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In this paper we study the distribution of square-free numbers of the forms x 2 + y 2 + z 2 + z + 1 and x 2 + y 2 + z + 1. We establish asymptotic formulas for the number of triples of positive integers x, y, z ≤ H such that x 2 + y 2 + z 2 + z + 1 is square-free and respectively such that x 2 + y 2 + z + 1 is square-free.

Notations

Let H be a sufficiently large positive number. By ε we denote an arbitrary small positive number, not the same in all appearances. As usual µ(n) is Möbius' function, ω(n) denotes the number of distinct prime factors of n and τ (n) represents the number of positive divisors of n. Further [t] and {t} denote the integer part, respectively, the fractional part of t. Instead of m ≡ n (mod d) we write for simplicity m ≡ n (d). Moreover (l, m) is the greatest common divisor of l and m, and (l, m, n) is the greatest common divisor of l, m and n. The letter p will always denote prime number. We put t = min({t} , 1 -{t}). As usual e(t)=exp(2πit). For any odd q we denote by • q the Jacobi symbol. For any n and q such that (n, q) = 1 we denote by n q the inverse of n modulo q. Throughout this paper we shall denote the Gauss sums G(q, m, n) = q x=1 e mx 2 + nx q , G(q, m) = G(q, m, 0) ,

the Salié sum S(q, m, n) = q x=1 (x,q)=1

x q e mx + nx q q (2)

and the Kloosterman sum

K(q, m, n) = q x=1 (x,q)=1 e mx + nx q q . (3) 
Define Γ(H) = 1≤x,y,z≤H

µ 2 (x 2 + y 2 + z 2 + z + 1) , (4) 
Γ * (H) = 1≤x,y,z≤H

µ 2 (x 2 + y 2 + z + 1) , (5) 
λ(q, l, m, n) = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) e lx + my + nz q ,

λ * (q, l, m, n) = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) e lx + my + nz q .

We define also λ(q) = λ(q, 0, 0, 0)

and λ * (q) = λ * (q, 0, 0, 0) .

2 Introduction and statement of the results

The problems for the existence of infinitely many square-free numbers of a special form are as interesting as well as difficult in multiplicative number theory. One of them is the representation of infinitely many square-free numbers by polynomials. There exist many articles that consider the k-free values of polynomials. In this connection in 2012 Tolev [START_REF] Tolev | On the number of pairs of positive integers x, y ≤ H such that x 2 + y 2 + 1 is squarefree[END_REF] showed that there exist infinitely many square-free numbers of the form x 2 + y 2 + 1. More precisely he established the asymptotic formula 1≤x,y≤H

µ 2 (x 2 + y 2 + 1) = p 1 - λ 2 (p 2 ) p 4 H 2 + O H 4 3 +ε , where λ 2 (q) = 1≤x,y≤q x 2 +y 2 +1≡0 (q) 1 .
Continuing these research Zhou and Ding [START_REF] Zhou | On the square-free values of the polynomial x 2 + y 2 + z 2 + k[END_REF] established that 1≤x,y,z≤H

µ 2 (x 2 + y 2 + z 2 + k) = p 1 - λ 3 (p 2 ) p 6 H 3 + O H 7 3 +ε , where λ 3 (q) = 1≤x,y,z≤q x 2 +y 2 +z 2 +k≡0 (q) 1 .
Recently, Chen and Wang [2] generalized the result of Zhou and Ding by deriving an asymptotic formula for the distribution of r-free numbers of the form x 2 + y 2 + z 2 + k. In the case r = 2, they obtained reminder term O H 3 +ε given by Zhou and Ding [START_REF] Zhou | On the square-free values of the polynomial x 2 + y 2 + z 2 + k[END_REF]. Another interesting problem is consecutive square-free numbers represented by polynomials. In 2020 the author [START_REF] Dimitrov | On the number of pairs of positive integers x, y ≤ H such that x 2 + y 2 + 1, x 2 + y 2 + 2 are square-free[END_REF] proved that there exist infinitely many square-free pairs of the type x 2 + y 2 + 1, x 2 + y 2 + 2 and showed that 1≤x,y≤H

µ 2 (x 2 + y 2 + 1) µ 2 (x 2 + y 2 + 2) = σ 2 H 2 + O H 8 5 +ε , (10) 
where

σ 2 = p 1 - λ 2 (p 2 , 1) + λ 2 (1, p 2 ) p 4
and λ 2 (q 1 , q 2 ) = 1≤x,y≤q 1 q 2 x 2 +y 2 +1≡0 (q 1 ) x 2 +y 2 +2≡0 (q 2 ) 1 .

Subsequently the author [START_REF] Dimitrov | Pairs of square-free values of the type n 2 + 1, n 2 + 2[END_REF] proved that there exist infinitely many square-free pairs of the type x 2 + 1, x 2 + 2. Further, Jing and Liu [START_REF] Jing | Consecutive square-free numbers and square-free primitive roots[END_REF] improved the reminder term in [START_REF] Nathanson | Additive Number Theory : The Classical Bases[END_REF] to O H 3 2 +ε . Recently B. Chen [START_REF] Chen | On the consecutive square-free values of the polynomials x 2 1 +• • •+x 2 k +1[END_REF] generalized the results of the author and showed that

1≤x 1 ,...,x k ≤H µ 2 (x 2 1 + • • • + x 2 k + 1) µ 2 (x 2 1 + • • • + x 2 k + 2) = σ k H k + O H k-1 2 -1 2k +ε ,
where k ≥ 3,

σ k = p 1 - λ k (p 2 , 1) + λ k (1, p 2 ) p 2k and λ k (q 1 , q 2 ) = 1≤x 1 ,...,x k ≤q 1 q 2 x 2 1 +•••+x 2 k +1≡0 (q 1 ) x 2 1 +•••+x 2 k +2≡0 (q 2 )
1 .

Motivated by these results we continue to extend these studies by proving two theorems.

Theorem 1. For the sum Γ(H) defined by (4) the asymptotic formula

Γ(H) = p 1 - λ(p 2 ) p 6 H 3 + O H 9 4 +ε (11) 
holds.

Theorem 2. For the sum Γ * (H) defined by (5) the asymptotic formula

Γ * (H) = p 1 - λ * (p 2 ) p 6 H 3 + O H 5 2 +ε (12) 
holds.

3 Lemmas Lemma 1. For the Gauss sum we have

(i) If (q 1 , q 2 ) = 1 then G(q 1 q 2 , m, n) = G(q 1 , mq 2 , n) G(q 2 , mq 1 , n) . (ii) If (q 1 , q 2 ) = 1 then G(q 1 q 2 , m 1 q 2 + m 2 q 1 , n) = G(q 1 , m 1 q 2 2 , n) G(q 2 , m 2 q 2 1 , n) . (iii) If (q, m) = d then G(q, m, n) = d G (q/d, m/d, n/d) if d | n , 0 if d n . (iv) If (q, 2m) = 1 then G(q, m, n) = e -(4m) q n 2 q m q G(q, 1) . (v) If (q, 2) = 1 then G 2 (q, 1) = (-1) q-1 2 q .
Proof. See [START_REF] Estermann | A new application of the Hardy-Littlewood-Kloosterman method[END_REF] and [START_REF] Hua | Introduction to Number Theory[END_REF].

Lemma 2. Let q is odd integer. For the sum defined by (2) we have

|S(q, m, n)| ≤ 2 ω(q) √ q .
Proof. See [START_REF] Louvel | The first moment of Salié sums[END_REF].

Lemma 3. For the sum defined by (3) we have

|K(q, m, n)| ≤ τ (q) q 1 2 (q, m, n) 1 2 .
Proof. See [START_REF] Iwaniec | Analytic number theory[END_REF].

Lemma 4. Let (q 1 , q 2 ) = 1 . ( 13 
)
For the function defined by (6) we have λ(q 1 q 2 , l, m, n) = λ q 1 , lq 2 q 1 , mq 2 q 1 , nq 2 q 1 λ q 2 , lq 1 q 2 , mq 1 q 2 , nq 1 q 2 .

Proof. On the one hand (1), ( 6), (13), the well-known formula

d k=1 e kn d = d , if d | n, 0 , if d n (14) 
and Lemma 1 imply

λ(q 1 q 2 , l, m, n) = 1 q 1 q 2 1≤x,y,z≤q 1 q 2 e lx + my + nz q 1 q 2 1≤h≤q 1 q 2 e h(x 2 + y 2 + z 2 + z + 1) q 1 q 2 = 1 q 1 q 2 1≤h≤q 1 q 2 e h q 1 q 2 G(q 1 q 2 , h, l) G(q 1 q 2 , h, m) G(q 1 q 2 , h, n + h) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 q 2 , h 1 q 2 + h 2 q 1 , l) G(q 1 q 2 , h 1 q 2 + h 2 q 1 , m) × G(q 1 q 2 , h 1 q 2 + h 2 q 1 , n + h 1 q 2 + h 2 q 1 ) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 2 , l) G(q 2 , h 2 q 2 1 , l) G(q 1 , h 1 q 2 2 , m) × G(q 2 , h 2 q 2 1 , m) G(q 1 , h 1 q 2 2 , n + h 1 q 2 + h 2 q 1 ) G(q 2 , h 2 q 2 1 , n + h 1 q 2 + h 2 q 1 ) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 2 , l) G(q 2 , h 2 q 2 1 , l) G(q 1 , h 1 q 2 2 , m) × G(q 2 , h 2 q 2 1 , m) G(q 1 , h 1 q 2 2 , n + h 1 q 2 ) G(q 2 , h 2 q 2 1 , n + h 2 q 1 ) . ( 15 
)
On the other hand ( 1), ( 6), ( 13), ( 14) and Lemma 1 yield λ q 1 , lq 2 q 1 , mq 2 q 1 , nq 2 q 1 λ q 2 , lq 1 q 2 , mq 1 q 2 , nq

1 q 2 = 1 q 1 q 2 1≤x 1 ,y 1 ,z 1 ≤q 1 e lq 2 q 1 x 1 + mq 2 q 1 y 1 + nq 2 q 1 z 1 q 1 1≤h 1 ≤q 1 e h 1 (x 2 1 + y 2 1 + z 2 1 + z 1 + 1) q 1 × 1≤x 2 ,y 2 ,z 2 ≤q 2 e lq 1 q 2 x 2 + mq 1 q 2 y 2 + nq 1 q 2 z 2 q 2 1≤h 2 ≤q 2 e h 2 (x 2 2 + y 2 2 + z 2 2 + z 2 + 1) q 2 = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 , lq 2 q 1 ) G(q 1 , h 1 , mq 2 q 1 ) G(q 1 , h 1 , h 1 + nq 2 q 1 ) × G(q 2 , h 2 , lq 1 q 2 ) G(q 2 , h 2 , mq 1 q 2 ) G(q 2 , h 2 , h 2 + nq 1 q 2 ) . ( 16 
)
Using the substitution x → q 2 q 1 x we get

G(q 1 , h 1 q 2 2 , l) = q 1 x=1 e h 1 q 2 2 x 2 + lx q 1 = q 1 x=1 e h 1 x 2 + lq 2 q 1 x q 1 = G(q 1 , h 1 , lq 2 q 1 ) . (17)
Arguing in a similar way, we obtain

G(q 1 , h 1 q 2 2 , m) = G(q 1 , h 1 , mq 2 q 1 ) , (18) 
G(q 1 , h 1 q 2 2 , n + h 1 q 2 ) = G(q 1 , h 1 , h 1 + nq 2 q 1 ) , (19) 
G(q 2 , h 2 q 2 1 , l) = G(q 2 , h 2 , lq 1 q 2 ) , (20) 
G(q 2 , h 2 q 2 1 , m) = G(q 2 , h 2 , mq 1 q 2 ) , (21) 
G(q 2 , h 2 q 2 1 , n + h 2 q 1 ) = G(q 2 , h 2 , h 2 + nq 1 q 2 ) . (22) 
Summarizing ( 15) -( 22) we complete the proof of the lemma.

Lemma 5. Let 8 q. For the function defined by (6) the upper bound λ(q, l, m, n) qτ (q)2 ω(q) (q, l, m, n)

holds. In particular we have λ(q, l, m, n) q 1+ε (q, l, m, n) and λ(q) q 2+ε .

Proof. Case 1. 2 q.

From (1), ( 2), ( 6), ( 14) and Lemma 1 we deduce λ(q, l, m, n)

= 1 q 1≤x,y,z≤q e lx + my + nz q 1≤h≤q e h(x 2 + y 2 + z 2 + z + 1) q = 1 q 1≤h≤q e h q G(q, h, l) G(q, h, m) G(q, h, h + n) = 1 q d|q 1≤h≤q (h,q)= q d e h q G(q, h, l) G(q, h, m) G(q, h, h + n) = q 2 d|q q d |(l,m,n) 1 d 3 1≤r≤d (r,d)=1 e r d G(d, r, ldq -1 ) G(d, r, mdq -1 ) G(d, r, r + ndq -1 ) = q 2 d|q q d |(l,m,n) G 3 (d, 1) d 3 1≤r≤d (r,d)=1 r d 3 e r -(4r) d r 2 + (l 2 + m 2 + n 2 )d 2 q -2 + 2rndq -1 d = q 2 d|q q d |(l,m,n) e - 2 d n q G 3 (d, 1) d 3 S d, 1 -4 d , -4 d (l 2 + m 2 + n 2 )d 2 q -2 . (23) 
Now (23), Lemma 1 and Lemma 2 give us

λ(q, l, m, n) q 2 d|q q d |(l,m,n) d -3 d 3 2 d 1 2 2 ω(d) q 2 2 ω(q) q d |(q,l,m,n) d -1 q 2 2 ω(q)
r|(q,l,m,n)

q -1 r qτ (q)2 ω(q) (q, l, m, n) .

Case 2. q = 2 h q , where 2 q and h ≤ 2. Using (24), Lemma 4 and the trivial estimate |λ(2 h , l, m, n)| ≤ 8 h we find |λ(2 h q , l, m, n)| = λ 2 h , lq 2 h , mq 2 h , nq 2 h λ q , l2 h q , m2 h q , n2 h q 64q τ (q )2 ω(q ) q , l2 h q , m2 h q , n2 h q qτ (q)2 ω(q) (q, l, m, n) .

(

) 25 
Now the lemma follows from (24) and (25).

Using Lemma 5 and arguing as in [START_REF] Zhou | On the square-free values of the polynomial x 2 + y 2 + z 2 + k[END_REF] we derive the following lemma.

Lemma 6. Assume that 8 q and H 0 ≥ 2. Then for the sums

Λ 1 = 1≤l≤H 0 |λ(q, l, 0, 0)| l , Λ 2 = 1≤n≤H 0 |λ(q, 0, 0, n)| n , Λ 3 = 1≤l,m≤H 0 |λ(q, l, m, 0)| lm , Λ 4 = 1≤l,n≤H 0 |λ(q, l, 0, n)| ln
and

Λ 5 = 1≤l,m,n≤H 0 |λ(q, l, m, n)| lmn the estimations Λ i q 1+ε H ε 0 , i = 1, 2, 3, 4, 5 hold. Lemma 7. Let (q 1 , q 2 ) = 1 . (26) 
For the function defined by [START_REF] Iwaniec | Analytic number theory[END_REF] we have

λ * (q 1 q 2 , l, m, n) = λ * q 1 , lq 2 q 1 , mq 2 q 1 , nq 2 q 1 λ * q 2 , lq 1 q 2 , mq 1 q 2 , nq 1 q 2 .
Proof. On the one hand (1), ( 7), ( 14), (26) and Lemma 1 yield λ * (q 1 q 2 , l, m, n) = 1 q 1 q 2 1≤x,y,z≤q 1 q 2 e lx + my + nz q 1 q 2 1≤h≤q 1 q 2 e h(x 2 + y 2 + z + 1)

q 1 q 2 = 1 q 1 q 2 1≤h≤q 1 q 2 e h q 1 q 2 G(q 1 q 2 , h, l) G(q 1 q 2 , h, m) G(q 1 q 2 , 0, h + n) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 q 2 , h 1 q 2 + h 2 q 1 , l) G(q 1 q 2 , h 1 q 2 + h 2 q 1 , m) × G(q 1 q 2 , 0, h 1 q 2 + h 2 q 1 + n) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 2 , l) G(q 2 , h 2 q 2 1 , l) G(q 1 , h 1 q 2 2 , m) × G(q 2 , h 2 q 2 1 , m)G(q 1 , 0, h 1 q 2 + h 2 q 1 + n) G(q 2 , 0, h 1 q 2 + h 2 q 1 + n) = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 q 2 2 , l) G(q 2 , h 2 q 2 1 , l) G(q 1 , h 1 q 2 2 , m) × G(q 2 , h 2 q 2 1 , m) G(q 1 , 0, h 1 q 2 + n) G(q 2 , 0, h 2 q 1 + n) . (27) 
On the other hand ( 1), ( 7), ( 14), (26) and Lemma 1 imply λ * q 1 , lq 2 q 1 , mq 2 q 1 , nq 2 q 1 λ * q 2 , lq 1 q 2 , mq 1 q 2 , nq

1 q 2 = 1 q 1 q 2 1≤x 1 ,y 1 ,z 1 ≤q 1 e lq 2 q 1 x 1 + mq 2 q 1 y 1 + nq 2 q 1 z 1 q 1 1≤h 1 ≤q 1 e h 1 (x 2 1 + y 2 1 + z 1 + 1) q 1 × 1≤x 2 ,y 2 ,z 2 ≤q 2 e lq 1 q 2 x 2 + mq 1 q 2 y 2 + nq 1 q 2 z 2 q 2 1≤h 2 ≤q 2 e h 2 (x 2 2 + y 2 2 + z 2 + 1) q 2 = 1 q 1 q 2 1≤h 1 ≤q 1 1≤h 2 ≤q 2 e h 1 q 2 + h 2 q 1 q 1 q 2 G(q 1 , h 1 , lq 2 q 1 ) G(q 1 , h 1 , mq 2 q 1 ) G(q 1 , 0, h 1 + nq 2 q 1 ) × G(q 2 , h 2 , lq 1 q 2 ) G(q 2 , h 2 , mq 1 q 2 ) G(q 2 , 0, h 2 + nq 1 q 2 ) . ( 28 
)
Using the substitution x → q 2 q 1 x and working as in Lemma 4 we get

G(q 1 , h 1 q 2 2 , l) = G(q 1 , h 1 , lq 2 q 1 ) , (29) 
G(q 1 , h 1 q 2 2 , m) = G(q 1 , h 1 , mq 2 q 1 ) , (30) 
G(q 2 , h 2 q 2 1 , l) = G(q 2 , h 2 , lq 1 q 2 ) , (31) 
G(q 2 , h 2 q 2 1 , m) = G(q 2 , h 2 , mq 1 q 2 ) , (32) 
G(q 1 , 0, h 1 q 2 + n) = G(q 1 , 0, h 1 + nq 2 q 1 ) , (33) 
G(q 2 , 0,

h 2 q 1 + n) = G(q 2 , 0, h 2 + nq 1 q 2 ) . (34) 
Bearing in mind ( 27) -(34) we complete the proof of the lemma.

Lemma 8. Let 8 q. For the function defined by (7) the upper bound λ * (q, l, m, n) q 2 τ 2 (q)

holds. In particular we have λ * (q, l, m, n) q 2+ε .

Proof. Case 1. 2 q. By (1), ( 3), ( 7), ( 14) and Lemma 1 we write

λ * (q, l, m, n) = 1 q 1≤x,y,z≤q e lx + my + nz q 1≤h≤q e h(x 2 + y 2 + z + 1) q = 1 q 1≤z≤q e nz q 1≤h≤q e h(z + 1) q G(q, h, l) G(q, h, m) = 1 q 1≤z≤q e nz q d|q 1≤h≤q (h,q)= q d e h(z + 1) q G(q, h, l) G(q, h, m) = q 1≤z≤q e nz q d|q q d |(l,m) 1 d 2 1≤r≤d (r,d)=1 e r(z + 1) d G(d, r, ldq -1 ) G(d, r, mdq -1 ) = q 1≤z≤q e nz q d|q q d |(l,m) G 2 (d, 1) d 2 1≤r≤d (r,d)=1 e r(z + 1) -(4r) d (l 2 + m 2 )d 2 q -2 ) d = q 1≤z≤q e nz q d|q q d |(l,m) G 2 (d, 1) d 2 K d, z + 1, -4 d (l 2 + m 2 )d 2 q -2 . ( 35 
)
Now ( 35), Lemma 1 and Lemma 3 yield

λ * (q, l, m, n) q 1≤z≤q d|q q d |(l,m) τ (d)d -1 2 d, z + 1, 4 d (l 2 + m 2 )d 2 q -2 1 2 q 1≤z≤q d|q q d |(l,m) τ (d) q 2 τ (q)
r|(q,l,m)

1 q 2 τ 2 (q) . ( 36 
)
Case 2. q = 2 h q , where 2 q and h ≤ 2. From (36), Lemma 7 and the trivial estimate |λ * (2 h , l, m, n)| ≤ 8 h we deduce |λ * (2 h q , l, m, n)| = λ * 2 h , lq 2 h , mq 2 h , nq 2 h λ * q , l2 h q , m2 h q , n2 h q q 2 τ 2 (q ) q 2 τ 2 (q) . (37)

Now the lemma follows from (36) and (37).

Lemma 9. Assume that 8 q and H 0 ≥ 2. Then for the sums

Λ * 1 = 1≤l≤H 0 |λ * (q, l, 0, 0)| l , Λ * 2 = 1≤n≤H 0 |λ * (q, 0, 0, n)| n , ( 38 
) Λ * 3 = 1≤l,m≤H 0 |λ * (q, l, m, 0)| lm , Λ * 4 = 1≤l,n≤H 0 |λ * (q, l, 0, n)| ln ( 39 
)
and

Λ * 5 = 1≤l,m,n≤H 0 |λ * (q, l, m, n)| lmn ( 40 
)
the estimations

Λ * i q 2+ε H ε 0 , i = 1, 2, 3, 4, 5 hold.
Proof. Using (38) and Lemma 8 we obtain

Λ * 1 , Λ * 2 q 2+ε 1≤l≤H 0 1 l q 2+ε H ε 0
Further (39) and Lemma 8 imply

Λ * 3 , Λ * 4 q 2+ε 1≤l≤H 0 1 l 2 q 2+ε H ε 0
Finally (40) and Lemma 8 give us

Λ * 5 q 2+ε 1≤l≤H 0 1 l 3 q 2+ε H ε 0 Lemma 10.
For any real number ξ and all integers N 1 , N 2 with N 1 < N 2 , we have

N 2 n=N 1 +1 e(ξn) min N 2 -N 1 , ξ -1 .
Proof. See ( [START_REF] Nathanson | Additive Number Theory : The Classical Bases[END_REF], Lemma 4.7).

Proof of Theorem 1

Using (4) and the well-known identity

µ 2 (n) = d 2 |n µ(d) (41) 
we get

Γ(H) = 1≤d≤ √ 3H 2 +H+1 µ(d)
where

Γ 1 (H) = 1≤d≤ξ µ(d)Σ(H, d 2 ) , (43) 
Γ 2 (H) = ξ<d≤ √ 3H 2 +H+1 µ(d)Σ(H, d 2 ) , (44) 
Σ(H,

d 2 ) = 1≤x,y,z≤H x 2 +y 2 +z 2 +z+1≡0 (d 2 ) 1 , (45) 
√ H ≤ ξ ≤ H . (46) 

Estimation of Γ 1 (H)

In this subsection we follow the method in Chen and Wang [2]. At the estimation of Γ 1 (H) we will suppose that q = d 2 , where d is square-free and

d ≤ ξ. Denote Ω(H, q, x) = 1≤h≤H h≡x (q) 1 . (47) 
Now ( 14) and (47) lead to

Ω(H, q, x) = 1 q 1≤h≤H q t=1 e (h -x)t q = 1 q q t=1 e - xt q 1≤h≤H e ht q = H q + 1 q q-1 t=1 e - xt q 1≤h≤H e ht q . (48) 
By ( 45), ( 47) and (48) it follows Σ(H, q) = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) Ω(H, q, x) Ω(H, q, y) Ω(H, q, z)

= 1 q 3 
1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q)

H 3 + 2H 2 S 1 + H 2 S 1 + 2HS 2 + HS 2 + S 3 , (49) 
where

S 1 := S 1 (x, q, H) = q-1 t=1 e - xt q 1≤h≤H e ht q , (50) 
S 1 := S 1 (z, q, H) = q-1 t=1 e - zt q 1≤h≤H e ht q , (51) 
S 2 := S 2 (x, z, q, H) = q-1 t 1 =1 q-1 t 2 =1 e - xt 1 + zt 2 q 2 i=1 1≤h i ≤H e h i t i q , (52) 
S 2 := S 2 (x, y, q, H) = q-1 t 1 =1 q-1 t 2 =1 e - xt 1 + yt 2 q 2 i=1 1≤h i ≤H e h i t i q , (53) 
S 3 := S 3 (x, y, z, q, H) = q-1 t 1 =1 q-1 t 2 =1 q-1 t 3 =1 e - xt 1 + yt 2 + zt 3 q 3 i=1 1≤h i ≤H e h i t i q . (54) 
Taking into account ( 8), ( 49) -( 54) we derive

Σ(H, q) = 1 q 3 H 3 λ(q) + 2H 2 Σ 1 + H 2 Σ 1 + 2HΣ 2 + Σ 2 + Σ 3 , (55) 
where

Σ 1 = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) q-1 t=1 e - xt q 1≤h≤H e ht q , (56) 
Σ 1 = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) q-1 t=1 e - zt q 1≤h≤H e ht q , (57) 
Σ 2 = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) q-1 t 1 =1 q-1 t 2 =1 e - xt 1 + zt 2 q 2 i=1 1≤h i ≤H e h i t i q , (58) 
Σ 2 =
1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) q-1

t 1 =1 q-1 t 2 =1 e - xt 1 + yt 2 q 2 i=1 1≤h i ≤H e h i t i q , (59) 
Σ 3 = 1≤x,y,z≤q x 2 +y 2 +z 2 +z+1≡0 (q) q-1 t 1 =1 q-1 t 2 =1 q-1 t 3 =1 e - xt 1 + yt 2 + zt 3 q 3 i=1 1≤h i ≤H e h i t i q . ( 60 
)
From ( 6), (56), Lemma 6 and Lemma 10 we obtain

Σ 1 = q-1 t=1
λ(q, -t, 0, 0) 1≤h≤H e ht q q-1 t=1 |λ(q, -t, 0, 0)| t q

-1 q q-1 t=1 |λ(q, -t, 0, 0)| t q 2+ε . (61) 
Arguing in the same way for the sums (57) -(60) we deduce

Σ 1 q 2+ε , Σ 2 q 3+ε , Σ 2 q 3+ε , Σ 3 q 4+ε . (62) 
Now ( 55), ( 61) and (62) imply

Σ(H, q) = H 3 q 3 λ(q) + O H 2 q ε-1 + Hq ε + q 1+ε . ( 63 
)
Bearing in mind ( 43), ( 46) and (63) we get

Γ 1 (H) = H 3 d≤ξ µ(d)λ(d 2 ) d 6 + O d≤ξ H 2 d ε-2 + Hd ε + d 2+ε = σH 3 -H 3 d>ξ µ(d)λ(d 2 ) d 6 + O H 2 + ξ 3+ε , (64) 
where

σ = ∞ d=1 µ(d)λ(d 2 ) d 6 . ( 65 
)
Using Lemma 5 we find

d>ξ µ(d)λ(d 2 ) d 6 d>ξ d 4+ε d 6 ξ ε-1 . ( 66 
)
Clearly the function µ(d)λ(d 2 ) d 6 is multiplicative with respect to d 2 and the series (65) is absolutely convergent. Thus (65) and the Euler product give us

σ = p 1 - λ(p 2 ) p 6 . (67) 
Now (64), (66) and (67) yield

Γ 1 (H) = p 1 - λ(p 2 ) p 6 H 3 + O H 3 ξ ε-1 + H 2 + ξ 3+ε . (68) 

Estimation of Γ 2 (H)

From ( 44) and (45) we write

Γ 2 (H) ξ<d≤ √ 3H 2 +H+1 1≤k≤ 3H 2 +H+1 d 2 1≤z≤H 1≤x,y≤H x 2 +y 2 =kd 2 -z 2 -z-1 1 ξ<d≤ √ 3H 2 +H+1 1≤k≤ 3H 2 +H+1 d 2 1≤z≤H H ε ξ<d≤ √ 3H 2 +H+1 H 3+ε d -2 H 3+ε ξ -1 . (69) 

The end of the proof of Theorem 1

Summarizing (42), ( 68), (69) and choosing ξ = H 3 4 we establish the asymptotic formula [START_REF] Tolev | On the number of pairs of positive integers x, y ≤ H such that x 2 + y 2 + 1 is squarefree[END_REF]. This completes the proof of Theorem 1.

Proof of Theorem 2

By ( 5) and (41) we derive

Γ * (H) = 1≤d≤ √ 2H 2 +H+1 µ(d)
1≤x,y,z≤H x 2 +y 2 +z+1≡0 (d 2 )

1 = Γ * 1 (H) + Γ * 2 (H) , (70) 
where

Γ * 1 (H) = 1≤d≤ξ * µ(d)Σ * (H, d 2 ) , (71) 
Γ * 2 (H) = ξ * <d≤ √ 2H 2 +H+1 µ(d)Σ * (H, d 2 ) , (72) 
Σ * (H, d 2 ) = 1≤x,y,z≤H x 2 +y 2 +z+1≡0 (d 2 ) 1 , (73) 
√ H ≤ ξ * ≤ H . (74) 
5.1 Estimation of Γ * 1 (H) Using ( 9), (73) and proceeding as in Subsection 4.1 we obtain

Σ * (H, q) = 1 q 3 H 3 λ * (q) + 2H 2 Σ * 1 + H 2 Σ * 1 + 2HΣ * 2 + H Σ * 2 + Σ * 3 , (75) 
where

Σ * 1 = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) q-1 t=1 e - xt q 1≤h≤H e ht q , (76) 
Σ

* 1 = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) q-1 t=1 e - zt q 1≤h≤H e ht q , (77) 
Σ * 2 = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) q-1 t 1 =1 q-1 t 2 =1 e - xt 1 + zt 2 q 2 i=1 1≤h i ≤H e h i t i q , (78) 
Σ * 2 = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) q-1 t 1 =1 q-1 t 2 =1 e - xt 1 + yt 2 q 2 i=1 1≤h i ≤H e h i t i q , (79) 
Σ * 3 = 1≤x,y,z≤q x 2 +y 2 +z+1≡0 (q) q-1

t 1 =1 q-1 t 2 =1 q-1 t 3 =1 e - xt 1 + yt 2 + zt 3 q 3 i=1 1≤h i ≤H e h i t i q . (80) 
Now ( 7), (76), Lemma 9 and Lemma 10 lead to

Σ * 1 =
q-1 t=1 λ * (q, -t, 0, 0) 1≤h≤H e ht q q-1 t=1

|λ * (q, -t, 0, 0)| t q -1 q q-1 t=1 |λ * (q, -t, 0, 0)| t q 3+ε . (81)

Working in the same way for the sums (77) -(80) we get

Σ * 1 q 3+ε , Σ * 2 q 4+ε , Σ * 2 q 4+ε , Σ * 3 q 5+ε . (82) 
Further (75), ( 81) and (82) give us Σ * (H, q) = H 3 q 3 λ * (q) + O H 2 q ε + Hq 1+ε + q 2+ε . (83) H 3+ε (ξ * ) -1 .

(89)

The end of the proof of Theorem 2

Bearing in mind (70), (88), (89) and choosing ξ * = H 1 2 we establish the asymptotic formula [START_REF] Zhou | On the square-free values of the polynomial x 2 + y 2 + z 2 + k[END_REF]. This completes the proof of Theorem 2.
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 9 +ε which improves the reminder term O H
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1≤x,y,z≤H x 2 +y 2 +z 2 +z+1≡0 (d 2 )1 = Γ 1 (H) + Γ 2 (H) ,(42)