
HAL Id: hal-04090894
https://hal.science/hal-04090894

Submitted on 10 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Sufficient conditions of non-uniqueness for the Coulomb
friction problem

Riad Hassani, Patrick Hild, Ioan Ionescu

To cite this version:
Riad Hassani, Patrick Hild, Ioan Ionescu. Sufficient conditions of non-uniqueness for the Coulomb
friction problem. Mathematical Methods in the Applied Sciences, 2004, 27 (1), pp.47-67.
�10.1002/mma.438�. �hal-04090894�

https://hal.science/hal-04090894
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Sufficient conditions of non-uniqueness
for the Coulomb friction problem

Riad Hassani1, Patrick Hild2 and Ioan Ionescu3;∗;†

1Laboratoire de G�eophysique Interne et Tectonophysique; Universit�e de Savoie=CNRS UMR 5559;

73376 Le Bourget du Lac; France
2Laboratoire de Math�ematiques; Universit�e de Franche-Comt�e=CNRS UMR 6623; 16 route de Gray;

25030 Besancon; France
3Laboratoire de Math�ematiques; Universit�e de Savoie=CNRS UMR 5127; 73376 Le Bourget du Lac; France

We consider the Signorini problem with Coulomb friction in elasticity. Su�cient conditions of non-
uniqueness are obtained for the continuous model. These conditions are linked to the existence of real
eigenvalues of an operator in a Hilbert space. We prove that, under appropriate conditions, real eigenval-
ues exist for a non-local Coulomb friction model. Finite element approximation of the eigenvalue prob-
lem is considered and numerical experiments are performed. 

KEY WORDS: Coulomb friction; elastostatics; non-uniqueness; eigenvalue problem; �nite element
approximation

1. INTRODUCTION

Many applications in solid mechanics involve contact problems between elastic structures.
Very often, the Coulomb friction model is chosen in the modelling of the contact phenomena.
From a mathematical point of view, the Coulomb frictional contact problem in (continuum)
elastostatics causes considerable di�culties and is still open. From a mechanical point of view,
there is special interest in the investigation of uniqueness of the solutions. The aim of this
paper is to shed some light on this question.
The variational formulation of the continuous problem in elastostatics was given by Duvaut

and Lions [1]. The �rst existence results were obtained by Ne�cas et al. in Reference [2] for
an in�nite elastic strip. Thereafter, existence results were obtained for an arbitrary domain
[3–5]. In all these papers, the existence results hold for small friction coe�cients and the
uniqueness is not discussed. The so-called non-local Coulomb frictional models mollifying
the normal stresses were introduced by Duvaut [6] and developed in References [7–9]. The
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smoothing map used in the non-local friction model allows to obtain existence results for
any friction coe�cient. Moreover, uniqueness results can also be established if the friction
coe�cient is small enough [6–9]. The same type of result (existence for any friction coe�cient
and uniqueness for small friction coe�cients) was obtained by Klarbring et al. [10,11] in the
case of the normal compliance model, introduced by Oden and Martins [12,13]. Finally, let
us remark that the su�cient conditions for uniqueness (small friction) given in all the above-
mentioned papers are not completed by neither su�cient conditions for non-uniqueness nor
by examples of non-uniqueness.
The discrete (�nite element) problem, associated with the continuous static Coulomb friction

problem, always admits a solution [14–16] and it is unique if the friction coe�cient is small
enough. Moreover, a convergence result of the �nite element model towards the continuous
model was established by Haslinger [14]. In the �nite dimensional context, numerous stud-
ies using truss elements have led to examples of non-uniqueness. The early work concerning
non-uniqueness was done by Janovsk�y [17] and was followed by Klarbring who constructed a
concrete example of non-uniqueness involving a spring system in Reference [18]. Let us men-
tion that Alart considered the general framework of �nite dimensional systems. He obtained in
Reference [19] abstract necessary and su�cient conditions for uniqueness. In elastostatics, all
the uniqueness results in the �nite dimensional context are valid for friction coe�cients lower
than a critical value (in the quasi-static case, this does not hold according to the counter-
example of Ballard [20]). This critical value always depends on the number of degrees of
freedom (on the mesh size when �nite elements are used or on the dimension of the system
in the case of truss elements). Since this critical value vanishes as the number of degrees of
freedom increases, we cannot deduce any result for the continuous problem. Furthermore,
the examples of non-uniqueness are speci�c to the �nite dimensional system such that no
continuous non-uniqueness example can be constructed from it.
The aim of this paper is to give simple su�cient conditions for non-uniqueness of the

solution to the continuous Coulomb friction problem which are related to the analysis of an
eigenvalue problem. The spectral approach developed here is di�erent from the widespread
�xed-point technique used in the search of solutions to the Coulomb friction problem. To our
knowledge, this is the �rst preliminary result dealing with non-uniqueness conditions in the
continuous context.
After the statement of the problem, we give in Section 3 su�cient conditions for non-

uniqueness. They deal with a continuous branch of solutions and they do not cover the case
of isolated multiple solutions. Only multiple solutions with the same distribution of slip, free
and stick zones are considered. These conditions of non-uniqueness require that the friction
coe�cient is a real eigenvalue of a spectral problem. That means that if this spectral problem
has a real eigenvalue then the Coulomb friction contact problem is open to non-uniqueness.
In Section 5 we prove the existence of a countable set of complex eigenvalues for the

non-local friction model (recalled in Section 4). Moreover, we give there su�cient conditions
for the existence of at least one real eigenvalue. The eigenvalue problem is approximated in
Section 6, and convergence of the �nite element method is discussed.
Finally in Section 7, we present some numerical results. First, we implement numerically the

eigenvalue problem and we illustrate the convergence of the real eigenvalues. Second we show
the non-uniqueness methodology using numerical computations, which unfortunately cannot
prove an evidence of non-uniqueness since the convergence results of the �nite element model
are not established, but which explain quite well the spectral approach proposed in this paper.
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Figure 1. Setting of the problem. The domain 
; its boundary is divided
into three parts: �D;�N and �C.

2. PROBLEM STATEMENT

Let an elastic body be given, occupying a domain 
×R with 
 in R2. The generic point
in R3 is denoted x=(x1; x2; x3). We choose plane strain assumptions which means that the
displacement �eld u=(u1; u2; u3) is vanishing in the Ox3 direction (u3 ≡ 0) and u1; u2 depend
only on (x1; x2). The boundary � of 
 is assumed to be Lipschitz and is divided as follows:
�= ��D ∪ ��N ∪ ��C where �D; �N and �C are three open disjoint parts and meas(�D)¿0. We
assume that the displacement �eld is given on �D (i.e. u=U) and that the boundary part �N
is acted on by a density of surface forces F. The third part is �C, which comprises all the
points candidate to be in frictional contact with a rigid foundation (see Figure 1). The body

 is acted upon by a given density of volume forces f . Let n = (n1; n2) represent the unit
outward normal vector on � and de�ne the unit tangent vector t=(−n2; n1). We denote by
�¿0 the friction coe�cient on �C.
The Coulomb frictional unilateral contact problem consists of �nding the displacement �eld

u : 
→R
2 and the stress tensor �eld �(u) :
→S2 satisfying (1)–(4):

�(u) =CU(u); div �(u) + f = 0 in 
 (1)

�(u)n= F on �N; u=U on �D (2)

where S2 stands for the space of second order symmetric tensors on R
2; U(u)= (∇u+∇Tu)=2

denotes the linearized strain tensor �eld, C is a fourth order symmetric and elliptic tensor of
linear elasticity and div represents the divergence operator of tensor valued functions.
In order to introduce the equations on �C, we adopt the following notation: u= unn + utt

and �(u)n=�n(u)n+ �t(u)t. The equations modelling contact and friction are as follows on
�C:

un60; �n(u)60; �n(u)un=0 (3)







ut =0⇒ |�t(u)|6�|�n(u)|

ut �=0⇒�t(u)=−�|�n(u)|
ut
|ut |

(4)
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Remark 2.1
Let us mention that the true Coulomb friction law involves the tangential contact velocities
and not the tangential displacements. However, a problem analogous to the one discussed here
is obtained by time discretization of the quasistatic frictional contact evolution problem. In this
case (see Reference [21]) u; f and F stand for u((i+1)�t); f ((i+1)�t) and F((i+1)�t)
respectively and ut has to be replaced by ut((i+1)�t)− ut(i�t), where �t denotes the time
step. For simplicity and without any loss of generality only the static case described above
will be considered in the following.

The variational formulation of problem (1)–(4) has been obtained by Duvaut and Lions
[1]. It consists of �nding u verifying:

u ∈ Kad ; a(u; C− u) + j(u; C)− j(u; u)¿L(C− u); ∀C∈Kad (5)

where

a(u; C)=

∫




(CU(u)): U(C) d
; L(C)=

∫




f · C d
 +
∫

�N

F · C d�

are de�ned for any u and C in the standard Sobolev space (H 1(
))2 (see Reference [22]) and
the notations · and : stand for the canonical inner products in R2 and S2, respectively.
In (5), Kad denotes the closed convex set of admissible displacement �elds satisfying the

non-penetration conditions:

Kad= {C∈ (H 1(
))2: C=U on �D; vn60 on �C}

The functional j(·; ·) given by

j(u; C)=−
∫

�C

��n(u)|vt | d� (6)

is de�ned for any C in (H 1(
))2 but more regularity is required for u. Two di�erent cases
when j(u; ·) makes sense, are usually considered in the literature. The �rst one, which occurs
in the continuous problem, involves the space

Ṽ= {C∈ (H 1(
))2: div �(C)∈ (L2(
))2}

If u∈ Ṽ then �(u) belong to H (div;
) and �n(u) is an element of H−1=2(�) (i.e. the dual of
H 1=2(�)). Since H−1=2(�)|�C is di�erent from H−1=2(�C) we have to suppose in addition that
�n(u)∈H−1=2(�C). With this assumption, (6) makes sense if we replace the integral term by
the duality product. For a more precise formulation involving the convenient Sobolev spaces
and the set of nonnegative Radon measures, a detailed study can be found in Reference [23].
In the second case, u belongs to a �nite element set Vh ⊂ (H 1(
))2, which implies that �(u)
is at least piecewise continuous so that �(u)n admits a trace on the boundary. In the latter
case, the integral notation in (6) has to be understood in the classical sense.
The �rst existence result of (1)–(4) has been proven in Reference [2] when 
 is an

in�nitely long strip and the friction coe�cient has compact support in �C and is su�ciently
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small. The extension of these results to domains with smooth boundaries as well as improve-
ments can be found in References [3] and [4]. More recently in Reference [5], existence is
stated when the friction coe�cient � is smaller than

√
3− 4�=(2−2�); � denoting Poisson’s ra-

tio in 
 (06�¡ 1
2
). To our knowledge there exist neither uniqueness result nor non-uniqueness

example of (5) (unless the loads U; f and F are equal to zero).

3. SUFFICIENT CONDITIONS FOR NON-UNIQUENESS: A SPECTRAL APPROACH

Let us consider an equilibrium position u0 of the Coulomb frictional contact problem (i.e. a
solution of (1)–(4)) supposed to be regular enough. The notation �0f stands for the points
of �C which are currently free (separated from the rigid foundation). We denote by �0s the
points of �C which are currently in contact but are stuck to the rigid foundation, and by �

0
C

the points of �C which are currently in contact but are candidate to slip. That leads to the
following de�nitions:

�0f = {x∈�C: u0n(x)¡0} (7)

�0s = {x∈�C: u0n(x)=0; |�t(u0)(x)|¡− ��n(u0)(x)} (8)

�0C = {x∈�C: u0n(x)=0; |�t(u0)(x)|=−��n(u0)(x)} (9)

Let us adopt the following notation

�0D=�D ∪�0s and �0N=�N ∪�0f
and consider now the following eigenvalue problem:
Eigenvalue problem. Find �∈C and 0 �=�∈ (H 1(
))2 such that

�(�) =CU(�); div �(�)= 0 in 
 (10)

�= 0 on �0D; �(�)n=0 on �0N; �n=0 on �0C (11)

�t(�) = ��n(�) on �0C (12)

Remark 3.1
If we choose the commonly used Hooke’s law, for homogeneous isotropic materials, given
by

�ij=
E�

(1− 2�)(1 + �)�ij�kk(u) +
E

1 + �
�ij(u) in 


where E denotes Young’s modulus, � represents Poisson’s ratio and �ij is the Kronecker
symbol, then the only constitutive constant involved in the eigenvalue problem (10)–(12) is
the ratio �= �=(1 − 2�). Indeed, the eigenvalues and eigenfunctions are independent of the
Young modulus E.
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The following theorem states su�cient conditions for the non-uniqueness of the equilibrium
solution u0.

Theorem 3.2
Let u0 be a smooth solution of Coulomb’s frictional contact problem (1)–(4) with �¿0
as friction coe�cient. Let u1= u0 + �� for some �∈R and � a smooth eigenfunction of
(10)–(12). Let us de�ne the two following cases (i) and (ii):

(i) �t(u
0)(x)60 for all x∈�0C and � is the corresponding eigenvalue for �. Assume that:

u1n(x)¡0; for all x∈�0f (13)

�n(u
1)(x)60; for all x∈�0C (14)

|�t(u1)(x)|¡− ��n(u1)(x); for all x∈�0s (15)

u1t (x)¿0; for all x∈�0C (16)

(ii) �t(u
0)(x)¿0 for all x∈�0C and −� is the corresponding eigenvalue for �. Assume

that in addition to (13)–(15), one has:

u1t (x)60; for all x∈�0C (17)

If either (i) or (ii) holds then u1 is another (smooth) solution of (1)–(4).

Proof
Let us �rstly remark that u1= u0 + �� satis�es Equations (1)–(2) for any �∈R. Next, we
have to check that u1 veri�es the frictional contact conditions (3)–(4). We begin with the
unilateral contact conditions (3).
If x∈�0f then from (13) we have u1n(x)¡0. Since �

0
f ⊂�C, from (7) we get �(u0)n(x)=0.

Having in mind that �0f ⊂�0N and according to (11), we deduce �n(u1)(x)=0. If x∈�0s ∪�0C
then u0n(x)=0 and �n(x)=0, hence u

1
n(x)=0 and from (14) we deduce (3). Therefore u1

satis�es (3).
If x∈�0s the condition (4) implies u0t (x)=0. From assumption (15) we get |�t(u1)(x)|

¡− ��n(u1)(x) and since �0s ⊂�0D we obtain u1t (x)=0. If x∈�0f , then owing to �0f ⊂�0N, we
have �n(u

1)(x)=�t(u
1)(x)=0 and (4) is satis�ed.

Let x∈�0C. If case (i) holds, then, for all x∈�0C we have �t(u0)(x)60 and �t(u0)(x)=��n
(u0)(x). Using (12) with �=�, we obtain �t(u

1)(x)=��n(u
1)(x) and (4) follows from (14)

and (16). If we consider case (ii) then �t(u
0)(x)=−��n(u0)(x) and from (12) with �=−�

we �nally get �t(u
1)(x)=−��n(u1)(x). Consequently, u1 satis�es (4).

In order to apply Theorem 3.2, one has to check the conditions (13)–(17) dealing with the
equilibrium u0, the eigenfunction � and an appropriately chosen value of �. The following
corollary yields su�cient conditions concerning the solution u0 only. These conditions are
more restrictive than those of the previous theorem but easier to handle. Indeed, we shall
suppose that all the points of �C are in a slipping contact, i.e. �

0
s = ∅ and �0f = ∅.
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Corollary 3.3
Let u0 be a smooth solution of Coulomb’s frictional contact problem (1)–(4) with �¿0 as
friction coe�cient. Assume that �0C=�C and that there exist �; �¿0 such that

�n(u
0)(x)6− � for all x∈�0C (18)

Moreover, suppose that one of the following two conditions (i) or (ii) holds:
(i) The pair (�;�) is a smooth solution of (10)–(12), and

u0t (x)¿�; for all x∈�0C (19)

(ii) The pair (−�;�) is a smooth solution of (10)–(12), and

u0t (x)6− �; for all x∈�0C (20)

Then Coulomb’s frictional contact problem (1)–(4) admits an in�nity of solutions. In par-
ticular, there exists �0¿0 such that u

1= u0 + �� is solution for any � satisfying |�|6�0.

Proof
Let �0= supx∈�C |�n(�)(x)| and �0= supx∈�C |�t(x)|. Keeping in mind that �n(u0 + ��)(x)
6− �+ |�|�0 we deduce that (14) holds when |�|6�=�0.
If condition (i) holds, we can write u1t (x)= u

0
t (x) + ��t(x)¿� − |�|�0 so that the bound

|�|6�=�0 leads to (16). Moreover, condition (19) implies that �t(u0)(x)60 for all x∈�0C. If
we set �0= min{�=�0; �=�0} then the �rst case in Theorem 3.2 proves the statement of the
corollary.
If condition (ii) holds, then (17) is satis�ed if |�|6�=�0 and (20) implies that �t(u0)(x)¿0

for all x∈�0C. Employing the second case in Theorem 3.2 completes the proof of the corollary.

Remark 3.4
The above results are only su�cient conditions for non-uniqueness. They take into considera-
tion only the possibility of existence of multiple solutions having the same distribution of the
slip, free and stick zones. Moreover, the above corollary does not cover the case of isolated
multiple solutions.

Indeed, as it follows from Corollary 3.3, if the problem is open to non-uniqueness then
there exists an in�nity of solutions located on a continuous branch.
The non-uniqueness conditions considered here imply that the friction coe�cient � (or −�)

is an eigenvalue of (10)–(12). This eigenvalue problem depends exclusively on the geometry
(the domain 
 and the distribution of the di�erent types of boundaries) and on the elastic
properties incorporated in the operator C (on the Poisson coe�cient � for an isotropic elastic
material).

Remark 3.5
If (10)–(12) admits a real eigenvalue � then the pair geometry-material is open to the non-
uniqueness of the Coulomb frictional contact problem.
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As a matter of fact, one can think of a distribution of loads F; f and a displacement
�eld U such that a solution u0 of (1)–(4) for this particular friction coe�cient � satis�es
(18)–(19). We consider, for example, that �C is a straight line segment located on the Ox1-
axis and that �N= ∅. We choose

U(x)=

(

�+ 2�
1− �
1− 2� x2;−x2

)

for all x=(x1; x2)∈�D, with �¿0 and f = 0. One can easily check that u0(x)=U(x), for all
x∈
 is a solution of (1)–(4). Since �0C=�C; �n(u0)(x)=−E(1−�)=[(1−2�)(1+�)]¡0 and
u0t (x)= �¿0, we deduce that the su�cient conditions of the corollary hold.

4. THE NON-LOCAL FRICTION MODEL

There exist several laws ‘mollifying’ Coulomb’s frictional contact model which lead generally
to more existence and uniqueness properties. Among these regularization techniques, a special
interest is devoted to the non-local procedure introduced in Reference [6] and developed in
References [7–9]. Moreover, from a physical point of view, this law takes into account some
interesting microscopic aspects: the normal pressure �n(u) is distributed over a contact area
of the deformed asperity (see Reference [7] for more arguments).
Hence, we consider the non-local normal stress �∗

n (u) given by

�∗
n (u)(x)=

∫

�C
w�(|x− y|)�n(u)(y) dy
∫

�C
w�(|x− y|) dy (21)

where w�; (�¿0) stands for a non-negative function with its non-empty support in [−�; �]
such that x �→w�(|x|) is an in�nitely di�erentiable function. As for the functional j, the above
expression of the non-local normal stress is meaningful in two di�erent cases. The �rst one
concerns the continuous problem when �n(u)∈H−1=2(�C) and the above integral has to be
replaced by the duality product between H−1=2(�C) and H

1=2(�C). The second case happens
when using a �nite element approximation when �(u) is at least piecewise continuous.
Another type of smoothing procedure was introduced in Reference [24] for friction problems

in viscoplasticity. In this case the second order stress tensor �eld is averaged in the interior
of the domain and its normal trace on the contact boundary provides the non-local normal
stress. The de�nition of the non-local normal stress �∗

n (u) becomes

�∗
n (u)(x)=

∫



w�(|x− y|)�(u)(y) dy
∫

�

w�(|x− y|) dy n(x) · n(x) (22)

Unlike the �rst non-local approach in (21), this second procedure avoids the handling of
dual Sobolev spaces such as H−1=2(�). Indeed, the latter expression is well de�ned for any
u∈ (H 1(
))2.
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If we replace the above formulas in (4) we get the following ‘regularized’, non-local friction
law on �C:







ut =0⇒ |�t(u)|6�|�∗
n (u)|

ut �=0⇒ �t(u)=−�|�∗
n (u)|

ut
|ut |

(23)

The variational formulation of (1)–(3) and (23) is inequality (5), the same as in the local
friction case in which j is replaced by (see Reference [6]):

j(u; C)=−
∫

�C

��∗
n (u)|vt |d� (24)

From a mathematical point of view, the smoothing map used in the non-local friction model
implies compactness properties of the operators involved in the variational approach (5). These
properties permit using the Schauder and Tykhonov �xed point theorems in order to deduce
the existence of at least one solution of the variational inequality [6–9]. In addition, some
uniqueness results can also be obtained for the non-local friction model. As a matter of fact,
it was proved in References [6–9] that there exists a critical friction coe�cient �c such that
if �¡�c (i.e. the friction is small) then the solution of (5) is unique. As for the local friction
case there exist, to our knowledge, no non-uniqueness examples.
The eigenvalue problem corresponding to the non-local friction case is (10)–(11) and

�t(�)= ��
∗
n (�) on �0C (25)

where �0s and �
0
C de�ned in (8) and (9) have to be replaced by

�0s = {x∈�C: u0n(x)=0; |�t(u0)(x)|¡− ��∗
n (u

0)(x)}

�0C = {x∈�C: u0n(x)=0; |�t(u0)(x)| = −��∗
n (u

0)(x)}

If the normal stress �n is replaced by �
∗
n then all the su�cient conditions for non-uniqueness

given in Theorem 3.2 and Corollary 3.3 remain valid.

5. EXISTENCE OF EIGENVALUES AND EIGENFUNCTIONS

In order to derive the variational formulation of (10)–(11) and (25) we consider the subspaces
V0 and Ṽ0 of (H 1(
))2 and Ṽ, respectively:

V
0= {C∈ (H 1(
))2: C= 0 on �0D; vn=0 on �

0
C}; and Ṽ

0=V0 ∩ Ṽ

Let us introduce the bilinear form b(:; :) given by:

b(u; C)=

∫

�C

�∗
n (u)vt d�

9



for any C in (H 1(
))2. Concerning the �rst variable, b(u; C) makes sense if the non-local
normal stress �∗

n (u) can be de�ned. Hence, b(u; C) is well de�ned for any u∈ Ṽ such that
�n(u)∈H−1=2(�C) or for u∈Vh (the notation Vh represents a �nite element type space) if the
non-local normal stress (21) is considered. When adopting the non-local normal stress (22),
this restriction disappears, so that b(u; C) is well de�ned for all u; C∈ (H 1(
))2.
The variational formulation of problem (10)–(11) and (25) consists of �nding �∈C and

0 �=�∈ Ṽ0 such that:

a(�; C)= �b(�; C); ∀C∈V0 (26)

and it can be easily checked that if �∈C and a non-zero � satisfy (10)–(11) and (25) then
there are a solution of (26). Conversely, if �∈C and a nonzero � satisfy (26), then the pair
(�;�) is a weak solution of (10)–(11) and (25).

Theorem 5.1
The eigenvalues of problem (26) consist of a countable set of complex numbers {�n}n∈I with
�n �=0. Each eigenvalue �n is of �nite algebraic multiplicity. If I is in�nite then limn→∞ |�n|=
+∞.

Proof
Let us �rst remark that �=0 is not an eigenvalue of (26). Otherwise, a(�;�)=0 where �
is an eigenvector associated with �=0, which contradicts the V0-ellipticity of a(:; :). Let us
denote by

H =L2(�0C) and W
0= {C∈V0: div �(C)= 0 in 
; �(C)n= 0 on �0N}

and de�ne P:H → V0 as follows: for any f∈H; P(f) is the unique solution of the variational
equality

a(P(f); C)=

∫

�0C

fvt d�; ∀C∈V0:

If we put C∈ (D(
))2 ⊂V0 in the previous equation (the notation D(
) stands for the space of
in�nitely di�erentiable functions with compact support in 
), we deduce that div �(P(f))= 0
in 
. In the same way, it can be formally checked that �(P(f))n= 0 on �0N which implies
that P(f)∈W0. Hence, P is a linear continuous operator from H into W0. Next, we prove
the theorem separately for the two regularization techniques in (21) and (22).
(i) Case (21). The function �∗

n (C)∈H is well de�ned for any C∈W0. Set Q:W0 →H so
that Q(C)=�∗

n (C), Since Q is a linear and completely continuous operator [9, Theorem 11.2,
p. 338] we deduce that T =PQ :W0 → W0 is also completely continuous. In order to prove
the statement of the theorem, we only have to mention that � is a solution in (26) if and only
if 1=� is a non-zero eigenvalue for T which is true since �T (�)=� if and only if (�;�) is
a solution for (26).
(ii) Case (22). The operator Q :V0→H , given by Q(C)=�∗

n (C) is well de�ned. In addition,
Q is a linear and completely continuous operator [24, Lemma 1.2, p. 181] and we deduce
that T =PQ :V0 → V0 is also completely continuous. As a consequence, the proof follows as
in case (i).

10



Remark 5.2
The technique used in the proof above cannot be used if the non-local assumption is removed.
The existence of a countable set of eigenvalues is linked to the compactness of operator T
which is assured by the regularized trace operator Q.

The following result ensures, under speci�c conditions, the existence of at least one real
positive or negative eigenvalue for problem (26) which also minimizes the moduli among all
eigenvalues satisfying (26). First, we need to de�ne the convex cone K0:

K
0= {C∈W0: �t(C)¿0 on �

0
C}

It is easy to see that each displacement �led C of W0 (and of K0) is determined uniquely by
the tangential component �t(C) of the stress vector on �

0
C.

Theorem 5.3
Suppose that one of the two following conditions (i) or (ii) holds:

(i) any C in K0 satis�es �∗
n (C)¿0 on �

0
C,

(ii) any C in K0 satis�es �∗
n (C)60 on �

0
C.

Then the eigenvalue �0, minimizing the moduli of all eigenvalues in problem (26), is real
and its associated eigenvector lies in K0. Moreover �0¿0 in the case (i) and �0¡0 in the
case (ii).

Let us �rst recall a weak form of the Krein–Rutman theorem [25–27] which we use in the
proof of Theorem 5.3.

Theorem (Krein and Rutman [25])
Let X be a Banach space and let K ⊂X be a convex cone containing 0 (i.e. �x+�y∈K; ∀�¿0;
∀�¿0; x∈K; y∈K). Suppose that K is closed, X =K −K and K ∩ (−K)= {0}. Let T be a
linear operator satisfying T (K)⊂K .
If T is compact and its spectral radius r(T ) �=0 then there exists ’∈K − {0} such that

T (’)= r(T )’

Proof
Let us consider operator T =PQ :W0 → W0 introduced in the proof of Theorem 5.1. For
both non-local frictional approaches, the operator T is compact in the Hilbert space W0.
Moreover, the closed convex cone K0 satis�es K0 ∩ (−K0)= 0 and K0 −K0=W0 (it su�ces
to write �t(C)= (�t(C))+ − (�t(C))− where the notations (:)+ and (:)− represent the positive and
the negative parts, respectively). We next show that T (K0)⊂K0.
The assumptions of the theorem imply that the operator Q de�ned by Q(C)=�∗

n (C) maps
K0 into (L2(�0C))+. The operator P de�ned for all f∈L2(�0C) by

a(P(f); C)=

∫

�0C

fvt d�; ∀C∈W0

satis�es �t(P(f))=f. Hence C∈K0, which implies that Q(C)∈ (L2(�0C))+ and thus T (C)∈K0.

11



It follows then from Krein–Rutman’s theorem that if T admits a positive spectral radius,
then there exists an eigenvalue which is equal to the spectral radius with an associated eigen-
vector in K0.
The case (ii) is handled similarly by using the operator −T .

6. FINITE ELEMENT APPROXIMATION OF THE EIGENVALUE PROBLEM

The problem we intend to approximate is as follows: �nd �∈C and 0 �=�∈V0 such that:

a(�; C)= �b(�; C); ∀C∈V0 (27)

which is exactly the eigenvalue problem corresponding to the non-local frictional approach
(22). Notice that when the regularization procedure (21) is adopted, then the convergence
analysis is more complicated. A remark at the end of this section explains and gives partial
answers to the convergence study in that case.
We denote by ‖ · ‖1 the standard norm on (H 1(
))2. Our aim is to approximate the eigen-

values of problem (27). Let be given a family of �nite dimensional subspaces V0h ⊂V0 where
h denotes the discretization parameter [28]. The �nite dimensional problem consists then of
�nding �h ∈C and 0 �=�h ∈V0h such that [29,30]:

a(�h; Ch)= �hb(�h; Ch); ∀Ch ∈V0h (28)

We assume that the following approximation property holds:

lim
h→0

inf
uh∈V

0
h

‖u − uh‖1=0; ∀u∈V0

Let �−1 be an eigenvalue of T de�ned in (ii) of the proof in Theorem 5.1. Denoting by I the
identity map, there exists a least integer � such that Ker((�−1I−T )�)=Ker((�−1I−T )�+1)=E
with dim(E)=m¡∞. The algebraic multiplicity of �−1 is m and � stands for the ascent of
�−1I −T . The set E contains the generalized eigenvectors of T corresponding to �−1. Let T ∗

be the adjoint operator of T de�ned on the dual space V0∗. Then ��−1 is an eigenvalue
of T ∗ with algebraic multiplicity m and � is also the ascent of ��−1I − T ∗. The notation
E∗=Ker(( ��−1I − T ∗)�) stands for the space of generalized eigenvectors of T ∗ associated
with ��−1. Given two closed subspaces A and B of V0, de�ne the gap between A and B by

�(A; B)= max

(

sup
u∈A;‖u‖1=1

inf
C∈B

‖u − C‖1; sup
u∈B;‖u‖1=1

inf
C∈A

‖u − C‖1
)

Let � be an eigenvalue of (27) and denote by m its algebraic multiplicity. When h tends
to zero, there exist exactly m eigenvalues of (28) denoted �1; h; �2; h; : : : ; �m;h converging to �.
Let Eh be the direct sum of the generalized eigenspaces associated with �1; h; �2; h; : : : ; �m;h and
de�ne

�h= sup
u∈E;‖u‖1=1

inf
Ch∈V

0
h

‖u − Ch‖1 and �∗h = sup
u∈E∗ ;‖u‖1=1

inf
Ch∈V

0
h

‖u − Ch‖1
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The following theorem, taken from Kolata [31], describes the convergence of the �nite element
approximation.

Theorem 6.1
If h is small enough, the following estimates hold:

∣

∣

∣

∣

∣

�− 1

m

m
∑

i=1

�i; h

∣

∣

∣

∣

∣

6C�h�
∗
h

|�− �i; h|6C(�h�
∗
h)
1
� ; 16i6m

�(E; Eh)6C�h

where the constant C does not depend on h.

If the �rst regularizing approach (21) is adopted then the eigenvalue problem becomes: �nd
�∈C and 0 �=�∈W0 such that a(�; C)= �b(�; C), ∀C∈V0. In such a case there are at least
two alternatives for obtaining convergence results. The �rst one is to invoke again Kolata’s
studies in Reference [31] which are still valid. It su�ces then to show two families of �nite
dimensional subspaces V0h and W

0
h of V

0 and W0, respectively, where the dimensions of V0h
and W0

h are equal. This necessitates to introduce more speci�c �nite element spaces which is
out of the scope of this paper. The second possibility is to use a non-conforming �nite element
approach and approximating V0 and W0 with the same �nite dimensional space V0h although
V0h �⊂W0. In that case the convergence result requires strong supplementary hypotheses as in
Reference [32].

Figure 2. The geometry, the domain 
 and its boundary with its three
open disjoint parts: �D, �N and �C.
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Figure 3. The two smallest real eigenvalues �0; h and �1; h vs the number of elements on a edge: 1=h.

Figure 4. The eigenfunction �0; h computed for a mesh of 100× 100

elements; all the nodes in �0C are slipping.

7. NUMERICAL RESULTS

The su�cient conditions for non-uniqueness given in Section 3 concern the solution u0 of 

the continuous problem (1)–(4). Unfortunately, there are to our knowledge no available 
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Figure 5. (a) The normal stress �n(�0; h) and (b) the tangential slip �0; ht on �
0
C for three di�erent

meshes: 50× 50, 100× 100 and 200× 200 elements.

analytical examples of non-uniqueness in the continuous framework. That is why we cannot
directly verify the su�cient conditions given in the Theorem 3.2 or Corollary 3.3. Next we
try to illustrate the su�cient conditions from a numerical point of view. Since the convenient
convergence results for the Coulomb friction model do not exist, the numerical computations
cannot stand for a rigorous mathematical proof of the su�cient conditions for non-uniqueness.
Our aim here is only to illustrate the methodology given in the continuous context.
We consider the eigenvalue problem (10)–(12) where 
 represents a unit square whose

partition of the boundary (�0C;�
0
D;�

0
N) is depicted Figure 2. The elastic material is supposed

to be isotropic and a Poisson ratio � equal to 0.4 is chosen. The �nite element discretization
is made of uniform quadrilateral meshes of edge size h. The ARPACK library is used to
compute the eigenvalues and eigenfunctions of the discrete spectral problem (28).
Figure 3 depicts the two smallest real eigenvalues denoted �0; h and �1; h as a function

of the number of elements on �0C (�0; h and �1; h are single eigenvalues). As expected from
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Figure 6. The dependence of the �rst eigenvalue on the ratio �= �=(1− 2�).

Figure 7. An example of mechanical problem (1)–(4) with non-uniqueness. An elastic square lying
on a rigid inclined plane, loaded by the gravity f and by an imposed displacement U.

Theorem 6.1, we note good convergence of these eigenvalues with respect to the mesh size.
Note that �0; h, which admits the smallest modulus among all complex eigenvalues converges
quite well.
In Figure 4, we show the eigenfunction �0; h, corresponding to �0; h, computed for a mesh

of 100× 100 elements. Notice that all the nodes on �0C are slipping. Figure 5 represents the

16



Figure 8. The deformed con�guration and the Von–Mises stress �eld associated with

the solution u0h , computed with a 100× 100 mesh.

normal stress �n(�0; h) and the tangential slip displacement �0; ht on �
0
C for three di�erent sizes

of meshes. We note the good agreement between these three computations, except maybe, in
the neighborhood of the lower right corner of 
.
The existence of a real eigenvalue for (10)–(12) is investigated in Section 5. As it was

already pointed out in Remark 3.1, the eigenvalues depend only on the ratio �= �=(1 − 2�)
in the case of a homogeneous and isotropic elastic body. In Figure 6, we observe that for all
� the �rst eigenvalue is real and positive when the computations are performed on a 50× 50
mesh. Note the sharp variation for small values of the ratio �. If for some � the positivity of
the �rst eigenvalue is preserved when h tends to 0 and it converges to an eigenvalue of the
continuous problem, then the geometry is open to non-uniqueness according to Remark 3.5.
In order to discuss our non-uniqueness methodology, we choose the same geometry as in

the previous test and a Poisson ratio � of 0.4. So, we consider an elastic unit square lying on
a rigid inclined plane (see Figure 7) as an example of the mechanical problem (1)–(4).
The elastic body is loaded by a density of gravity forces f and by an imposed displace-

ment �eld U. The following values are used: 
=Arctan 2≃ 63:43◦, �=Arctan 2:5≃ 68:2◦,
|f |=223:6 N m−3, |U|=0:005385, and a Young modulus E=10 GPa. The computations of
the numerical solution denoted u0h are achieved using the �nite element code CASTEM. The
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Figure 9. The normal stress and the tangential displacement of �C, corresponding to the solution u
0
h ,

computed with three di�erent meshes.

numerical results plotted in Figure 8 are obtained using an uniform quadrilateral mesh of
100× 100 elements.
The friction coe�cient � is chosen to be equal to �0; h=0:84232, the �rst eigenvalue com-

puted above for the same mesh. We remark that all the points of �C are slipping and therefore
we have �0C=�C, �

0
D=�D, and �

0
N=�N.

Figure 9 represents the normal stress and the tangential displacement on �C for three di�er-
ent mesh sizes. We remark that the su�cient conditions (18)–(19) are satis�ed for the three
computations. From the computations we can reasonably expect that these conditions still hold
as h tends to 0. If in addition we assume convergence of the �nite element solution u0h to
a solution u0 of the continuous model (1)–(4) such that L∞ convergence of the quantities
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Figure 10. The normal stress and the tangential displacement corresponding to the solutions u1h and

u0h , computed with a 200× 200 mesh.

depicted in Figure 9 holds, then the conditions (18)–(19) also hold for the solution u0. If
the �rst eigenvalue �0; h in Figure 3 converges to a positive eigenvalue �0 of (10)–(12), we
choose �= �0 and from Corollary 3.3 we could deduce that u0 is not the unique solution
of (1)–(4). Indeed, there exist an appropriate scalar � such that u1= u0 + ��0 is another
solution of (1)–(4). In Figure 10 we try to illustrate this with a very re�ned mesh (as �ne
as the computation allows). We have plotted the normal stress and the tangential displace-
ment corresponding to the discrete solutions u1h and u

0
h computed with a 200× 200 mesh.

Although the solutions are not quite di�erent, we nevertheless observe a local mis�t (gap)
of order of 10%. The Von-Mises stress corresponding to the di�erence u1h − u0h is depicted in
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Figure 11. The Von-Mises stress corresponding to the di�erence u1h − u0h .

Figure 11. In this case the di�erence (of order of 20%) is concentrated on the lower right
corner.
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