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Abstract

We consider a semilinear wave equation involving a time-dependent structural damping term of the form (A u,.

1
+1)f
Our results show the influence of the parameters 3, o on the nonexistence of global weak solutions under assumptions
on the given system data.
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1. Introduction

The aim of the paper is to establish a nonexistence of global weak solutions to the Cauchy problem for the
following semilinear structurally damped wave equation

bo 5
(-A)"?u, = |ulP xeR" >0,
1+1¢

u(0, x) = up(x), u(0,x) = uy(x), x € R,

Uy — Au +

where 0 < 00 <2,n > 1, p > 1, by is a positive constant, and § € R. Without loss of generality, we assume that by = 1.

Prior to our main blow-up results, we would like to emphasize that the special case of Eq. (I)) for by = 0 is
governed by the classical semilinear wave equation, where the Strauss conjecture for this case states that: if p < pg
then there is no global solution for (I) under suitable sign assumptions on the initial data, and for p > ps a global
solution exists for small initial data; see e.g. [10, 14} 16} [18] among many other references, where pg is the positive
solution of the following quadratic equation (n — 1)p> — (n + 1)p — 2 = 0, and is given by

n+1+ V2 +10n-7
2ni-1) '

ps = ps(n) :=

In order to have more general initial data, but still with compact support, Kato [[11]] obtained with a slightly less sharp
blow-up result an exponent of the form (n + 1)/(n — 1) which is less than the Strauss exponent pg, for n > 2.

We would like to emphasize here that the test function method, introduced by [[17] and used by [} [9, [12]], plays a
similar role as of Kato’s method in the proof of blow-up results. In fact, the test function is effective in the case of
parabolic equations as it provide exactly the critical exponent p., but in the case of hyperbolic equations (cf. [12]]) we

*Corresponding author
Email addresses: mokhtar .kirane@ku.ac.ae (Mokhtar Kirane), ahmad . fino@aum.edu.kw (Ahmad Z. Fino), skerbal@squ.edu.om
(Sebti Kerbal), aymen.laadhari@ku.ac.ae (Aymen Laadhari)

Preprint submitted to Elsevier May 7, 2023



get the so-called Kato’s exponent p* which is less than p.. This is one of the weakness of the test function method but
in general it can be applied to a more general equation and system with no positive condition on solutions.

When 8 =0, 0 — 2, and by = 1, problem (T)) is reduced to
g — Au—Au; = P, xeR",t>0, 2)

which is called the viscoelastic damping case. D’ Ambrosio and Lucente [3, Theorem 4.2] proved that the solution
of (2) blows-up in finite time when 1 < p < (n + 1)/(n — 1),, where (- ), := max{0, -}, by applying the test function
method. Similar result has been obtained recently by Fino [6]] in the case of an exterior domain. On the other hand,
D’ Abbicco-Reissig [2] proved that there exists a global solution for (2)) when p > 1+ % (n > 2) for sufficiently small
initial data. Therefore, the exact value of the critical exponent is still an open question.

Recently, problem (I)) with o — 2,

b
Uy — At — ———Au, = lufP, xeR"t>0, (3)

(1+10P

has been studied by Fino & Hamza [7]]. They proved that if fR” u(x)dx > 0,
pe(l,0) forn=1,2,
pe(l,n’%z] for n > 3,

and

1<p< - if B> -1,

n(1-B)+2
l<p§m if <1,

then the mild solution of (3)) blows-up in finite time.

The goal of this paper is to prove the nonexistence of global weak solutions of (I)) which is a generalization of the
results of [7] to the case of fractional Laplacian damping term by using a recent version of the test function method
that relies on Lemma(I]below. The novelty of this paper is the choice of this test function which is consistent with the
suppression of positivity usually assumed by many authors.

In the case of 8 # 0 and by = 1, we give an intuitive observation for understanding the influence of the damping

1
term ((1 7 (=A)""?u,) by scaling argument. Let u(z, x) be a solution of the linear strong damped wave equation
+ 1
1
U (t, X) — Au(t, x) + s t)ﬁ(—A)‘T/Zu,(t, x) = 0. 4)
When o > 1 — 5, we put
u(t, x) = v(A(1 + 1), Ax), AL+ =5, Ix=1y, %)

with a parameter 4 > 0, we have

o+p-1

A
Vis(8,3) = AV(s, 3) + == (=07 Pvy(s,y) = 0.

Thus, when o = 1 — 8 we notice that Eq. @]) is invariant, while when o > 1 — g3, letting 4 — 0, we obtain the wave
equation without damping
Vvys(s,¥) = Av(s,y) = 0.



We note that 2 — 0 is corresponding to t — +oo.
On the other hand, when o < 1 — 8, we put

u(t, x) = vAUTF (1 +0,A%),  ATF(l+8) =35 x=y,

with a parameter A > 0, we have

201

1 o2 B-0)
Vvss($,¥) + s_ﬁ(_A) vs(s,¥) = A" TF Av(s,y) = 0.

In this case, letting 4 — 0, we obtain the pseudo-parabolic equation

1
Vss(5,9) + 5 (=8)7v(s,3) = 0.
s
This means that the asymptotic behaviour of solutions depends on the behaviour of the coefficient of the damping term.

This paper is organized as follows. We start in Sec. 2] by stating the main theorem of our work and we prove it in
Sec. [d] Sec. [3]is to collect some preliminaries.
2. Main results

This section is aimed to state our main results.

Theorem 1 (Blow-up). We assume that
(o, uy) € (L'(R") N H'(RM) x (L'(R") N L*(R"™))

satisfying the following condition:

j)m@ﬂx>0 (©)
i
' 1<p<min{(:_+11)+;(n_na_)+} ifo>1-8,
7
1 <p<min{(:((11__£)j;;+; « _no_)+} if o <1-p,
" p=2i1, ifcrzl—ﬁ,o->n2fl,n22,
p=%, iFn(l+B) <o<1-B, n>1,

where (- )y := max{0, -}, then problem (1)) has no global weak solutions.

Remark 1. We note that, by taking the limit case o — 2 we recover the same results of [I7].

n+1

. i, (n=1), o : .
of global solutions to the semilinear wave equation with the nonlinearity |ul?, subject to small initial data with compact
support.

Remark 2. We stress that the exponent appearing in (1) was introduced first in [[I1)] to prove the nonexistence



3. Preliminaries

Definition 1. /73]
Let S be the Schwartz space of rapidly decaying C* functions in R" and s € (0, 1). The fractional Laplacian (-A)* in
R" is a non-local operator defined on S by

(—A)'W(@) = Cpy pov. f V) —vk)

R |x _ y|n+2s

Cf "9 = v0) 4 ifo<s<1/2,
R

N Ix _ y|n+23

v(x) = v(y) = Vv(x)- (x — )X |-y«
cf 0 V0 = W) = Do) - yss0, iz es<d,
4 u |)C _ y|n+2s
s4sl"(% +5)
nil(1—s)
In fact, we are rarely going to use the fractional Laplacian operator in the Schwartz space; it can be extended to
less regular functions as follows: for s € (0, 1), £ > 0, let

where p.v. stands for Cauchy’s principal value, and C,, 5 :=

Ly(R™ N C**+4(Q) if0<s<1/2,
LS,S(Q) = {

L(RHNC > Q), if12<s<1,
where Q be an open subset of R”, C®2*#(Q) is the space of 2s + &- Holder continuous functions on Q, C1>**-1(Q)

the space of functions of C'(Q) whose first partial derivatives are Holder continuous with exponent 2s + & — 1, and

L(R") =<5u:R"—> R such that f &dx< 0.
Rn 1+ |)C|n+2‘S

Proposition 1. [[/3| Proposition 2.4]

Let Q be an open subset of R", s € (0, 1), and f € L;(Q) for some € > 0. Then (—A)° f is a continuous function in Q
and (—A)* f(x) is given by the pointwise formulas of Definition[I|for every x € Q.

Remark: A simple sufficient condition for function f to satisfy the conditions in Propositionis that f € L;OC(R”) N
C*(Q).

Using [4, Lemma 2.11] and its proof, we have the following.
Lemma 1. Let (x) := (1 + (|x| — 1)4)1/4f0r allxeR", n>1. Let s € (0,1] and ¢ : R" — R be a function defined by

1 if |x <1,
P(x) = 8)
(O f x> 1.

Then
¢ € CH(R™ N L*(R™) N H*(R™), ¢ € L*R"),

and the following estimate holds:
max {|A¢(x)|, [(=AY’¢p(x)|} < Cp(x) forall x e R".
Lemma 2. Let h be a smooth function satisfying 8>h € L*(R"). For any R > 0, let hg be a function defined by
hg(x) == h(R™'x)  forall x € R".
Then, (—A)*(hg), s € (0, 1], satisfies the following scaling property
(=A)hg(x) = R">(=AYh(R™'x),  forall x € R".
4



Lemma 3. [4 Lemma 2.14]
Let 5,5 € (0,1], R > 0and p > 1. Then, the following estimate holds

fR (@rC0) 7T [(-A (0] dx < CRF,

where ¢g(x) := ¢(x/R) and ¢ as defined in ({§).

4. Proof of Theorem[I]

The proof of Theorem [I] relies mainly on the concept of weak solution of the Cauchy problem (I]) and the use of
the test function method. Let

Xsr =l € C([0, 00), H*(R") N C' ([0, 0), H*(R™)) N C*([0, 00), L*(R™)), such that suppe C O},
where Qr := [0, T] x R", and the homogeneous fractional Sobolev space HY(R™), 6 € (0,2), is defined by
{ue LX(R™); (-AY?u e LXR")), if6e(0,1),

1 n : —
Hﬁ(Rn) - H (R )7 lf 6 = 1,
{ue H'R"); (-AYPu e LXRM)}, if6e(1,2),
endowed with the norm
lell2qery + | (=800 g if 6 € (0, 1),
u ny + VM 2(R")» lf 6 = 1,
s = llutll 2wy + IVl 2 ey

lell2qeny + IVull2eny + (=800 o g i 6 € (1,2).

The weak formulation associated with (I reads as follows:

Definition 2. (Weak solution)
Let T > 0, and uy, u; € L>(R"). A function

u e L'((0,T), L*(R™) N LP((0, T); L**(R")),

is said to be a weak solution of (I)) on [0,T) x R" if
[ulP o dt dx + f u1(x)¢(0, x) dx
Or R»

" f U0 (—A)7 (0, x) dx — f Uo(Dpr(0, ) dx
n R)l

T
1
= dtdx— | —— ~A)g, dx dt
fr”‘”” ! f0(1+r)ﬁ R A e

T
- fQ ulpdt dx + fo (1:# fR u(-A)"?pdxdt,

holds for all ¢ € X, 1. We denote the lifespan for the weak solution by
T (up, uy) := sup{T € (0, 0] for which there exists a unique weak solution u to ([I))}.

Moreover, if T > 0 can be arbitrary chosen, i.e. T,,(ug,u;) = oo, then u is called a global weak solution ofﬂl).

5



Proof of Theorem[I} Let u be a global weak solution of (I)), that is
[ulP o dt dx + f u1(x)¢(0, x) dx
Or "

+ f U0 () (—A)7"(0, x) dx — f Uo(Dpr(0, 3) dx
n RPl

T 1
= dtdx — —A)72 g, dxdt
LTWPU X L (1+t)ﬁfnu( ) dx
T 2
— | ubpdrdx+ f —F f u(-A)"Ppdxd, )
jQ‘T ¢ 0 (1 + t)ﬁJrl R? 14
forall T > 0,and all ¢ € X 7.

Let T > 0. Now, we introduce the following test function

(1, 3) = WO = 07006 | (10)

where ¢ is defined in , U(t) = ‘I’(%), n > 1,d > 0 are constants that will be determined later, and ¥ € C*(R,) is a
cut-off non-increasing function such that

1 ifo<r<1/2,
Py ={ N\, ifl2<r<l,
0 if r>1.

From the formulation (), we get the following inequality

[ulP dt dx + f u1(x)(0, x) dx

Or R
T
Sf f |u||ga,,|dxdt+f lul |Ap| dt dx
I Jre or

T 1 T IB
+ Pra——— “A)Y201d dt+f —f A2\ dx dt
fg T+1P Ju lull(=A)"" ¢/l dx T e lul 1(=A)""g| dx

+ f ol (I=8)7"20(0, )| + k(0. 1)) dx
=: 11R+ L+ 1+ 14+ Is. (11)
Let € > 0. By applying &-Young’s inequality
AB< AP +C(e,p)B”, A>0, B>0, p+p =pp’, Cle,p) = (p— D)(epP) /P D,

we obtain the estimation for the first integral

I

IA

lulg"'P o™ P $ral (W) dt dx
or

e | luPedtdx+C f Sray PO, dt dix. (12)
Or Or

IA

As M)y = " Y, + 1y — DY 2|y, [?, the inequality (T2) becomes

L<e | |uPydtdx+C f Sral P Wl dtdx + C f Grap™ 2P | | dt dx. (13)
Or Or Or

6



Proceeding similarly as for (I3)), we get
L<e f lulPdtdx + C f W16,/ "D\l dt dx.
T Q'I'

In the same way, we write

T 1 1
= /P, —1/p|(_A\T/2 n
b= f; (1+1p f lule™ P P N(=A)"“ brallh™),] dx dt

IA

& |ulP o dt dx

Or
T Ry -
e, A+ 0pr L ar Rl v i avar
T R
2

Clearly,
1 , T
—— < CT#, Vte(—,T),
(1 +rpr 2
therefore,

Lee | WPedidx+CT# | ¢ P DI=0)Ppral” g7 Wy dt dx.

Or Or
In the same manner,

T 1
L < C| —— Vpp=lp gl (=AY 2 pra| dx dt
y < f0(1+1)ﬁ+1fw|u|<p VP g (=AY sl dx

IA

< C [ ol (-85 7+ 0 Ol6r) d.

Plugging (TT)) together with (I3)-(I8) and choosing & small enough, we deduce that
lulP o dx dt + f uy(x)pra(x) dx
Or R"
<C f $ra" " ul” didx + C f Sra™ 2 PV dr dx
Or Or
+C | wen " V1Al dr dx
Or

+CT [ g OO AY Pl gl drdx

0
' 1 —1/(p-1) o2 Yo
+C | qrame L oI Pl g dx i

+C fR ol (I8 4] + (Ol dlx.

Taking account of the expression of ¢ given by (10) and Lemmas T}{3] we infer that

|ulP dxdt + f uy (x)pra(x) dx
Or Re

<C T—2p +14+nd +C T—de +1+nd +C T—ﬁp —p'—odp’+1+nd

T
+C TP +nd f (4077 dr + C(T—‘Td + T‘l) f luto ()| dx.
0 R

7

r 1 1o ,
SJQV” |u|”¢pdl‘dx+Cf(; Wﬁ; ¢T;/(p 1)|(_A)0/2¢T‘,|l’ " dx dt.

Finally, it remains only to control the term /5. By exploiting the identity ¢,(0, x) = m/:(0)¢74(x), we infer

(14)

s5)

(16)

a7

(18)

19)



Since 0 < o < 2, we notice that the cases of o > 1 — fand o < 1 — 8 are equivalent to
o>1-8, foralpg>-I, and o<1-8, forall 8<1,

therefore, we distinguish two cases:

I.Case: 0 > 1 -, forallg > —1.
In this case, we choose d = 1.

n+1 n
Subcritical case p < min{ ; }.
P (-1, (-0,
Note that,
. B+1)p j_B+bp
a+n P~V ar<c]T p=bitgp <1,
0 InT ifBp=-1,
1 ifBp>—1.

We have two cases to distinguish.

a) If 8 = 0. In this case, we have 8 p > —1 and so

" _B+Dp
f(l+t) r-1 a<c.
0

Therefore, implies
|ulP o dxdt + f u (X)o7 (x) dx
QT Rll

<ty oot oty (T + T | Juo(x)l .
Rn

Using the factBp > -1 = —(B+ 1)p’ —op’ + 1 + n < —op’ + n, we conclude that
[ulPp dx dt + f uy (x)dr(x) dx
QT n

SCT 2L CT Py C(T77+T7) f luto(x)| dx. (20)

R

Note that, we can easily see that

2 +1+n<0e=p< and —-op +n<0=p<

n+ on
(n—1), n-o);

Letting T — oo, and using the Lebesgue dominated convergence theorem together with u; € L'(R"), we

conclude that
f u;(x)dx <0.

This contradicts our assumption (6).
b) If -1 < B8 < 0. We have three cases for n.

|
=)

S

=]

+
=
+
=



Note that whenn =1, wehaven =1 <

i)

iif)

1B
1+/3

1—
Ifn> —, then n > —'B and therefore
1 1+

+p

+1 1
p<min{n—;L}s——, forall n > 2,
n—-1n-o B

i.e. B p > —1, which implies a contradiction by following the same calculations as in part a).

1—
If <n<-2 wheno > 1 — [3, then we have

1+p8 1+8

(o (o

n _ _

<
1+ 2-0

bl

and therefore

+1 +1 1
p < min 1 ; n = <——, foralln>2,
n-1n-o n—1 B

i.e. B p > —1, which implies a contradiction by following the same calculations as in part a).

1-—
Ifn< mg,thenn < ﬁ, i.e.
1 min{ n n+l } p
B (n—0). (n=1),
olf p<-1/B,i.e. pB > —1, then
B+Dp
f(1+¢) P=1 gr<CInT, forall T > 1.

Then, implies

|ulP @ dx dt + f u (x)or(x) dx

QT n
<C T—2p +14n +CT” B+D)p'—op’+1+n +C T—O‘p +n InT + C f |M0(x)|dx
forall T > 1. AspB>—-1 = (B+ 1)p’ > 1, we conclude that
[ulPp dx dt + f u (x)dr(x)dx
QT Rll
SCTHM 4 CT P InT+ C(T7+T7") | lwo(ldx, VT > 1. 30
]Rn

Note that, we can easily see that

and —-op +n<0=p<

n n
2 +1+n<0e=p< _
b P (n—1Dy (n—o),

Letting T — oo, using the fact that In7 < T E (because p <
convergence theorem, we conclude that
f ui(x)dx <0.
Rll

9

—2—) and the Lebesgue dominated

(n— 0’)



This contradicts our assumption (6).

oIf p>—1/B,ie. pB < —1, then

T
f A+ di<cT" ", forall T > 0.
0
Then, (T9) implies
[ulP o dxdt + f u (X)¢r(x) dx
Or R"

<C T—2p’+l+n +C T*(ﬁ”l)[”*a'l’/*l*” + C (Tf‘r + Tﬁl) f luog(x)| dx,

R

forallT > 1. Asoc>1-8=n< % < 2%(r,we conclude that

<min{ ntl " } ntl < ntl = -B+1)p ' —op +1+n<0
; = = - - n )
P -0, (-] -1n (-p-o0). p=op
and
<min{ ntl " }— n+l = 2p"+1+n<0
P -0, n-o)s) -1y P '

Note thato > 1 -8 > 1,and 2 > o > o + 3, therefore
m-B-0)y=n—-1y=n-0): =0, when n =1,
m-B-0)y=n-F—-0, n-1)y=n-1, (n-0); =n-o, when n > 2,

Letting T — oo, using the Lebesgue dominated convergence theorem, we conclude that

f ui(x)dx <0.

This contradicts our assumption ().

+

Critical case: p < coando > 1 whenn=1,0r p = n and o > when n > 2.
Note that when 2 < n < , we have

n+1 n ,

p= < ie. —op +n<0,

n-1 n-o
and when o > 1 and n = 1, we also have —op’ + n < 0.
We have two cases to distinguish.

a) If 8 > 0. In this case, we have 8 p > —1 and so
_B+Dp

T A
f(1+t) r-1 ar<c
0

From the subcritical case, we can see that we have
u € LP((0, 00); LP(R™)).

10

(22)



On the other hand, by applying Holder’s inequality instead of Young’s inequality, we get

T I/p T I/p
f m(x)gr(x)dx < C(f f Iulpcpdxdt] + C(f f |u|Pgodxdt)
Rn % n 0 |x|>T

+C TP 4 (T +T7) f luo(x)| dx.
RU

Letting 7 — oo and taking into consideration (22), we get a contradiction.
b) If -1 < B8 < 0. We have three cases for n.

1-8 n
1+p
1-B
Note that whenn = 1, wehaven =1 < ——.
1+
1-
i) Ifn> —’3, then
1+p
_n+1 1
Tn-1_ B
i.e. B p > —1, which implies a contradiction by following the same calculations as in part a).
i) Ifn = }%g, then
_n+l1 1
p= n-1 g
i.e. B p = —1, and therefore
@B+ bp
f (1+f) P~1 dgr<CInT, forall T>O0.
0
From the subcritical case (20)), we can see easily that we have
u € LP((0, 00); LP(R")). (23)
+1
On the other hand, by applying Holder’s inequality instead of Young’s inequality and using p = n—, we
get

n—1

T 1/p T I/p
f u(xX)pr(x)dx < C(f f |u|pgodxdt) + C(f f [ulP @ dxdt)
Rn z " 0 J=T

+C TP InT + C(T™ +T7") f luo ()| dx.
Rn

op' —n
Letting T — oo and taking into consideration (23) and the fact that In7 < T 2
n
), we get

f ui(x)dx <0.

(because p <
n—o

This contradicts our assumption ().

11



1—
iii) Ifn < l—ﬁ then

+p
n+1 S 1
p= S
-1, B
t
i.e. pB < —1. In this case, we change the test function ¢ by ¥/(r) = ¥ (ﬁ) where K > 1 is independent
of T. Then
K'T
f (1407 71 di < € KB 0 T1=6+0p forall 7 > 0.
0

From the subcritical case (20)), we can see easily that we have
u € LP((0, 00); LP(R™)). (24)
On the other hand, by applying Holder’s inequality in (I9) instead of Young’s inequality, we get

KT 1/p KT
f wm(X)pr(x)dx < CK?! [f Iul”godxdt] + CK™! [f f Iulpgodxdt]
R" i Jpe 0 Ix[>T

+C K 1HBDp pBrDp —op'tln C(K(’T"’ + KT’I) f |uo(x)| dx.
Rn

1/p

Aso >1-pFand2 > o > o + 3, we conclude that

+1 +1
" <= = —-(B+1)p' —op'+1+n<0, whennz2,

p:n—l T n-B-o0

and
-B+1)p ' —op’+1+n<0, whenn=1,

KT l/p K-'T
f u(x)gr(x)dx < CK¥! [f [ulP @ dxdt] + CK™! [f f Iulpgadxdt]
R ol Jpn 0 =T

+C K-+ C(I((’T“r + KT_I) f luo(x)| dox.
RVI

SO
1/p

Letting T — oo and taking into consideration (24), we get
f wm(x)dx < C K6
Letting K — co and using p8 < —1 = -1+ (8 + 1)p’ < 0, we infer that

f ui(x)dx <0.

This contradicts our assumption (6).

II. Case: 0 < 1 -, forall 8 < 1.

Inthiscasewetaked=i>l.
o
1-—
Subcritical case p < min al ﬁ)+0—; " .
nl-pg)—-0c n—-o
Note that,
B+Dp - B+Dp
f(1+t) =1 g<c| T P71 itBp<-l,
1 ifBp>-—1.

We have two cases to distinguish.
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a) If 0 < B < 1. In this case, we have 8 p > —1 and so

d _B+hp
f(l+t) =T dt < C.
0

Therefore, (I9) implies

[ulPp dx dt + f Uy (X)pra(x) dx
Or R"

- 201 -
<C T CT- U5 1 1420

L C TP+ C(Ti(liﬁ)'kTil)f o) d.
Rn
As ” 1 1
(on o o

we conclude that

|ulP dx dt + f uy (x)pra(x) dx
Or Re

<cr Ry oAl (10 4 ) f luo(x)] dx,

n

Note that, we can easily see that

1- 1-p)+
n and —2p'+1+u<0(=>p<w.
n—o), o n(l-pg)—o

Note that n(1 =) —oc > 1-—-0 > 0, forall n > 1. Letting T — oo, and using the Lebesgue dominated
convergence theorem together with u; € L'(R"), we conclude that

f up(x)dx <0.

(1—,3)[—p'+£]<0":>p<

This contradicts our assumption (6).
b) If 8 < 0. We have two cases for n.

o n
1 +p8)
Notethatn(l —-g)—oc>1-F—-c>0ando<B+1<1<n=n—-o>0,foralln>1.
i) If n > ———, we have
1 +p).
1- 1
p < min a ﬁ)+a'; " =" < -,
nl-g)—-0c n—-o n—o B
i.e. B p > —1, which implies a contradiction by following the same calculations as in part a).
i) If n < ————, we get
(1+p), ¢
. [n(Q=-B+0 n nl-8)+o
p < min ; = )
nl-pg)-0c n—-o n(l-6)-o
and
1 - n(l-p)+o
B n(-p-o
ie.

13



1 n(l-p)+o P
B n(l-pB) -
olf p<-1/B,i.e. pB > —1, then

T
f(1+t) = dt<C1nT forall T > 1.
Then, (T9) implies

[ulP o dxdt + f U (X)¢ra(x) dx
Or R"

n(l ,8) 2(1 20-p) n(l /?)
<CT" 2p" +1+ CT pHl+==

n1p)

+C T 4P+ InT + C(T-“—ﬁ) + T—‘) f luo(x)] dx,
Rn

forall 7 > 1. As

c<l-p= - <-2p +1+

2(1 —ﬁ)p,+ L) n(l —,3)’
(o ag (o

we conclude that

|u|p<pdxdt+f uy (x)pra(x) dx
Or R»

ﬂ(l B

<CcT WL L WA T 4 C(T‘(l‘ﬁ) + T‘l) luo ()| dx,

Rr

Note that, we can easily see that

and —2p’+l+w<0=>p<w
n—-o o n(l-p4) -

(l—ﬂ)[—p'+£]<0<=>p<

. . ('~ &) .
Letting T — oo, using the fact that In7 < T4 (because p < ;) and the Lebesgue dominated

n
convergence theorem, we conclude that

f ui(x)dx <0.
R/I

This contradicts our assumption (6).
oIf p>—1/B,ie. pB < —1, then
T _@p 1 GDp
f(l+t)pTdtsCT I forall T > 0.
0
Then, (T9) implies
f |u|”t,0dxdt+f w1 (x)pra(x) dx
T R

<CT IR Lo L (10 4 T f luo(x)| dix.
R’l
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As
2(1

relope =B,y 10Zh n(-p)
(o o o

<=2p +1+

we conclude that

lulP o dx dt + f uy(x)pra(x) dx
Or Rr

<CT 2 L (TP 77 | Jug()ldx,
Rll
Note that, we can easily see that
1- 1-8)+
—2p’+1+n( ’B)<O<=> <M.
loa nl-8)-o

Letting T — oo, using the Lebesgue dominated convergence theorem, we conclude that

f ui(x)dx <0.

This contradicts our assumption (6).

n(l-pg)+o
n(l-p8)-o

Note that when n(1 + 8) < o, we have

Critical case: p = and o > n(1 + ).

nl-p)+o n . ,
= .C. - 07
p n(l—ﬁ)—0'<n—a' i.e op' +n<

We have two cases to distinguish.

a) If 0 < B < 1. In this case, we have 8 p > —1 and so

T
f A+ ar<cC
0

From the subcritical case (20), we can see easily that we have
u € L((0, 00); L(R™)).

On the other hand, by applying H6lder’s inequality instead of Young’s inequality, (I9) implies

T
f u(X)pra(x)dx < C (f [ulPp dx dt]
R  Jre

n

+C T(l—ﬁ)[—p’+;] + C(T—(l—ﬁ) + T_l) f luo(x)| dx.
Rn

1

Letting 7 — oo and taking into consideration (23] we get

f up(x)dx <0.

This contradicts our assumption (6).

15

/p T 1/p
+ C(f f Iulp(pdxdt)
0 [x|>T4

(25)



b) FB<0.Asn(l +B) <o =>n< —0— 5o

(1+p8)."
_n-p+o 1

P=wi=p-c F

t
i.e. pB < —1. In this case, we change the test function ¢ by y/(f) = ¥ (ﬁ) where K > 1 is independent of T'.
Then

K-'T
f (14075 di < CKFEP T1=6+D0 - forall T > 0.
0

From the subcritical case (20), we can see easily that we have
u € LP((0, 00); LP(R™)). (26)

On the other hand, by applying Holder’s inequality in (T9) instead of Young’s inequality and using p =

n(l-6)+o . .
m, 1mplles

[ulPp dx dt + f uy (X)dpra(x) dx
Or Rr

, KT 1/p K-1T 1/p
<CK*! f uPodxdt| + CK™' f f |ulP dx dt
g 0 x>T4

2

+C KB C(KPTOP L KT | Jup(x)l .
R’l
Letting 7 — oo and taking into consideration (26)), we get
f m(x)dx < C K6

Letting K — oo and using pf < -1 = -1 + (8 + 1)p’ < 0, we infer that

f u;(x)dx < 0.

This contradicts our assumption (6).
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