
HAL Id: hal-04090989
https://hal.science/hal-04090989v1

Preprint submitted on 6 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

On a High-Precision Method for Studying Attractors of
Dynamical Systems and Systems of Explosive Type

Alexander N. Pchelintsev

To cite this version:
Alexander N. Pchelintsev. On a High-Precision Method for Studying Attractors of Dynamical Systems
and Systems of Explosive Type. 2023. �hal-04090989�

https://hal.science/hal-04090989v1
https://hal.archives-ouvertes.fr


Article

On a High-Precision Method for Studying Attractors of
Dynamical Systems and Systems of Explosive Type

Alexander N. Pchelintsev

Citation: Pchelintsev, A.N. On a

High-Precision Method for Studying

Attractors of Dynamical Systems and

Systems of Explosive Type.

Mathematics 2022, 10, 1207.

https://doi.org/10.3390/math10081207

Received: 3 March 2022

Accepted: 5 April 2022

Published: 7 April 2022

Tambov State Technical University, Department of Higher Mathematics, ul. Sovetskaya 106, 392000 Tambov,
Russia; pchelintsev.an@yandex.ru

Abstract: The author of this article considers a numerical method that uses high-precision calculations
to construct approximations to attractors of dynamical systems of chaotic type with a quadratic
right-hand side, as well as to find the vertical asymptotes of solutions of systems of explosive type.
A special case of such systems is the population explosion model. A theorem on the existence of
asymptotes is proved. The extension of the numerical method for piecewise smooth systems is
described using the Chua system as an example, as well as systems with hysteresis.

Keywords: attractor; high-precision calculations; power series; asymptote; population explosion
model; piecewise smooth system; the Chua system; the number π; systems with hysteresis

MSC: 34D45

1. Introduction

Let us consider a dynamical system with quadratic nonlinearities of the form

Ẋ = B0 + B1X + φ(X), (1)

where X(t) = [x1(t) . . . xn(t)]
T is a vector function of time t with values in space Rn, B0 ∈ Rn is a given column vector,

φ(X) = [φ1(X) . . . φn(X)]T,

φp(X) = ⟨QpX, X⟩, B1 and Qp (p = 1, . . . , n) are the matrices (n × n) of real numbers.
There has been a strong interest in the systems of the form (1) in scientific literature starting somewhere in the

middle 20th century. The most popular object of study from the class of systems (1) is the Lorenz system [1]:
ẋ1 = σ(x2 − x1),

ẋ2 = rx1 − x2 − x1x3,

ẋ3 = x1x2 − bx3.

(2)

For this system, the matrices have the form:

B0 = 0, B1 =


−σ σ 0

r −1 0

0 0 −b

, Q1 = 0,

Q2 =


0 0 −1

0 0 0

0 0 0

, Q3 =


0 1 0

0 0 0

0 0 0

.

Such systems are of interest to researchers because they are systems with energy dissipation. There is compression of
the volume of the phase space in them, and all trajectories are uniformly bounded. Thus, there is an attracting set called
the attractor of the dynamical system to which all solutions tend at t → ∞. Consequently, the attractors of dissipative
systems determine their behavior over long time intervals. However, for many systems of the form (1), the limit solutions
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are unstable. Therefore, correct numerical integration requires the high-precision methods that make it possible to flexibly
control the accumulation of calculation errors over a long time interval. For example, with an increase of the order of the
Runge–Kutta methods, the complexity of the formulas for calculating the approximate values of the phase coordinates
(they have a tree structure) [2,3] grows.

Recently, to simulate of dynamic chaos in systems of the type (1), some researchers have begun to use effective
modifications of the power series method. Gibbons in his article [4] proposed the quick formulas for calculating the
coefficients of power series for the main types of right-hand sides of differential equations in the scalar form. Today
this idea was generalized in a recursive procedure (called as automatic differentiation) to compute the values of the
derivatives for power series [5]. An advantage over the general Taylor series method is that the calculations can be
constructed by fast formulas in comparison to the direct symbolic differentiation of right-hand sides of nonlinear ODEs
which requires a lot of computer memory for high-precision calculations. The method of power series in [6–8] is applied
as the Adomian decomposition method (ADM). The Clean Numerical Simulation (CNS) [9] is based on the method of
power series at arbitrary-order and used the multiple-precision data, plus a check of solution by means of an additional
computation using even smaller numerical noises.

There is the FGBFI numerical method (the firmly grounded backward-forward integration method) described in
[10–13]. In this articles, the recurrence relations for calculating of the coefficients of expansion of local solutions in a
power series are received for any dynamic system with quadratic nonlinearities in the vector form (it distinguishes the
FGBFI-method from automatic differentiation and CNS). This form of coefficients of the power series is simpler and faster
to compute than in ADM (because it does not contain factorials). The author of this article derived the simple formulas
of calculating the length of the integration step in the general form (it distinguishes the FGBFI-method from CNS). The
criteria for checking the accuracy of the approximate chaotic solution are obtained.

This article will consider this method which uses high-precision calculations to construct approximations to unstable
solutions of the system (1), as well as its extension to piecewise smooth systems composed of quadratic nonlinearities (for
example, the Chua’s piecewise linear system).

It is also noteworthy that for certain types of matrices B1 and Qp and the vector B0, the system (1) can have
non-extendable solutions of the explosive type. For example, for scalar systems of the form

ẋ1 = 1 + x2
1 (3)

with a particular solution x1(t) = tan t one of the asymptotes is

tas =
π

2
. (4)

The existing classical numerical methods available in the standard implementation of such mathematical packages
including Mathcad, MATLAB, Maple, etc., cannot be used to build approximations to such solutions, since the numerical
scheme will jump over the asymptote, ”not feeling” it. But as will be shown in this article, the FGBFI method allows to
get arbitrarily close to the asymptote without skipping the time tas, i.e., localizing it.

2. The FGBFI Method

The instability of the limiting solutions of the system (1), in fact, makes incorrect to use classical numerical methods
over long time intervals. The limit sets of dynamical systems are constructed on such segments. We can use high-precision
calculations but then we will have rather small integration steps. The solution to the problem is to apply a modification
of the power series method with recurrent calculation of expansion coefficients.

Let us represent the solution of the system (1) as a series

X(t) =
∞

∑
i=0

Υiti, (5)
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where the vector Υ0 is determined by the given initial condition. The remaining expansion coefficient vectors (5) are
calculated by the following recursive formulas [11]:

Ψi = [ψi,1 . . . ψi,n]
T,

ψi,p =
i

∑
j=0

⟨QpΥj, Υi−j⟩, p = 1, . . . , n,

Υ1 = B0 + B1Υ0 + Ψ0,

Υi =
B1Υi−1 + Ψi−1

i
for i = 2, 3, 4, . . . .

(6)

The convergence region [−τ(Υ0), τ(Υ0)] of the series (5) is limited for many nonlinear systems of the form (1),
depends on the initial condition, and can be estimated by the following formulas [11]:

h1(Υ0) = ∥Υ0∥, µ = n · max
p=1,...,n

∥Qp∥,

h2(Υ0) =

{
∥B0∥+ (∥B1∥+ 2µ)h1(Υ0) + µh2

1(Υ0), if h1 > 1,
∥B0∥+ ∥B1∥+ µ otherwise,

τ(Υ0) =
1

h2(Υ0) + δ
, t ∈ [−τ(Υ0), τ(Υ0)],

(7)

where δ is any positive number (can be chosen arbitrarily small). In these formulas, one of the compatible matrix norms
∥ · ∥1 or ∥ · ∥∞ with a vector norm is meant.

The recursive formulas (6) for calculating the coefficients of the power series expansion were obtained from the
substitution of power series into the system (1), as well from the products in Cauchy form. A theorem on the convergence
of a power series is proved in the article [11]. The proof is based on the method of mathematical induction. The specified
region from formulas (7) is obtained as a corollary from this proof.

Next, we describe an algorithm for constructing a trajectory arc on a given time interval [0, T].
In the papers [12,13], the numerical method based on the representations (5)–(7) is called the FGBFI method. Next,

we describe the algorithm underlying it.
Let T is the given length of the integration interval, Sa is the ball containing the attractor of the system (1). Let us set

such a representation of a real number that the machine epsilon

εm << εpw,

where εpw is an accuracy of evaluation of the common term of the series (5). Thus, the summation by the Formula (5)
stops at such a value i = i∗ when

∥Υi∗∥ · |∆t|i∗ < εpw, (8)

where ∆t is an integration step. Note that for the convergence of the series, the value ∆t must be chosen as

0 < ∆t ≤ τ(Υ0) in forward time

or
−τ(Υ0) ≤ ∆t < 0 in backward time.

Since the convergence region of the series (5) is limited, we cannot take ∆t = T (as mentioned above, the value of T
is large). Therefore, the trajectory arc on the time interval [0, T] will consist of the connected arcs for which the series (5)
converges.

Since in the computer simulation we can only operate with a discrete set of phase coordinate vectors (instead of
a continuous function X(t)), then, by analogy with the Runge–Kutta methods, we will obtain approximate values of
phase coordinates through an integration step, only calculations will be carried out at each step using Formulas (5)–(8)
for t = ∆t = τ(Υ0).

Note that here the error accumulation at each step is much smaller than for the fixed-order Runge–Kutta methods,
since we can quickly enough calculate the missing terms in the sum using the Formulas (5) and (6) by reducing the value
of εpw. It can be seen from the formulas (7) that with such a numerical integration, the step will be variable.
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Let the value way is the direction of integration: way = 1 for forward time, way = −1 for reverse time.
Next, we show an algorithm for obtaining approximate values of phase coordinates.

Algorithm 1 The FGBFI Method

1: Set the vector X0 ∈ Sa of initial condition and the value way
2: ct := 0 ▷ The current time
3: ended := false ▷ Are we finishing the algorithm?
4: l := 1 ▷ Number of closed interval of series convergence (5)
5: Calculate the value of integration step ∆t = τ(Xl−1) using the formulas (7)
6: if ∆t > T − ct then
7: ∆t := T − ct
8: ct := T
9: else

10: ct := ct + ∆t
11: end if
12: Υ0 := Xl−1
13: Xl := Xl−1
14: p := 1 ▷ The product of powers of t
15: i := 0 ▷ Number of the current member of the series
16: do
17: i := i + 1
18: p := p · way · ∆t ▷ Calculate the current degree of t = ∆t

▷ taking into account the direction of integration; p is negative for odd powers
▷ when way = −1

19: Calculate the vector Υi using the formulas (6)
20: Xl := Xl + Υi · p ▷ Add to Xl the current member of the series
21: L := ∥Υi∥ · |p| ▷ The right side of inequality (8)
22: while L > εpw
23: Print the value of time way · ct and the vector Xl of the received phase coordinates
24: if Xl /∈ Sa then
25: We moved beyond the ball Sa
26: Print ”Decrease the value εpw and/or εm”
27: ended := true
28: end if
29: if ct = T then
30: ended := true
31: end if
32: if ended then
33: Terminate the algorithm
34: end if
35: l := l + 1
36: GoTo Step 5

The criteria for checking the accuracy of the resulting approximate solution are described in [10,11,13]. Note that the
backward time pass is used in some of them.

3. The Software Implementation of the FGBFI Method and Numerical Simulations

For the software implementation of Algorithm 1 with

B0 = 0,

and for the study of the limit points of dynamic systems of the form (1) for Poisson stability and the calculation of
the Lyapunov exponents by the modified Benettin’s algorithm [12,13], a software in the C++ language for Linux was
developed. The source codes are available on GitHub [14].

To perform matrix operations in C++, the algorithms and template types of the uBLAS library of the linear algebra
collection of the Boost class libraries were used. Note that the uBLAS library gives a large gain in time.
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Usually, in calculations, many researchers work with single or double precision subnormal real numbers represented
in the IEEE 754 format. The main disadvantage here is the fixed accuracy of the representation of real numbers which
may not allow us to numerically construct approximations to unstable solutions of systems of differential equations over
long time intervals. Therefore, for high-precision calculations, the MPFR C++ library [15] is used.

Algorithm 1 was applied to check the accuracy of the found unstable cycle [16] in the system (2):

x1(0) ≈ −2.147367631, x2(0) ≈ 2.078048211, x3(0) = 27. (9)

The period value is obtained equal to Tc ≈ 1.558652210.
The initial values (9) were checked on the period in the computer program [14] that implements the FGBFI method

with εpw = 10−25, 100 bits for mantissa of real number and εm = 1.57772 · 10−30. With such parameters of the method,
the approximate values x1(Tc), x2(Tc) and x3(Tc) were also verified by the same numerical method, but in backward
time. The values at the backward time in the end of the trajectory arc coincide with (9) up to the 9th character inclusive
after the point. The resulting values of x1(Tc), x2(Tc) and x3(Tc) coincide with (9) up to the 8th character inclusive.

The cycle corresponding to (9) is shown in Figure 1.

-30 -20 -10  0  10  20  30
-30

-20
-10

 0
 10

 20
 30

 0
 5

 10
 15
 20
 25
 30
 35
 40

x3

x1

x2

x3

Figure 1. The cycle in the system (2) obtained by the FGBFI method.

D. Viswanath [17] found in the system (2) an unstable cycle with a long period and with 99 decimal places use the
Lindstedt–Poincaré technique:

x1(0) ≈ −13.568317317591138693791116532738086146665425413802770267307341928920639925115986035379124247913350182,

x2(0) ≈ −19.134575113926898610482106145675590555238063694018831440659257986585209042730623744601562225619287641,

x3(0) = 27,

Tc ≈ 171.86372913973174676014481271369986804353836527546572814842984169003209300163561597123596376874805444.

(10)

The author of this article decided to check the found values with high accuracy in the forward time by the FGBFI
method. For this, it was taken 390 bits for mantissa of real number. Then εm = 7.93107 · 10−118. The value of accuracy for
the power series is εpw = 10−110. The maximum degree of the approximating polynomial at variable integration steps is
78. The computation time was approximately 6.2 min.
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After the computational experiment, it was found that at the end of the period the values x1(Tc), x2(Tc) and x3(Tc)
coincide up to 38 decimal places with (10). At the same time, the increase in accuracy (decreasing values εm and εpw) does
not affect the obtained results where we can conclude that some decimal places of the values (10) are incorrect in [17], or
need more correct decimal places.

Note that the classical numerical methods (such as the Euler method, Runge–Kutta methods, Adams methods, etc.)
do not make it possible to carry out such a high-precision check of the values (10) due to the instability of the found cycle
by D. Viswanath.

We also note that the use of high-precision calculations is important in data encryption. For example, the results
obtained in [18] show that when using the high-precision arithmetic, the generated sequences provide good randomness
and security with more iterations of the implemented discrete-time chaotic systems compared to the received sequences
in the IEEE 754 format.

4. The Systems of Explosive Type and Application of the FGBFI Method

The dynamic system of the explosive type is a system for which the state ∥X(t)∥ → ∞ is reached in a finite time. The
examples of such systems are the system (3), and the population explosion model

ẋ1 = kx2
1,

where the coefficient k > 0.
In other words, in this section of the article we will consider the autonomous systems of differential equations whose

solutions have the vertical asymptotes. Such systems have been little-studied in the literature. We note the papers [19,20]
where the scalar case is described: the asymptote existence theorem is proved and a modification of the Euler method is
given which allows one to localize the asymptotes of solutions without jumping them.

For the multidimensional case, no studies have been found in the known literature. Most likely, this is due to the fact
that for these systems, at ∥X(t)∥ → ∞, the energy also tends to infinity (which cannot be in real systems according to the
energy conservation law); however, the systems of explosive type can be models of real systems in some approximation.
Therefore, it is important for the researcher to have an idea at what time tas a sharp increase of phase coordinates will
occur when it is not possible to find solutions of the system in quadratures.

Before proving the theorem on the existence of vertical asymptotes, we prove the following statement:

Lemma 1. Let the number sequence r(1), r(2), ... converge to some number r, the sequence w(1), w(2), ... converge to number w, and
there is the number d > 0 that

r(m) − w(m) ≥ d (11)

for all m ∈ N, then r > w.

Proof. Let us represent the sequences as
r(m) = r + ζ(m),

w(m) = w + ϑ(m),

where ζ(m) and ϑ(m) are the infinitesimal sequences.
From the inequality (11) it follows that

r(m) − w(m) = (r − w) +
(

ζ(m) − ϑ(m)
)
≥ d > 0. (12)

Note that the sequence
ζ(m) − ϑ(m)

is also infinitesimal. Therefore, there exists a number m = m∗ such that for all m > m∗

ζ(m) − ϑ(m) ≤ ε,

moreover, we choose the small positive number ε such that

d − ε > 0,
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because the number d is fixed. Then from (12)
(r − w) + ε ≥ d

and
r − w ≥ d − ε > 0,

whence it follows that r > w.

Note that the proof of this lemma can be carried over to the case when the sequences
{

r(m)(t)
}

and
{

w(m)(t)
}

are
the sequences of scalar functions that converge uniformly over some time interval.

Let us now prove a theorem that allows us to establish the existence of the vertical asymptotes in the system (1) at
t > 0.

Theorem 1. If some equation with the number q of the system (1) can be represented as (k is some number of the phase coordinate xk,
k ̸= q)

ẋq = cq + ⟨Q̃q(X̃ − Aq), X̃ − Aq⟩+ υx2
k , (13)

where the symmetric matrix Q̃q is positive definite (D+
Q̃
) or negative definite (D−

Q̃
) and is obtained by deleting a row and a column

with number k from matrix Qq,

X̃(t) = [x1(t) . . . xk−1(t) xk+1(t) . . . xn(t)]
T, X̃ ∈ Rn−1,

Aq =
[

aq,1 . . . aq,k−1 aq,k+1 . . . aq,n

]T
,

the numbers υ > 0, cq ≥ 0 for D+
Q

or
the numbers υ < 0, cq ≤ 0 for D−

Q ,

the initial conditions xk(0) ̸= 0, xq(0) > aq,q for D+
Q or xq(0) < aq,q for D−

Q , then the q-th component of the solution of the
system (1) has a vertical asymptote at t > 0.

Proof. For definiteness, we will consider the situation D+
Q̃

. A similar proof can be carried out for D−
Q̃

. Then the inequality
([21], pp. 34, 35)

⟨Q̃q(X̃ − Aq), X̃ − Aq⟩ ≥ λq∥X̃ − Aq∥2
2

is valid where λq > 0 is the smallest eigenvalue of the matrix Q̃q. Since

∥X̃ − Aq∥2
2 =

n

∑
p=1
p ̸=k

(xp − aq,p)
2 ≥ (xq − aq,q)

2,

then
cq + ⟨Q̃q(X̃ − Aq), X̃ − Aq⟩ ≥ cq + λq(xq − aq,q)

2. (14)

Let us introduce the equation
ẏ = cq + λq(y − aq,q)

2 (15)

with the initial condition y(0) for which
xq(0)− aq,q > y(0)− aq,q > 0. (16)

By the existence and uniqueness theorem, the solution of the Equations (13) and (15) exists and is unique on some
time interval [0, t∗].

Let us construct the integral equations equivalent to the Equations (13) and (15):

xq(t) = xq(0) +
∫ t

0

(
cq + ⟨Q̃q(X̃(η)− Aq), X̃(η)− Aq⟩+ υx2

k(η)
)

dη,

y(t) = y(0) +
∫ t

0

(
cq + λq(y(η)− aq,q)

2
)

dη.
(17)
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Since the function xk(t) is continuous on the interval [0, t∗], xk(0) ̸= 0 and υ > 0, then

R(t) = υ
∫ t

0
x2

k(η)dη > 0

for t ∈ (0, t∗]. Let R∗ = R(t∗) is a maximum value of the function R(t) on the segment [0, t∗].
Let us write the function xq(t) as

xq(t) = R(t) + xq(0) +
∫ t

0

(
cq + ⟨Q̃q(X̃(η)− Aq), X̃(η)− Aq⟩

)
dη.

Let us now consider the schemes of successive approximations obtained from the Formula (17):

x(m+1)
q (t) = R(t) + x(m)

q (0) +
∫ t

0

(
cq + ⟨Q̃q(X̃(m)(η)− Aq), X̃(m)(η)− Aq⟩

)
dη,

y(m+1)(t) = y(m)(0) +
∫ t

0

(
cq + λq(y(m)(η)− aq,q)

2
)

dη,

where the vector function X̃(m)(η) is obtained from X̃(η) by replacing the function xq(η) by x(m)
q (η). Let

x(0)q (t) ≡ xq(0),

y(0)(t) ≡ y(0).

Since the existence and uniqueness theorem is proved by the method of successive approximations, then for the
constructed approximations

lim
m→∞

x(m)
q (t) = xq(t),

lim
m→∞

y(m)(t) = y(t)

uniformly on the time interval [0, t∗].
By virtue of the inequality (14), at the first iteration we have

x(1)q (t) ≥ R(t) + xq(0) +
∫ t

0

(
cq + λq(xq(0)− aq,q)

2
)

dη.

From the positiveness of the function R(t), the inequalities (16) and

(xq(0)− aq,q)
2 > (y(0)− aq,q)

2,

we have

x(1)q (t) > y(0) +
∫ t

0

(
cq + λq(y(0)− aq,q)

2
)

dη ≡ y(1)(t), (18)

i.e., x(1)q (t) > y(1)(t) for t ∈ [0, t∗].
Also from the the inequalities (16) and (18), we have

x(1)q (t)− aq,q > y(1)(t)− aq,q > 0.

Let
x(m)

q (t)− aq,q > y(m)(t)− aq,q > 0

for t ∈ [0, t∗]. Hence we get
x(m)

q (t) > y(m)(t).

In a similar way, one can show that
x(m+1)

q (t)− aq,q > y(m+1)(t)− aq,q > 0
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and
x(m+1)

q (t) > y(m+1)(t).

At that
max

t∈[0,t∗ ]

(
x(m+1)

q (t)− y(m+1)(t)
)
≥ R∗ > 0

for all m ∈ N.
Then, by virtue of the proved lemma

xq(t) > y(t) (19)

at t ∈ [0, t∗].
Note that the solution to the Cauchy problem (15)–(16), which is easy to find in quadratures, has a vertical asymptote.

Then it follows from the inequality (19) that the function xq(t) also has a vertical asymptote.

Let us consider an example of a system that satisfies the conditions of this theorem. In the article [22], the following
system was introduced: 

ẋ1 = ax3,

ẋ2 = x3 f1(x1, x2, x3),

ẋ3 = x2
1 + x2

2 − r2 + x3 f2(x1, x2, x3),

(20)

in which the equilibrium positions lie on the circle x2
1 + x2

2 = r2 in the plane x3 = 0, a is the parameter of the dynamical
system. Usually the functions f1 and f2 are chosen as

f1(x1, x2, x3) = bx1 + βx2
3,

f2(x1, x2, x3) = γx1,

where b, β and γ are also system parameters.
Let r = 0, β = 0 and

f2(x1, x2, x3) = αx3,

where α > 0 is a parameter. We get 
ẋ1 = ax3,

ẋ2 = bx1x3,

ẋ3 = x2
1 + x2

2 + αx2
3.

(21)

The system (21) belongs to the class of systems (1) and has the unique equilibrium (0, 0, 0). For the last equation of
the system

c3 = 0, Q̃3 =

[
1 0

0 α

]
, A3 = 0,

the matrix Q̃3 is symmetric and positive–definite. Then the component x3(t) of the solution of the system (21) has a
vertical asymptote for x3(0) > 0 and x1(0) ̸= 0.

Note that the authors of the article [22] do not provide a qualitative analysis of the system (20). As shown above, it
may happen that it has unbounded solutions. Therefore, before looking numerically for attractors in dynamical systems,
the researcher needs to show the existence of bounded solutions, for example, using the Lyapunov functions.

Note that by the proof of the above theorem, it is not necessary that all equations of the system (1) have a quadratic
right-hand side. It suffices to have at least one equation that satisfies the conditions of this theorem.

It follows from the Formula (7) that the application of the FGBFI method allows one to approach the vertical
asymptote arbitrarily close without jumping over it, since

τ(Υ0) = O
(

1
∥Υ0∥2

)
at ∥Υ0∥ → ∞, i.e., the Formula (7) give a guaranteed region of convergence of the power series, and for larger ∥Υ0∥ the
integration step is smaller. Thus, from step to step applying Algorithm 1, we will come as arbitrarily close to time tas
localizing the moment of explosion.
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Note also that the application of the FGBFI method for the numerical integration of the equation (3) gives an approximate value
of the number π localizing the asymptote (4).

5. The Piecewise Smooth Systems with Quadratic-Type Nonlinearities. The Systems with Hysteresis

In practice, the problem often arises of studying piecewise smooth systems, for example, the Chua system [23]:
ẋ1 = ρ(x2 − (m1 + 1)x1)− ρϕ(x1),

ẋ2 = x1 − x2 + x3,

ẋ3 = −(θx2 + χx3),

(22)

where ρ, θ, χ, m0 and m1 are system parameters, the function

ϕ(x1) =
1
2
(m0 − m1)(|x1 + 1| − |x1 − 1|). (23)

The authors of the article [23] use the method of a describing function to localize hidden attractors in the system (22),
and the values of the initial conditions are also given. Therefore, the task of developing the high-precision numerical
methods for constructing approximate solutions to systems of the form (22) is important. Note that the described idea
can also be transferred to models with hysteresis which were considered in [24–26].

We can extend the FGBFI method to piecewise smooth systems with quadratic nonlinearities. Let us describe the
idea of the method using the system (22) as an example.

From the form of the function ϕ(x1), the phase space is divided into three parts, where the right side of the (22)
system is smooth. Similarly, the phase space can be divided into regions of smoothness for systems with hysteresis. For
example, for systems with a non-smooth potential [25]. The joint point coordinates are

x1 = ±1. (24)

By the initial condition for the coordinate x1, we determine in which part of the phase space the initial point is
located. The modules in the Formula (23) expand accordingly. Next, we take a forward step in time ∆t according by
Algorithm 1. In this case, it is necessary to remember the obtained polynomials x̃1(t), x̃2(t) and x̃3(t) approximating
the corresponding phase coordinates x1(t), x2(t) and x3(t) on the time interval [0, ∆t]. If x̃1(∆t) does not belong to the
current part of the phase space, then it is necessary to find the time tpl with a high accuracy when the trajectory intersects
one of the planes (24). For this, for example, one of the equations

x̃1(tpl) = ±1

is numerically solved by the secant method.
Further, the vector of initial conditions is taken equal to

Υ0 =
[

x̃1(tpl) x̃2(tpl) x̃3(tpl)
]T

,

and for the new part of the phase space, the modules are again expanded in the Formula (23).
The advantage of the described algorithm is that we find the moments of intersection of the trajectory of the system

(22) with the planes (24) with a high accuracy, slightly accumulating calculation errors.

6. Conclusions

In this article, the high-precision FGBFI method for constructing approximations to unstable solutions of dynamic
systems of the form (1) was described, and a link to the developed program software was also provided. The arbitrary-
precision numbers were represented by mpreal data type of the MPFR C++ library with overloaded arithmetic operations,
as well as friendly mathematical functions.

For systems of explosive type, a theorem is proved that allows one to establish the existence of asymptotes in the
system (1), and the advantage of the numerical FGBFI method in this case is also shown.

The FGBFI method has also been extended to piecewise smooth systems with quadratic-type nonlinearities using
the Chua system as an example, as well as systems with hysteresis.
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