Mokhtar Kirane 
email: mokhtar.kirane@ku.ac.ae
  
Ahmad Z Fino 
email: ahmad.fino@aum.edu.kw
  
Sebti Kerbal 
email: skerbal@squ.edu.om
  
Aymen Laadhari 
email: aymen.laadhari@ku.ac.ae
  
Nonexistence of global weak solutions to semilinear wave equations involving time-dependent structural damping terms

Keywords: Blow-up, damped wave equations, variable coefficients, Fractional Laplacian 2020 MSC: Primary: 35B44, 35A01, Secondary: 35L20, 35L71

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

The aim of the paper is to establish a nonexistence of global weak solutions to the Cauchy problem for the following semilinear structurally damped wave equation

             u tt -∆u + b 0 (1 + t) β (-∆) σ/2 u t = |u| p
x ∈ R n , t > 0, u(0, x) = u 0 (x), u t (0, x) = u 1 (x),

x ∈ R n , (1) 
where 0 < σ < 2, n ≥ 1, p > 1, b 0 is a positive constant, and β ∈ R. Without loss of generality, we assume that b 0 = 1.

Prior to our main blow-up results, we would like to emphasize that the special case of Eq. ( 1) for b 0 = 0 is governed by the classical semilinear wave equation, where the Strauss conjecture for this case states that: if p ≤ p S then there is no global solution for (1) under suitable sign assumptions on the initial data, and for p > p S a global solution exists for small initial data; see e.g. [START_REF] John | Blow-up of solutions of nonlinear wave equations in three space dimensions[END_REF][START_REF] Strauss | Nonlinear scattering theory at low energy[END_REF][START_REF] Yordanov | Finite time blow up for critical wave equations in high dimensions[END_REF][START_REF] Zhou | Blow up of solutions to semilinear wave equations with critical exponent in high dimensions[END_REF] among many other references, where p S is the positive solution of the following quadratic equation (n -1)p 2 -(n + 1)p -2 = 0, and is given by

p S = p S (n) := n + 1 + √ n 2 + 10n -7 2(n -1)
.

In order to have more general initial data, but still with compact support, Kato [START_REF] Kato | Blow-up of solutions of some nonlinear hyperbolic equations[END_REF] obtained with a slightly less sharp blow-up result an exponent of the form (n + 1)/(n -1) which is less than the Strauss exponent p S , for n ≥ 2.

We would like to emphasize here that the test function method, introduced by [START_REF] Qi | A blow up result for a nonlinear wave equation with damping: the critical case[END_REF] and used by [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF][START_REF] Fino | Kirane Qualitative properties of solutions to a time-space fractional evolution equation[END_REF][START_REF] Mitidieri | Pohozaev A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities[END_REF], plays a similar role as of Kato's method in the proof of blow-up results. In fact, the test function is effective in the case of parabolic equations as it provide exactly the critical exponent p c , but in the case of hyperbolic equations (cf. [START_REF] Mitidieri | Pohozaev A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities[END_REF]) we get the so-called Kato's exponent p * which is less than p c . This is one of the weakness of the test function method but in general it can be applied to a more general equation and system with no positive condition on solutions.

When β = 0, σ → 2, and b 0 = 1, problem (1) is reduced to

u tt -∆u -∆u t = |u| p , x ∈ R n , t > 0, (2) 
which is called the viscoelastic damping case. D'Ambrosio and Lucente [START_REF] Lucente | Nonlinear Liouville theorems for Grushin and Tricomi operators[END_REF]Theorem 4.2] proved that the solution of (2) blows-up in finite time when 1 < p ≤ (n + 1)/(n -1) + , where (• ) + := max{0, • }, by applying the test function method. Similar result has been obtained recently by Fino [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF] in the case of an exterior domain. On the other hand, D'Abbicco-Reissig [START_REF] Reissig | Semilinear structural damped waves[END_REF] proved that there exists a global solution for (2) when p > 1 + 3 n-1 (n ≥ 2) for sufficiently small initial data. Therefore, the exact value of the critical exponent is still an open question.

Recently, problem (1) with σ → 2,

u tt -∆u - b 0 (1 + t) β ∆u t = |u| p , x ∈ R n , t > 0, (3) 
has been studied by Fino & Hamza [START_REF] Fino | Blow-up of solutions to semilinear wave equations with a time-dependent strong damping[END_REF]. They proved that if

R n u 1 (x)dx > 0,          p ∈ (1, ∞) for n = 1, 2, p ∈ (1, n n-2 ] for n ≥ 3, and            1 < p ≤ n+1 (n-1) + if β ≥ -1, 1 < p ≤ n(1-β)+2 (n(1-β)-2) + if β ≤ -1,
then the mild solution of (3) blows-up in finite time.

The goal of this paper is to prove the nonexistence of global weak solutions of (1) which is a generalization of the results of [START_REF] Fino | Blow-up of solutions to semilinear wave equations with a time-dependent strong damping[END_REF] to the case of fractional Laplacian damping term by using a recent version of the test function method that relies on Lemma 1 below. The novelty of this paper is the choice of this test function which is consistent with the suppression of positivity usually assumed by many authors.

In the case of β 0 and b 0 = 1, we give an intuitive observation for understanding the influence of the damping term ( 1 (1 + t) β (-∆) σ/2 u t ) by scaling argument. Let u(t, x) be a solution of the linear strong damped wave equation

u tt (t, x) -∆u(t, x) + 1 (1 + t) β (-∆) σ/2 u t (t, x) = 0. ( 4 
) When σ ≥ 1 -β, we put u(t, x) = v(λ(1 + t), λx), λ(1 + t) = s, λx = y, (5) 
with a parameter λ > 0, we have

v ss (s, y) -∆v(s, y) + λ σ+β-1 s β (-∆) σ/2 v s (s, y) = 0.
Thus, when σ = 1 -β we notice that Eq. ( 4) is invariant, while when σ > 1 -β, letting λ → 0, we obtain the wave equation without damping v ss (s, y) -∆v(s, y) = 0.

We note that λ → 0 is corresponding to t → +∞.

On the other hand, when σ < 1 -β, we put

u(t, x) = v(λ σ 1-β (1 + t), λx), λ 2 1-β (1 + t) = s, λx = y,
with a parameter λ > 0, we have

v ss (s, y) + 1 s β (-∆) σ/2 v s (s, y) -λ 2(1-β-σ) 1-β ∆v(s, y) = 0.
In this case, letting λ → 0, we obtain the pseudo-parabolic equation

v ss (s, y) + 1 s β (-∆) σ/2 v s (s, y) = 0.
This means that the asymptotic behaviour of solutions depends on the behaviour of the coefficient of the damping term.

This paper is organized as follows. We start in Sec. 2 by stating the main theorem of our work and we prove it in Sec. 4. Sec. 3 is to collect some preliminaries.

Main results

This section is aimed to state our main results.

Theorem 1 (Blow-up). We assume that

(u 0 , u 1 ) ∈ L 1 (R n ) ∩ H 1 (R n ) × L 1 (R n ) ∩ L 2 (R n )
satisfying the following condition:

R n u 1 (x)dx > 0. ( 6 
)
If                    1 < p < min n + 1 (n -1) + ; n (n -σ) + if σ ≥ 1 -β, 1 < p < min n(1 -β) + σ (n(1 -β) -σ) + ; n (n -σ) + if σ ≤ 1 -β, (7) 
or                  p = n + 1 n -1 , if σ ≥ 1 -β, σ > 2n n + 1 , n ≥ 2, p = n(1 -β) + σ n(1 -β) -σ , if n(1 + β) < σ ≤ 1 -β, n ≥ 1,
where (• ) + := max{0, • }, then problem (1) has no global weak solutions.

Remark 1. We note that, by taking the limit case σ → 2 we recover the same results of [START_REF] Fino | Blow-up of solutions to semilinear wave equations with a time-dependent strong damping[END_REF].

Remark 2. We stress that the exponent n + 1 (n -1) + appearing in [START_REF] Fino | Blow-up of solutions to semilinear wave equations with a time-dependent strong damping[END_REF] was introduced first in [START_REF] Kato | Blow-up of solutions of some nonlinear hyperbolic equations[END_REF] to prove the nonexistence of global solutions to the semilinear wave equation with the nonlinearity |u| p , subject to small initial data with compact support.

Preliminaries Definition 1. [13]

Let S be the Schwartz space of rapidly decaying C ∞ functions in R n and s ∈ (0, 1). The fractional Laplacian (-∆) s in R n is a non-local operator defined on S by

(-∆) s v(x) := C n,s p.v. R n v(x) -v(y) |x -y| n+2s dy =                    C n,s R n v(x) -v(y) |x -y| n+2s dy, if 0 < s < 1/2, C n,s R n v(x) -v(y) -∇v(x)• (x -y)X |x-y|<δ (y) |x -y| n+2s dy, ∀ δ > 0, if 1/2 ≤ s < 1,
where p.v. stands for Cauchy's principal value, and C n,s :=

s 4 s Γ( n 2 + s) π n 2 Γ(1 -s) .
In fact, we are rarely going to use the fractional Laplacian operator in the Schwartz space; it can be extended to less regular functions as follows: for s ∈ (0, 1), ε > 0, let

L s,ε (Ω) :=          L s (R n ) ∩ C 0,2s+ε (Ω) if 0 < s < 1/2, L s (R n ) ∩ C 1,2s+ε-1 (Ω), if 1/2 ≤ s < 1,
where Ω be an open subset of R n , C 0,2s+ε (Ω) is the space of 2s + ε-Hölder continuous functions on Ω, C 1,2s+ε-1 (Ω) the space of functions of C 1 (Ω) whose first partial derivatives are Hölder continuous with exponent 2s + ε -1, and

L s (R n ) = u : R n → R such that R n u(x) 1 + |x| n+2s dx < ∞ . Proposition 1. [13, Proposition 2.4]
Let Ω be an open subset of R n , s ∈ (0, 1), and f ∈ L s,ε (Ω) for some ε > 0. Then (-∆) s f is a continuous function in Ω and (-∆) s f (x) is given by the pointwise formulas of Definition 1 for every x ∈ Ω.

Remark: A simple sufficient condition for function f to satisfy the conditions in Proposition 1 is that

f ∈ L 1 loc (R n ) ∩ C 2 (Ω).
Using [START_REF] Dao | Blow up results for semi-linear structural damped wave model with nonlinear memory[END_REF]Lemma 2.11] and its proof, we have the following.

Lemma 1. Let x := (1 + (|x| -1) 4 ) 1/4 for all x ∈ R n , n ≥ 1. Let s ∈ (0, 1] and φ : R n → R be a function defined by φ(x) =          1 if |x| ≤ 1, x -n-2s if |x| ≥ 1. ( 8 
)
Then φ ∈ C 2 (R n ) ∩ L ∞ (R n ) ∩ H 2 (R n ), ∂ 2 x φ ∈ L ∞ (R n
), and the following estimate holds:

max {|∆φ(x)| , |(-∆) s φ(x)|} ≤ C φ(x) for all x ∈ R n . Lemma 2. Let h be a smooth function satisfying ∂ 2 x h ∈ L ∞ (R n ). For any R > 0, let h R be a function defined by h R (x) := h(R -1 x) for all x ∈ R n .
Then, (-∆) s (h R ), s ∈ (0, 1], satisfies the following scaling property

(-∆) s h R (x) = R -2s (-∆) s h(R -1 x), for all x ∈ R n . Lemma 3. [4, Lemma 2.14] Let s, s ∈ (0, 1], R > 0 and p > 1.
Then, the following estimate holds

R n (φ R (x)) -1 p-1 (-∆) s φ R (x) p p-1 dx ≤ C R -2 sp p-1 +n ,
where φ R (x) := φ(x/R) and φ as defined in (8).

Proof of Theorem 1

The proof of Theorem 1 relies mainly on the concept of weak solution of the Cauchy problem (1) and the use of the test function method. Let

X δ,T = {ϕ ∈ C([0, ∞), H 2 (R n )) ∩ C 1 ([0, ∞), H δ (R n )) ∩ C 2 ([0, ∞), L 2 (R n )), such that suppϕ ⊂ Q T },
where Q T := [0, T ] × R n , and the homogeneous fractional Sobolev space H δ (R n ), δ ∈ (0, 2), is defined by

H δ (R n ) =                          {u ∈ L 2 (R n ); (-∆) δ/2 u ∈ L 2 (R n )}, if δ ∈ (0, 1), H 1 (R n ), if δ = 1, {u ∈ H 1 (R n ); (-∆) δ/2 u ∈ L 2 (R n )}, if δ ∈ (1, 2),
endowed with the norm

u H δ (R n ) =                            u L 2 (R n ) + (-∆) δ/2 u L 2 (R n ) , if δ ∈ (0, 1), u L 2 (R n ) + ∇u L 2 (R n ) , if δ = 1, u L 2 (R n ) + ∇u L 2 (R n ) + (-∆) δ/2 u L 2 (R n ) , if δ ∈ (1, 2).
The weak formulation associated with (1) reads as follows:

Definition 2. (Weak solution) Let T > 0, and u 0 ,

u 1 ∈ L 2 (R n ). A function u ∈ L 1 ((0, T ), L 2 (R n )) ∩ L p ((0, T ); L 2p (R n )),
is said to be a weak solution of (1)

on [0, T ) × R n if Q T |u| p ϕ dt dx + R n u 1 (x)ϕ(0, x) dx + R n u 0 (x)(-∆) σ/2 ϕ(0, x) dx - R n u 0 (x)ϕ t (0, x) dx = Q T uϕ tt dt dx - T 0 1 (1 + t) β R n u (-∆) σ/2 ϕ t dx dt - Q T u∆ϕ dt dx + T 0 β (1 + t) β+1 R n u (-∆) σ/2 ϕ dx dt,
holds for all ϕ ∈ X σ,T . We denote the lifespan for the weak solution by T w (u 0 , u 1 ) := sup{T ∈ (0, ∞] for which there exists a unique weak solution u to (1)}.

Moreover, if T > 0 can be arbitrary chosen, i.e. T w (u 0 , u 1 ) = ∞, then u is called a global weak solution of (1).

Proof of Theorem 1. Let u be a global weak solution of (1), that is

Q T |u| p ϕ dt dx + R n u 1 (x)ϕ(0, x) dx + R n u 0 (x)(-∆) σ/2 ϕ(0, x) dx - R n u 0 (x)ϕ t (0, x) dx = Q T uϕ tt dt dx - T 0 1 (1 + t) β R n u (-∆) σ/2 ϕ t dx dt - Q T u∆ϕ dt dx + T 0 β (1 + t) β+1 R n u (-∆) σ/2 ϕ dx dt, (9) 
for all T > 0, and all ϕ ∈ X σ,T .

Let T > 0. Now, we introduce the following test function

ϕ(t, x) = ψ η (t)φ T d (x) = ψ η (t)φ x T d ( 10 
)
where φ is defined in [START_REF] Fino | Decay of mass for nonlinear equation with fractional Laplacian[END_REF], ψ(t) = Ψ( t T ), η 1, d > 0 are constants that will be determined later, and

Ψ ∈ C ∞ (R + ) is a cut-off non-increasing function such that Ψ(r) =                    1 if 0 ≤ r ≤ 1/2, if 1/2 ≤ r ≤ 1, 0 if r ≥ 1.
From the formulation (9), we get the following inequality

Q T |u| p ϕ dt dx + R n u 1 (x)ϕ(0, x) dx ≤ T T 2 R n |u| |ϕ tt | dx dt + Q T |u| |∆ϕ| dt dx + T T 2 1 (1 + t) β R n |u||(-∆) σ/2 ϕ t | dx dt + T 0 β (1 + t) β+1 R n |u| |(-∆) σ/2 ϕ| dx dt + R n |u 0 | |(-∆) σ/2 ϕ(0, x)| + |ϕ t (0, x)| dx =: I 1 + I 2 + I 3 + I 4 + I 5 . (11) 
Let ε > 0. By applying ε-Young's inequality

AB ≤ εA p + C(ε, p)B p , A ≥ 0, B ≥ 0, p + p = pp , C(ε, p) = (p -1)(ε p p ) -1/(p-1) ,
we obtain the estimation for the first integral

I 1 ≤ Q T |u|ϕ 1/p ϕ -1/p φ T d |(ψ η ) tt | dt dx ≤ ε Q T |u| p ϕ dt dx + C Q T φ T d ψ -η/(p-1) |(ψ η ) tt | p dt dx. (12) 
As (ψ η ) tt = ηψ η-1 ψ tt + η(η -1)ψ η-2 |ψ t | 2 , the inequality (12) becomes

I 1 ≤ ε Q T |u| p ψ dt dx + C Q T φ T d ψ η-p |ψ tt | p dt dx + C Q T φ T d ψ η-2p |ψ t | 2p dt dx. (13) 
Proceeding similarly as for (13), we get

I 2 ≤ ε Q T |u| p ϕ dt dx + C Q T ψ η φ -1/(p-1) T d |∆φ T d | p dt dx. (14) 
In the same way, we write

I 3 = T T 2 1 (1 + t) β R n |u|ϕ 1/p ϕ -1/p |(-∆) σ/2 φ T d ||(ψ η ) t | dx dt ≤ ε Q T |u| p ϕ dt dx + C T T 2 1 (1 + t) βp R n φ -1/(p-1) T d |(-∆) σ/2 φ T d | p ψ η-p |ψ t | p dx dt. (15) 
Clearly, 1

(1 + t) βp ≤ C T -βp , ∀ t ∈ T 2 , T ,
therefore,

I 3 ≤ ε Q T |u| p ϕ dt dx + C T -βp Q T φ -1/(p-1) T d |(-∆) σ/2 φ T d | p ψ η-p |ψ t | p dt dx. (16) 
In the same manner,

I 4 ≤ C T 0 1 (1 + t) β+1 R n |u|ϕ 1/p ϕ -1/p ψ η |(-∆) σ/2 φ T d | dx dt ≤ ε Q T |u| p ϕ dt dx + C T 0 1 (1 + t) (β+1)p R n φ -1/(p-1) T d |(-∆) σ/2 φ T d | p ψ η dx dt. (17) 
Finally, it remains only to control the term I 5 . By exploiting the identity ϕ t (0, x) = ηψ t (0)φ T d (x), we infer

I 5 ≤ C R n |u 0 | |(-∆) σ/2 φ T d | + |ψ t (0)|φ T d dx. (18) 
Plugging [START_REF] Kato | Blow-up of solutions of some nonlinear hyperbolic equations[END_REF] together with ( 13)-( 18) and choosing ε small enough, we deduce that

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C Q T φ T d ψ η-p |ψ tt | p dt dx + C Q T φ T d ψ η-2p |ψ t | 2p dt dx + C Q T ψ η φ -1/(p-1) T d |∆φ T d | p dt dx + C T -βp Q T φ -1/(p-1) T d |(-∆) σ/2 φ T d | p ψ η-p |ψ t | p dt dx + C T 0 1 (1 + t) (β+1)p R n φ -1/(p-1) T d |(-∆) σ/2 φ T d | p ψ η dx dt + C R n |u 0 | |(-∆) σ/2 φ T d | + |ψ t (0)|φ T d dx.
Taking account of the expression of ϕ given by [START_REF] John | Blow-up of solutions of nonlinear wave equations in three space dimensions[END_REF] and Lemmas 1-3, we infer that

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C T -2p +1+nd + C T -2d p +1+nd + C T -βp -p -σd p +1+nd (19) 
+ C T -σd p +nd T 0 (1 + t) -(β+1) p p-1 dt + C T -σd + T -1 R n |u 0 (x)| dx.
Since 0 < σ < 2, we notice that the cases of σ ≥ 1 -β and σ ≤ 1 -β are equivalent to σ ≥ 1 -β, for all β > -1, and σ < 1 -β, for all β < 1, therefore, we distinguish two cases:

I. Case: σ ≥ 1 -β, for all β > -1.
In this case, we choose d = 1.

Subcritical case p < min{ n + 1 (n -1) + ; n (n -σ) + }.
Note that,

T 0 (1 + t) - (β + 1) p p -1 dt ≤ C                T 1 - (β + 1) p p -1 if β p < -1, ln T if β p = -1, 1 if β p > -1.
We have two cases to distinguish. a) If β ≥ 0. In this case, we have β p > -1 and so

T 0 (1 + t) - (β + 1) p p -1 dt ≤ C. Therefore, (19) implies Q 
T |u| p ϕ dx dt + R n u 1 (x)φ T (x) dx ≤ C T -2p +1+n + C T -(β+1)p -σp +1+n + C T -σp +n + C T -σ + T -1 R n |u 0 (x)| dx.
Using the fact β p > -1 =⇒ -(β + 1)p -σp + 1 + n < -σp + n, we conclude that

Q T |u| p ϕ dx dt + R n u 1 (x)φ T (x) dx ≤ C T -2p +1+n + C T -σp +n + C T -σ + T -1 R n |u 0 (x)| dx. ( 20 
)
Note that, we can easily see that

-2p + 1 + n < 0 ⇐⇒ p < n + 1 (n -1) + and -σp + n < 0 ⇐⇒ p < n (n -σ) + .
Letting T → ∞, and using the Lebesgue dominated convergence theorem together with

u 1 ∈ L 1 (R n ), we conclude that R n u 1 (x) dx ≤ 0.
This contradicts our assumption (6). b) If -1 < β < 0. We have three cases for n.

n σ 1 + β • 1 -β 1 + β • Note that when n = 1, we have n = 1 < 1-β 1+β . i) If n ≥ σ 1 + β , then n ≥ 1 -β 1 + β and therefore p < min n + 1 n -1 ; n n -σ ≤ - 1 β , for all n ≥ 2,
i.e. β p > -1, which implies a contradiction by following the same calculations as in part a).

ii

) If 1 -β 1 + β < n < σ 1 + β when σ > 1 -β, then we have n < σ 1 + β < σ 2 -σ ,
and therefore

p < min n + 1 n -1 ; n n -σ = n + 1 n -1 < - 1 β , for all n ≥ 2,
i.e. β p > -1, which implies a contradiction by following the same calculations as in part a).

iii

) If n ≤ 1 -β 1 + β , then n ≤ σ 1 + β , i.e. p min n (n -σ) + ; n + 1 (n -1) + • - 1 β • • If p ≤ -1/β, i.e. pβ ≥ -1, then T 0 (1 + t) - (β + 1) p p -1 dt ≤ C ln T, for all T 1.
Then, [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] implies

Q T |u| p ϕ dx dt + R n u 1 (x)φ T (x) dx ≤ C T -2p +1+n + C T -(β+1)p -σp +1+n + C T -σp +n ln T + C T -σ + T -1 R n |u 0 (x)| dx, for all T 1. As pβ ≥ -1 =⇒ (β + 1)p ≥ 1, we conclude that Q T |u| p ϕ dx dt + R n u 1 (x)φ T (x) dx ≤ C T -2p +1+n + C T -σp +n ln T + C T -σ + T -1 R n |u 0 (x)| dx, ∀ T 1. ( 21 
)
Note that, we can easily see that

-2p + 1 + n < 0 ⇐⇒ p < n + 1 (n -1) + and -σp + n < 0 ⇐⇒ p < n (n -σ) + .
Letting T → ∞, using the fact that ln T ≤ T σp -n 2 (because p < n (n-σ) + ) and the Lebesgue dominated convergence theorem, we conclude that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

• If p > -1/β, i.e. pβ < -1, then T 0 (1 + t) -(β+1) p p-1 dt ≤ C T 1-(β+1) p p-1 , for all T > 0.
Then, (

T |u| p ϕ dx dt + R n u 1 (x)φ T (x) dx ≤ C T -2p +1+n + C T -(β+1)p -σp +1+n + C T -σ + T -1 R n |u 0 (x)| dx, for all T 1. As σ ≥ 1 -β =⇒ n ≤ 1-β 1+β ≤ σ 2-σ , we conclude that p < min n + 1 (n -1) + ; n (n -σ) + = n + 1 (n -1) + ≤ n + 1 (n -β -σ) + =⇒ -(β + 1)p -σp + 1 + n < 0, 19) implies Q 
and

p < min n + 1 (n -1) + ; n (n -σ) + = n + 1 (n -1) + ⇐⇒ -2p + 1 + n < 0. Note that σ ≥ 1 -β > 1, and 2 > σ > σ + β, therefore          (n -β -σ) + = (n -1) + = (n -σ) + = 0, when n = 1, (n -β -σ) + = n -β -σ, (n -1) + = n -1, (n -σ) + = n -σ, when n ≥ 2,
Letting T → ∞, using the Lebesgue dominated convergence theorem, we conclude that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

Critical case: p < ∞ and σ ≥ 1 when n = 1, or p = n + 1 n -1 and σ > 2n n + 1 when n ≥ 2.
Note that when 2 ≤ n < σ 2 -σ , we have

p = n + 1 n -1 < n n -σ i.e. -σp + n < 0,
and when σ ≥ 1 and n = 1, we also have -σp + n < 0.

We have two cases to distinguish. a) If β ≥ 0. In this case, we have β p > -1 and so

T 0 (1 + t) - (β + 1) p p -1 dt ≤ C.
From the subcritical case, we can see that we have

u ∈ L p ((0, ∞); L p (R n )). (22) 
On the other hand, by applying Hölder's inequality instead of Young's inequality, we get

R n u 1 (x)φ T (x) dx ≤ C       T T 2 R n |u| p ϕ dx dt       1/p + C T 0 |x|≥T |u| p ϕ dx dt 1/p +C T -σp +n + C T -σ + T -1 R n |u 0 (x)| dx.
Letting T -→ ∞ and taking into consideration (22), we get a contradiction. b) If -1 < β < 0. We have three cases for n.

n 1 -β 1 + β • Note that when n = 1, we have n = 1 < 1 -β 1 + β . i) If n > 1 -β 1 + β , then p = n + 1 n -1 < - 1 β ,
i.e. β p > -1, which implies a contradiction by following the same calculations as in part a). ii

) If n = 1-β 1+β , then p = n + 1 n -1 = - 1 β , 
i.e. β p = -1, and therefore From the subcritical case (20), we can see easily that we have

u ∈ L p ((0, ∞); L p (R n )). ( 23 
)
On the other hand, by applying Hölder's inequality instead of Young's inequality and using p = n + 1 n -1 , we get

R n u 1 (x)φ T (x) dx ≤ C       T T 2 R n |u| p ϕ dx dt       1/p + C T 0 |x|≥T |u| p ϕ dx dt 1/p +C T -σp +n ln T + C T -σ + T -1 R n |u 0 (x)| dx.
Letting T -→ ∞ and taking into consideration (23) and the fact that ln

T ≤ T σp -n 2 (because p < n n -σ ), we get R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

iii

) If n < 1 -β 1 + β , then p = n + 1 (n -1) + > - 1 β ,
i.e. pβ < -1. In this case, we change the test function ψ by

ψ(t) = Ψ t K -1 T
where K ≥ 1 is independent of T . Then

K -1 T 0 (1 + t) -(β+1) p p-1 dt ≤ C K -1+(β+1)p T 1-(β+1)p , for all T > 0.
From the subcritical case (20), we can see easily that we have

u ∈ L p ((0, ∞); L p (R n )). ( 24 
)
On the other hand, by applying Hölder's inequality in [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] instead of Young's inequality, we get

R n u 1 (x)φ T (x) dx ≤ C K 2p -1        K -1 T K -1 T 2 R n |u| p ϕ dx dt        1/p + C K -1        K -1 T 0 |x|≥T |u| p ϕ dx dt        1/p +C K -1+(β+1)p T -(β+1)p -σp +1+n + C K σ T -σ + KT -1 R n |u 0 (x)| dx.
As σ ≥ 1 -β and 2 > σ > σ + β, we conclude that

p = n + 1 n -1 ≤ n + 1 n -β -σ =⇒ -(β + 1)p -σp + 1 + n ≤ 0, when n ≥ 2,
and

-(β + 1)p -σp + 1 + n < 0, when n = 1, so R n u 1 (x)φ T (x) dx ≤ C K 2p -1        K -1 T K -1 T 2 R n |u| p ϕ dx dt        1/p + C K -1        K -1 T 0 |x|≥T |u| p ϕ dx dt        1/p +C K -1+(β+1)p + C K σ T -σ + KT -1 R n |u 0 (x)| dx.
Letting T -→ ∞ and taking into consideration (24), we get

R n u 1 (x) dx ≤ C K -1+(β+1)p .
Letting K -→ ∞ and using pβ < -1 =⇒ -1 + (β + 1)p < 0, we infer that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

II. Case: σ < 1 -β, for all β < 1.

In this case we take d

= 1 -β σ > 1. Subcritical case p < min n(1 -β) + σ n(1 -β) -σ ; n n -σ . Note that, T 0 (1 + t) - (β + 1) p p -1 dt ≤ C                T 1 - (β + 1) p p -1 if β p < -1, ln T if β p = -1, 1 if β p > -1.
We have two cases to distinguish.

p n(1 -β) + σ n(1 -β) -σ • - 1 β • • If p ≤ -1/β, i.e. pβ ≥ -1, then T 0 (1 + t) -(β+1) p p-1 dt ≤ C ln T, for all T 1.
Then, [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] implies

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C T -2p +1+ n(1-β) σ + C T -2(1-β) σ p +1+ n(1-β) σ + C T -(1-β)p + n(1-β) σ ln T + C T -(1-β) + T -1 R n |u 0 (x)| dx, for all T 1. As σ < 1 -β =⇒ - 2(1 -β) σ p + 1 + n(1 -β) σ < -2p + 1 + n(1 -β) σ ,
we conclude that

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C T -2p +1+ n(1-β) σ + C T (1-β)[-p + n σ ] ln T + C T -(1-β) + T -1 R n |u 0 (x)| dx,
that, we can easily see that

(1 -β) -p + n σ < 0 ⇐⇒ p < n n -σ and -2p + 1 + n(1 -β) σ < 0 ⇐⇒ p < n(1 -β) + σ n(1 -β) -σ .
Letting T → ∞, using the fact that ln T ≤ T

(1-β)(p -n σ ) 2 (because p < n n-σ
) and the Lebesgue dominated convergence theorem, we conclude that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

• If p > -1/β, i.e. pβ < -1, then T 0 (1 + t) -(β+1) p p-1 dt ≤ C T 1-(β+1) p p-1 , for all T > 0.
Then, [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] implies

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C T -2p +1+ n(1-β) σ + C T -2(1-β) σ p +1+ n(1-β) σ + C T -(1-β) + T -1 R n |u 0 (x)| dx. As σ < 1 -β =⇒ - 2(1 -β) σ p + 1 + n(1 -β) σ < -2p + 1 + n(1 -β) σ ,
we conclude that

Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C T -2p +1+ n(1-β) σ + C T -(1-β) + T -1 R n |u 0 (x)| dx,
Note that, we can easily see that

-2p + 1 + n(1 -β) σ < 0 ⇐⇒ p < n(1 -β) + σ n(1 -β) -σ .
Letting T → ∞, using the Lebesgue dominated convergence theorem, we conclude that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF]. From the subcritical case (20), we can see easily that we have u ∈ L p ((0, ∞); L p (R n )).

(25)

On the other hand, by applying Hölder's inequality instead of Young's inequality, [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] implies

R n u 1 (x)φ T d (x) dx ≤ C       T T 2 R n |u| p ϕ dx dt       1/p + C T 0 |x|≥T d |u| p ϕ dx dt 1/p +C T (1-β)[-p + n σ ] + C T -(1-β) + T -1 R n |u 0 (x)| dx.
Letting T -→ ∞ and taking into consideration (25) we get where K ≥ 1 is independent of T . Then

K -1 T 0 (1 + t) -(β+1) p
p-1 dt ≤ C K -1+(β+1)p T 1-(β+1)p , for all T > 0.

From the subcritical case (20), we can see easily that we have

u ∈ L p ((0, ∞); L p (R n )). ( 26 
)
On the other hand, by applying Hölder's inequality in [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] instead of Young's inequality and using p = n(1 -β)

+ σ n(1 -β) -σ , (19) implies 
Q T |u| p ϕ dx dt + R n u 1 (x)φ T d (x) dx ≤ C K 2p -1        K -1 T K -1 T 2 R n |u| p ϕ dx dt        1/p + C K -1        K -1 T 0 |x|≥T d |u| p ϕ dx dt        1/p +C K -1+(β+1)p + C K 1-β T -(1-β) + KT -1 R n |u 0 (x)| dx.
Letting T -→ ∞ and taking into consideration (26), we get R n u 1 (x) dx ≤ C K -1+(β+1)p .

Letting K -→ ∞ and using pβ < -1 =⇒ -1 + (β + 1)p < 0, we infer that

R n u 1 (x) dx ≤ 0.
This contradicts our assumption [START_REF]Fino Finite time blow up for wave equations with strong damping in an exterior domain[END_REF].

  1) p p -1 dt ≤ C ln T,for all T > 0.
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a) If 0 ≤ β < 1. In this case, we have β p > -1 and so

Therefore, [START_REF] Pazy | Semi-groups of linear operators and applications to partial differential equations[END_REF] implies

we conclude that

Note that, we can easily see that

Letting T → ∞, and using the Lebesgue dominated convergence theorem together with

This contradicts our assumption (6). b) If β < 0. We have two cases for n.