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Analysis and numerical simulation of a generalized compressible
Cahn-Hilliard-Navier-Stokes model with friction effects

Charles Elbar∗† Alexandre Poulain‡§

March 28, 2024

Abstract

We propose a new generalized compressible diphasic Navier-Stokes Cahn-Hilliard model
that we name G-NSCH. This new G-NSCH model takes into account important proper-
ties of diphasic compressible fluids such as possible non-matching densities and contrast in
mechanical properties (viscosity, friction) between the two phases of the fluid. the model
also comprises a term to account for possible exchange of mass between the two phases.
Our G-NSCH system is derived rigorously and satisfies basic mechanics of fluids and ther-
modynamics of particles. Under some simplifying assumptions, we prove the existence of
global weak solutions. We also propose a structure preserving numerical scheme based on
the scalar auxiliary variable method to simulate our system and present some numerical
simulations validating the properties of the numerical scheme and illustrating the solutions
of the G-NSCH model.
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Keywords and phrases. Cahn-Hilliard equation; Navier-Stokes equation; Asymptotic analysis;
Mathematical modeling; Numerical simulations; Scalar Auxiliary Variable method.

1 Introduction

We derive, analyze and simulate numerically the generalized compressible Navier-Stokes-Cahn-
Hilliard variant (G-NSCH in short)

∂ρ

∂t
+ div (ρv) = 0, (1.1)

∂(ρc)

∂t
+ div (ρcv) = div (b(c)∇µ) + Fc, (1.2)

ρµ = −γ∆c+ ρ
∂ψ0

∂c
, (1.3)

∂(ρv)

∂t
+ div (ρv ⊗ v) = −

[
∇p+ γdiv

(
∇c⊗∇c− 1

2
|∇c|2I

)]
+ div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v) I) + div (η(c)div (v) I)− κ(ρ, c)v,

(1.4)
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stated in (0, T ) × Ω, where T > 0 is finite time horizon, and Ω ⊂ Rd (d = 1, 2, 3) is an open
bounded domain with a smooth boundary ∂Ω.
Interested by the modeling of invasive growth of tumors in healthy tissues, we motivate the
different terms of the model with this biological application in mind. However, we emphasize
that the model is a general compressible diphasic fluid model that could be used for other
applications.
System (1.1)–(1.4) models the motion of a diphasic fluid composed of two immiscible components,
i.e. two different cell types (e.g. tumor and healthy cells), and comprises viscosity effects, surface
tension, and friction on rigid fibers representing the extracellular matrix (ECM in short). In
System (1.1)–(1.4), ρ is the total density of the mixture (i.e. the sum of the two partial densities),
c is the relative mass fraction of one component (e.g. the cancer cells), v is the mass averaged
total velocity, µ is called the chemical potential, p is the pressure. The coefficient γ is related
to the surface tension and is equal to the square of the width of the diffuse interface existing
between the two populations. The friction coefficient κ(ρ, c) is a non-negative function of the
density and the mass fraction, and takes into account the possible difference of friction strength
between the two populations. We use this friction term to model possible adhesive effects of the
cells on the ECM. The coefficients ν(c) and η(c) represents the viscosity coefficients (shear and
dilatational, respectively) of the mixture. Possible differences in viscosities could be considered
for the two populations. The function ψ0 represents the separation of the two components of the
mixture and phenomenologically models the behavior of cells (i.e. cells tend to form aggregates
of the same cell type). The function Fc(·) accounts for the possible proliferation and death of
cells and these two effects are assumed to be modelled as an exchange of mass between the
populations. The non-negative function b(·) models the mobility of cells. This function models
the probability for a cell of any of the two populations to find an available neighboring spot to
which it can move. More details about the general assumptions and precise forms of the different
functions will be given in the next sections.
The motivation of our model stands from the modeling of tumor progression and invasion in
healthy tissues. Indeed, as explained in Appendix B, under suitable choices of functionals, our
model can be viewed as a representation of a proliferating population of cells, i.e. the tumor
cells, in a domain filled with a non-proliferating population, i.e. the healthy cells and the rest
of tissue (ECM, extracellular fluid, etc. ). The proliferation of cells happens by consuming mass
from the other phase (we are not injecting mass in the system). Both cell populations move in an
ECM constituted of rigid fibers on which they can adhere. As we only focus on the mechanical
effects generated by the properties of the cells that could play a role during invasion, we do
not consider in the model other effects that are known to be important in tumor progression:
e.g. angiogenesis, digestion of the ECM by proteolic enzymes, role of helping cells located in the
stroma.
We emphasize that this article only concerns the analysis and the numerical simulation of the G-
NSCH model (1.1)–(1.4). This latter comprises effects that are negligible in biological situations,
e.g. inertia effects. We propose here an analysis of the model and a structure preserving numerical
scheme for the G-NSCH model.

Literature review The motion of a binary mixture of two immiscible and compressible fluids
can be described by the Navier-Stokes equation coupled to the Cahn-Hilliard model: the Navier-
Stokes-Cahn-Hilliard model (NSCH model in short). The well-known incompressible variant of
the compressible NSCH model has been denominated model H (see e.g. [36, 38]). Model H has
been proposed to represent viscous fluid flow in an incompressible binary mixture undergoing
phase separation. This model assumes matching densities, i.e. ρ1 = ρ2 and, hence, constant
total density ρ. To consider non-matching densities, Lowengrub and Truskinovsky [55] proposed
the compressible NSCH model. Expanding the divergence term in the mass balance equation,
the authors found a relation denoting the quasi-compressible nature of the fluid. Concomitantly,
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Anderson, FcFadden, and Wheeler [10] proposed a similar system. In the present work, we use
a similar system. We also remark that a very recent work [66] proposed a unified framework
for the incompressible NSCH system and shows that the different NSCH models found in the
literature only differ from their general modelling framework by specific constitutive hypotheses.
Under some simplifying assumptions compared to the system proposed in [55] but being closer
to the system in [10], the analysis of the compressible NSCH model with no-flux boundary
conditions has been realized by Abels and Feireisl [4]. Their analysis requires to simplify the
model proposed in [55] to avoid zones with zero density which would make this analysis a lot more
difficult since the control from certain estimates would be lost. In another article, for the same
system, Abels proved the existence of strong solutions for short times [2]. Considering the same
assumptions and dynamic boundary conditions, Cherfils et al. [21] proved the well-posedness
of the compressible NSCH model with these special boundary conditions. These latter allow to
model the interaction of the fluid components and the walls of the domain.
Results on the analysis of the incompressible variant of the NSCH model, i.e. the model H, are
numerous and we here mention only a few of them since a complete review would be out of the
scope of the present article. With a non-degenerate mobility coefficient and a physically relevant
choice of potential, the well-posedness and regularity analysis of model H has been performed by
Abels [1] using tools both from the analysis of Navier-Stokes model and the Cahn-Hilliard model.
It is worth mentioning that the non-degeneracy of the mobility coefficient leads to non-physical
effects, i.e. Ostwald ripening effects (see [5]). For this reason, Abels, Depner and Garcke studied
model H with a degenerate mobility [3]. Their analysis relies on a regularization of the mobility
and singular potential into, respectively, a non-degenerate and non-singular potential. Then,
suitable a-priori estimates uniform in the regularization parameter allow to pass to the limit in
the regularization and show the existence of weak solutions to the degenerate model H.
We now review partially the extensive literature about the Cahn-Hilliard equation and its use
for the modelling of tumors. The Cahn-Hilliard equation has been initially used to represent
the phase separation in binary mixtures and has been applied to the spinodal decomposition
of binary alloys under a sudden cooling [17, 18]. The model represents the two phases of the
fluids as continua separated by a diffuse interface. This equation has been used later in many
different applications and we do not intend here to give an overview of all these. However,
we refer the reader interested in the topic to the presentation of the Cahn-Hilliard equation
and its applications to the review book [56]. We are interested here in the application of the
Cahn-Hilliard framework to tumor modelling (see e.g. [53,54]). Latter, different variants of the
Cahn-Hilliard model appeared: e.g. (without giving a complete overview) its coupling to Darcy’s
law [31], Brinkman’s law [22], chemotaxis [62]. Recently, a variant of the CH equation has been
used to better represent the growth and organization of tumors. The main change is the use
of a single-well logarithmic degenerate potential instead of a double-well potential [7, 19, 60].
This type of potential has been proposed in [9] to represent the action of the cells depending
only on the local density, i.e. attraction at low cell density and repulsion for large cell density
representing the tendency of cells to avoid overcrowding. The Cahn-Hilliard framework has also
been utilized in systems representing invasive growth of tumors. The interested reader can find
a lot of information about phase-field type systems modelling tumor growth and invasion in the
very recent survey paper [30] and references therein.
We now review some of the literature about the numerical simulation of NSCH models. The
numerical simulation of Model H for binary fluids with non-matching densities has been the
subject of numerous works (see e.g. [39] and references therein). However, in part due to its
complexity, the numerical simulation of the compressible NSCH system has been less explored. A
C0 finite element numerical scheme for a variant of the quasi-compressible NSCH model proposed
in [55] has been proposed in [33]. Around the same time, Giesselmann and Pryer [8,32] designed a
discontinuous Galerkin finite element scheme to simulate the quasi-incompressible NSCH system
which preserves the total mass and the dissipation of energy. A numerical method has also been
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proposed in [37] in the case of constant mobility b(c) and smooth polynomial potential ψ(c).
However, the system simulated in [37] is a simplification of the compressible NSCH system since
the pressure does not appear in the definition of the chemical potential µ in their system.
The previous works we presented for the simulation of the compressible or quasi-compressible
NSCH systems deal with constant mobility combined with a smooth polynomial potential. We
aim to simulate the compressible NSCH model with choices of mobility and potential relevant
for biology (but also relevant for material sciences and fluid mechanics), i.e. degenerate mobil-
ity combined with a logarithmic potential. We now review briefly some relevant discretization
methods for the Cahn-Hilliard equation with degenerate mobility and singular potentials. Con-
sidering a degenerate mobility and a double-well logarithmic potential, we mention the work of
Barrett, Blowey and Garcke [12]. In this article the authors proposed a finite element scheme
with a variational inequality to preserve the bounds of the solution. Based on these ideas, Agosti
et al. [7] proposed a similar finite element scheme for the single-well logarithmic potential case.
The difficulty in this latter case lies in the fact that the degeneracy and the singularity sets do
not coincide and, considering an order parameter that must remain within the bounds [0, 1),
negative solutions can appear if a standard discretization method is used. The numerical scheme
proposed in [7] solves this issue but does not preserve the mass. In a more recent work, Agosti [6]
proposed a discontinuous Galerkin finite element scheme that preserves the bounds [0, 1) and
preserves the exact mass. However, the main drawback of the previously mentioned methods
is that they are computationally expensive: they solve a strongly coupled nonlinear system and
resort to the use of iterative algorithms.
Since the Cahn-Hilliard equation is a gradient flow (see e.g. [51]), a structure-preserving linear
scheme can be constructed using the Scalar Auxiliary Variable (SAV in short) method [63]. The
SAV method is a very powerful tool to design unconditionally energy-stable numerical schemes
for models possessing a gradient-flow (see e.g. [65, 69] and references therein) or Hamiltonian
structure (see e.g. [11, 61] and references therein). The SAV method has evolved during the
past 6 years starting from the original SAV method [63, 64] to improved variants such as the
generalized version GSAV (see e.g. [41,69]) and the relaxed RSAV method [43]. In our work, we
use the GSAV method that has been already used in [42] for the Cahn-Hilliard equation. In this
latter work, the scheme is structure-preserving from the use of a scalar variable that represents
the discrete energy, and an additional equation is solved to ensure dissipation at the discrete
level. The bounds of the order parameter are ensured using a transformation that maps R to
the physical relevant interval ((0, 1) in the case of a double-well potential). Hence, compared to
other techniques, the SAV method has the advantage to allow for the design of a linear, efficient,
structure-preserving scheme and can easily be used for our G-NSCH system. We also emphasize
that the SAV method has been used for the simulation of the incompressible NSCH model
with positive mobility and polynomial potential in [48]. In the present work, we use the GSAV
method to design a numerical scheme for the G-NSCH model. Our numerical scheme allows to
use degenerate mobility and singular potential functionals which is more physically relevant. To
the best of our knowledge, our G-NSCH model is new because it comprises the friction force term
and the exchange between the two phases of the fluid. Moreover, the use of the GSAV method
for a compressible NSCH system is new, especially with our choice of functionals (i.e. degenerate
mobility and singular potential).

Objectives of our work The first objective of our work is to study the well-posedness of the G-
NSCH model under some simplifying assumptions (i.e. smooth potential and positive mobility).
The second objective is the design of an efficient and structure-preserving numerical scheme for
the G-NSCH model with singular double-well potential and degenerate mobility. The third focus
of the present work concerns the rigorous derivation of the G-NSCH model that is presented in
the Appendix.
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Outline of the paper Section 2 presents the notations, functional spaces and assumptions we
use in our work for the analytical part but also for the numerical part. Section 3 concerns the
proof of the existence of weak solutions for the G-NSCH system (1.1)–(1.4) under simplifying as-
sumptions. A structure preserving numerical scheme based on the GSAV method is then proposed
in Section 4 and some numerical results are presented in Section 5. Our model’s equations come
from a thermodynamically consistent derivation of the compressible Navier-Stokes-Cahn-Hilliard
model including friction effects and source terms. The derivation is described in Appendix A.
From the general model, we propose in Appendix B two reductions: The G-NSCH studied and
simulated in the present work and one biologically relevant reduction that will be the focus of a
forthcoming work.

2 General assumptions, notations and functional setting

The equations are set in a domain ΩT = Ω × (0, T ) with Ω an open and bounded subset of Rd
(d = 1, 2, 3). We assume that the boundary ∂Ω is sufficiently smooth. We indicate the usual
Lebesgue and Sobolev spaces by respectively Lp(Ω), Wm,p(Ω) with Hm(Ω) :=Wm,2(Ω), where
1 ≤ p ≤ +∞ and m ∈ N. For q ∈ [1,+∞], we indicate the Bochner spaces by Lq(0, T ;X)
(where X is a Banach space). Finally, C denotes a generic constant that appears in inequalities
and whose value can change from one line to another. This constant can depend on various
parameters unless specified otherwise.

2.1 Assumptions on functionals

We divide the assumptions on the different terms appearing in system (1.1)–(1.4) into two parts:
analytical and numerical assumptions. Indeed we are not able to prove the existence of weak
solutions in the general setting used for the numerical simulations. For instance, the case of the
usual logarithmic double-well potential in the Cahn-Hilliard equation is not treated but can be
implemented in our numerical scheme. However, we can analyze our system with a polynomial
approximation of the double well. We also consider non-degenerate mobilities to obtain estimates
on the chemical potential µ directly. The case of degenerate mobility, see for instance [24], seems
unavailable as we do not have anymore the classical “entropy” estimates of the Cahn-Hilliard
equation that provide bound on second-order derivatives of the mass fraction c.
Framework for numerical simulations We assume that the viscosity ν(c), η(c) and perme-
ability κ(ρ, c) coefficients are smooth non-negative functions. The mobility is a non-negative
function of the order parameter (mass fraction) c. Hence, we assume that

b ∈ C1([0, 1];R+), and b(c) ≥ 0 for 0 ≤ c ≤ 1. (2.1)

In agreement with the literature (see e.g [21]), the homogeneous free energy ψ0(ρ, c) is assumed
to be of the form

ψ0(ρ, c) = ψe(ρ) + ψmix(ρ, c), (2.2)

with ψmix(ρ, c) = H(c) log ρ + Q(c) and Q(c) is a double-well (or single-well) potential. Then,
using the constitutive relation for the pressure, we have

p(ρ, c) = ρ2
∂ψ0

∂ρ
= pe(ρ) + ρH(c), (2.3)

where pe = ρ2ψ′
e(ρ) and is assumed to satisfy

p1ρ
a−1 − p2 ≤ p′e(ρ) ≤ p3(1 + ρa−1), for a > 3/2, p1, p2, p3 > 0. (2.4)

We assume that the exchange term Fc (that can depend on the mass fraction and the density)
is bounded,

|Fc(ρ, c)|+
∣∣∣∣Fc(ρ, c)ρ

∣∣∣∣ ≤ C, ∀(ρ, c) ∈ R2. (2.5)
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Remark 2.1 (Double-well logarithmic potential). In the present work, we aim to use a double-
well logarithmic potential in the definition of the mixing potential. A relevant example of po-
tential is

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2. (2.6)

This potential gives

H(c) =
1

2
(α1(1− c) + α2c) , Q(c) =

1

2
(α1(1− c) log(1− c) + α2c log(c))−

θ

2
(c− 1

2
)2,

where θ > 1.

Additional assumptions for the existence of weak solutions and analysis of the nu-
merical scheme. Concerning the existence of weak solutions and analysis of the numerical
scheme, we need to strengthen our assumptions. The viscosity coefficients ν(c), η(c) are assumed
to be bounded from below by a positive constant and the friction coefficient κ(ρ, c) is assumed
to be nonnegative. Moreover, ν(c), η(c) and κ(ρ, c) are functions bounded in L2(0, T ;L2(Ω))
whenever c is bounded in L∞(0, T ;H1(Ω)) and ρ is smooth (for instance C(0, T ;C2(Ω)). We
consider a > 2 the exponent of the pressure law. In the numerical simulations, we take degenerate
mobilities of the form b(c) = c(1 − c)α. However, in the analysis, we consider a non-degenerate
mobility by truncating the previous mobility. For instance, using a small parameter 0 < εb << 1,
we approximate the mobility b(·) by

bεb(c) =


b(1− εb), if c ≥ 1− εb,

b(εb), if c ≤ εb,

b(c), otherwise,

and consider the case of a fixed εb. Dropping the εb subscript, we obtain that

b ∈ C1(R;R+), and b(c) ≥ C > 0 ∀c ∈ R. (2.7)

Concerning the functionals appearing in the definition of the free energy ψ0 we assume that H
and H ′ are bounded and that Q is a polynomial approximation of the double well potential.
More precisely we take

H1 ≤ H ′(c), H(c) ≤ H2, c ∈ R, H1, H2 > 0,

Q(c) =
1

4
c2(1− c)2.

(2.8)

The case of the double-well logarithmic potential has not been tackled yet even though this is
the main motivation for the decomposition of ψmix as in the works [4] and [21].
Also, to make the computations simpler, we assume that

• a > 6 where a is the pressure exponent,

• ψe(ρ) =
ρa−1

a−1 and therefore pe(ρ) = ρa.

These two assumptions are not necessary and could be removed but simplify the analysis. We
refer for instance to [4, 27] for the more general setting. For instance, the condition a > 6 is
used to not introduce another parameter in the approximating scheme which would make the
article longer. Note that the assumptions on ψ0 imply in particular the following lemma which
is essential to obtain estimates on the energy dissipation:

Lemma 2.2. There exists a constant C such that∣∣∣∣ρ∂ψ0

∂c

∣∣∣∣ ≤ Cρψ0 + C.

Its proof uses the assumption on H and the fact that for c large, Q′(c) ≈ c3 ≤ c4+1 ≈ Q(c)+1.
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3 Existence of weak solutions

We now turn to the proof of the existence of weak solutions for the G-NSCH model (1.1)–(1.4)
subjected to boundary conditions

v = 0,
∂c

∂n
= b(c)

∂µ

∂n
= 0, on ∂Ω, (3.1)

and initial conditions

ρ(0, x) = ρ0 ≥ 0 ∈ La(Ω), c(0, x) = c0 ∈ H1(Ω) ρ0v(0, x) = m0, with
|m0|2
ρ0

∈ L1(Ω). (3.2)

Also, we suppose ρ0 ̸= 0. In this section we take d = 3. The proof of the result is quite long and
technical. Therefore, when possible and for the sake of clarity, we omit some proofs and give
instead appropriate references.

Outline of the analysis For readability reasons, we here present the outline of the analysis of
the G-NSCH model. We first start with the analysis of a "truncated" version of G-NSCH model
in the sense that the double-well is truncated for large values of c with a parameter εQ. Then,
for this fixed truncation, we prove the existence of weak solutions using the ideas of [4,21,27,49].
Then, we pass to the limit εQ → 0. Namely, recalling that Q(c) = 1

4c
2(1− c)2 we first consider

QεQ(c) a smooth truncated approximation of Q that satisfies

|QεQ |, |Q′
εQ
|, |Q′′

εQ
| ≤ C

(
1

εQ

)
. (3.3)

In the first subsections, we drop the εQ notation and work with the regularized problem. We will
use the εQ notation when we pass to the limit. For the moment, we benefit from the properties
of the regularization.

3.1 Energy estimates

The G-NSCH system comes with an energy structure which is useful to obtain first a pri-
ori estimates.

Proposition 3.1. Smooth solutions of the system (1.1)–(1.4) satisfy the following energy relation

d

dt
E +D =

∫
Ω
µFc dx, (3.4)

where E is the energy, and D is the dissipation defined as

E =

∫
Ω
ρ
|v|2
2

+ ρψ0 +
γ

2
|∇c|2 dx, (3.5)

D =

∫
Ω

ν(c)

2

∣∣∣∣∇v +∇vT − 2

3
div(v)I

∣∣∣∣2 + η(c)|div (v) I|2 + b(c)|∇µ|2 + κ(ρ, c)|v|2 dx. (3.6)

This yields a priori estimates on the solution i.e. there exists a positive constant C such that

E(t) +

∫ t

0
D(s) ds ≤ C + CE(0).

Note that the energy is bounded from below since ρ log ρH(c) is bounded from below with (2.8).
Also, the purpose of the assumptions ν(c), η(c) and b(c) bounded from below by a positive
constant becomes clear, they are crucial to obtain estimates on the H1(Ω) norm of µ and v.
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Proof. We recall the formula

∇c∆c = div(∇c⊗∇c)− 1

2
∇|∇c|2. (3.7)

We denote by T the tensor

T = ν(c)(∇v +∇vT − 2

3
div(v)I) + η(c)div (v) I. (3.8)

Then we multiply Equation (1.1) by |v|2
2 and sum it with the scalar product of Equation (1.4)

with v. We obtain

∂

∂t

(
ρ
|v|2
2

)
+ div

(
1

2
ρ|v|2v + p(ρ, c)v − T · v

)
+ T : ∇v + κ(ρ, c)v2 = p(ρ, c)div(v)

+ γdiv(
1

2
|∇c|2I− (∇c⊗∇c)) · v,

which is equivalent to

∂

∂t

(
ρ
|v|2
2

)
+ div

(
1

2
ρ|v|2v + p(ρ, c)v − T · v

)
+ T : ∇v+ κ(ρ, c)v2 = p(ρ, c)divv− γ∆c∇c · v.

(3.9)
Then, we multiply Equation (1.2) by µ and obtain using also (1.1)

ρµ(∂tc+ v · ∇c) = div(b(c)∇µ)µ+ µFc.

And, using (1.3) we obtain

ρ
∂ψ0

∂c
(∂tc+ v · ∇c) = div(b(c)∇µ)µ+ γ∆c(∂tc+ v · ∇c) + µFc.

The previous equation can be rewritten using the chain rule as

∂t(ρψ0) + div(ρψ0v)− ψ0(∂tρ+ div(ρv))− ρ
∂ψ0

∂ρ
(∂tρ+ v · ∇ρ)

= div(b(c)∇µ)µ+ γ∆c(∂tc+ v · ∇c) + µFc.

We have ρ∂ψ0

∂ρ (∂tρ+v ·∇ρ) = ρ∂ψ0

∂ρ (−ρdiv(v)) = −pdiv(v) (see Equation (2.3) for the definition

of the pressure). Moreover, we know that ∆c∂tc = div(∂tc∇c)− ∂t

(
|∇c|2
2

)
and, hence,

∂t(ρψ0) + div(ρψ0v) + pdiv(v) = div(b(c)∇µ)µ+ γ

[
div(∂tc∇c)− ∂t

( |∇c|2
2

)
+∆cv · ∇c

]
+ µFc. (3.10)

Summing (3.9) and (3.10) we obtain

∂

∂t

(
ρ
|v|2
2

+ ρψ0 +
γ

2
|∇c|2

)
+div

(
ρψ0v +

1

2
ρ|v|2v + p(ρ, c)v − T : v − γ∂tc∇c

)
−div(b(c)∇µ)µ

+ T : ∇v + κ(ρ, c)|v|2 = µFc.

Now we use the fact that

T : ∇v =
ν(c)

2

∣∣∣∣∇v +∇vT − 2

3
div(v)I

∣∣∣∣2 + η(c) |div (v) I|2 . (3.11)
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Integrating in space and using the boundary conditions (3.1) ends the proof of the first part of
the proposition. To prove the second part, we integrate the equation in time and control the
right-hand side. Indeed, due to the assumption on the source term (2.5), we have∣∣∣∣∫ t

0

∫
Ω
µFc dx dt

∣∣∣∣ ≤ C

∫ t

0

∫
Ω
|µ|.

We want to use Lemma 3.7 to control the L1 norm of µ. Integrating the equations on ρ to obtain∫
Ω ρdx =

∫
Ω ρ0 dx > M0 we satisfy the first assumption of the lemma. For the second, we notice

that we can consider a variant of this lemma such that instead of asking ρ to be in L6/5 we have
the inequality ∥∥∥∥u− 1

|Ω|

∫
Ω
ρu

∥∥∥∥
L2

≤ C∥∇u∥L2 + ∥ρ∥L6/5 .

Using Young’s inequality, the fact that in the energy ρψ0 contains a term of the form ρa+1 we
obtain for C̃ small enough∫ t

0

∫
Ω
|µ| dx ≤ C + C̃

∫ t

0

∫
Ω
|µ|2 dx ≤ C + CE(t) +

infc b(c)

2

∫
Ω
|∇µ|2 dx+ C

∣∣∣∣∫
Ω
ρµ dx

∣∣∣∣ .
Since the energy dissipation controls the third term of the right-hand side, it remains to control
the last term of the right-hand side. We recall that ρµ = ρ∂ψ0

∂c − γ∆c. Using the Neumann

boundary conditions on c, it remains to control
∣∣∣∫Ω ρ∂ψ0

∂c

∣∣∣. Using Lemma 2.2, we obtain∣∣∣∣∫
Ω
ρ
∂ψ0

∂c
dx

∣∣∣∣ ≤ C + CE(t).

We conclude using Gronwall’s lemma.

3.2 Existence of weak solutions for fixed εQ

The weak solutions of system (1.1)–(1.4) are defined as follows

Definition 3.2. We say that (ρ,v, c, µ) is a weak of system (1.1)–(1.4) provided:

• ρ ≥ 0 and we have the regularity

ρ ∈ L∞(0, T ;La(Ω)),

v ∈ L2(0, T ;H1
0 (R3)),

√
ρv ∈ L∞(0, T ;L2(Ω;R3)), T : ∇v ∈ L1(0, T ;L1(Ω)),

c ∈ L∞(0, T ;H1(Ω)),

µ ∈ L2(0, T ;H1(Ω)).

• Equations (1.1)–(1.4) are satisfied in the distributional sense.

• The initial conditions (3.2) are satisfied a.e. in Ω.

• The boundary conditions (3.1) are satisfied.

We state our main theorem about the existence of weak solutions

Theorem 3.3 (Existence of weak solutions). There exist (ρ,v, c, µ) weak solutions of (1.1)–(1.4)
in the sense of Definition 3.2.
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In order to prove the existence of weak solutions, we use an approximating scheme with a small
parameter ε > 0 borrowing the idea from [27, 50]. More precisely, let Xn = span{ηi}i=1,...,n be
the set of the first n vectors of a basis of H1

0 (Ω;R3) such that Xn ⊂ C2(Ω;R3). We consider the
following problem for (ρ,vn, c) with vn ∈ Xn (with coordinates depending on time):

∂tρ+ div(ρvn) = ε∆ρ, (3.12)

and for every η ∈ Xn,∫
Ω
ρvn(t) · η dx−

∫
Ω
m0 · η dx−

∫ t

0

∫
Ω
ρvn ⊗ vn : ∇η dx ds−

∫ t

0

∫
Ω
p(ρ, c)div(η) dx ds

+ ε

∫ t

0

∫
Ω
(∇vn∇ρ) · η dx ds+

∫ t

0

∫
Ω
T : ∇η dx ds+ γ

∫ t

0

∫
Ω
(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇η dx ds

+

∫
Ω

∫ t

0
κ(ρ, c)vn · η dx ds = 0. (3.13)

And for the equation on the mass fraction

∂tc+ vn · ∇c =
1

ρ
div(b(c)∇µ) + Fc

ρ
, µ =

∂ψ0

∂c
− γ

∆c

ρ
. (3.14)

We consider Neumann boundary conditions

∇ρ · n = b(c)∇µ · n = ∇c · n = 0 on ∂Ω, (3.15)

and the Dirichlet boundary condition for vn is included in the definition of Xn. Finally, we
consider the initial conditions

ρ(0, ·) = ρ0,ε > 0, c(0, ·) = c0,ε, ρvn(0, ·) = m0, (3.16)

where ρ0,ε, c0,ε satisfy the Neumann boundary conditions and they are smooth approximations
of ρ0, c0 (when ε→ 0).
We now comment on the scheme used above and detail the strategy of the proof. We add the
artificial diffusion in (3.12) with the parameter ε > 0. Here, vn is fixed and we can conclude the
global in time existence of classical solutions to (3.12) which are positive since the initial condition
is positive (and using maximum principle). Using this positivity, we conclude the existence of
a strong solution to Equation (3.14) which is in fact a fourth-order parabolic equation. Having
obtained c, we focus on Equation (3.13) and we prove existence for a small time with Schauder’s
fixed point theorem. Note the presence of the additional term ε

∫
(∇vn∇ρ) · η which is useful

to cancel energy terms introduced by ε∆ρ in (3.12). Having obtained existence on a short time
interval we compute the energy of the system and obtain global existence. Then, we pass to the
limit n→ ∞. It remains to send ε and εQ to 0 and obtain solutions of system (1.1)–(1.4).
We first turn our attention to Equation (3.12). From [27], we obtain the following proposition,
and lemma

Proposition 3.4. Let Ω ⊂ R3 be a bounded domain of class C2+β for some β > 0. For
a fixed vn ∈ Xn, there exists a unique solution to Equation (3.12) with Neumann boundary
conditions (3.15) and initial data conditions (3.16). Furthermore, the mapping vn 7→ ρ[vn],
that assigns to any vn ∈ Xn the unique solution of (3.12), takes bounded sets in the space
C(0, T ;C2

0 (Ω,R3)) into bounded sets in the space

V := {∂tρ ∈ C(0, T ;Cβ(Ω)), ρ ∈ C(0, T ;C2+β(Ω))}.
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Lemma 3.5. The solutions of (3.12) satisfy

( inf
x∈Ω

ρ(0, x)) exp

(
−
∫ t

0
∥divvn(s)∥L∞(Ω) ds

)
≤ ρ(t, x)

≤ (sup
x∈Ω

ρ(0, x)) exp

(∫ t

0
∥divvn(s)∥L∞(Ω) ds

)
,

for all t ∈ [0, T ] and x ∈ Ω.

Using the latter lemma, if the velocity field is in W 1,∞, the density is bounded from below by a
positive constant (provided the initial condition is positive). We now focus on Equation (3.14).

Proposition 3.6. Let ρ be given such that ρ ∈ C(0, T ;C2(Ω)) and ρ ≥ ρ > 0. Then Equa-
tion (3.14) with Neumann boundary conditions (3.15) admits a strong solution. Moreover, the
mapping vn 7→ c[vn] takes bounded sets in the space C(0, T ;C2

0 (Ω,R3)) into bounded sets in the
space

W := {c ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω))}. (3.17)

The existence of a strong solution is based on the remark that the highest order term of this
equation is −γ b(c)ρ ∆2c. Using b(c), ρ ≥ C > 0 we obtain a fourth-order parabolic equation with
smooth coefficients and with zero Neumann boundary conditions. Therefore, we can admit the
global in time strong solution than can be achieved through a Galerkin scheme and we focus on
the estimates (3.17). In the proof, we need the following two lemmas

Lemma 3.7 (Lemma 3.1 in [28]). Let Ω ∈ R3 be a bounded Lipschitz domain and let M0 > 0,
K > 0. Assume that ρ is a nonnegative function such that

0 < M0 ≤
∫
Ω
ρ dx,

∫
Ω
ρa dx ≤ K, with a >

6

5
.

Then, there exists a positive constant C = C(M0,K, a) such that the inequality∥∥∥∥u− 1

|Ω|

∫
Ω
ρu

∥∥∥∥
L2(Ω;R3)

≤ C∥∇u∥L2(Ω;R3×3),

holds for any u ∈W 1,2(Ω;R3).

Lemma 3.8 (Theorem 10.17 in [29]). Let Ω ⊂ R3 be a bounded Lipschitz domain, and let
1 < p < +∞, M0 > 0, K > 0, a > 1. Then there exists a postive constant C = C(p,M0,K, a)
such that the inequality

∥u∥W 1,p(Ω;R3) ≤ C

(
∥∇u+∇Tu− 2

3
divuI∥Lp(Ω;R3×3) +

∫
Ω
ρ|u|dx

)
,

holds for any u ∈W 1,p(Ω;R3) and any non-negative function ρ such that

0 < M0 ≤
∫
Ω
ρdx,

∫
Ω
ρa dx ≤ K.

Proof of Proposition 3.6. We admit the existence of solutions and focus on a priori estimates.
We multiply Equation (3.14) by −∆c. Using the boundary conditions and integrating in space
yields

∂t

∫
Ω

|∇c|2
2

dx+ γ

∫
Ω
b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx
=

∫
Ω

1

2
div(vn)|∇c|2 −∇vn : ∇c⊗∇cdx+

∫
Ω
b(c)∇

(
∂ψ0

∂c

)
· ∇
(
∆c

ρ

)
dx−

∫
Ω

Fc
ρ
∆c.
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Here, we have also used the formula (3.7). We use the L∞ bounds on vn, div(vn), b(c), ρ the
fact that Fc

ρ is also bounded in L∞, properties on ∂cψ0 (3.3), and obtain

∂t

∫
Ω

|∇c|2
2

dx+ γ

∫
Ω
b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx ≤ C

∫
Ω
|∇c|2 dx+ C

∫
Ω

∣∣∣∣∇∆c

ρ

∣∣∣∣dx+ C

∫
Ω
|∆c|.

We want to control the last term on the right-hand side. We use Lemma 3.7 with u = ∆c
ρ (1, 0, 0)T

and obtain, together with Neumann boundary conditions on c,∥∥∥∥∆cρ
∥∥∥∥
L2(Ω)

≤ C

∥∥∥∥∇(∆c

ρ

)∥∥∥∥
L2(Ω;R3)

. (3.18)

Then, writing ∆c = ρ∆c
ρ and using the L∞ bound on ρ,∫

Ω
|∆c| ≤ C

∥∥∥∥∇(∆c

ρ

)∥∥∥∥
L2(Ω;R3)

.

Finally, using Young’s inequality and Gronwall’s lemma, we obtain

sup
t∈(0,T )

∫
Ω
|∇c|2 dx+ γ

∫ T

0

∫
Ω
b(c)

∣∣∣∣∇(∆c

ρ

)∣∣∣∣2 dx ≤ C. (3.19)

With Lemma 3.7 (and integrating the equation on ρc using also the boundary conditions) we
obtain the bound

c ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H3(Ω)). (3.20)

Having defined ρ and c, we now solve Equation (3.13) with a fixed point argument. We define
the operator

M[ρ] : Xn → X∗
n, ⟨M[ρ]v,w⟩ :=

∫
Ω
ρv ·wdx, v,w ∈ Xn.

This operator ( [27]) M[ρ] is invertible, and

∥M−1[ρ]∥L(X∗
n;Xn) ≤

1

infΩ ρ
, ∥M−1[ρ1]−M−1[ρ2]∥L(X∗

n;Xn) ≤ C(n, ρ)∥ρ1−ρ2∥L1(Ω), (3.21)

for any ρ1, ρ2 ≥ ρ. Finally, Equation (3.13) can be reformulated as

vn(t) = M−1[ρ(t)]

(
m∗

0 +

∫ t

0
N [vn(s), ρ(s), c(s)] ds

)
, (3.22)

with
⟨m∗

0, η⟩ =
∫
Ω
m0 · η dx,

and

⟨N [vn, ρ, c], η⟩ =
∫
Ω

(
ρvn ⊗ vn − T− γ

2
|∇c|2I+ γ∇c⊗∇c

)
: ∇η + p(ρ, c)div(η)

− (ε∇vn∇ρ+ κ(ρ, c)vn) · η dx.

To prove that Equation (3.22) has a solution, we apply Schauder’s fixed-point theorem in a short
time interval [0, T (n)]. Then, we need uniform estimates to iterate the procedure.
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Lemma 3.9 (Schauder Fixed Point Theorem). Let X be a Hausdorff topological vector space
and S be a closed, bounded, convex, and non-empty subset of X. Then, any compact operator
A : S → S has at least one fixed point.

With notation of the lemma 3.9, we call A the operator from Equation (3.22) and S = B(u0,n)
the unit ball with center u0,n in C([0, T ];Xn), u0,n is defined by∫

Ω
ρ0u0,n · η dx =

∫
Ω
m0 · η dx, ∀η ∈ Xn.

More precisely, we consider

A :S → C([0, T ];Xn),

u 7→ M−1[ρ(t)]

(
m∗

0 +

∫ t

0
N [u(s), ρ(s), c(s)] ds

)
.

Lemma 3.10. There exists a time T = T (n) small enough such that the operator A maps S into
itself. Moreover, the mapping is continuous.

Proof. By definition of A and m∗
0, we need to prove that ∥M−1[ρ(t)]

∫ t
0 N (s)ds∥C(0,T ;Xn) ≤ 1.

With properties (3.21), it is sufficient to prove that there exists a final time T small enough such
that ∥∥∥∥∫ t

0
N(s) ds

∥∥∥∥
C(0,T ;X∗

n)

≤ inf
ΩT

ρ.

Note that the infimum of ρ needs to be taken over the set ΩT = (0, T )×Ω as ρ depends on time.
But, since we only consider small times, using Lemma 3.5 we see that this infimum is bounded
by below. More precisely, for every T0, there exists C(T0) > 0 such that for every T ≤ T0,
infΩT

ρ ≥ C(T0). We recall that Xn ⊂ C2(Ω;R3) is finite-dimensional. With the definition of
the tensor T and the pressure p(ρ, c) given by (3.11)-(2.3) we estimate by Hölder’s inequality:∫ t

0

∫
Ω
(ρu⊗ u− T− γ

2
|∇c|2I+ γ∇c⊗∇c) : ∇η + p(ρ, c)div(η)− (ε∇u∇ρ+ κ(ρ, c)u) · η dx ds

≤ C(
√
T + T )(∥η∥Xn + ∥∇η∥Xn)(∥ρ∥L∞∥u∥2L∞ + C∥ν(c)∥L2∥∇u∥L∞ + C∥∇c∥2L4 + ∥ρ∥aL∞

+ ∥ρ∥L∞∥H(c)∥L∞ + ε∥u∥Xn∥∇ρ∥L∞ + ∥u∥L∞∥κ(ρ, c)∥L2).

Using assumptions of the subsection 2.1 and Propositions 3.4-3.6, we prove that all the quantities
on the right-hand side are bounded, with a bound that may depend on n, except ∥∇c∥L4 which
needs an argument. Note that from (3.17), we deduce ∇c is bounded in L2(0, T ;H2(Ω)) ∩
L∞(0, T ;L2(Ω)) (by a constant which depends on ρ, and also on ∥u∥L∞ , ∥∇u∥L∞). By Sobolev
embedding with d = 3, ∇c is bounded in L2(0, T ;L∞(Ω))∩L∞(0, T ;L2(Ω)). By Hölder inequality
(or interpolation), we obtain an L4(0, T ;L4(Ω)) bound: ∥∇c∥4L4L4 ≤ ∥∇c∥2L∞L2∥∇c∥2L2L∞ . With
the previous estimates, and for T small enough, we obtain the result.

Lemma 3.11. The image of S under A is in fact a compact subset of S. Therefore, A admits
a fixed point.

Proof. We want to apply the Arzelà-Ascoli theorem to deduce the relative compactness of
A(S). From the previous computation, and using the fact that Xn is finite-dimensional, we
can prove that A(S) is pointwise relatively compact. It remains to prove its equicontinuity.
We want to estimate for t′ ≤ t the Xn norm of M−1[ρ(t)]

(
m∗

0 +
∫ t
0 N [u(s), ρ(s), c(s)] ds

)
−

M−1[ρ(t′)]
(
m∗

0 +
∫ t′
0 N [u(s), ρ(s), c(s)] ds

)
. For simplicity, we write N (s) := N [u(s), ρ(s), c(s)],

and rewrite the previous difference as

M−1[ρ(t)− ρ(t′)]

(
m∗

0 +

∫ t

0
N (s) ds

)
+M−1[ρ(t′)]

(
m∗

0 +

∫ t

t′
N (s) ds

)
.
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For the first term, we use (3.21) and the Hölder continuity of ρ given by Proposition 3.4. For the
second term, we repeat the computations in the proof of Lemma 3.10. This ends the result.

We have the existence of a small interval [0, T (n)]. To iterate the procedure in order to prove
that T (n) = T , it remains to find a bound on vn independent of T (n).

Lemma 3.12. vn is bounded in Xn independently of T (n).

Proof. Note that we do not ask for a bound independent of n but only of T (n) since we use
in the proof the fact that Xn is finite-dimensional. The proof uses the energy structure of the
equation. We differentiate Equation (3.13) in time and take η = vn as a test function. This
yields

d

dt

∫
Ω
ρ
|vn|2
2

dx+
1

2

∫
Ω
(∂tρ+ div(ρvn)) |vn|2 dx−

∫
Ω
p(ρ, c)div(vn) dx− ε

2

∫
Ω
∆ρ|vn|2 dx

+

∫
Ω
T : ∇vn dx+ γ

∫
Ω
(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇vn dx+

∫
Ω
κ(ρ, c)|vn|2 dx = 0. (3.23)

Here we used ∫
Ω
∂t(ρvn) · vn =

1

2

d

dt

∫
Ω
ρ|vn|2 dx+

1

2

∫
Ω
∂tρ|vn|2 dx,∫

Ω
div(ρvn ⊗ vn) · vn dx =

1

2

∫
Ω
div(ρvn)|vn|2 dx,

ε

∫
Ω
(∇vn∇ρ) · vn dx = −ε

2

∫
Ω
∆ρ|vn|2 dx.

With (3.12), we see that (3.23) reads

d

dt

∫
Ω
ρ
|vn|2
2

dx−
∫
Ω
p(ρ, c)div(vn) dx+

∫
Ω
T : ∇vn dx

+ γ

∫
Ω
(
1

2
|∇c|2I− (∇c⊗∇c)) : ∇vn dx+

∫
Ω
κ(ρ, c)|vn|2 dx = 0. (3.24)

Now as in (3.10), we obtain with the artificial viscosity

∂t(ρψ0) + div(ρψ0vn) + pdiv(vn)− ψ0ε∆ρ− ερ
∂ψ0

∂ρ
∆ρ = div(b(c)∇µ)µ

+ div(∂tc∇c)− ∂t

( |∇c|2
2

)
+ γ∆cvn · ∇c+ µFc.

Integrating this equation in space, and summing with (3.24), we obtain

d

dt

∫
Ω
ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx+ ε

∫
Ω
∇
(
ψ0 + ρ

∂ψ0

∂ρ

)
· ∇ρdx

+

∫
Ω
T : ∇vn dx+

∫
Ω
b(c)|∇µ|2 dx+

∫
Ω
κ(ρ, c)|vn|2 dx =

∫
Ω
µFc dx. (3.25)

By definition of ψ0, we obtain

ε

∫
Ω
∇
(
ψ0 + ρ

∂ψ0

∂ρ

)
· ∇ρ dx = ε

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 +

H(c)

ρ

)
|∇ρ|2 dx

+ ε

∫
Ω

(
H ′(c)(log(ρ) + 1) +Q′(c)

)
∇c · ∇ρdx.
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Therefore, the energy reads

d

dt

∫
Ω
ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx+ ε

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 +

H(c)

ρ

)
|∇ρ|2 dx

+

∫
Ω
T : ∇vn dx+

∫
Ω
b(c)|∇µ|2 dx+

∫
Ω
κ(ρ, c)|vn|2 dx =

∫
Ω
µFc dx

− ε

∫
Ω

(
H ′(c)(log(ρ) + 1) +Q′(c)

)
∇c · ∇ρdx. (3.26)

We need to prove that the right-hand side can be controlled in term of the left-hand side to
obtain estimates. For the first term on the right-hand side, we treat it as in the proof of
Proposition 3.1. For the second term, we know by assumption on H and Q, and the fact that
(log(ρ) + 1)2 is bounded by a constant times 1

ρ + (a − 1)ρa−2 that it can be bounded in terms
of the left-hand side. Note that we used the hypothesis |Q′(c)| ≤ C. This is based on the fact
that Q is in fact QεQ so that we have |Q′(c)| ≤ C( 1

εQ
) with a constant that blows up when εQ

is sent to 0. As we intend to send εQ → 0 in the next step, it is important to notice that we
can still manage to have this energy inequality since in fact the term ε

∫
ΩQ

′(c)∇c · ∇ρdx can

be estimated by ε
4

∫
Ω

(
((a− 1) + (a− 1)2)ρa−2 + H(c)

ρ

)
|∇ρ|2 dx and

∫
Ω εC(

1
εQ

)|∇c|2 dx. Since ε
will be sent to 0 before εQ, the energy inequality will still hold independently of εQ in the limit
ε→ 0. With Gronwall’s lemma, and properties of the tensor T, we deduce that vn is bounded in
L2(0, T (n);H1(Ω;R3)) independently of T (n). Also, the previous bounds do not depend on n.
Since all the norms are equivalent, it is also bounded in L1(0, T (n);W 1,∞(Ω,R3)). Therefore, we
can apply the maximum principle stated in Lemma 3.5, and obtain that the density ρ is bounded
from below by a constant independent of T (n). Then, using once again the energy inequality,
we obtain that vn is bounded uniformly in time in L2(Ω;R3). This procedure can be repeated
for every final time T .

Finally, we are left with the following proposition

Proposition 3.13. For any fixed n and T , there exists a solution (ρ, c,vn) defined on (0, T )
(with appropriate regularity) to (3.12)-(3.14)-(3.13) subject to boundary conditions (3.15) and
initial conditions (3.12). Moreover, this solution satisfies the energy dissipation inequality

E(t) + ε

∫
Ωt

(
(a+ a2)ρa−1 +

H(c)

ρ

)
|∇ρ|2 dx dt

+

∫
Ωt

T : ∇vn dx dt+

∫
Ωt

b(c)|∇µ|2 dx dt+
∫
Ωt

κ(ρ, c)|vn|2 dx dt ≤ C + CE(0), (3.27)

where

E(t) =

∫
Ω
ρ

( |vn|2
2

+ ψ0

)
+ γ

|∇c|2
2

dx,

and with a constant C = C
(
1, ε

εQ

)
that does not depend on n.

Now, we need to find estimates, independent of n, to pass to the limit n → ∞. Since ρ and c
depend on n, we write ρn and cn from now on.

Proposition 3.14. We have the following estimates uniformly in n and ε:

(A1) {ρnψ0} in L∞(0, T ;L1(Ω)),

(A2) {ρn} in L∞(0, T ;La(Ω)),

(A3) {T : ∇vn} in L1(0, T ;L1(Ω)),
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(A4) {√ρnvn} in L∞(0, T ;L2(Ω;R3)),

(A5) {
√
b(cn)∇µn} in L2(0, T ;L2(Ω;R3)),

(A6) {vn} in L2(0, T ;H1
0 (Ω;R3)),

(A7) {√ε∇ρn} in L2(0, T ;L2(Ω)),

(A8) {cn} in L∞(0, T ;H1(Ω)),

(A9) {ρn∂cψ0} in L∞(0, T ;Lr(Ω)) for r < 6a
6+a ,

(A10) {µn} in L2(0, T ;H1(Ω)),

(A11) {ρnµn} in L2(0, T ;L6a/(6+a)),

(A12) {cn} in L2(0, T ;W 2,r(Ω)) ∩ L2+ν(0, T ;W 1,2+ν) for some ν > 0,

(A13) {ρncn} in L∞(0, T ;L
6a
6+a (Ω)),

(A14) {ρncnvn} in L2(0, T ;L
6a

3+4a (Ω)),

(A15) {p(ρn, cn)} in L1+ν̃((0, T )× Ω)) for some ν̃ > 0.

Proof. Estimates (A1)-(A2)-(A3)-(A4)-(A5) follow immediately from the energy equality (3.27).
Estimate (A6) is the result of Lemma 3.8 and estimates (A2)-(A3)-(A4). To obtain estimate (A7),
we multiply Equation (3.12) by ρn, and using integration by parts, we obtain

2ε

∫ T

0

∫
Ω
|∇ρn|2 dx dt ≤ ∥ρ0∥2L2(Ω) + ∥ρn∥2L∞(0,T ;L2(Ω)) + ∥ρn∥2L2(0,T ;L4(Ω))∥∇vn∥L2(0,T ;L2(Ω)d).

Using (A2) and (A6), we deduce (A7). To prove Estimate (A8), we first notice that equality (3.27)
provides the uniform bound on {∇cn} in L2(0, T ;L2(Ω)). To conclude with Lemma 3.7, we need
to bound

∫
Ω ρncn. Combining Equations (3.12)-(3.14), we obtain

∂t(ρncn) + div(ρncnvn) = −εc∆ρ+ div(b(c)∇µ) + Fc.

Integrating in space, using the boundary conditions, and Estimate (A7), the L2 bound on {∇cn},
assumption 2.5 yields {

∫
Ω ρncn} is in L∞(0, T ). We deduce Estimate (A8). Estimate (A9) follows

from the definition of ψ0 and Estimate (A1). Estimate (A10) follows from Estimates (A5)-
(A9) and Lemma 3.7. Estimate (A11) follows from Estimates (A2)-(A10). Estimate (A12) is a
consequence of Equation (1.3), the previous estimates and interpolation. The two next estimates
are a consequence of the other estimates and Sobolev embeddings. Finally, the last estimate on
the pressure can be adapted from [21, Subsection 2.5]. This estimate is useful when we obtain
the convergence a.e. of ρn and cn so we can obtain strong convergence of p(ρn, cn) in L1 by
Vitali’s convergence theorem.

From [27], we also obtain the following Proposition

Proposition 3.15. There exists r > 1 and p > 2 such that

∂tρn,∆ρn are bounded in Lr((0, T )× Ω),

∇ρn is bounded in Lp(0, T ;L2(Ω,R3)),

independently of n (but not independently of ε).
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With all the previous bound, we can pass to the limit when n → ∞ and obtain the different
equation and energy estimates in a weak formulation. Since the passage to the limit n → ∞ is
simpler than the next passage ε→ 0, we only detail the latter. Indeed, as n→ ∞ we can obtain
easily strong convergence of ρ which helps a lot in the different limits. So we assume that we
can pass to the limit and that the bounds obtained in Proposition 3.14 still hold independently
of ε. It remains now to send ε to 0.
We recall the equations that we want to pass to the limit into:

∂tρε + div(ρεvε) = ε∆ρε, (3.28)
∂t(ρεcε) + div(ρεcεvε) = −εcε∆ρε + div(b(cε)∇µε) + Fcε , (3.29)

and for every η (sufficiently regular)∫
Ω
ρεvε(t) · η dx−

∫
Ω
m0 · η dx−

∫ t

0

∫
Ω
ρεvε ⊗ vε : ∇xη dx ds−

∫ t

0

∫
Ω
p(ρε, cε)div(η) dx ds

+ε

∫ t

0

∫
Ω
(∇vε∇ρε) ·η dx ds+

∫ t

0

∫
Ω
Tε : ∇η dx ds+γ

∫ t

0

∫
Ω
(
1

2
|∇cε|2I− (∇cε⊗∇cε)) : ∇η dx ds

+

∫
Ω

∫ t

0
κ(cε)vε · η dx ds = 0. (3.30)

Using Proposition 3.14, which yields uniform estimates in ε, we pass to the limit in the previous
equations. The difficult terms are the one involving nonlinear combinations. Indeed, it is not
clear that we can obtain strong convergence of ρε as we have no estimates on higher order
derivatives. We use the following lemma, see [50].

Lemma 3.16. Let gn, hn converge weakly to g, h respectively in Lp1(0, T ;Lp2(Ω)), Lq1(0, T ;Lq2(Ω))
where 1 ≤ p1, p2 ≤ +∞ and

1

p1
+

1

q1
=

1

p2
+

1

q2
= 1.

We assume in addition that

∂gn
∂t

is bounded in L1(0, T ;W−m,1(Ω)) for some m ≥ 0 independent of n, (3.31)

and
∥hn − hn(t, ·+ ξ)∥Lq1 (0,T ;Lq2 (Ω)) → 0 as |ξ| → 0, uniformly in n. (3.32)

Then, gnhn converges to gh in the sense of distributions.

Remark 3.17. This lemma admits many variants, and it is possible to identify the weak limit
of the products with lower regularity, we refer for instance to [57].
We want to apply the previous lemma to the terms ρεvε, ρεcε, ρεµε, ρεc2ε, ρεvε, ρεvε⊗vε, ρεvεcε.
We admit that ∂ρε

∂t , ∂ρεvε

∂t and ∂ρεcε
∂t satisfy (3.31) by using Proposition 3.14 and Equations (3.28)-

(3.29)-(3.30). The compactness in space required in (3.32) also uses Proposition 3.14. We refer
also to [21, Subsection 3.1] for similar results. The terms εcε∆ρε and ε

∫ t
0

∫
Ω(∇vε∇ρ) · η dx ds

converge to 0 (the first one in the distributional sense) thanks to estimates (A7)-(A8).
It remains to pass to the limit in (i.e identifying the weak limits)

p(ρε, cε),
1

2
|∇cε|2, ∇cε ⊗∇cε,

b(cε)∇µε, Fcε(ρε, cε), ρε∂cψ0.

The convergence of the last term is used to identify ρµ. To prove the previous convergences,
we need to prove strong compactness in L2 of cε,∇cε and convergence a.e. of ρε to use Vitali’s
convergence theorem. But they follow from the arguments in [4] and [21, Section 3.3 and 3.4].We
obtain
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Lemma 3.18. Up to a subsequence (not relabeled),

ρε → ρ a.e. (3.33)

cε → c a.e. and strongly in L2(0, T ;L2(Ω)) (3.34)

∇cε → ∇c a.e. and strongly in L2(0, T ;L2(Ω)) (3.35)

Altogether, we can pass to the limit in every term of the equations:

• p(ρε, cε): we use (3.33), (3.34) and (A15)

• 1
2 |∇cε|2 and ∇cε ⊗∇cε: (3.35)

• b(cε)∇µε: (3.34) and (A10)

• Fcε(ρε, cε): (3.33), (3.34) and (2.5)

• ρε∂cψ0: (3.33), (3.34) and (A9).

This concludes the argument.

3.3 Sending εQ → 0

The last step in our proof is to let εQ vanishes and recover the existence of weak solutions for the
double well potential Q(c) = 1

4c
2(1 − c)2. Since we have the energy estimates from before, that

still hold by properties of the weak convergence, the work is essentially the same but we have to
be careful about two points. The first one is to indeed have an energy estimate independent of εQ.
We discussed this point after Equation (3.26) and, hence, we do not repeat it here. The second
point are the estimates obtained in Proposition 3.14. However, the estimates are essentially the
same, except for estimate (A9) (that is the only one containing Q) which becomes

{ρ∂cψ0} in L∞(0, T ;L
2a
a+2 (Ω)). (3.36)

This can be proved knowing that, when εQ ≈ 0, we have that for c large ρQ′
εQ
(c) ≈ ρc3, and

we use estimates (A2)-(A8). Altogether, the reasoning to pass to the limit is the same and we
conclude.

4 Numerical scheme for the G-NSCH model

We propose a numerical scheme for the G-NSCH model (1.1)–(1.4) subjected to periodic bound-
ary conditions.
We combine ideas from the numerical scheme for the variant of the compressible NSCH system
in [37] and fast structure-preserving scheme for degenerate parabolic equations [40,42]. Namely,
we adapt the relaxation [44] of the Navier-stokes part as used in [37]. The part of the scheme
for the Cahn-Hilliard part of the system is designed using the GSAV method. More precisely,
a variant used for degenerate parabolic models that preserves the physical bounds of the solu-
tion [40,42].
Indeed, we expect that the volume fraction c remains within the physically (or biologically)
relevant bounds c ∈ (0, 1). Thus, following [40,42], we construct the invertible mapping T : R →
(0, 1), with c = T (v), transforming Equations (1.2)–(1.3) into

ρ (∂tv + (v · ∇)v) =
1

T ′(v)
(div(b(c)∇µ) + Fc) ,

ρµ = −γT ′(v)∆v − γT ′′(v)|∇v|2 + ρ
∂ψ0

∂c
.

(4.1)
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Following [40] and [42], we can choose

T (v) =
1

2
tanh(v) +

1

2
, or T (v) =

1

1 + exp(−v) ,

thus, preserving the bounds c ∈ (0, 1).
The SAV method allows to solve efficiently (and also linearly) the nonlinear Cahn-Hilliard part
while preserving the dissipation of a modified energy. In the following, we assume that it exists
a positive constant C such that the energy associated with the Cahn-Hilliard part, i.e.

E[t](ρ, c) =

∫
Ω

γ

2
|∇c|2 + ρψ0(ρ, c) = E0[t] + E1[t],

with E1 the nonlinear part of the energy, and E0 the linear part, is bounded from below, i.e. E1+
C ≥ 1
We define

r(t) = E(t) + C0, with C0 = 2C + ∥E(ρ0, c0)∥L∞(Ω),

and apply the SAV method. System (4.1) becomes

ρ (∂tv + (v · ∇)v) =
1

T ′(v)
(div(b(c)∇µ) + Fc) ,

ρµ = −γT ′(v)∆v − γT ′′(v)|∇v|2 + ρ
∂ψ0

∂c
,

dr

dt
= − r(t)

E[t] + C0

∫
Ω
b(c)|∇µ|2 − µFc dx,

(4.2)

One can easily see that the previous modifications do not change our system at the continuous
level.

4.1 One-dimensional scheme

We consider our problem in a one-dimensional domain Ω = (0, L). Even though v is now a
scalar, we still denote it in bold font to not make the confusion with v from the transformation
c = T (v). As mentioned previously, we relax the Navier-Stokes part of our system. Namely, we
introduce a relaxation parameter ι ≥ 0 and write U = (ρ, ρv). We rewrite Equation (1.4) as{

∂tU + ∂xV = G(U),

∂tV +A∂xU = −1
ι (V − F (U)),

(4.3)

in whichG(U) = (0,−κv),F (U) = (ρv, ρv2+p−
(
4
3ν(c) + η(c)

)
∂xv+

γ
2 |∂xc|2) andA = diag(a1, a2)

satisfying Liu’s subcharacteristic condition

A ≥ F ′(U), ∀U.

In what follows, and following [37], we use

a1 = a2 = max

{
sup

(
v +

√
∂ρp
)2
, sup

(
v −

√
∂ρp
)2}

.

We discretize the domain using a set of Nx nodes located at the center of control volumes of size
∆x such that Ω =

⋃
j=0,...,Nx−1[xj− 1

2
, xj+ 1

2
].
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Our scheme follows the discrete set of equations

U∗
j = Unj , (4.4)

V ∗
j = V n

j − ∆t

ι

(
V ∗
j − F (U∗

j )
)
, (4.5)

Un+1
j = U∗

j − ∆t

∆x

(
V ∗
j+ 1

2

− V ∗
j− 1

2

)
+∆tG(Un+1

j ), (4.6)

V n+1
j = V ∗

j − ∆t

∆x
A
(
U∗
j+ 1

2

− U∗
j− 1

2

)
, (4.7)

ρn+1
j T ′(vnj )

(vn+1
j − vnj

∆t
+ vn+1

j · (∇vn+1)j
)
= g(cn, µn+1, ρn+1)j , (4.8)

g(cn, µn+1, ρn+1)j =

(
1

∆x

(
(b(cn)∇µn+1)j+ 1

2
− (b(cn)∇µn+1)j− 1

2

))
+ Fc(ρ

n
j , c

n
j ), (4.9)

ρn+1
j µn+1

j =
(
−γT ′(vnj )(∆v

n+1)j − γT ′′(vnj )(∇vn)j · (∇vn+1)j
)
+ ρn+1

j

(
∂ψ0

∂c

)n
j

,

(4.10)∑
j

∆xT (λvn+1
j ) =

∑
j

∆xc0 +
n∑
r=1

∆t
∑
j

∆xFc(ρ
r
j , c

r
j), (4.11)

cn+1 = T (λvn+1), (4.12)
1

∆t

(
rn+1 − rn

)
= − rn+1

E(cn+1) + C0
∆x
∑
j

b(cn+1
j )|(∇µn+1)j |2

+
rn+1

E(cn+1) + C0
∆x
∑
j

µn+1
j Fc(ρ

n+1
j , cn+1

j ), (4.13)

ξn+1 =
rn+1

E(cn+1) + C0
, (4.14)

cn+1
j = νn+1cn+1

j , with νn+1 = 1− (1− ξn+1)2, (4.15)

vn+1
j = λνn+1vn+1

j . (4.16)

Remark 4.1 (Computation of interface values). To obtain the interface values U∗
j+ 1

2

, U∗
j− 1

2

and
V ∗
j+ 1

2

, V ∗
j− 1

2

, we use the upwind method, i.e.

Uj+ 1
2
=

1

2
(Uj + Uj+1)−

√
a1
2

(Vj+1 − Vj) , Vj+ 1
2
=

1

2
(Vj + Vj+1)−

1

2
√
a2

(Uj+1 − Uj) .

We also mention that similarly to [37], one can implement a MUSCL scheme (see e.g. [47]) to
obtain a higher order reconstruction. The upwind method permits to rewrite Equations (4.6)–
(4.7) as

Un+1
j = U∗

j − ∆t

2∆x
(V ∗
j+1 − V ∗

j−1) +
∆t

2∆x

√
a(δ2xU

∗
j ) + ∆tG(Un+1

j ), (4.17)

V n+1
j = V ∗

j − a∆t

2∆x
(U∗

j+1 − U∗
j−1) +

∆t

2∆x

√
a(δ2xV

∗
j ), (4.18)

where we used the notation δ2xU = Uj+1−2Uj+Uj−1. In Equations (4.17)–(4.18), we emphasize
that U∗ = Un and V ∗ = V n − ∆t

ι (V ∗ − F (Un)).

Remark 4.2 (Algorithm to compute the solution of the discrete equations’ system). Equa-
tions (4.4) to (4.7) are solved from Equations (4.17)–(4.18), hence, a solution (Un+1, V n+1)
is computed just from vector computations. The coupling between Equation (4.8) and Equa-
tion (4.10) is also linear (nonlinear terms are taken at the previous time step to linearize the
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equations). We solve this coupled system using the GMRES algorithm but we emphasize that
other iterative solver could work as long as they allow the matrix of the linear system to be
non-symmetric. The coefficient λ is computed using an iterative method. Then, the discrete so-
lution (vn+1, µn+1), together with the coefficient λ, is used in Equation (4.13) to find rn+1 and,
in Equation (4.14), ξn+1. At this point, we solve Equation (4.15) and(4.16) from the previous
steps.

In the following, we use the notations,

⟨U, V ⟩ = ∆x
∑
j

UjVj , and ∥U∥2 = ⟨U,U⟩.

We also use ∆0,xU := 1
2(Uj+1 − Uj−1).

Our numerical scheme possesses the following important properties:

Proposition 4.3 (Energy stability, bounds and mass preserving). Assuming the CFL-like con-
dition ∆t

∆x

√
a1 ≤ 1 and the condition

∆t ≤ C
C0

E[cn]
, (4.19)

our numerical scheme satisfies the energy dissipation-like inequality

∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 ≤ ∥√aUn∥2 + ∥V ⋆∥2 + Cn+1rn, (4.20)

where rn+1 ≥ 0 and

Cn+1 =
1

1 + ∆t
E(cn+1)+C0

∑Nx
j=1 b(c

n+1
j )|∇µn+1

j |2 − µn+1
j Fc(ρ

n+1
j , cn+1

j )
.

The previous constant can be estimated only in terms of E[cn] and therefore do not depend on
the step n + 1. Furthermore, the numerical scheme preserves the physically relevant bounds of
the mass fraction, i.e.

0 < cn+1 < 1.

Remark 4.4. Note that the constant Cn+1 is smaller than 1 whenever the nonnegative part of
the dissipation of the energy is greater than the increase of energy induced by the source term
Fc. This of course satisfied when we have Fc = 0 for instance.

Proof. We start with Equation (4.17), and using the definition of the function G(Un+1
j ) as well

as assuming κ(c) ≥ 0 (for c ∈ R), after taking the square on both sides, multiplying by ∆x and
summing over the nodes j = 0, ..., Nx, we have

∥Un+1∥2 ≤ ∥Un∥2 +
(

∆t

2∆x

)2

∥∆0,xV
⋆∥2 +

(
∆t

√
a

2∆x

)2

∥δ2xUn∥2 −
∆t

∆x
⟨∆0,xV

∗, Un⟩

+
∆t

√
a

∆x
⟨Un, δ2xUn⟩ −

√
a∆t2

2∆x2
⟨∆0,xV

⋆, δ2xU
n⟩.

Repeating the same computations for Equation (4.18), we have

∥V n+1∥2 ≤ ∥V n∥2 +
(
a∆t

2∆x

)2

∥∆0,xU
n∥2 +

(
∆t

√
a

2∆x

)2

∥δ2xV ⋆∥2 − a∆t

∆x
⟨∆0,xU

n, V ⋆⟩

+
∆t

√
a

∆x
⟨U⋆, δ2xV ⋆⟩ − a

3
2∆t2

2∆x2
⟨∆0,xU

n, δ2xV
⋆⟩.
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At this point, the proof is similar to the proof of [37, Theorem 4.1] (these steps use the periodic
boundary conditions and the summation by parts formula to cancel some terms when summing
both of the previous equations together), to obtain for a constant C > 0,

∥√aUn+1∥2 + ∥V n+1∥2 ≤ C
(
∥√aUn∥2 + ∥V ∗∥2

)
.

Then, for the Cahn-Hilliard part, we easily obtain from Equation (4.13)

rn+1

(
1 + ∆t

∆x
∑

j b(c
n+1
j )|(∇µn+1)j |2 − µn+1

j Fc(ρ
n+1
j , cn+1

j )

E[cn+1] + C0

)
= rn.

Therefore, as long as

E(cn+1) + C0 +∆t

∆x
∑
j

b(cj
n+1)|(∇µn+1)j |2 − µn+1

j Fc(ρ
n+1
j , cn+1

j )

 ≥ 0,

so does rn+1. Assuming ∥Fc∥L∞ < C, it remains to control the discrete L1 norm of µn+1.
Performing the same computations as in the proof of Proposition 3.1 in continuous case, it
follows that∣∣∣∣∣∣∆x

∑
j

µn+1
j Fc(ρ

n+1
j , cn+1

j )

∣∣∣∣∣∣ ≤ C + CE[cn] +
1

2
∆x
∑
j

b(cn+1
j )|(∇µn+1)j |2.

Of course, one first needs to prove that a discrete version of Lemma 3.7 holds. At the continuous
level, this theorem is proved by contradiction using Rellich’s theorem. Hence, a similar proof can
be obtained at the discrete level, in the spirit of the Poincaré-Wirtinger inequality, see [26, Lemma
3.8, Remark 3.16]. Based on these evidences we use a discrete version of Lemma 3.7 to conclude
conclude that there exists C a universal constant such that provided rn ≥ 0 and

∆t ≤ C
C0

E[cn]
,

so does rn+1 ≥ 0, and (4.20) follows.
Finally, from the definition of ξn+1 and C0, we have

0 < ξn+1 <
r0

E(cn+1) + C0
≤ 2.

The bounds for the mass fraction c are ensured by the transformation T (v). This finishes the
proof.

Remark 4.5. We observe during numerical simulations that the condition (4.19) is obtained for
reasonably small ∆t. We also note that if we do not consider any source term, i.e. Fc = 0, the
scheme satisfies the dissipation relation

∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 ≤ C
(
∥√aUn∥2 + ∥V ⋆∥2

)
+ rn,

with the stability condition
∆t

∆x

√
a1 ≤ 1.
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5 Numerical experiments

In this section, we use the assumptions on the functionals stated in the "Framework for numer-
ical simulations" paragraph in subsection 2.1. Throughout this section we use the double-well
logarithmic potential

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2 + k,

with k = 100, and θ = 4 (α1 and α2 are specified later). We also use a degenerate mobility, i.e.

b(c) = c(1− c).

We start by using the one-dimensional scheme (4.4)–(4.16) with no exchange term and friction,
i.e. κ(ρ, c) = 0 and Fc(ρ, c) = 0, and we verify that the scheme preserves all the properties
stated in Proposition 4.3. We then use a non-zero exchange term and we compare the solution
with same friction forces for the two phases or contrast of friction forces. Then, we perform
two-dimensional simulations with friction forces contrast.
Finally, we verify the spatial and temporal convergence orders of the scheme.
Remark 5.1 (Implementation details). All numerical schemes are implemented using Python 3
and the Numpy and Scipy modules. The linear system for the Cahn-Hilliard part of the model
is solved using the Generalized Minimal RESidual iteration (GMRES) iterative solver (function
available in the scipy.sparse.linalg module). The tolerance on the convergence of the residual
is indicated in each of the following subsections. To find the λ that allows to compute the correct
mass, we use the function fsolve of the scipy.optimize module which uses a modification of
the Powell’s conjugate direction method.

5.1 One dimensional numerical test cases

Comparison between matching and non-matching densities. We start with a one-
dimensional test cases to show the spatiotemporal evolution of the density, mass fraction, and
velocity. We also verify numerically the properties stated in Proposition 4.3. We compare nu-
merical results for matching and non-matching densities for the phases of the fluid. For this
comparison, we set κ(ρ, c) = 0 and Fc(ρ, c) = 0.
We use the computational domain Ω = (0, 1) discretized in Nx = 128 cells. We take T = 0.5
(this has been chosen because the system reaches a meta-stable state by that time) and use the
initial time step ∆t = 1×10−5 (this time step size is adapted from the CFL-like condition stated
in Proposition 4.3.
We choose the width of the diffuse interface to be γ = 1/600, the viscosity to be constant
ν(c) = 1 × 10−2, and η = 2 × 10−2 , the relaxation parameter to be ι = 1 × 10−5, and the
exponent for the barotropic pressure equals to a = 3.
To model matching densities for the two phases of the fluid, we choose α1 = α2 = 1. To represent
non-matching densities for the two phases, we can choose α1 ̸= α2. This allows us to model a
fluid for which the phase denoted by the index 1 is denser compared to the phase indicated by
the index 2. Indeed, this can been seen on the effect of the values α1 and α2 on the potential.
Taking α1 < α2 shifts the well corresponding to phase 1 very close to 0 compared to the other
phase. This models the fact that the fluid 1 is in fact more compressible and thus aggregates of
pure phase 1 appear denser.
We choose constant initial conditions for the density and the pressure, i.e.

ρ0j = 0.8, v0
j = 0.5, j = 0, . . . , Nx − 1.

The initial mass fraction is assumed to be a constant with a small random noise, i.e.

c0j = c+ 0.05rj , j = 0, . . . , Nx − 1,
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Figure 1: Simulation of compressible Navier-Stokes-Cahn-Hilliard model (with κ = Fc = 0).
Matching densities (Top row) and non-matching densities (bottom row) for the two phases of
the fluid.

with c = 0.5 and r is a vector of random values between 0 and 1 given by the uniform distribution.
We choose a tolerance for the convergence of the residual for the GMRES algorithm of rtol =
10−10.
Figure 1 compares the results obtained for matching and non-matching densities for the two
phases of the fluid. For the two cases, we report the evolution of the density ρ, the mass fraction
c, the velocity v and the pressure p at different times. We observe that, for both cases, after an
initial regularization of the initial condition, the separation of the two phases of the fluid occurs
and small aggregates appear (see first and second columns of Figure 1). Then, the coarsening
of the small aggregates into larger ones occurs. We arrive at the end of the simulation to the
solution depicted in the two figures on the last column of Figure 1. Hence, we can conclude
that our numerical scheme catches well the spinodal decomposition of the binary fluid while it
is transported to the right (since the velocity v is positive during these simulations).
A difference between the two simulations is observed on the densities and pressures. Indeed, for
matching densities, we observe that ρ organizes such that it is equal in aggregates of each phases
and drops at the interfaces between the aggregates. We also observe a drop of pressure p at the
interface, probably explained by capillary effects. For non-matching densities, as expected, there
is a density difference between aggregates of phase 1 and 2. Indeed, selecting α1 < α2 makes the
aggregates of phase 1 denser compared to aggregates of phase 2. Our explanation is that, due
to the fact that attractive effects are stronger in phase 1, more mass is allowed to move inside
aggregates of phase 1. However, as the pressure function accounts for the difference α1 ̸= α2,
the pressure equilibrates to a field similar to the matching density case (i.e. p varies from an
equilibrium value and depicts a drop at the interface between the aggregates of the different
phases).
Figure 2 shows that, for both cases (i.e. matching and non-matching densities), our numerical
scheme preserved the properties presented in Proposition 4.3. We defined the discrete dissipation
of energy

dE

dt
= ∥√aUn+1∥2 + ∥V n+1∥2 + rn+1 −

[
∥√aUn∥2 + ∥V ∗∥2 + Cn+1rn

]
. (5.1)
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We emphasize that as no exchange term was present in the previous simulation Cn+1 is bounded
from above by 1, hence we used Cn+1 = 1 for the simulations in this paragraph. Figure 2
presents the temporal evolution of the dissipation dE

dt , the mass
∫
Ω ρc dx, the minimum and

maximum values of c, and the value of ξ. We observe for both cases that the dissipation (5.1) is
strictly negative, as expected by proposition 4.3. The mass of fluid 1 is preserved up to a small
numerical error (we emphasize that the error on the initial mass at the end of the simulation
is less than 10−9 for both simulations). This latter result is expected as we set Fc(ρ, c) = 0
for these simulations. We observe that the physical bounds of the mass fraction are ensured,
i.e. maximum and minimum values for c lie the interval (0, 1). The scalar variable is very close
to 1 (up to an error of order 10−5) as observed in Figure 2c. This verifies that the modified
energy rn+1 and the real energy of the Cahn-Hilliard part of the model

En+1 = ∆x
∑
j

γ

2
|(∇c)j |2 + ρn+1

(
∂ψ0

∂cn+1

)
j

,

are close.

Mass exchange and contrast of friction forces. In this test case, we consider mass
exchange between the two phases and friction effects. We choose

Fc(ρ, c) = rtransρc(1− c/cmax), κ(ρ, c) = ρcκ1 + ρ(1− c)κ2,

where 0 < cmax < 1 denotes the mass fraction at which we have an equilibrium for exchange of
mass and rtrans is the rate of mass exchange. In this test case, we use cmax = 0.9, and rtrans = 1.
We compare the solution obtained with no contrast of friction effect, i.e. κ1 = κ2 = 10, and
the solution obtained with κ1 = 0, κ2 = 10. To study the long time behavior of the numerical
simulations, we set T = 5. The rest of the parameters and the initial conditions are chosen as
for the previous non-matching densities test case.
Figure 3 compares the solutions for the two cases. In both cases, we observe that the separation of
the two phases occurs and that the velocity decreases in time due to friction effects. Furthermore,
as time passes, phase 1 of the fluid increases due to the exchange term Fc(ρ, c) ̸= 0 and, hence,
zones of mass fraction close to the value 1 enlarge. At the end of both simulations, there is one
large aggregate of fluid 1. The difference between the two simulations appears clearly at time
t = 0.1. When the friction forces are stronger in phase two compared to phase 1, i.e. κ2 > κ1,
zones of larger density appear destabilized, i.e. the shape of the aggregates is not symmetric
(compare the solution for Figure 3b and Figure 3f). For each aggregate of fluid 1, the density at
the right of the aggregate is larger compared to the left. We conclude that the contrast in friction
forces is captured well by the model as simulations depict a contrast of velocity for the two phases
of the fluid and leading to less regular parterns for the densities. Furthermore, we emphasize
that even with non-zero mass exchange and friction forces, the numerical scheme ensures the
properties stated in Proposition 4.3 as observed in Figure 4. We emphasize that compared to
the simulation without source in which ξ seems to converge to a constant value, the variable
ξ increases slightly with time (compare Figures 2c and 4c). A possible remedy to this issue is
discussed in the conclusion of this article.

5.2 Two-dimensional numerical test cases

We now simulate the G-NSCH system (1.1)–(1.4) in two dimensions. Details about the two-
dimensional numerical scheme can be found in Appendix C.

Phase separation with non-matching densities and contrast of friction strengths.
We use Nx = Ny = 64 cells in each direction. We fix the final time at T = 1. We set up two
simulations, both with no exchange terms Fc(ρ, c) = 0. For the first, we consider no contrast of
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Figure 2: Temporal evolution of the dissipation of the energy dE
dt , mass of the fluid 1 given by∫

Ω ρc dx, scalar variable ξ, and of the minimum and maximal values of the mass fraction c for
matching densities (solid lines) and non-matching densities (dash-dotted lines).

friction effects, i.e. κ1 = κ2 = 10, ν1 = ν2 = 0.01, and η1 = η2 = 0.02. For the second simulation,
we take κ1 = 0, κ2 = 10, ν1 = ν2 = 0.01, and η1 = η2 = 0.02. Hence, fluid 2 has stronger friction
effects.
The other parameters are γ = 1

800 , θ = 4, α1 = 0.8, α2 = 1.2, ι = 10−4, C0 = 100, a = 1.5. The
tolerance of GMRES solver is set to tol = 10−10.
The initial velocities in both directions are constants in space v0

x = 0.5 and v0
y = 0.5. The initial

density is also constant in space ρ0 = 0.8. The initial mass fraction is set to a perturbed constant
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Figure 3: Simulation of compressible Navier-Stokes-Cahn-Hilliard model nonmatching densities,
exchange term (Fc(ρ, c) ̸= 0), same friction effects for both fluids (top row) and contrast of
friction forces (bottom row).
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Figure 4: Temporal evolution of the dissipation of the energy dE
dt , mass of the fluid 1 given by∫

Ω ρc dx, scalar variable ξ, and of the minimum and maximal values of the mass fraction c for
matching densities (solid lines) and non-matching densities (dash-dotted lines).

c0 = 0.3− 0.05r, with r a random uniform number for each cell center.
Figure 5 compares the temporal evolution of the density of fluid 1 given by ρc for both cases.
We observe that both solutions depict phase separation and progressive coarsening of small
aggregates into larger ones. This phenomenon occurs as the fluid is transported to the top right
corner (we recall that we implemented periodic boundary conditions). Careful inspection of the
relative density ρc distribution inside each aggregates reveals the effect of the contrast of friction
between the two solutions. Indeed, as the fluid 1 encounters a resistance when transported by
the flow (because it pushes a fluid that experiences more friction), the mass of fluid 1 seems to
concentrate in the top right corner of each aggregate. This can be observed inspecting the level
lines depicted on Figure 6. Indeed on this figure, we see that the top of each aggregate is not
localized in the center of the aggregates but is shifted to the top-right. This indicates that the
2D scheme captures correctly the effect seen with the 1D numerical scheme when contrast of
friction between the two phases is considered.
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Figure 5: Two dimensional simulations of compressible Navier-Stokes-Cahn-Hilliard model with
nonmatching densities, same friction effects for both fluids (top row) and contrast of friction
(bottom row).
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Figure 6: Relative density of fluid 1 at time t = 0.25 considering a contrast of friction strengths
between the two fluids. The black circles represent the level ρc = max(ρc) − 0.03. This corre-
sponds to the tops of each aggregate.
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5.3 Convergence tests

We study the numerical convergence of the one dimensional scheme (4.4)–(4.16) with κ(ρ, c) = 0
and Fc(ρ, c) = 0. The computational domain is Ω = (0, 1). The final time is T = 0.05. The other
parameters γ, β, η, ν, a, α1, α2 are chosen as for the previous 1D test case with non-matching
densities (see Subsection 5.1). The initial condition for the mass fraction is given by

c0 = 0.4 + 0.01 cos(6πx).

The initial conditions for the velocity and the total density are chosen as in the previous 1D test
cases.
We set the tolerance rtol of the GMRES algorithm to rtol = 10−6 for the spatial convergence
test and rtol = 10−10 for the temporal convergence test.

5.3.1 Convergence in space

We fix the time step to ∆t = 1×10−5 and we vary the grid size. We choose an increasing number
of cells Nx = {64, 128, 256, 512, 1024, 2048}. For each quantity c,v, ρ, we compute the discrete
errors

error(ρ∆x, ρ∆x/2) = ∥ρ∆x − ρ∆x/2∥L∞(0,T ;La(Ω)),

error(c∆x, c∆x/2) = ∥c∆x − c∆x/2∥L2(0,T ;L2(Ω)),

error(v∆x,v∆x/2) = ∥v∆x − v∆x/2∥L2(0,T ;L2(Ω)),

(5.2)

where (ρ∆x/2, c∆x/2,v∆x/2) denotes the solution computed using twice the number of cells of the
simulation that computes the solution (ρ∆x, c∆x,v∆x).
To compute the discrete norms, we save the solution every ∆tsave = 0.001. The norms in (5.2)
are computed following

∥ρ∆x − ρ∆x/2∥L∞(0,T ;La(Ω)) = max
tsave

∆x

2

Nx∑
j=1

(
ρ∆x(xj)− ρ∆x/2(xj)

)a1/a

,

∥c∆x − c∆x/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

2

Nx∑
j=1

(
c∆x(xj)− c∆x/2(xj)

)21/2


2
1/2

,

∥v∆x − v∆x/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

2

Nx∑
j=1

(
v∆x(xj)− v∆x/2(xj)

)21/2


2
1/2

,

with Nx the number of points on the ∆x/2 grid, and tsave the array of times at which snapshots
of the solutions have been taken. Hence, the solution on the coarse grid ∆x is extended on the
fine grid ∆x/2 using the nearest solution from the coarse grid.
We arrive at the results given in Figure 7. As expected by the upwind scheme, the spatial order
of convergence is a little less than 1 for the total density ρ (see Figure 7a) and the velocity v
(see Figure 7c). We recover first order for the mass fraction.

5.3.2 Convergence in time

We here fix the grid size and select Nx = 128 points. We choose ∆t = 1 × 10−4, and decrease
the time steps according to ∆tarray = {∆t, ∆t2 , ∆t4 , ∆t8 , ∆t16 , ∆t32 , ∆t64 }. We deactivate the time step
adaptive strategy from the CFL condition. The other parameters and initial conditions are
chosen as in the spatial convergence test (see Subsection 5.3.1). To check the convergence in
time of our scheme, we compute the errors between two solutions computed with two time steps
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Figure 7: Convergence in space for the total density ρ, the mass fraction c and the velocity v.
The orange dashed line represents the slope 1.

∆t that differ only from a factor 1
2 . We denote these two different solutions by (ρ∆t, c∆t,v∆t)

and (ρ∆t/2, c∆t/2,v∆t/2). We use the same method as for the spatial convergence computations,
we save the solutions every ∆tsave = 0.001. We compute the norms

error(ρ∆t, ρ∆t/2) = ∥ρ∆t − ρ∆t/2∥L∞(0,T ;La(Ω)),

error(c∆t, c∆t/2) = ∥c∆t − c∆t/2∥L2(0,T ;L2(Ω)),

error(v∆t,v∆t/2) = ∥v∆t − v∆t/2∥L2(0,T ;L2(Ω)).

(5.3)

with

∥ρ∆t − ρ∆t/2∥L∞(0,T ;La(Ω)) = max
tsave

∆x

Nx∑
j=1

(
ρ∆t(xj)− ρ∆t/2(xj)

)a1/a

,

∥c∆t − c∆t/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

Nx∑
j=1

(
c∆t(xj)− c∆t/2(xj)

)21/2


2
1/2

,

∥v∆t − v∆t/2∥L2(0,T ;L2(Ω)) =

∑
tsave

∆tsave


∆x

Nx∑
j=1

(
v∆t(xj)− v∆t/2(xj)

)21/2


2
1/2

,

We obtain the results depicted in Figure 8 We observe that the order of convergence in time for
our scheme is exactly 1 for the three quantities.

6 Conclusion and perspectives

We presented a generalized model of diphasic compressible fluid termed G-NSCH, that com-
prises possible mass transfer between the two phases and friction effects. Under simplifying
assumptions, summarized in Section 2.1, we proved the existence of weak solutions of the G-
NSCH system. We also proposed a numerical scheme and prove, under the same simplifying
assumptions, that it is stable and structure preserving (i.e. it ensures the physically relevant
bounds for the mass fraction c, and it satisfies an energy dissipation inequality). For the nu-
merical simulations, we chose relevant functionals, thus, relaxing the simplifying assumptions
that were necessary for the analysis. We presented numerical simulations showing that our nu-
merical scheme possesses the robustness found analytically. The numerical simulations allowed
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Figure 8: Convergence in time for the total density ρ, the mass fraction c and the velocity v.
The orange dashed line represents the slope 1.

us to show the ability of our model to represent diphasic fluids with matching or non-matching
densities for the two phases. Furthermore, we computed numerically the spatial and temporal
convergences our numerical scheme.
Our model and numerical scheme allow to use physically relevant choice of functional and to
consider contrast of properties between the two phases of the fluid. Our aim is to perform
efficient simulation of general compressible diphasic fluids while being able to capture instabilities
that could emerge considering contrasts of properties such as Saffman-Taylor or Rayleigh-Taylor
instabilities. However, we emphasize that to achieve this latter goal, we have to be able to capture
accurately the possible fine structures appearing during the numerical simulations. We plan to
improve our numerical scheme in several ways. First, we plan to adapt the Relaxed version of the
Generalized SAV method. Indeed, we observed during our numerical simulation that the variable
ξ is between 10−5 and 10−3. However, with the transfer term Fc(ρ, c) ̸= 0, as the simulation
progresses, the gap between r and the real energy increases, i.e. ξ becomes larger. As shown
in [69], this problem is solved with the relaxed G-SAV method and the use of this method is one
of our further developments. In the same work [69], it is mentioned that this relaxed method
works well even when an external force is comprised in the model. In our case, this external force
will take the form of a mass transfer or mass source term. The second improvement concerns
the accuracy of our scheme. As shown in our work, the temporal and spatial orders of our
scheme do not exceed 1. Thus, we will aim to design a high-order finite element scheme for the
generalized compressible NSCH system that will remain structure preserving taking advantage
of the flexibility of the relaxed GSAV method. On another aspect, we plan to use the reduced
version of the G-NSCH model presented in the Appendix B to represent tumor growth while
removing non-necessary effects such as inertia. Our goal is to present a model and numerical
simulations capturing Saffman-Taylor-like instabilities depicted by the protrusions of the tumor in
the healthy tissue and commonly observed in the context of, e.g. , skin cancer [19]. Furthermore,
analytical aspects of this work can also be improved. This direction is challenging because as
pointed out in the present work, necessary tools to perform the solutions’ existence proof do not
work with physically or biologically relevant potentials or mobility functions. In fact, singular
potentials, degenerate mobilities and degenerate viscosity functions are not allowed. One possible
solution is to derive a Bresch-Desjardins entropy estimate [13, 14] for the compressible NSCH
as it has been done recently by Vasseur and Yu [67], and Bresch, Vasseur and Yu [15], for the
compressible Navier-Stokes model with degenerate viscosities.
To conclude, we emphasize that the G-NSCH model is the basis of a reduced system that takes
into account only biologically relevant physical effects that play a role in tumor evolution (pre-
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sented in the present article in Appendix B as Problem 2 ). Therefore, this work has to be seen
as the first part. In a subsequent work, relying heavily on the present one, we will focus on
numerical simulations, and sensitivity analysis of the reduced model.
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A Derivation of the model

In this Appendix, we present the rigourous derivation of our G-NSCH model.

A.1 Notation and definitions

We formulate our problem in Eulerian coordinates and in a smooth bounded domain Ω ⊂ Rd
(where d = {1, 2, 3} is the dimension). The balance laws derived in the following sections are in
local form.
We have two fluids in the model where ρ1, ρ2 are the relative densities of respectively fluid 1 and
2. Thus, ρi represents the mass Mi of the fluid per volume occupied by the i-th phase Vi, i.e.

ρi =
Mi

Vi
.

Then, we define the volume fractions φ1, φ2 which are defined by the volume occupied by the
i-th phase over the total volume of the mixture

φi =
Vi
V
.

Therefore, the mass density of population i which is the mass of population i in volume V is
given by

ϕi = ρiφi.

We further assume that the fluid is saturated, i.e.

φ1 + φ2 = 1.
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The total density of the mixture is then given by

ρ = ϕ1 + ϕ2.

We also introduce the mass fractions ci =Mi/M and we have the relations

ρci = ϕi, and c1 = (1− c2). (A.1)

We denote by p the pressure inside the mixture and v1,v2 are the velocities of the different
phases. We use a mass-average mixture velocity

v =
1

ρ
(ϕ1v1 + ϕ2v2) . (A.2)

We define the material derivative for a generic function g (scalar or vector-valued) by
Dg

Dt
=
∂g

∂t
+ v · ∇g, (A.3)

and indicate the definition of the differential operator

v · ∇g =
d∑
j=1

vj
∂g

∂xj
.

In the following, we denote vectors by bold roman letters and we use bold Greek letters to denote
second-order tensors.

A.2 Mass balance equations

We have the mass balance equations{
∂ϕ1
∂t + div (ϕ1v1) = F1(ρ, c1, c2),
∂ϕ2
∂t + div (ϕ2v2) = F2(ρ, c1, c2).

(A.4)

The functions Fi(ρ, c1, c2) (i = 1, 2) act as source or exchange terms of mass.
Summing the two equations, we obtain the continuity equation for the total density of the
mixture, using c = c1, and the relations (A.1), we obtain the balance equation for the total
density of the mixture

∂ρ

∂t
+ div (ρv) = F1 + F2 =: Fρ. (A.5)

To obtain a system analogous to (A.4), we rewrite the first equation of (A.4) using the definition
of the mass fraction (A.1) to obtain

∂ρc

∂t
+ div (ρcv1) = F1(ρ, c, 1− c) =: Fc. (A.6)

The mass of the component 1 is transported by the average velocity v and the remaining diffusive
flux J1 = ρc (v − v1). Therefore, we can replace the previous equation by

∂ρc

∂t
+ div (ρcv) = div (J1) + Fc.

Then, using the definition of the material derivative (A.3) and the mass balance equation for the
total mixture (A.5), the left-hand side of the previous equation reads

∂ρc

∂t
+ div (ρcv) = ρ

Dc

Dt
+ c

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dc

Dt
+ cFρ.

Altogether, we obtain the balance equation for the mass fraction of the component 1

ρ
Dc

Dt
= div (J1) + Fc − cFρ. (A.7)

Since c2 = 1− c, solving the equations (A.5) and (A.7) is equivalent to solving the system (A.4).
In the following, we refer to c as the order parameter (terminology often used in the framework
of the Cahn-Hilliard model [17,18]).

37



A.3 Balance of linear momentum

We write the balance of linear momentum [23], which describes the evolution of the velocity v
due to internal stresses and external forces. Following continuum mechanics, the Cauchy stress
tensor gives the stresses acting inside the mixture due to viscous and non-viscous effects. An
additional stress must be taken into account to represent the effect of concentration gradients [25].
Altogether, we assume that the stress tensor is a function of the total density ρ, the order
parameter c (i.e. the mass fraction of fluid 1), its gradient ∇c, and the total velocity of the
mixture v, i.e.

σσσ = σσσ(ρ, c,∇c,v).
The friction around the pores of the medium is modeled by a drag term in the balance equa-
tion [59] with a permeability coefficient κ(ρ, c) = κ1(ρ, c) + κ2(ρ, c) (the sum of the two friction
coefficients for each component of the mixture). The permeability coefficient relates the proper-
ties of the fluid and the porous medium.
For each dimension (for example if d = 3, then j = {x, y, z}), the balance of linear momentum
reads [23]

∂ρvj
∂t

+ div (ρvjv) = div (σσσ)j − κ(ρ, c)vj + Fvj ,

where Fvj (vj , ρ) represents the gain or loss of velocity in the j-th direction from different effects
such as external forces. Then, using the continuity equation (A.5), we can rearrange the left-hand
side to obtain

∂ρvj
∂t

+ div (ρvjv) = ρ
Dvj
Dt

+ vj

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Dvj
Dt

+ vjFρ + Fvj .

Therefore, we have

ρ
Dvj
Dt

= div(σσσ)j − (κ(ρ, c) + Fρ)vj + Fvj .

We can rewrite the balance of linear momentum in a more compact form

ρ
Dv

Dt
= div(σσσ)− (κ(ρ, c) + Fρ)v + Fv, (A.8)

where Fv(v, ρ) is the vector of coordinates Fvj .

A.4 Energy balance

The total energy of the mixture is the sum of the kinetic energy ρ1
2 |v|2 and of the internal energy

ρu, where u = u(ρ, c,∇c) is a specific internal energy. Compared to the classical conservation
law for the total energy, we have an additional energy flux τττ Dc

Dt . Indeed, due to the interface
region, surface effects must be taken into account. Following this direction, Gurtin [34] proposed
to include in the second law of thermodynamics, the effect of an additional force called the
microscopic-stress which is related to forces acting at the microscopic scale. We denote this
supplementary stress by τττ .
Since we assume that the system is maintained in an isothermal state, the balance equation for
the energy is given by [23]

∂

∂t

(
ρ
1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= div

(
σσσTv

)
+ div

(
τττ
Dc

Dt

)
− div (q) + ρg + cρFρ + ccFc + cvFv,

(A.9)

where q is the heat flux and ρg is the density of heat sources to maintain the temperature
constant. The last three terms in Equation (A.9) account for the energy supply coming from the
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mass and velocity sources (see e.g. [35,46]). The prefactors cρ, cc, cv will be determined later to
satisfy the free energy imbalance. Then, repeating the same calculations on the left-hand side to
use the balance of mass (A.5), we have

∂

∂t

(
ρ
1

2
|v|2 + ρu

)
+ div

(
ρ

(
1

2
|v|2 + u

)
v

)
= ρ

[
D

Dt

(
1

2
|v|2 + u

)]
+

(
1

2
|v|2 + u

)
Fρ.

Applying the chain rule to the kinetic part, we obtain

ρ
D

Dt

(
1

2
|v|2

)
= ρv · Dv

Dt
,

and using the balance of linear momentum (A.8), we arrive to

ρv · Dv

Dt
= v · div(σσσ)− (κ(ρ, c) + Fρ) |v|2 + Fv · v.

Using these previous equations inside (A.9), we obtain the balance equation for the internal
energy

ρ
Du

Dt
= div

(
σσσTv

)
− v · div (σσσ) + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv.

However, since
v · (div (σσσ))− div

(
σσσTv

)
= −σσσ ..∇v,

where ∇v =
(
∂xjvi

)
i,j=1,...,d

is the Jacobi matrix and, we have A .. B =
∑

i,j AijBij , for two
matrices A,B. Altogether, we have the balance equation for the internal energy

ρ
Du

Dt
= σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv.

(A.10)

A.5 Entropy balance and Clausius-Duhem inequality

We aim to apply the second law of thermodynamics. To do so, we define the entropy s = s(ρ, c,∇c)
and the Helmholtz free energy F = F(ρ, c,∇c), both related through the equation

F = u− Ts, (A.11)

where T denotes the temperature.
From the mass balance equation (A.5), we have the entropy balance equation

∂ρs

∂t
+ div(sρv) = ρ

Ds

Dt
+ s

[
∂ρ

∂t
+ div (ρv)

]
= ρ

Ds

Dt
+ sFρ. (A.12)

Then, using the definition of the Helmholtz free energy (A.11) and the balance of energy (A.10),
we obtain

ρ
Ds

Dt
= − ρ

T

DF
Dt

+
ρ

T

Du

Dt

= − ρ

T

DF
Dt

+
1

T

[
σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2 − Fvv

− div (q) + ρg −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
,

(A.13)
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where we have replaced the material derivative of the internal energy using its balance equation
(A.10).
The constitutive relations for the functions constituting the Navier-Stokes-Cahn-Hilliard model
are often derived to satisfy the Clausius-Duhem inequality (Coleman-Noll Procedure) [23]. In-
deed, this inequality provides a set of restrictions for the dissipative mechanisms occurring in the
system. However, in our case, due to the presence of source terms, we can not ensure that this
inequality holds without some assumptions on the proliferation and friction of the fluid around
the pores. Therefore, we use here a different method: the Lagrange multipliers method. Indeed,
the Liu [52] and Müller [58] method is based on using Lagrange multipliers to derive a set of
restrictions on the constitutive relations that can be applied even in the presence of source terms.
Following classical Thermodynamics [58], we state the second law as an entropy inequality, i.e. ,
the Clausius-Duhem inequality in the local form [23]

ρ
Ds

Dt
≥ −div

(q
T

)
+
ρg

T
+ div (J ) , (A.14)

where J is the entropy flux. The inequality (A.14) results from the fact that the entropy of the
mixture can only increase. Using the equation (A.13), we obtain

ρ

T

DF
Dt

− 1

T

[
σσσ ..∇v + div

(
τττ
Dc

Dt

)
+ (κ(ρ, c) + Fρ) |v|2

− Fvv −
(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
+ div (J ) ≤ 0.

(A.15)

Then, using the chain rule
DF
Dt

=
Dρ

Dt

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+
D∇c
Dt

· ∂F
∂∇c ,

and
D∇c
Dt

= ∇
[
Dc

Dt

]
− (∇v)T ∇c, Dρ

Dt
= −ρdiv(v) + Fρ,

in the entropy inequality (A.15), we obtain

ρ

[
(−ρdiv(v) + Fρ)

∂F
∂ρ

+
Dc

Dt

∂F
∂c

+

(
∇
[
Dc

Dt

]
− (∇v)T ∇c

)
· ∂F
∂∇c

]
− div

(
τττ
Dc

Dt

)
− σσσ : ∇v

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u

)
Fρ + cρFρ + ccFc + cvFv

]
+ Tdiv (J ) ≤ 0.

(A.16)
By the chain rule, we have

div

(
τττ
Dc

Dt

)
= τττ∇

[
Dc

Dt

]
+

Dc

Dt
div (τττ) .

Furthermore, we know that

−ρ2div (v) ∂F
∂ρ

= −ρ2∂F
∂ρ

I ..∇v,

and
−ρ
(
(∇v)T ∇c

)
· ∂F
∂∇c = −ρ

(
∇c⊗ ∂F

∂∇c

)
..∇v.

Gathering the previous three relations and reorganizing the terms of (A.16), we obtain(
−ρ2∂F

∂ρ
I− ρ∇c⊗ ∂F

∂∇c − σσσ

)
..∇v +

(
ρ
∂F
∂c

− div(τττ)

)
Dc

Dt

+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ Tdiv (J )

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ + cρFρ + ccFc + cvFv

]
≤ 0.

(A.17)
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Then, we use Liu’s Lagrange multipliers method [52]. We denote by Lc the Lagrange multi-
plier associated with the mass fraction equation (A.7). The method of Lagrange multipliers
consists in setting the following local dissipation inequality that has to hold for arbitrary values
of (ρ, c,∇ρ,∇c,v, p)

−Diss :=

(
−ρ2∂F

∂ρ
I− ρ∇c⊗ ∂F

∂∇c − σσσ

)
..∇v

+

(
ρ
∂F
∂c

− div(τττ)

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ Tdiv (J )

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ + cρFρ + ccFc + cvFv

]
− Lc

(
ρ
Dc

Dt
− div (J1)− Fc − cFρ

)
≤ 0.

(A.18)

Since,
div (LcJ1) = Lcdiv (J1) +∇Lc · J1,

we reorganize the terms of (A.18) to obtain

−Diss :=

(
−ρ2∂F

∂ρ
I− ρ∇c⊗ ∂F

∂∇c − σσσ

)
..∇v

+

(
ρ
∂F
∂c

− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
+ div (TJ + LcJ1)

−∇Lc · J1

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ

+ cρFρ + ccFc + cvFv − Lc(Fc + cFρ)
]
≤ 0.

(A.19)

A.6 Constitutive assumptions and model equations

First of all, we assume that the free energy density F is of Ginzburg-Landau type and has the
following form [17,18]

F(ρ, c,∇c) := ψ0(ρ, c) +
γ

2
|∇c|2, (A.20)

where ψ0 is the homogeneous free energy accounting for the processes of phase separation and
the gradient term γ

2 |∇c|2 represents the surface tension between the two phases. This free energy
is the basis of the Cahn-Hilliard model which describes the phase separation occurring in binary
mixtures. Furthermore, as obtained in Wise et al. [68], the adhesion energy between different
cell species is indeed well represented by such a choice of the free energy functional.
To satisfy the inequality (A.19), we first choose

τττ := ρ
∂F
∂∇c = γρ∇c.

Then, we define the chemical potential µ(ρ, c,∇c) by

µ :=
∂F
∂c

− 1

ρ
div(τττ) =

∂F
∂c

− 1

ρ
div(ρ

∂F
∂∇c) =

∂ψ0

∂c
− γ

ρ
div (ρ∇c) ,

which in turn gives a condition for the Lagrange multiplier

Lc = µ. (A.21)
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Using these previous constitutive relations, we have already canceled some terms in the entropy
inequality, i.e. (

ρ
∂F
∂c

− div(τττ)− ρLc

)
Dc

Dt
+

(
ρ
∂F
∂∇c − τττ

)
∇
[
Dc

Dt

]
= 0.

Then, using classical results on isothermal diffusion [23,55], we have

J := −µJ1

T
, (A.22)

and, using a generalized Fick’s law, we have

J1 := b(c)∇µ, (A.23)

where b(c) is a nonnegative mobility function that we will specify in the following. The two
constitutive relations for the diffusive fluxes (A.22) and (A.23) together with (A.21), we obtain

div (TJ + LcJ1)−∇Lc · J1 = −b(c)|∇µ|2 ≤ 0.

Following [4, 55], we define the pressure inside the mixture

p := ρ2
∂ψ0

∂ρ
. (A.24)

From standard rheology, we assume that the fluid satisfies Newton’s rheological laws. The stress
tensor is composed of two parts for the viscous P̃ and non-viscous P contributions of stress

σσσ := P+ P̃, (A.25)

and we have by standard continuum mechanics (see e.g. [4, 10,23]){
P = −

(
p− γ

2 |∇c|2
)
I− γρ∇c⊗∇c,

P̃ = ν(c)
(
∇v +∇vT

)
+ λ(c)div (v) I.

(A.26)

In (A.26), ν(c) denotes the shear viscosity and λ(c) = η(c)− 2
3ν(c) where η(c) is the dilatational

viscosity that encodes the response of the fluid to volume changes. The second term in the
non-viscous part of the stress (namely −γ (ρ∇c⊗∇c)) represents capillary stresses that act at
the interface of the two populations.
Using (A.26), we can cancel terms in (A.19)(

−ρ2∂F
∂ρ

I− ρ∇c⊗ ∂F
∂∇c − σσσ

)
..∇v = 0.

The remaining terms of the entropy inequality are the ones associated with proliferation and
friction. The last step to satisfy the entropy inequality is to choose arbitrarily a value for cρ,
such that

−
[
(κ(ρ, c) + Fρ) |v|2 − Fvv −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
Fρ

+ cρFρ + ccFc + cvFv − Lc(Fc + cFρ)
]
≤ 0.

Reorganizing the terms we have

−κ(ρ, c)|v|2 − Fρ

[
cρ + |v|2 −

(
1

2
|v|2 + u− ρ

∂F
∂ρ

)
− µc

]
− Fv [cv − v]− Fc [cc − µ] ≤ 0.

The obvious choices are 
cρ = −|v|2 +

(
1
2 |v|2 + u− ρ∂F∂ρ

)
+ µc,

cv = v,

cc = µ.

From the previous constitutive relations, we satisfy the dissipation inequality (A.19).
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A.7 Summary of the model’s equations

Using the previous constitutive relations our general model is the following compressible Navier-
Stokes-Cahn-Hilliard system

∂ρ

∂t
= −div (ρv) + Fρ,

ρ
Dc

Dt
= div (b(c)∇µ) + Fc − cFρ,

ρµ = −γdiv (ρ∇c) + ρ
∂ψ0

∂c
,

ρ
Dv

Dt
= − [∇p+ γdiv (ρ∇c⊗∇c)] + div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v) I) + div (η(c)div (v) I)− (κ(ρ, c) + Fρ)v + Fv,

(A.27)

with p defined in (A.24).

B Model reductions, general assumptions and biologically rele-
vant choices of the model’s functions

B.1 Specific choices of functionals and model reductions

Problem 1: General compressible NSCH with friction term and mass transfer. As-
suming no creation of mass nor transfer of mass from the exterior of the system we have

Fc = −F1−c, (B.1)

leading to mass conservation
Fρ = 0. (B.2)

Furthermore, we assume no external source of velocity and energy, leading to

Fv = 0, and Fu = 0. (B.3)

Furthermore, using the same simplifying assumption as in Abels and Feireisl [4] to avoid vacuum
zones, our final reduced system of equations is

∂ρ

∂t
+ div (ρv) = 0, (B.4)

∂ρc

∂t
+ div (ρcv) = div (b(c)∇µ) + Fc, (B.5)

ρµ = −γ∆c+ ρ
∂ψ0

∂c
, (B.6)

∂ρv

∂t
+ div (ρv ⊗ v) = −

[
∇p+ γdiv

(
∇c⊗∇c− 1

2
|∇c|2I

)]
+ div

(
ν(c)

(
∇v +∇vT

))
− 2

3
div (ν(c)div (v) I) + div (η(c)div (v) I)− κ(ρ, c)v,

(B.7)

Problem 2: Biologically relevant variant of the system. We here refer to the two
phases of the mixture as cell populations and not fluids. For this variant of the system, we
assume the production of mass and neglect certain effects. Namely, we neglect inertia effects,
and the viscosity of the fluid, and assume no external source of velocity. This leads to the
momentum equation

∇p+ κ(ρ, c)v = −γdiv
(
∇c⊗∇c− 1

2
|∇c|2I

)
− Fρv.
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Assuming that one cell population proliferates while the other does not leads to

Fc = Fρ = ρcPc(p), and F1−c = 0,

with a pressure-dependent proliferation rate Pc(p) ≥ 0. The growth function Pc(p) is used to
represent the capacity of cells to divide accordingly to the pressure exerted on them. It is well
known that cells are able to divide as long as the pressure is not too large. Once a certain
pressure pmax is reached cells enter a quiescent state. Therefore, we assume that

P ′
c(p) ≤ 0, and Pc(p) = 0 for p > pmax. (B.8)

Combining these changes, the model becomes
∂ρ
∂t + div (ρv) = ρcPc(p),
∂ρc
∂t + div (ρcv) = div (b(c)∇µ) + ρcPc(p),

ρµ = −γ∆c+ ρ∂ψ0

∂c ,

∇p+ κ(ρ, c)v = −γdiv
(
∇c⊗∇c− 1

2 |∇c|2I
)
− ρcPc(p)v.

(B.9)

B.2 Biologically consistent choices of functions

As said in the derivation of the model, the free energy density F is the sum of two terms: γ
2 |∇c|2

taking into account the surface tension effects existing between the phases of the mixture and
the potential ψ0(ρ, c) representing the cell-cell interactions and pressure. Thus, we choose

ψ0(ρ, c) = ψe(ρ) + ψmix(ρ, c), (B.10)

with ψmix(ρ, c) = H(c) log ρ + Q(c). Then, using the constitutive relation for the pressure we
have

p(ρ, c) = ρ2
∂ψ0

∂ρ
= pe(ρ) + ρH(c). (B.11)

The function b(c) is the active mobility of the cells.
Let us explain how the choices of functions for the free energy density and mobility are motivated
by biological observations.
To satisfy the conditions (2.7), we propose to choose

b(c) = Cbc(1− c)α, α ≥ 1, (B.12)

where Cb is a positive constant.
We use for the pressure a power law such that

pe(ρ) =
1

a− 1
ρa−1. (B.13)

For H(c) and G(c), two choices can be considered depending on the behavior of the cells we want
to represent. If the two cell populations exert attractive forces when they recognize cells of the
same type and repulsion with the other type, the potential has to take a form of a double-well
for which the two stable phases are located at the bottom of the two wells (see e.g. Figure 9a).
This is a situation close to the phase separation in binary fluids. Thermodynamically consistent
potentials are of Ginzburg-Landau type with the presence of logarithmic terms. An example of
double-well potential is given by

ψmix =
1

2
(α1(1− c) log(ρ(1− c)) + α2c log(ρc))−

θ

2
(c− 1

2
)2 + k, (B.14)

thus giving

H(c) =
1

2
(α1(1− c) + α2c) , Q(c) =

1

2
(α1(1− c) log(1− c) + α2c log(c))−

θ

2
(c− 1

2
)2 + k,
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c

(c
)

(a) Double-well potential

c

(c
)

(b) Single-well potential

Figure 9: For both figures ρ = 1. Double-well logarithmic potential (left) with α1 = 1.2 and
α2 = 0.8 and single-well logarithmic potential (right)

where θ > 1, and k, α1, α2 > 0 are an arbitrary constants.
To meet the phenomenological observations of the interaction between cells when the mixture is
composed of only one cell population, a single-well potential seems more appropriate [16,20].
Indeed, when the distance between cells falls below a certain value (i.e. if the cell density is large
enough), cells are attracted to each other. Then, it exists a threshold value called the mechanical
equilibrium for which ∂cψ0 = 0 i.e. there is an equilibrium between attractive and repulsive
forces. For larger cell densities, cells are packed too close to each other, they thus experience
a repulsive force. When cells are so packed that they fill the whole control volume, then the
repulsive force becomes infinite due to the pressure. The representation of such functional is
depicted in Figure 9b. A typical example of single-well potential which has been used for the
modeling of living tissue and cancer [7, 20] is

ψmix(ρ, c) = −(1− ce) log(ρ(1− c))− c3

3
− (1− ce)

c2

2
− (1− ce)c+ k, (B.15)

thus giving

H(c) = −(1− ce), Q(c) = −(1− ce) log(1− c)− c3

3
− (1− ce)

c2

2
− (1− ce)c+ k, (B.16)

where k is an arbitrary constant.

C Description of the two-dimensional numerical scheme

We describe the two-dimensional scheme. This scheme possesses the same properties as the
one-dimensional scheme.
We write the velocity field v = (ux, uy). System (1.1)–(1.4) with the transformation proposed
at the beginning of this section, reads

∂tρ+ ∂x(ρux) + ∂y(ρuy) = 0, (C.1)

∂t

(
ρ

[
ux
uy

])
+

[
∂x(ρu

2
x + p)

∂y(ρu
2
y + p)

]
+

[
∂y(ρuxuy)
∂x(ρuxuy)

]
= 2

[
∂x (ν(c)∂xux)
∂y (ν(c)∂yuy)

]
+

[
∂y (ν(c)(∂yux + ∂xuy))
∂x (ν(c)(∂yux + ∂xuy))

]
+

[
∂x
((
η(c)− 2

3ν(c)
)
(∂xux + ∂yuy)

)
∂y
((
η(c)− 2

3ν(c)
)
(∂xux + ∂yuy)

)]− γ

2

[
∂x((∂xc)

2 − (∂yc)
2)

∂y((∂yc)
2 − (∂xc)

2)

]
− γ

[
∂y(∂xc∂yc)
∂x(∂xc∂yc)

]
− κ(ρ, c)

[
ux
uy

]
,

(C.2)
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ρ (∂tv + ux∂xv + uy∂yv) =
1

T ′(v)
(∂x(b(c)∂xµ) + ∂y(b(c)∂yµ)) +

1

T ′(v)
Fc, (C.3)

ρµ = −γT ′(v)(∂xxc+ ∂yyc)− γT ′′(v)
(
(∂xv)

2 + (∂yv)
2
)
+ ρ

∂ψ0

∂c
, (C.4)

dr

dt
= − r(t)

E[t] + C0

∫
Ω
b(c)|∇µ|2 − µFc dx. (C.5)

We introduce the notations U = (ρ, ρux, ρuy), G(U) = (0,−κux,−κuy) and

F (U) = (ρux, ρu
2
x + p− 2ν(c)∂xux +

(
2

3
ν(c)− η(c)

)
(∂xux + ∂yuy) +

1

2
γ
(
(∂xc)

2 − (∂yc)
2
)
,

ρuxuy − ν(c) (∂yux + ∂xuy) + γ∂xc∂yc),

K(U) = (ρuy, ρuxuy − ν(c) (∂yux + ∂xuy) + γ∂xc∂yc,

ρu2y + p− 2ν(c)∂yuy +

(
2

3
ν(c)− η(c)

)
(∂xux + ∂yuy) +

1

2
γ
(
(∂yc)

2 − (∂xc)
2
)
).

The stabilization (see [37, 45]) of the Navier-Stokes part of our system reads, with ι > 0 the
relaxation parameter, 

∂tU + ∂xV + ∂yW = G(U),

∂tV +A∂xU = −1
ι (V − F (U)),

∂tW +B∂yU = −1
ι (W −K(U)),

(C.6)

in which A = diag(a1, a2, a3) and B = diag(b1, b2, b3). In the following, we choose

a1 = a2 = a3 = max{sup
(
ux +

√
∂ρp
)2
, supu2x, sup

(
ux −

√
∂ρp
)2

},

b1 = b2 = b3 = max{sup
(
uy +

√
∂ρp
)2
, supu2y, sup

(
uy −

√
∂ρp
)2

}.

We assume that our two-dimensional domain is a square [0, L]× [0, L]. We discretize the domain
using square control volumes of size ∆x×∆y. The cell centers are located at positions (xj , yj),
and we approximate the value of a variable at the cell center by its mean, e.g.

ρj,i =
1

∆x∆y

∫ x
j+1

2

x
j− 1

2

∫ y
j+1

2

y
j− 1

2

ρ(x, t) dx.
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Simply employing a first-order time discretization, the numerical scheme becomes

U∗
j,i = Unj,i, (C.7)

V ∗
j,i = V n

j,i −
∆t

η

(
V ∗
j,i − F (U∗

j,i)
)
, (C.8)

W ∗
j,i =Wn

j,i −
∆t

η

(
W ∗
j,i −K(U∗

j,i)
)
, (C.9)

Un+1
j,i = U∗

j,i −
∆t

∆x

(
V ∗
j+ 1

2
,i
− V ∗

j− 1
2
,i

)
− ∆t

∆y

(
W ∗
j,i+ 1

2

−W ∗
j,i− 1

2

)
+∆tG(Un+1

i,j ),

(C.10)

V n+1
j,i = V ∗

j,i −
∆t

∆x
A
(
U∗
j+ 1

2
,i
− U∗

j− 1
2
,i

)
, (C.11)

Wn+1
j,i =W ∗

j,i −
∆t

∆y
B
(
U∗
j,i+ 1

2

− U∗
j,i− 1

2

)
, (C.12)

vn+1
j,i − vnj,i

∆t
+ vn+1

j,i · (∇vn+1)j,i = g(cn, µn+1, ρn+1)j,i, (C.13)

g(cn, µn+1, ρn+1)j,i =
1

T ′(vnj,i)ρ
n+1
j,i ∆x

(
(b(cn)∇µn+1)j+ 1

2
,i − (b(cn)∇µn+1)j− 1

2
,i

)
+

1

T ′(vnj,i)ρ
n+1
j,i ∆y

(
(b(cn)∇µn+1)j,i+ 1

2
− (b(cn)∇µn+1)j,i− 1

2

)
+
Fc(ρ

n
j,i, c

n
j,i)

T ′(vnj,i)ρ
n+1
j,i

,

(C.14)

µn+1
j,i =

1

ρnj,i

(
−γT ′(vnj,i)(∆v̄

n+1)j,i − γT ′′(vnj,i)|(∇vn)j,i|2
)
+

(
∂ψ0

∂c

)n
j,i

, (C.15)∫
Ω
T (λvn+1) dx =

∫
Ω
cn +∆tFc dx, (C.16)

cn+1
j,i = T (λjv

n+1
j,i ), (C.17)

1

∆t

(
rn+1 − rn

)
= − rn+1

E(cn+1) + C0

∫
Ω
b(cn+1)|∇µn+1|2 dx+

+
rn+1

E(cn+1) + C0

∫
Ω
µn+1Fc(ρ

n+1, cn+1) dx, (C.18)

ξn+1 =
rn+1

E(cn+1) + C0
, (C.19)

cn+1
j,i = νn+1cn+1

j,i , with νn+1 = 1− (1− ξn+1)2, (C.20)

vn+1
j,i = νn+1vn+1

j,i . (C.21)
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