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Abstract

Dynamic Vision Sensors (DVS) are an unconventional
type of camera that produces sparse and asynchronous
event data, which has recently led to a strong increase in its
use for computer vision tasks namely in robotics. Embed-
ded systems face limitations in terms of energy resources,
memory, computational power, and communication band-
width. Hence, this application calls for a way to reduce the
amount of data to be processed while keeping the relevant
information for the task at hand. We thus believe that a for-
mal definition of event data reduction methods will provide
a step further towards sparse data processing.

The contributions of this paper are twofold: we intro-
duce two complementary neuromorphic methods based on
Spiking Neural Networks for DVS data spatial reduction,
which is to best of our knowledge the first proposal of neu-
romorphic event data reduction; then we study for each
method the trade-off between the amount of information
kept after reduction, the performance of gesture classifi-
cation after reduction and their capacity to handle events
in real time. We demonstrate here that the proposed SNN-
based methods outperform existing methods in a classifica-
tion task for most dividing factors and are significantly bet-
ter at handling data in real time, and make therefore the op-
timal choice for fully-integrated energy-efficient event data
reduction running dynamically on a neuromorphic plat-
form. Our code is publicly available online at: https:
//github.com/amygruel /EvVisu,
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1. Introduction

The joint use of silicon retinas (Dynamic Vision Sensors,
DVS) and Spiking Neural Networks (SNNs) is a promising
combination for dynamic visual data processing. Both tech-
nologies have recently emerged separately about a decade
ago from electronics and neuroscience communities, shar-
ing many features: biological inspiration, temporal dimen-
sion, model sparsity, aim for a higher energy efficiency, etc.

However, deep SNN models can have difficulties han-
dling a great amount of data simultaneously while minimis-
ing its energy consumption, especially at a high temporal
resolution. One way to reduce their spiking activity while
maintaining a high performance is to compress these mod-
els using attention, as proposed in [14]]. Another way simply
is to reduce the data these models use as input, meaning in
our case reducing the event stream.

Furthermore, event cameras have a very high tempo-
ral resolution, in the order of microseconds. This means
that theoretically, one pixel can generate at most 1 million
events per second; thus a DVS128 of resolution 128 x 128
could produce 16.4 billion events per second. While this
case never happens in real use due to the events’ intrin-
sic sparsity and non-redundancy, several million events per
second have been recorded in highly dynamic and textures
scenes [24]. DVS sensors can thus produce heavy event
streams requiring significant resources to handle. When
implemented onto embedded systems, the processing can
suffer from hardware limitations such as energy resources,
memory, computational power, and communication band-
width. In such situations where a dense event stream can
neither be stored nor processed online, it is likely that some
(if not most) events will be randomly dropped, which will
obviously impede a correct processing.
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It is thus necessary to design a sound way to filter events.
We believe a straight-forward way to reach this goal is re-
ducing the amount of input data received by the embedded
system by artificially downscaling the size of the visual sen-
sor. To the best of our knowledge, this problematic has been
discussed only twice. Firstly, the Python library for neuro-
morphic data processing Tonic [16] implements a tool for
spatial event downscaling. Secondly, authors in [[12]] have
elaborated several innovative methods for event reduction.

In this paper, our core objective lies in designing a fully-
integrated energy-efficient SNN model able to run dynam-
ically on a neuromorphic platform. We claim the impor-
tance of providing downscaling methods for event data in
order to filter out events and reduce the data flow with care,
as this preprocessing step should be achieved while preserv-
ing the information conveyed. We introduce and benchmark
several methods for spatially downscaling event data with
SNNs. The design of such a model is not straightforward,
and it requires some hyper-parameter tuning to achieve the
results presented in the paper. As far as we know, it is the
first time an SNN has been studied as a method to down-
scale event based data. Knowing that the combination of
SNNs with event-based cameras seems to prove its worth
in terms of compatibility of data types [3]], information re-
tention [13]], energy efficiency [3\ (7] and processing latency
[[7]] reinforces the relevance of studying event data reduction
using SNN.

2. Event cameras

Conventional video cameras are based on the periodic
acquisition of frames. Each frame is a static representation
of the visual scene that is acquired by measuring the av-
erage light intensity during a certain sub-period time com-
monly known as exposure time. The intensity of each pixel
is periodically measured (with a typical frame period of 20-
30ms) and communicated regardless of whether it contains
relevant information or not. Furthermore, objects moving at
high speed relative to the frame time appear blurred in the
image frame.

However, biological vision systems are not frame-based.
In biological retinas, retinal pixels observe the visual scene
and generate spikes whenever some relevant information is
detected. These spikes are generated in a continuous and
asynchronous way when a high spatial or temporal contrast
is detected in the scene. The retinal spikes are sent through
the optic nerve to be processed by the neural layers of the
visual cortex. This spike based coding of the visual scene
results in higher temporal resolution and lower communi-
cation and computational load of biological visual systems
versus artificial ones.

DVSs implement a simplified retinal model where each
pixel responds autonomously to the relative temporal varia-
tions of the illuminations [18]]. These sensors have emerged
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Figure 1: (A) Principle of operation of an event-based cam-
era, from [18]. (B) Behavior of a spiking neuron, which
receives spike trains as input and processes this information
to produce a new sequence of activations. (C) Evolution of
the neuron’s membrane potential over time when activated
by input spikes.

as the first commercially available neuromorphic sensors
and have overcome the integration density and mismatch
limitation exhibited by previous neuromorphic retinas.

Fig[T|A illustrates the operation principle of a DVS pixel.
As can be observed, DVSs generate sparse data. Each DVS
pixel generates a string of spikes which respond to the tem-
poral variation of the illumination. Consequently, the pixel
remains silent under a static background saving communi-
cation and computation energy of the subsequent recogni-
tion network. Despite the sparse nature of data generated
by DVS sensors, the increasing resolution of DVS proto-
types [2] has motivated the research on active reduction
methods for DVS data to save communication and compu-
tation bandwidth and energy.

3. Spiking Neural Networks

SNNs [21] represent an asynchronous type of artificial
neural network closer to biology than traditional artificial
networks, mainly because they seek to mimic the dynamics
of neural membrane and action potentials over time. SNNs
receive and process information in the form of spike trains,
meaning as a non-monotonous sequence of activations, as
represented in Fig.[TJAB. Therefore, they make for a suitable
candidate for the efficient processing and classification of
incoming event patterns measured by silicon retinas. This
spatio-temporal model allows capturing and processing the
dynamics of a scene. Moreover, since this model is sparse,
it enables energy efficient implementations.

A SNN is constructed using populations of neurons
linked together with connections, according to certain rules
and a certain architecture. By definition, a spiking neuron
follows a model based on parameters describing its inter-
nal state and its reaction to the input current (as pictured in
Fig.[IB). Many models exist; from this set we chose to use
the Leaky Integrate-and-Fire (LIF) model within the Spik-
ing Neural Network Pooling method.
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Figure 2: Above The two architectures proposed by the authors for SNN Pooling either handle the positive and negative
events separately (excluding the grey dotted box in the figure) or take into account their mutual influence (including the grey
dotted box in the figure). The green arrows represents All-To-All excitatory connections between an input sub-region and the
corresponding output neuron of same polarity, and the red arrows All-To-All inhibitory connections between different polar-
ities. The green dots corresponds to positive events, the blue dots to negative events. In this example those two architectures
are applied to data recorded with a sensor size of 128 pixels, which are downscaled by 2. The output layer of each polarity is

thus of size (128/2)% = 64°.

Below Schematic illustration for SNN pooling. A sensor of size 2 X 2 outputs events both negative (blue ticks) and positive
(green ticks) at each pixel across time, which are downscaled with SNN pooling handling separately the events (green frame
on top) or allowing a mutual influence (pink frame at the bottom). In this example, the downscaling factor is set to 2. Best

seen in colours.

Why should we use SNNs to process event data? SNNs
are a sparse and dynamic model for processing spatio-
temporal data. They are particularly well suited to handle
the atypical kind of data output from event cameras, since
each event can be assimilated to an activation spike between
two spiking neurons. Furthermore, the behaviour of the log-
luminance recorded by the sensor displays a strong similar-
ity with one of a LIF neuron, as shown in Fig. As of
today, SNN simulations with a CPU require a substantial
simulation time. However, the use of neuromorphic hard-
ware such as SpiNNaker [10], BrainScaleS [22]], or Loihi
[4] enables fast and low power simulations.

4. Event downscaling by Spiking Neural Net-
work pooling

The following subsections will present our contribution:
two novel SNN architectures spatially downscaling event

data by SNN pooling. Although such architectures are not
innovative per se, its use in the context of event-driven data
reduction is unprecedented.

4.1. How to downscale events using SNN?

In some ways, this event processing has often been used
by SNN models handling neuromorphic data: indeed the
use of a strided convolutions or max pooling layer e.g.
in [3] is close to event downscaling by SNN pooling, as
we present here. The events are directly translated as input
spikes in a 2D layer of size width x height connected to a
smaller 2D layer of size (width/ratio) x (height/ratio),
which implements a convolutional layer with a kernel size
ratio X ratio, a stride ratio, without padding. Each spike
output by this smaller layer is then interpreted as events,
with each neuron construed as pixel of a smaller sensor.
As described in the following paragraphs, we implemented



two SNN architectures depending on whether the positive
and negative events are handled separately or not ; in other
words whether the event data is downscaled as a whole or
per polarity, with no mutual influence.

4.2. Separate handling of polarity

A first method of SNN pooling is proposed, where the
positive and negative events are handled differently, al-
though during the same simulation. The architecture used
is depicted in Fig. 2] (top): the 2D input layer is of size
width X height x 2 with two 2D set of LIF neurons stack to-
gether, each one receiving either positive or negative events
at the corresponding neurons. Likewise, the output layer is
of size (width/ratio) x (height/ratio) x 2 and each of
its LIF neuron is wired to the corresponding input region
by an excitatory connection. No learning is necessary here:
the weight of the connection between the input and the out-
put is set (as is the sensitivity of an event camera recording
a scene - see below) and should not be adapted along the
simulation. Spatially downscaling using SNN pooling re-
lies entirely on the LIF neuron’s intrinsic dynamics, which
come close to the behaviour of a DVS pixel.

Most SNN taking events directly as input, with no inter-
mediate preprocessing of the data, translate each of them
into a spike at the corresponding coordinates in the input
2D layer of the network with no distinction between posi-
tive and negative events; any time a pixel activates, a spike
is emitted by the corresponding input neuron (see [3l]). This
may not have an impact on some computer vision tasks, but
in our case we aim to reduce event data while keeping the
information as accurate as possible, thus preserving polar-
ity. From this stems our choice for the particular architec-
ture described above.

However, separately handling the event polarities disre-
gards the physics behind event cameras and embodies the
main flaw of this first architecture. In case of a burst of neg-
ative and positive events grouped together, the luminance
is actually quite stable and varies around one value with a
variance slightly higher than the sensor’s sensitivity thresh-
old. As can be seen in Fig. 2| (bottom), downscaling this
data should lead to a smaller luminance variance, thus to
less events produced since they compensate each other.

4.3. Mutual influence of positive and negative events

To resolve the aforementioned problem posed by a sep-
arate processing of polarity, we implemented a second ar-
chitecture illustrated in Fig. [2] (top — including grey dotted
box). It builds on the structure of the first one and adds
to it a mechanism of mutual inhibition between the polar-
ity. Each sub-region of the input layer activates the corre-
sponding output neuron of the same polarity, but it also in-
hibits the corresponding output neuron of the opposite po-
larity with the same weight. This way each activation of

the output neuron’s membrane potential due to an event of
a certain polarity is offset by any potential event of the op-
posed polarity taking place in a close time span., to obtain
the expected behaviour presented in Fig. 2] (bottom).

This represents more faithfully the behaviour of an event
camera of smaller resolution, recording the same luminance
as the sample being downscaled. It should also be noted that
the sensitivity of this simulated recording of a downscaled
luminance can be adapted simply by adjusting the weight
of the connections, as easily as adjusting the sensitivity of a
real DVS: the higher the weights, the higher the activation
of the output neurons and the more events produced, and
reciprocally.

Both methods described above will respectively be ref-
erenced as “separate SNN” and “mutual SNN” methods in
the following pages.

4.4. Influence of hyperparameter tuning on SNN
pooling

As with most SNNs, hyperparameter tuning greatly in-
fluences the activation of the different layers and the over-
all spiking dynamic. Hyperparameters include the synaptic
weight, which can excite the layer to varying degrees; the
neurons’ threshold, which makes them more or less likely
to be activated depending on its value; the synaptic time
constant, which corresponds to the time required for the
membrane potential to decay to its reset value; etc. This
hyperparameter tuning is not inconsistent with the physical
operation set up of the DVS: indeed in a DVS camera dif-
ferent parameters can be set to record a scene, such as the
contrast threshold or the refractory period.

It was thus necessary to study the physical properties of
both separate and mutual architectures described in the pre-
vious section with varying hyperparameter tuning, in order
to select the most optimal one. As seen earlier, many hyper-
parameters can be tuned in order to obtain the ideal results.
Here, we limit our study to the synaptic weight w (see Fig.
above) as it can be assimilated to a DVS contrast thresh-
old. The rest of the hyperparameters are set to values com-
monly used to initialise a LIF neuron in a SNN (presented
in Tab. [T). As pictured in Fig. 3] the higher the synaptic
weight, the more events the connections allows through and

Parameter value
Resting membrane potential | -65 mV
Reset membrane potential -65 mV
Neuronal threshold -50 mV
Membrane time constant 20 ms
Refractory period 0.1 ms
Excitatory decay time 5 ms
Inhibitory decay time 5 ms

Table 1: Hyperparameters used to initialise the separate and
mutual SNN downscaling methods



14 x 10*
12 x 10%
10 X 10° q
8x10° -

6x10% 4

DVS128 Gesture dataset
Mean number of events per sample

4x10% q

6x107°

4x1076

3x1076

Mean temporal density per sample

005 01 015 0.2 025 03 035 04 0.5 0.6 0.7
Weight w Mutual SNN

0.05 01 015 02 025 03 035 04 05 0.6 0.7
Separate SNN Weight w

Figure 3: Comparison of physical properties according to a varying synaptic weight w for separate and mutual SNN down-

scaling methods applied on DVS128 Gesture.

the higher the event density. If we consider the standard de-
viation of the density per pixel as a measure of information
provided by the event data, we could set a hyperparameter
threshold which once reached, produces non suitable down-
scaled data. Conversely, a lower bound should also be pro-
vided in order to keep enough events in the output to have
a minimum of information. This is coherent with the con-
trast threshold used to set up a DVS camera: the higher the
threshold, the more events are filtered and the less under-
standable the event data becomes. Hyperparameter tuning
is therefore an important aspect to keep in mind when using
SNNs to downscale events.

Fig.[3]also interestingly shows that the mutual SNN tends
to output fewer events in a lower temporal density than sep-
arate SNN, which will be confirmed in Fig. E} Indeed the
mutual inhibition tends to normalise the membrane poten-
tial of each neuron (see Fig. 2]bottom), which can be assim-
ilated to the log luminance recorded by each sensor’s pixel.

4.5. Network implementation

Both methods were implemented in this work using the
Python SNN simulator PyNN [6] to produce downscaled
datasets for further comparisons. However, since this li-
brary runs simulations on CPU, it leads to a significant run
time - we thus adapted the networks to be run on the SpiN-
Naker neuromorphic chip [9].

SpiNNaker is a neuromorphic hardware platform devel-
oped in the University of Manchester under the Flagship
Human Brain Project. This microelectronical hardware
communicates and process spike events. Two versions of
SpiNNaker boards are available. The SpiNN-3 boards al-
locate 4 SpiNNaker chips thus can implement architectures
with up to 18K neurons. Newly available SpiNN-5 boards
contain 48 chips, having capacity for 195K neurons. Both
were used in this work to run our network.

5. Comparison between event downscaling
methods according to physical properties

We formalised previously two SNN architectures which
spatially downscale event data. The following sections will
now compare these two novel spatial event downscaling ap-

proaches to those formalised in [12], i.e. a simple event
funnelling, a tally of positive and negative events and a log-
luminance reconstruction (linear and cubic).

5.1. Event-based datasets

We describe below the neuromorphic datasets used in
this work to benchmark these different spatial event down-
scaling methods. We selected both datasets because they are
different but complementary in many aspects (sensor size,
amount of events, visual information, etc).

The DVS128 Gesture dataset [[1]] has now become a stan-
dard benchmark in event data classification. It features 29
subjects recorded with a DVS128 camera, performing 11
different hand gestures under different illumination condi-
tions. The Neuromorphic-MNIST dataset is an event trans-
lation of the original MNIST dataset [15] adapted to the
neuromorphic by Orchard et al. [19]. N-MNIST is partic-
ularly heavy in events: according to the data presented in
the above paragraphs, N-MNIST displays on average 10.71
events per pixel per second, whereas DVS128 Gesture only
displays about 4.06 events per pixel per second.

5.2. Comparison between methods

The different event spatial downscaling methods de-
scribed in [12] as well as in the section above vary strongly
by their physical properties, as seen in Figl] The temporal
density corresponds to the activation probability of pixels
averaged over the whole sensor. The number of events and
the temporal density have been averaged per sample.

The spatial downscaling of event data aims to reduce sig-
nificantly the number of events per sample, while keeping a
sufficient amount of relevant information.

Fig. 4 (left) show quite clearly that the number of events
per sample decreases to a varying extent depending on the
downscaling method used. The least convincing method by
this criterion is obviously the funnelling one: the number
of events stays stable and significantly high no matter the
dividing factor, whereas the most pronounced drop is ob-
tained with the log luminance reconstruction methods.

Fig. [] (right) represents the temporal event density as
the number of events is not enough a criterion to decide
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which method provides the most relevant information with
an increasing dividing factor and further material needs to
be bought. This criteria shows the distribution of the re-
duced event over the sensor: a high standard density corre-
sponds to event data with a high activation. Fig. f] shows
that the funnelling and event count methods have a high
temporal density, i.e. all the sensor’s pixels tend to activate
a lot across time thus reducing the information transmitted.
A contrario, the log luminance reconstruction seems to pro-
vide comprehensive data, and both SNN methods seem a
good compromise between these two extrema.

Since the spatial downscaling methods are more likely to
be applied on an embedded system, it is interesting to con-
sider the energy consumed by each method. The funnelling
method reduces data with zero energy, as the funnelling can
be applied in the event transmission from the sensor to the
processor by just ignoring some bits in the address of the
events. On an embedded computer, the log luminance re-
construction methods are made thanks to an algorithm of
higher complexity thus requiring a greater energy expendi-
ture. However if we consider this reduction at the sensor
level, it can be produced at zero energy cost. Finally, the
SNN methods would be directly performed by an embed-
ded neuromorphic chip, whose energy consumption is di-
rectly proportional to the number of events given as input
and the number of synapses implemented between the input
and output layer, i.e. proportional to the dividing factor.

6. Study of real time spatial event downscaling

In this section we propose to compare the SNN pooling
method introduced in this paper with the spatial down-
scaling methods described in [[12] regarding real time data
handling. Indeed, while event sensors show a number of
advantages over frame-based cameras such as high tem-
poral resolution, low power consumption, high dynamic

range sensing, etc, that make them unavoidable for the
future of real-time embedded vision systems, the limited
processing resources make it often hard to deal with a high
event density in real-time embedded vision applications.
This dilemma calls for data reduction techniques able to
handle input event in real time.

In order to investigate the relevance of the SNN down-
scaling method for real-time event handling, we imple-
mented both SNN downscaling methods on the SpiNN-3
board (see above). The SpiNN-3 board is composed of 4
chips, each composed of 18 cores. Since each core can sim-
ulate up to 256 spiking neurons, the SpiNN-3 can simulate
around 18,000 neurons at most. Thus the run time of the
SNN spatial downscaling method suffers from the limita-
tions of the SpiNN-3 board it is run on. The number of
input events per simulation time-step does not influence the
simulation run time, contrary to the number of neurons and
connections. The proposed architecture is convolutional ,
meaning that the number of connections ¢ depends on the
number of neurons 7ppu: = 2 X width X height and
Noutput = :;Zf;‘; in both layers, and the convolutional ker-
nel size kernel, which is actually the same as ratio in the
proposed topology: kernel = ratio.

Interestingly, for given width and height, the number of
connections ¢ = kernel? x Noutput = Ninput does not de-
pend on ratio, whereas ratio strongly influences the num-
ber of output neurons to be simulated on the board. Tech-
nically, PyNN uses a SpikeSourceArray (resp. a Spikeln-
Jjector) data structure for off-line (resp. on-line) neurons,
which do not need to be simulated by the SpiNN-3 board.
This important detail means that although the architecture
TEqQUIres Nipput + Noutput NEUrons, the board will only need
to simulate 724y¢py¢ Neurons and their ¢ connections. De-
pending on whether the separate or the mutual SNN down-
scaling version is used, the number of connections varies;
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indeed the mutual method adds an inhibitory connection be-
tween neurons corresponding to positive events in input to
those corresponding to negative events in output, and recip-
rocally. Thus the number of connections ¢ doubles between
the separate and mutual SNN methods. Considering all this
information, the simulation run time should decrease when
the dividing factor ratio increases for both SNN downscal-
ing methods.

The downscaling method using log-luminance recon-
struction needs the information of when in the future will be
the next event, therefore it requires an adaptation. The pro-
posed adaptations describe the behavior of the reconstructed
log-luminance curves when no input event is given at a time
t: (1) the reconstructed curve remains constant until new
events are triggered, (2) the reconstructed curve is extrap-
olated (linear/cubic) given the slope at the location of last
triggered event. These two strategies will be respectively
referenced as constant and interpolation in the remainder.

The real time spatial event downscaling studied in this
section was run on Intel 8-core i9-10885H CPU at 2.4GHz.
Fig. 3] illustrates the computational run time evolution. It
should be noted that this CPU can only perform a maximum
of 2.4 billion cycles per second, whereas an event camera
can output up to 1 million events per second per pixel. For
the DVS 128 Gesture dataset, the event camera is of size
128 x 128 pixels, thus can output up to 16 billion events
per second (with an average of 30,000 events per second for
this dataset, according to [12]). The speed of our CPU is
thus too low to simply cycle through the events in real time,
so real time reduction is unattainable using this hardware.

7. Study of spatial event downscaling influence
on a classification task

Ideally an optimal spatial downscaling method for event
data reduces drastically the number of events while conserv-
ing relevant data. This paper aims to discuss the relevancy
of our proposed approaches compared to existing ones re-
garding this query. Physical properties were studied above
as a first attempt to answer this interrogation. We further
investigated the relevance of the retained information by
looking at the performance of each method against a spe-
cific computer vision task, a classification.

7.1. Classifiers

We use to this end a classifier which take as input the
data directly as individual events.

Shrestha and Orchard developed in 2018 a Python frame-
work called SLAYER (for Spike Layer Error Reassign-
ment in Time) [23], based on the machine learning li-
brary PyTorch [20] and designed to simulate “backpropa-
gation based SNN learning” on GPU. A specific "SLAYER
Loihi” module has been implemented to run SNN mod-
els initially developed on SLAYER, on Intel’s Loihi neu-
romorphic chips [S]] without further adaptation to the code.
This module and more globally this framework were bench-
marked on a classification task applied to different spiking
and non spiking visual datasets, such as MNIST [15], N-
MNIST [[19] and DVS128 Gesture [1], and the audio dataset
TIDIGITS converted into spikes [[17]]. According to the au-
thors, when the input is a spiking dataset “the spike data
from the DVS is directly fed into the classifier”.

In order to optimise the simulation run time, we pre-
loaded and fine tuned this classifier’s weights in a transfer
learning strategy on the downscaled datasets.

7.2. Performance evolution for different downscal-
ing methods

We apply the SLAYER classifier on the DVS128 Ges-
ture and N-MNIST datasets reduced using the two novel
SNN approaches presented previously and the methods pre-
sented in [12]. The resulting performances are presented in
Fig.[6] The optimal downscaling method should have the
best accuracy performance, since it produces the most rele-
vant information necessary for an effective classification.

Unlike other classification models which accumulate in-
put events into frames (such as PLIF [8]]), the SLAYER
classifier takes as input sparse events and shows more inter-
esting and coherent results than the previously mentioned
would (see Supplementary Material). Fig.[6]shows that the
downscaling methods introduced in this paper perform well,
especially for the DVS 128 Gesture dataset. Regarding N-
MNIST, as seen earlier, the large number of events retained
for a small dividing factor depends entirely on the hyperpa-
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Figure 6: Evolution of the accuracy performance of the SLAYER classifier applied to DVS128 Gesture (first line) and N-
MMNIST (second line). Note that the points located in the upper left side of the dashed line correspond to results showing
interesting trade-offs for performance over data size, i.e. a high accuracy with small number of events. Globally, most spatial
downscaling methods lead to a good trade-off, with the notable exception of the “Spatial funnelling” which remain to the

lower right even when the dividing factor increases.

rameter tuning set up and could be tuned for each dataset.
Moreover, this shortcoming is compensated by the signif-
icant advantage of fast computation time for SNN pooling
compared to other methods (see Section 6). In contrast, the
”Spatial funnelling” remains on the lower right even when
the dividing factor increases ; moreover past a small divid-
ing factor (2), its performance is lower and number of re-
tained events higher than most methods. It should be noted
that all methods lead to the decrease of performance accord-
ing to the increase of the dividing factor, which validate the
physical properties study performed in above section.

Conclusion

The spatial downscaling of event data on an embedded
system aims to reduce significantly the number of events
per sample, while keeping a sufficient amount of relevant
information and handling event close to real time. In this
work we formalise two novel spatial event downscaling ap-
proaches based on SNN pooling. The choice to use one
of these rather than one of the methods presented in [12]
is not trivial but depends strongly on the computational vi-
sion task we wish to accomplish, the application context,
on the event data preprocess it requires and the embedded
computer throughput.

The best choice to perform event reduction on an embed-
ded system in order to adjust the complexity of data to the
available resources such as processing capability and power
consumption, can be found among the SNN pooling meth-
ods introduced in this paper. Indeed they achieve an effi-
cient trade-off between the optimisation of desired physical
properties, performance and energy consumption as well as
being significantly closer to real time data handling than ex-

isting methods. Furthermore, when neuromorphic hardware
is involved, it can be deemed easier and less costly to use
either SNN methods described in this paper as a first pre-
processing layer to machine learning models.

As no significant differences can be observed between
the run time and the classification performance of mutual
and separate SNN pooling, we look at the physical proper-
ties to decide between these two methods. The mutual SNN
pooling is definitely the most optimal one based on the re-
sults of this work, as it leads to a smaller number of events
and a lower temporal density and is more optically coherent
with the behaviour of an event camera.

Further work on event based downscaling include the im-
plementation of a event based foveation mechanism such as
the one described in [[11]. Another axe of research concerns
event temporal downscaling, of which we have identified
two main approaches. One consists in changing the grain
of the timestamps, for example from nanoseconds to a big-
ger unit of time such as microsecond, millisecond, second...
considering all events in one instance of this bigger unit as
occurring at the same timestamp. Another one involves the
selection of k events randomly trough-out the input data,
or at a specific time interval. This second method could be
more realist regarding the behaviour of a DVS connected to
a model unable to process the input flow.
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