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Is the Velocity Always in Phase with the
Wave Excitation Force in Constrained

Optimal Control of Wave Energy
Converters?

Hoai-Nam Nguyen ∗

∗ SAMOVAR, Télécom SudParis, Institut Polytechnique de Paris,
91120 Palaiseau, France (e-mail: hoai-nam.nguyen@

telecom-sudparis.eu).

Abstract: The resonance condition for maximum absorption of the energy carried by ocean
waves incident to an oscillating wave energy converter (WEC) is one of the most well known
results of the WEC control research. It was shown that the maximum occurs when the WEC
velocity is in phase with the wave excitation force. The condition was obtained with the
assumption that the WEC frees to oscillate with whatever amplitude was necessary, and that the
power take-off (PTO) system can deliver the unlimited force. In practical WEC implementations,
this assumption does not hold. The purpose of this paper is twofold. First, to obtain the
frequency response of the closed-loop WEC motion, and of the optimal control law in terms of
the hydrodynamic coefficients with limited PTO force and limited motion amplitudes. Secondly,
the obtained results are used to investigate the resonance condition of the WEC velocity with
the incoming wave in the presence of constraints.

Keywords: Optimal Control, WEC, Force and Motion Amplitudes Constraints, Linear Matrix
Inequalities, Complex-Conjugate Control,

1. INTRODUCTION

Since modern research on the WEC topic emerged in the
early 1970s, the question of optimal control of the WEC
systems has always been an important issue. The condi-
tions for maximum wave energy absorption soon emerged
by using the frequency domain approach. It was proved
in Evans [1981b], Falnes [2002] that the maximum occurs
when the controller has the correct value of resistance,
and that its intrinsic impedance cancels the WEC intrinsic
impedance. The terms complex-conjugate or impedance
matching control were adopted to describe this situation
of optimal operation, see Nebel [1992], Salter et al. [1976].
As a consequence of this result, the closed-loop WEC
velocity is in phase with the incident wave excitation
force. The results were derived in the absence of the PTO
force constraints as well as the WEC position and velocity
constraints. When implementing a control strategy for a
real device, one must take into account these physical
limitations in order to exploit the full absorption potential
of an installed WEC. It is also for safety reasons.

To the best of the author’s knowledge, Evans [1981a] is
the first paper that studies the WEC control under the
constraints. The method of Lagrange multipliers was con-
sidered to optimize the absorbed power subject to a global
motion constraint of a multi-degree-of-freedom WEC sys-
tem. In Pizer [1993], the results were extended that allow
to take into account the individual motion constraint for
each controlled degree-of-freedom. In Cotten and Forehand
[2020], the uncontrolled degrees-of-freedom were studied.

However in these works, the results were obtained with the
complex-conjugate control. No PTO force constraints were
considered. In addition, the results are not optimal since
the control law is pre-defined. Recently, the line of research
Evans [1981a] was also expanded in Korde [2019]. In this
work, PTO force constraints were considered. However,
the complex-conjugate control law was still used.

The aim of this paper is twofold. First, to provide a method
to calculate the frequency response of the optimal control
law as well as of the closed-loop WEC system. The main
features of the solution are

• PTO force and WEC motion constraints are taken
input account.

• No complex-conjugate or impedance matching control
were assumed. Hence the solution is globally optimal.

• It is shown that the problem of maximizing the
harvested power can be converted into a convex
optimization problem, for which the optimal solution
is unique.

Secondly, once the optimal solution is obtained, the results
are used to verify the resonance condition of the optimal
WEC velocity with the incoming wave excitation force.

The paper is organized as follows. Section 2 describes the
problem formulation and some preliminaries concerning
semi-definite program. A procedure to calculate the real
and imaginary parts of the frequency response of the
closed-loop WEC system, and of the optimal control law is
presented in Section 3. In Section 4, the results are applied



to the Wavestar WEC system. Finally, some conclusions
are drawn in Section 5.

Notation: For symmetric matrices, the symbol (∗) de-
notes each of its symmetric blocks. For any real symmetric
matrix X, the notation X ⪰ 0 indicates that all eigenval-
ues of X are nonnegative.

2. PROBLEM FORMULATION

2.1 Hydrodynamic Characteristics of the WEC

We consider a single body floating system as in Fig. 1.
The energy is extracted from the relative motion with
the sea bottom through a generic power take-off (PTO)
mechanism. The system is constrained to move in the
heave direction only. The system is axis-symmetric so that
the energy conversion rate is the same for waves coming
from all directions.

Fig. 1. One-degree-of-freedom floating system for wave
energy conversion.

The external forces acting on the WEC are the wave
excitation force and the control force produced by the
PTO. Neglecting viscosity, and other losses, and under the
assumption of linearity, the motion of the WEC system can
be described in the frequency domain by(

jwM +
Khd

jw
+ Zr(jw)

)
V (jw) = Fex(jw)− Fu(jw)

(1)
where M is the WEC mass, V (jw) is the heaving velocity,
Fex(jw) is the wave excitation force, and Fu(jw) is the
PTO force. The hydrostatic force gives stiffness force as de-
viation from hydrostatic equilibrium. It is modeled by the
coefficient Khd. The radiation force due to radiated waves
is expressed through the radiation impedance Zr(jw). In
general, Zr(jw) is decomposed as

Zr(jw) = B(w) + jw [M∞ +Ma(w)] (2)

where B(w) is the radiation resistance, M∞ is the added
mass at infinitely high frequency, and Ma(w) is the added
mass after M∞ is removed. B(w) is an even, real and
positive function.

Using (1), (2), the motion response of the WEC system is
given by the following model

V (jw) =
1

Zi(jw)
[Fex(jw)− Fu(jw)] (3)

where Zi(jw) is the intrinsic impedance of the system

Zi(jw) = B(w) + jw

[
M − Khd

w2
+M∞ +Ma(w)

]
(4)

Equations (3), (4) will serve as a basic for the results in
the next sections.

2.2 Control Objective

The objective is to choose the input signal fu(t) to maxi-
mize the harvested average power Pa

Pa =
1

T

∫ T

0

P (t)dt (5)

where P (t) = fu(t)v(t) is the instantaneous power.

The PTO input fu(t), the WEC velocity v(t), and the
WEC position s(t) are subject to the constraints{−Flim ≤ fu(t) ≤ Flim,

−Vlim ≤ v(t) ≤ Vlim,
−Slim ≤ s(t) ≤ Slim

(6)

2.3 Earlier Works in the Literature

In the absence of the constraints (6), it was shown in Evans
[1981b], Falnes [2002] that Pa reaches maximum when the
PTO input is given as

Fu(jw) = Z∗
i (jw)V (jw) (7)

where Z∗
i (jw) is the complex conjugate of Zi(jw), i.e.,

Z∗
i (jw) = B(w)− jw

[
M − Khd

w2
+M∞ +Ma(w)

]
(8)

Using (3), (7), one gets

V (jw) =
1

Zi(jw)
[Fex(jw)− Z∗

i (jw)V (jw)]

or equivalently

V (jw) =
Fex(jw)

Zi(jw) + Z∗
i (jw)

=
Fex(jw)

2B(w)
(9)

Now it is assumed that the wave excitation force is of the
form

fex(t) = A sin(wt) (10)

where A,w are, respectively, the amplitude, and the an-
gular wave frequency of fex(t). Note that without loss of
generality, the phase angle is set to zero in (10).

Recall that B(w) is an even, real and positive function.
Using (9), (10), one gets

v(t) =
fex(t)

2B(w)
=

A

2B(w)
sin(wt) (11)

Hence maximum energy transfer from the waves to the
WEC system is obtained when the velocity is in phase
with the wave excitation force.

The control law (7), (8) is called complex-conjugate con-
trol. The results (7), (9), (11) were obtained in the fre-
quency domain in the absence of the constraints (6). The
objective of this paper is to provide the relationship be-
tween Fu(jw), V (jw) and Fex(jw) in terms of hydrody-
namics coefficient in the presence of (6). Especially, we
would like to know if the WEC velocity is always in phase
with the wave excitation force in the constrained optimal
control framework.

2.4 Preliminaries - Semidefinite Programming

In the following, some basic definitions of semidefinite
programming (SDP) are recalled. They will be used to
calculate the optimal frequency response of the WEC
motions and of the optimal control law.



A linear matrix inequality (LMI) is a condition of the type

F (x) ⪰ 0

where x ∈ Rn is a decision variable, and the matrix F (x)
is affine in x, i.e.,

F (x) = F0 +

n∑
i=1

Fixi

where the matrices Fi ∈ Rm×m are symmetric.

LMIs can either be understood as constraints for optimiza-
tion problems or as feasibility conditions. Optimization of
a linear function over LMI constraints is called SDP, which
is a generalization of linear programming, see Boyd and
Vandenberghe [2004], Nguyen [2013]. The main advantage
of using the SDP formululation is that for solving a SDP
problem, several polynomial time algorithms were devel-
oped and implemented in free available software packages,
such as CVX Grant and Boyd [2014], YALMIP Lofberg
[2004], etc.

The Schur complement is a very useful tool for matrix
inequalities. It allows to reformulate equivalently certain
nonlinear matrix inequalities as a higher dimensional LMI
condition. Using the Schur complement, the following
nonlinear condition{

U(x) ⪰ 0,
P (x)−Q(x)TU(x)−1Q(x) ⪰ 0

can be equivalently written in the LMI form[
P (x) Q(x)T

Q(x) U(x)

]
⪰ 0

3. MAIN RESULTS

Following Evans [1981b], Falnes [2002], the control input
is assumed to be a linear function of the velocity, i.e.,

Fu(jw) = Zc(jw)V (jw) (12)

where Zc(jw) is a design variable.

Combining (3), (12), one obtains

V (jw) =
1

Zi(jw)
(Fex(jw)− Zc(jw)V (jw))

thus

V (jw) =
1

Zi(jw) + Zc(jw)
Fex(jw) (13)

Define

G(jw) =
1

Zi(jw) + Zc(jw)
(14)

thus
V (jw) = G(jw)Fex(jw) (15)

G(jw) is the closed-loop transfer function with the in-
put Fex(jw), and with the output V (jw). For a given
frequency w, G(jw) is a complex number. It can be de-
composed as

G(jw) = Rg(w) + jXg(w) (16)

where Rg(w), Xg(w) are the real part and the imaginary
part of G(jw), respectively.

Define {
Ri(w) = B(w),

Xi(w) = M − Khd

w2
+M∞ +Ma(w)

(17)

i.e., Ri(w), Xi(w) are, respectively, the real part and the
imaginary parts of Zi(jw).

For simplicity, the argument w will be omitted fromRi, Xi,
Rg, Xg whenever possible. The following theorem holds.

Theorem 1: Given the wave excitation force (10), and
the control input (12), the average power is computed as

Pa =
A2

2
(Rg −RiR

2
g −RiX

2
g ) (18)

Proof: Combining (12), (14), one obtains

Fu(jw) =

(
1

G(jw)
− Zi(jw)

)
V (jw)

thus, with (15)

Fu(jw) = (1− Zi(jw)G(jw))Fex(jw) (19)

Because (19) is a linear system, one gets, for the given
wave excitation force (10),

fu(t) = AuA sin(wt+ θu) (20)

where {
Au = |1− Zi(jw)G(jw)|,
θu = ∠ (1− Zi(jw)G(jw))

are the amplitude and the phase of (1− Zi(jw)G(jw)),
evaluated at frequency w, respectively.

Analogously, since the system (15) is linear, one obtains

v(t) = AgA sin(wt+ θg) (21)

where Ag = |G(jw)| and θg = ∠G(jw) are, respectively,
the amplitude and the phase of G(jw).

Using (20), (21), the instantaneous power P (t) is com-
puted by

P (t) = v(t)fu(t) = AgAuA
2 sin(wt+ θg) sin(wt+ θu)

(22)
and the average power

Pa =
1

T

∫ T

0

P (t)dt

It is clear that it suffices to calculate Pa for one period
T = 2π

w , since the wave (10) is periodic. Hence

Pa =
w

2π
AgAuA

2

∫ 2π
w

0

sin(wt+ θg) sin(wt+ θu)dt (23)

Because

sin(α) sin(β) =
1

2
(cos(α− β)− cos(α+ β))

one gets from (23)

Pa =
w

4π
AgAuA

2

∫ 2π
w

0

cos(θg − θu)dt

− w

4π
AgAuA

2

∫ 2π
w

0

cos(2wt+ θg + θu)dt

=
w

4π
AgAuA

2

(
cos(θg − θu)t−

sin(2wt+ θg + θu)

2w

)∣∣∣∣ 2π
w

0

It follows

Pa =
1

2
AgAuA

2 cos(θg − θu) (24)

By using the following product-to-sum trigonometric iden-
tity

cos(θg − θu) = cos(θg) cos(θu) + sin(θg) sin(θu)

and thus, with (24)

Pa =
1

2
AgAuA

2 (cos(θg) cos(θu) + sin(θg) sin(θu)) (25)



The following equations hold
Ag cos(θg) = Rg,
Ag sin(θg) = Xg,
Au cos(θu) = 1−RiRg +XiXg,
Au sin(θu) = −RiXg −XiRg

(26)

Hence, using (25), one obtains

Pa =
A2

2
(Rg(1−RiRg +XiXg)−Xg(RiXg +XiRg))

or equivalently

Pa =
A2

2

(
Rg −RiR

2
g −RiX

2
g

)
The proof is complete. 2

Theorem 1 gives the analytical expression of the average
power in terms of the hydrodynamic coefficients. For the
input constraint (6), using (20), (26), one gets

fu(t) = AuA sin(wt+ θu)

=
√
(1−RiRg +XiXg)2 + (RiXg +XiRg)2A sin(wt+ θu)

Hence −Flim ≤ fu(t) ≤ Flim if and only if

(1−RiRg +XiXg)
2 +(RiXg +XiRg)

2 ≤
(
Flim

A

)2

(27)

For the velocity constraint (6), using (21), (26), one
obtains

v(t) = AgA sin(wt+ θg) =
√
R2

g +X2
gA sin(wt+ θg)

Hence the velocity constraint is satisfied if and only if

R2
g +X2

g ≤
(
Vlim

A

)2

(28)

Concerning the position constraint, note that

S(jw) =
1

jw
V (jw)

thus, with (15),

S(jw) =
G(jw)

jw
Fex(jw)

For the given wave excitation force (10), it follows that

s(t) =
Ag

w
A sin(wt+ θg −

π

2
)

=

√
R2

g +X2
g

w
A sin(wt+ θg −

π

2
)

Therefore the position constraint is satisfied if and only if

R2
g +X2

g ≤
(
wSlim

A

)2

(29)

Using (28), (29), if wSlim ≤ Vlim, then the position and
velocity constraints are satisfied if and only if (29) hold.
Otherwise, if wSlim ≥ Vlim, then (28) should hold. For
simplicity, only the position constraint (29) is considered
in the rest of the paper.

Combining (18), (27), (29), the problem of maximizing the
average power can be recast as

max
Rg,Xg

{
Rg −RiR

2
g −RiX

2
g

}
,

s.t.


(1−RiRg +XiXg)

2 + (RiXg +XiRg)
2 ≤

(
Flim

A

)2

R2
g +X2

g ≤
(
wSlim

A

)2

or equivalently

min
Rg,Xg

{
Ri(R

2
g +X2

g )−Rg

}
,

s.t.


(1−RiRg +XiXg)

2 + (RiXg +XiRg)
2 ≤

(
Flim

A

)2

R2
g +X2

g ≤
(
wSlim

A

)2

(30)
Recall that Ri = B(w) is positive. Hence the cost function
and the constraints are convex. Consequently (30) is a
convex optimization problem.

Remark: In the absence of the PTO force constraints and
WEC position constraints, (30) has a closed-form solution

Rg =
1

2Ri
, Xg = 0 (31)

In this case G(jw) = 1
2Ri

= 1
2B(w) . Therefore

V (jw) =
1

2B(w)
Fex(jw) (32)

One recovers the result in Evans [1981b], Falnes [2002].
Hence their result is a particular case of Theorem 1.

The optimal solution to (30) is unique because the cost
(30) is strongly convex. The solution can be found by
using any numerical procedure for convex optimization
such as interior point or gradient projection methods, see
Boyd and Vandenberghe [2004]. Here we show how to
reformulate (30) as a SDP problem, which is a subclass
of a convex optimization problem.

Using the epigraph method, see Boyd and Vandenberghe
[2004], the cost function (30) is equivalently rewritten as

min
g,Rg,Xg

{g}

s.t. Ri(R
2
g +X2

g )−Rg ≤ g

thus, with the Schur complement

min
g,Rg,Xg

{g} (33)

s.t.


g +Rg Rg Xg

(∗) 1

Ri
0

(∗) (∗) 1

Ri

 ⪰ 0 (34)

Analogously, using the Schur complement, the constraints
(30) are equivalently rewritten as

(
Flim

A

)2

1−RiRg +XiXg RiXg +XiRg

(∗) 1 0
(∗) (∗) 1

 ⪰ 0,


(
wSlim

A

)2

Rg Xg

(∗) 1 0
(∗) (∗) 1

 ⪰ 0

(35)
Combining (33), (34), (35), the problem of maximizing
the harvested average power can be formulated as the
following SDP problem

min
g,Rg,Xg

{g},

s.t. (34), (35)
(36)



The optimal values of R∗
g, X

∗
g are computed as follows

Algorithm 1: Computation of R∗
g, X

∗
g

1: Select a reasonable finite but large set of frequency
samples 0 < w1 < . . . < wN .

2: Select a reasonable finite but large set of amplitude
0 < A1 < . . . < AL.

3: For each frequency wl,∀l = 1, N , and each amplitude
Ak,∀k = 1, L in the chosen set.
3.1: Solve the SDP problem (36).
3.2: The optimal value of R∗

g, X
∗
g are

R∗
g = Rg, X

∗
g = Xg

Note that R∗
g, X

∗
g are functions of both frequency w and

of amplitude A.

Once R∗
g, X

∗
g are computed, the optimal frequency re-

sponse of the control block are given by

Rc =
R∗

g

(X∗
g )

2 + (R∗
g)

2
−Ri,

Xc = −
X∗

g

(X∗
g )

2 + (R∗
g)

2
−Xi

(37)

where Rc, Xc are, respectively, the real part and the
imaginary part of Zc(jw).

For a given amplitude A = 6, using Algorithm 1, Fig. 2
and Fig. 3 show the optimal values R∗

g, X
∗
g (solid blue)

as a function w, for 1 ≤ w ≤ 10. The parameters of the
WEC system and the constraints are given in Section 4.
Fig. 2 also shows the unconstrained optimal solution (31)
(dashed red).

1 2 3 4 5 6 7 8 9 10

Freq(rad/s)

0
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R
g*

Fig. 2. Optimal R∗
g for a given amplitude A.
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Fig. 3. Optimal X∗
g for a given amplitude A.

Using Fig. 2, and Fig. 3, the following remarks are made

• X∗
g ̸= 0 for all frequencies, let us say, less than

6.5(rad/s). It follows that in the constrained case,
the optimal velocity is generally not in phase with
the wave excitation force.

• The optimal R∗
g in the unconstrained case is generally

much greater than that in the constrained case.

4. APPLICATION TO THE WAVESTAR WEC
MACHINE

4.1 WEC Parameters

To study the results in Section 3, we use a laboratory
prototype of a point absorber WEC on a 1:20 scale with
respect to the well-known Wavestar machine installed near
Hanstholm in Denmark from 2009 to 2013, see Zurkinden
et al. [2012], Nguyen [2022]. The WEC parameters are
given as M = 1.44, Khd = 93, and

Zr(w) =
a4(jw)

4 + a3(jw)
3 + a2(jw)

2 + a1(jw) + a0
b5(jw)5 + b4(jw)4 + b3(jw)3 + b2(jw)2 + b1(jw) + b0

(38)
whose coefficients are given in Table 1.

Numerator Denominator

b5 = 1
a4 = 30.8619 b4 = 208.5959
a3 = 6.4642× 103 b3 = 8.5834× 104

a2 = 2.6016× 106 b2 = 8.8994× 106

a1 = 2.6550× 108 b1 = 1.0740× 108

a0 = −7.0967× 105 b0 = 7.0311× 108

Table 1. Radiation model coefficients

Fig. 4 shows the Bode plot of the WaveStar WEC system.
Note that this Bode plot is very typical for a WEC system
of the point-absorber type.
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Fig. 4. Bode plot of the WaveStar-WEC system.

Fig. 5 presents the real part Ri(w) and the imaginary part
Xi(w) of the considered WEC intrinsic impedance Zi(w)
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Fig. 5. Real part and imaginary part of the intrinsic
impedance of the WaveStar-WEC system.

For simplicity, only input constraints are considered, see
Nguyen and Tona [2020]

−6.25 ≤ fu(t) ≤ 6.25 (39)



4.2 Numerical Results

The WaveStar-WEC system was installed in September,
2009 near Hanstholm at the Western coast of Denmark,
see Kramer et al. [2011]. A number of ocean waves were
recorded. For the considered system, interesting wave
frequencies are from 1rad/s to 10 rad/s with the maximum
amplitude of 15N/m. Note that the given bounds are for
the 1:20 scale.

Using Algorithm 1 for 1 ≤ w ≤ 10 and 1 ≤ A ≤ 15, Fig.
6 and Fig. 7 present, respectively, the optimal real part
R∗

g and the optimal imaginary part X∗
g of the closed-loop

transfer function G(w).

Fig. 6. Optimal R∗
g for the WaveStar-WEC system.

Fig. 7. Optimal X∗
g for the WaveStar - WEC system.

As can be seen from Fig. 6 and Fig. 7, the optimal R∗
g, X

∗
g

are a function of two variables w and A in the constrained
case. Recall that in the literature, the optimal R∗

g, X
∗
g are

only a function of w. Note that X∗
g ̸= 0 or equivalently the

optimal velocity is not in phase with the wave excitation
force for small w and for big A where the wave has the
most energy.

5. CONCLUSION

This paper provides an algorithm to compute the optimal
frequency response of the closed-loop WEC system, and
of the control law. The main distinguished feature of the
proposed approach compared with the existing results in
the literature is that the input and WEC motions con-
straints are taken into account. The results are obtained
by solving a convex optimization problem, for which the
optimal solution is unique. It is shown that in the presence
of constraints, the well-known resonance condition, i.e., the
optimal velocity is in phase with the wave excitation force,
does not generally hold.

We will in the future, exploit the result for the control
design. We are also interested in extending the technique
to the multi-float configuration case.
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