specialize to the case S = R\{0}. Then S -1 R = Q is the field of fractions of R. An (R\{0})saturated submodule W of R n we simply call saturated. The key observation is that, since R is a domain, the kernel of a matrix A ∈ R n×m is saturated. This is because A(r w) = rA(w) = 0 implies A(w) = 0 for any r ∈ R\{0}. Since an inclusion of two equal dimensional Q-vector spaces is an equality we have the following.

Lemma 10.7. Let R be a domain and W an R-submodule of the saturated R-submodule M ⊆ R n such that rank W = rank M . Then W = M if and only W is saturated.

Proposition 10.8. Let R be a domain and W be a R-submodule of R n and l ≥ 0 and integer. If W saturated then ∧ l R W saturated for each l ≥ 0. Proof. We have

Every ω ∈ ∧ l W can be written as ω = w 1 ∧ . . . ∧ w l for some w 1 , . . . , w l ∈ W and there exist v

Theorem 10.9. Let R be a PID and X ∈ R n×p a matrix of rank p with invariant factors d 1 , . . . , d p . Then the following statements are equivalent: i.) im R (X) is saturated.

ii.) d i ∈ R × for all i = 1, . . . , p.

iii.) ∆ p ∈ R × .

Proof. The implications i.)⇐⇒ii.) =⇒iii.) are obvious from Theorems 10.1 and 10.6. To establish the implication iii.)=⇒ ii.) we show that if d p / ∈ R × it follows that ∆ p / ∈ R × . If A ∈ R r×s is a matrix we denote by A j1...jp i1...ip the p × p-minor corresponding the row indices 1 ≤ i 1 < . . . < i p ≤ r and column indices 1 ≤ j 1 < . . . < j p ≤ s. From the Smith normal form X = U -1 DV -1 and the Cauchy-Binet formula we deduce But this means that d p | X 1...p i1...ip and the gcd ∆ p of the X 1...p i1...ip cannot be a unit.

Remark 10.10. Let R be a gcd domain (e.g., a PID). Let V be a one-dimensional Q-vector space. Clearing the denominators we write V = Q w for some w ∈ R n . Put W := R w and note that V = Q ⊗ R W . Now W is saturated if and only if the gcd ∆ 1 of the entries of w is a unit. Such vectors are also called primitive in the literature [START_REF] Ben | Saturation of finitely-generated submodules of free modules over Prüfer domains[END_REF]. The generators that are calculated by ker pc are by construction primitive. That is, if dim(ker Q (A)) = 1 then ker pc provides a generator for ker R (A).

10.3. Turning a Q-basis into an R-basis. In this section we assume R is a PID. Once we have already calculated Q-basis v 1 , . . . , v p ∈ R n for the Q-vector space ker Q (A) for A ∈ R n×m using ker pc it seems desirable to turn it into an R-basis. In particular, if n, m are large but rank(ker(A)) is small it is not very attractive to go through the whole Smith normal form calculation for the matrix A.

Here one can proceed as follows. Take Y T p = v 1 . . . v p ∈ R n×p and calculate its Smith normal form D = U Y T p V . Form the matrix B by taking the last n -p rows of U (see Corollary 10.2(3)) and calculate the Smith normal form D = U BV of B. The last p columns of V form a basis for the R-module ker R (A). More generally, this recipe can be used to calculate the R-saturation of a submodule of R n .