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DYNAMICS OF QUINTIC NONLINEAR SCHRODINGER EQUATIONS IN
112/5+ (T)

JOACKIM BERNIER, BENOIT GREBERT, AND TRISTAN ROBERT

ABSTRACT. In this paper, we succeed in integrating Strichartz estimates (encoding the dispersive
effects of the equations) in Birkhoff normal form techniques. As a consequence, we deduce a result
on the long time behavior of quintic NLS solutions on the circle for small but very irregular initial
data (in H*(T) for s > 2/5). Note that since 2/5 < 1 we cannot claim conservation of energy and,
more importantly, since 2/5 < 1/2, we must dispense with the algebra property of H®. This is
the first dynamical result where we use the dispersive properties of NLS in a context of Birkhoff
normal form.
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1. INTRODUCTION

Schematically, the Birkhoff normal form method consists of a first algebraic step where we
transform the Hamiltonian of the PDE on a space of functions depending only on the space
variable, and then of a second dynamic step where we deduce a long time behavior of the solutions
of this PDE. In most of the results using this approach, the first step essentially involves multilinear
estimates based on algebraic properties of the function space used, here the Sobolev space on the
d-dimensional torus H*(T?), and in this case a minimal regularity is required, here s > d/2. In
this paper, we develop a new approach: we use dispersion properties already in the first step. The
time oscillatory nature of the solutions, encoded in the Strichartz estimates, allows us to improve
the multilinear estimates (essentially by lowering the regularity) and to propagate them.

As a result, combining normal form techniques and dispersive techniques, we are able to specify
the dynamics of the quintic nonlinear Schrodinger equation (NLS) in H5(T) with s < 1/2, i.e.
we can get rid of the algebra property so useful for non-linear equations. The proof is based on
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a normal form result without regularity, i.e. in L?, inspired by [Bou04b] appendix 7 (see also
[CKO12] and section 1.2).

1.1. Main results and comments. To clarify our point we will focus on an example, the quintic
NLS on the circle, but with two different linear perturbations:

e quintic NLS on the circle with a multiplicative potential

(NLS) 0 = —0%u+ Wu+olulu, zeT:=R/21Z, t €R,
e quintic NLS on the circle with a convolution potential
(NLS*) i0u = —02u+V xu+olul*u, z€T:=R/21Z, t € R,

where, in both cases, 0 = +1 allows considering both the focusing and the defocusing cases and
the potentials W,V € HY(T) (# > 0 will be specified later) will be chosen to avoid resonances
issues.

Before considering the long time behavior of the solutions, we recall that according to Bourgain
[Bou93|, (NLS), with W = 0, is locally well posed in H*(T) for s > 0 and according to Li-Wu-Xu
(see [LWX11]) it is globally well posed in H*(T) for s > 2/5. In section 6 we extend these results
for both (NLS) and (NLS*) to obtain the following.

Proposition 1.1. Let s > 2. We assume that V € L*(T;R), and that W € H*(T;R) are even.
Then there exists Banach spaces XV, XW < C(R; H*(T)), constants ¢y € (0;1], Bs > 1, and
C, > 0, such that the following holds. For any initial datum ug € H*(T) with! |lug|gs < eo there
exists a unique global mild solution v € XV (resp. u € X' ) with initial data w(0) = ug to (NLS*)
(resp. to (NLS)). Moreover, we have the growth estimate

(1) u(®)| s < Co(1 + |t))%||uol|ss, t€R.

The spaces XV, XW appearing in the statement above are Bourgain spaces adapted to the
operator —02 + V', respectively —02 + W. We refer to section 6 below for proper definitions and
properties of these spaces.

We stress out that although this result is not surprising for specialists, it requires many gener-
alizations of multilinear estimates in the I-method of the first and second generation. Moreover,
due to homogeneity problems, the convolutional and multiplicative cases must be considered dif-
ferently. We refer the reader to the introduction of section 6 for a general presentation of the
method, and to appendices A and B for the technical details.

To state our dynamical results, which are the core of this work, we need to define the concept
of strongly-non-resonant frequencies:

Definition 1.2. Being given o > 0 and T C 7Z, we say that a family of frequencies w € R
is strongly-non-resonant if there exist o,p > 0 such that for all ¢ > 1, m € (Z*)? satisfying
mi+---+my=0, hy,--- ,hy €1 all distinct, it satisfies

q
| ;mjwhj‘ > p(2 lrgnjigq<hj>)—exp(a‘mh)

1Here7 we only consider small initial data since this is the regime we are interested in to perform a Birkhoff
normal form transformation. But the same global well-posedness result holds for large data in the defocusing case
o> 0.
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where |m|; = |mq|+ - 4+ |my].

The reader used to the non-resonance conditions for PDEs may be surprised by our definition:
the estimate seems quite weak since, in the right-hand side, the exponent decreases exponentially
with the length of the linear combination of frequencies considered. We are more used to a
polynomial decay. However, one must keep in mind that here the control is done with respect to
the smallest index of the frequencies involved whereas, more classically, it is done with respect
to the largest index (weak non-resonance) or with respect to the third largest (condition used in
[BGO6]). This type of condition was already used in [BG21| but quantified in a less precise way.
It is this additional precision in the exponent that will allow us to optimize the procedure and
reach exponential times.

1.1.1. Results with a convolution potential.

Theorem 1.3. Let V € L*>°(T;C) be a potential whose Fourier coefficients?, Vi, j € Z, are real.

If the frequencies w; = 52+ (277)%‘/] are strongly-non-resonant according to Definition 1.2, then
the solutions of (NLS*) enjoy the following property.

For all s > 2/5 and v > 0, there exists &1 € (0;¢0] and p > 0 such that, if u®) € H*(T) is a
function satisfying

€= Hu(O)HHs <eq,

then the global solution u € C°(R; H3(T)) of (NLS*) with initial condition u(0) = u©) provided
by Proposition 1.1 satisfies, for all k € Z and all t € R,

loge™1
[t < e EEm = [|up(®)? — [uk(0)?] < 5

where uj, = (271)_% Jpu(z)e*edz.

The next proposition states that, by randomizing the Fourier coefficient of V', with a reasonable
law (we choose Gaussian law, but other choices are possible), the strong non-resonance condition
is almost surely satisfied.

Proposition 1.4. Let s, > 0 and VINISY) € D/(T;C) be the random potential defined by

2) VIS () = (2m)72 37 X (k) 7> ek,
keZ

where Xy ~ N(0;1) are normalized independent real Gaussian random variables. For k € 7, let
wlgNLS*) =k + (2W)%VI§NLS*) be the frequencies of (NLS*).

Then, almost surely, the frequencies wN2S") of (NLS*) are strongly-non-resonant.

Remark 1.5. The constant p in Theorem 1.3 depends only on the potential V' through the param-

eter a (the exponent in Definition 1.2). Moreover, in Proposition 1.4, the parameter o depends
only on the potential V' though its reqularity s..

We postpone to section 1.1.3 the comments about Theorem 1.3.

2defined by V; := (271')7% J;

+V(z)e 7* da, see also (68) below.
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1.1.2. Results with a multiplicative potential. Our result concerning (NLS) is a bit more compli-
cated to state, essentially due to spectral complications: —d2? + V* diagonalizes in the Fourier
basis but —d? + W diagonalizes in its own Hilbert basis. To simplify the presentation, we will
focus on the Dirichlet problem, and refer to [BG21] to explain why the result is more compli-
cated (but reachable) in the periodic case. We assume W to be even, so that we can identify the
Dirichlet condition with a symmetry condition on the solution of the periodic problem: we are
interested in solutions of (NLS) that satisfy u(z) = —u(—=z) for almost any « € T. This definition
of the Dirichlet problem still makes sense in low regularity, u € H® with s < 1/2. First, we need
some results about the Dirichlet spectrum of the Sturm-Liouville operator. Given a potential
W € L*(T), we still denote by W its restriction on [0; 7).

Proposition 1.6 (Thm 7 page 43 of [PT87]). For all real-valued W € L*(0;7), there exist an
increasing sequence of real numbers (\n)n>1 and a Hilbertian basis (fn)n>1 of L?(0;), composed
of functions f, € H*> N HE, such that for all n > 1 we have f,,(0) = fu(7) =0 and

(3) — 02 flx) + W(z) fu(x) = A fu(z), Vo€ (0;7).
Now we can state our result for (NLS):

Theorem 1.7. Let W € H*(T;R) be a real valued even potential, (A\p)n>1 be the increasing
sequence of eigenvalues of the Sturm-Liowville operator —0?2 + Wij0;z] with homogeneous Dirichlet
boundary conditions and (fn)n>1 be the associated eigenfunctions (see Prop 1.6). If the frequencies
w = (Ap)n>1 are strongly-non-resonant according to Definition 1.2, then the solutions of (NLS)
enjoy the following property.
For all s > 2/5 and v > 0, there exists g € (0;1] and p > 0 such that, if u'© € H*(T) is an odd
function satisfying

e = |[u® g < <o,
then the global solution u € CO(R; H3(T)) of (NLS) with initial condition u(0) = u®) provided by
Proposition 6.3 satisfies, for all k > 1 and all t € R,

< = @ - )] <
where up, = [ u(x) fr(z)dx
Proposition 1.8. Let s, > 3/2 and WNLS) ¢ LQ(T'R) be the even random potential defined by
(4) W NLS) (g ZXk * cos(kx),
k>1

where Xj, ~ N(0;1) are normalized independent real Gaussian random variables. For k > 1, let

wliNLS) := A be the k-th smallest eigenvalue of the Sturm-—Liouville operator —02 + WNES) ith,
homogeneous Dirichlet boundary conditions on [0;7] (see Proposition 1.6).
Then there exists a constant 1 > 0 such that, almost surely, provided that |WMNWS)|| g < n, the

frequencies wINYS) are strongly-non-resonant.
Remark 1.9. o Remark 1.5 also holds in the case of Theorem 1.7 and Proposition 1.8.
e The constant n is universal: it does not depend on s.
e In Proposition 1.8, the average of the potential is equal to 0 (i.e. WéNLS) =0). Neverthe-

less, this assumption is not restrictive. Indeed, due to the condition mqy + ---+my, = 0
in Definition 1.2, if the frequencies associated with an even potential W € L*°(T;R) are
strongly-non-resonant then the frequencies associated with W + v are also strongly-non-
resonant for all v € R.
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1.1.3. Comments on both results.

Theorem 1.3 and Theorem 1.7 give a control on all the Fourier modes, but the time during
which we have this control depends on the index of the considered mode: the higher
this index is (high mode) the less the time is. The result is mostly interesting for low
modes. In that case we have a control during exponentially long time in the spirit of some
Nekhoroshev results recently obtained (see [BG22, BMP20, FG13]). In fact, for the very
high modes, the time becoming very short, the result is rather the consequence of the
well-posed character of the equation in H?® (see section 3.1).
From a more physical point of view, these results prove that if there are reverse energy
cascades, they are necessarily very slow. Indeed, since we consider non-smooth solutions,
an important part of the energy of the solution could be on high modes. However, we
prove that, for very long times, there is no transfer of this energy to low modes.
In fact, if we would focus only on the low modes (concretely 2|k| < e™Vesv; see section
3.2), we would not have to assume u(0) to be small in H* norm but only in L? norm (i.e.
u(0) € H® with [|u(0)||z2 < 1). The reason being that we develop the normal form in L2
The Strichartz estimate ([Bou93])

log N

itA |6 1/6
([l elfdedt)”* < (exp 2 ol

assuming supp ¢ C [—N,---, N], is used to initiate the Birkhoff normal form procedure
(see the sketch of proof below). This is actually one of the reasons why we have to truncate
to a finite number of modes from the very beginning.

As said above, the results are consequences of Birkhoff normal forms in H oF (or more
precisely in L? with a logarithmic loss in terms of the order of the Fourier truncation).
The assumption on the regularity of the initial datum, u(0) € H*®, is used to have a control
on the remainder term generated by the truncation to a finite number of modes of the
nonlinear term. Unfortunately, we are not able to control such remainder for solutions
that belong only in LZ.

Once we assume u(0) € H®, we need to control u(t) € H®. This a priori control of u(t) for
t large is a by-product of the argument used to globalize solutions in Li-Wu-Xu [LWX11]:
using the I-method, their argument implies, in the case V =W = 0, that ||u(t)|| growths
at most polynomially in time. In section 6 we extend this result to V' # 0 in (NLS*) and
to W # 0 in (NLS).

It is very likely that we could prove the same result for the cubic NLS

i0u = —0%u+ Wu+ |ufPu, z€T

which is globally well-posed in L? [Bou93|. Nevertheless, our method would require to
deal with solutions at least in H'/6 (to ensure the Sobolev embedding H* C L? used to
control the error term coming from the Fourier truncation). To get a dynamic result even
in L? more work is needed, but it seems conceivable...

In this paper, we really use the regularizing effect of the integration in time, since we
crucially use the Strichartz estimate (5). But we transform this effect in a structural
property on Ps(u) = = [ |u®dz (see (6)). So we do not work in space-time (Fourier-
Lebesgue spaces) but only in space. It is likely that by working on our normal forms
directly in Bourgain spaces, and thus in space-time, the results would improve and in any
case be more intrinsic. Nevertheless, the normal forms as we know them at the moment
do not take into account the time variable, so it would be a non-trivial conceptual jump.
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1.1.4. Related literature. Initiated by Bourgain [Bou96|, and refined by Bambusi [Bam03]| and
Bambusi-Grébert [BG06|, the Birkhoff normal form method has been widely used in the last
decades to show, in its non-resonant version, stability over long times [Bou96, BG06, BDGS07,
GIP09, Del12, BD17, BEG20, BMP20, FI21, BFM24, BMM22|. However, all these results have a
major flaw, they only concern very regular solutions (in H*® for s > 1). The numerical simulations
of Cohen-Hairer-Lubich ([CHL08a, CHLO8b|) rather suggest that stability over long times is not
related to the regularity of solutions. On the other hand, and at the same time, the dispersive
PDE community has developed a lot of ingeniousness, based on linear (Strichartz) and multilinear
estimates, to demonstrate the local well-posedness for less and less regular initial data. By working
in space-time spaces to use the regularizing effect of the integration in time and by working in a
neighborhood of the linear solutions (Bourgain space), one finally succeeds in showing the well-
posedness in Sobolev spaces H® with s very small, even s = 0 [Bou93|, for the cubic 1d-NLS; in
any case below s = d/2 (d being the spatial dimension, which in this paper will always be d = 1).
In this kind of space the nonlinear analysis becomes very delicate since the multiplication of two
functions is not a stable operation anymore. Dispersive properties have been first used in the
context of the whole space R? (see [Klai84, Sha85]) but then extended in the periodic case by
Bourgain [Bou93| and more generally in a compact manifold [BGT04]. For a general overview,
one could consult the book by Tao [Tao06] or the book by Erdogan-Tzirakis [ET16].

Recently (in [BG21, BGR23, Abou22|) we proved Birkhoff normal form results in the energy space
(H! for NLS) leading to a control of the low actions of the equation. In [BG22] we succeeded to
control also the H® norm but only for NLS (in any dimension, s > d/2) with specific convolutional
potentials.

1.2. Sketch of proof.

1.2.1. General strategy. Let us first briefly recall the general strategy of the Birkhoff normal form
(see |Bam07] or [Gré07] for a more detailed introduction to Birkhoff normal forms for Hamiltonian
PDEs). We begin with the Hamiltonian formulation of (NLS*) (in this section we focus on the
convolution version of NLS which is a bit simpler). Identifying a function with the sequence of its

Fourier coefficients L*(T) 3 u = (uy)nez where uy, == (277)_% Jpu(z)e~™®dz, (NLS*) reads
z‘atuk = VH(u)k
where the Hamiltonian function of (NLS*) is given by

H(u) = Zy(u) + Ps(u),
Zg(u) = Zwkluklz

kEZ

and
1 6, 1
Ps(u) = 8 |u|®dz = 8 Z Uy Uy Ukey Uy Ugy Uy -
T k1+ko+k3=€1+£La+£3

To a monomial ug, - - - u, g, ---Ug, (¢ > 3) we associate the small divisor
Q(k,e) =Wyt T WE, — Wy — o — We, 750.

Given v > 0, by solving a so-called cohomological equation, we can remove any monomials with
|Q(k, £)] > ~ replacing it by a higher order term. So, for a given r > 3, we formally construct a
change a variable 7 such that

Hor=7.+R,
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where Z, contains only monomials for which |Q(k,¢)| < v (i.e. 7-resonant monomials in the
sense of (15))and R, is of order r: R,(u) = O(u"). We prove in section 3 that such 7-resonant
polynomial Z, will not modify® the dynamics of the low actions (the precise meaning of "low"
depending on the value of 7). On the other hand, R, is small in the sense that it has a high order,
but the precise meaning of this smallness will depend a lot on the topology in which we perform
the normal form.

1.2.2. BNF in Euclidean topology. Here the idea is to perform the normal form step without any
regularity, i.e. in L2?. For that purpose, we use a strategy inspired by [Bou04b] appendix 7.
As explained above, we will need to truncate the nonlinear term to a finite number of modes.
So we shall consider polynomials depending only on a finite number of complex variables wu,,,
n € M :=[-M,M] (i.e. polynomials defined on the space of the trigonometric polynomials of
degree smaller than or equal to M > 1). The principal difficulty lies in the choice of the norm
(let us call it || - ||¢) that we can put on polynomials P homogeneous of degree 2¢ in order to have
an estimate on its gradient of the form

IVP(u)]| < C|P

with C independent of M or at most with a logarithmic dependency and ||-|| denotes the canonical
Euclidean norm on CM (i.e. the L? norm of the associated trigonometric polynomial up to the
usual Fourier identification). Because we work in Euclidean topology, we have that

VP < 2q]| P, lul 7,

ul P17,

¢

where P € L4 is the 2¢-linear map that we can naturally associate with the homogeneous
polynomials of degree 2¢g. Furthermore, a standard result (due to S. Banach (1937)) says that

1P|z, = sup [P(u)| = || Pllo-
l[ull L2=1

So the good norm could be || - ||. But this norm is not controlled from the beginning (for Fs),
and furthermore we cannot propagate such a control by Poisson brackets (which is necessary to
implement a Birkhoff normal form). The idea, inspired by Bourgain, consists in considering the
level sets of P according to Q) (k,£) = k% 4 --- + kg —2 - Kg, the small divisor associated

to the integer part of wy, = k2 4 Vi. We define (see section 2.1 for a more intrinsic definition)
1Pl = sup [ [P](u) o, and [[Plly =: sup(a)|[la [ P](w)]leo
a€’Z a€l
where, given a polynomial
P(u) = > P gu, - . - U, g, - . - Ug,

kit thkg=€1++Eq
we define
LP—|(’LL) = Z |Pk7g|uk1 ukqu_glu_gq
[P S )
(the so-called modulus of P) and*

HaP(u) = E P,Mukl . uk,un1 . U¢q.
kit tkg=L1+-+Lq
kit +k2—£3——f2=a

3see in particular the beginning of the optimization procedure, section 3.5.

4Take care that in section 2.1 we have a more general definition of this projection, see (11).
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It is important to notice that, solving the cohomological equation, we transform a polynomial
controlled by || - ||,# to polynomials controlled by || - || (this is a consequence of Lemma 2.7).
With these two topologies on homogeneous polynomials we prove in Lemma 2.9 that ||Plls <
51og(2gM?)| P||«, which implies the desired estimate on ||V P(u)||, and in Proposition 2.11 that

I{P. Q}|» < 40qq log(24' M?)|| P|| »||Q

which is perfect to implement the Birkhoff normal form procedure (up to an unessential log M
loss).

€

Remark 1.10. The use of restrictions to level sets of the resonance function in multilinear esti-
mates is also reminiscent of the estimates used in performing Poincaré-Dulac normal forms; see
e.g. [BIT11, KO12, GKO13]| and the abstract framework highlighted in |Ki22|. These estimates
are essentially just another facet of the multilinear estimates in Bourgain spaces, as was recently
pointed out in [COS23] (in the case of R? instead of T¢).

1.2.3. End of the proof. For the first step of normal form, we have to prove that Pz can be
controlled by || - ||+ and this is a simple consequence of the Strichartz estimate (5) which leads

to (see section 3.3)
log M
6 pi < (expCr—F—),
(6) 188 e < (exp OB )
where PéM) is the restriction of Ps to the modes whose indices are in [—M, M]. At some point
we have to take into account this truncation, i.e. we have to control the remainder term

Lo (V P () — VP ()| 2

where II; denotes the projection on the modes whose indices are in [—M, M] (note that PéM) =

Psollps). Unfortunately, we were not able to estimate such quantity for solutions that only belong
to L?. For solutions in H*, s > 2/5, this follows by using the Sobolev embedding H* C L'°, which
leads to (see section 3.4)

ITar (9 P5(00) = VP @)l 2 < M fulff
with a(s) > 0 for s > 2/5. Then it suffices to control the growth of the H® norm of the solution,
|u(t)|| s, and this follows from the argument in [LWX11| for s > 2/5 when V = 0, a result that
we extend to non-vanishing V' in section 6. The last, but not least, step is to optimize the set of
parameters as a function of € as it is usual to obtain an exponential time (see section 3.5).

1.3. Acknowledgments. During the preparation of this work the authors benefited from the
support of the Centre Henri Lebesgue ANR-11-LABX-0020-0 and J.B. was also supported by the
region "Pays de la Loire" through the project "MasCan". T.R. was partially supported by the
ANR project Smooth ANR-22-CE40-0017. J.B. and B.G. were partially supported by the ANR
project KEN ANR-22-CE40-0016.

2. A BIRKHOFF NORMAL FORM THEOREM IN EUCLIDEAN SPACES

2.1. Functional setting. Let M be a finite set. We endow CM with its canonical Euclidean
structure
Vu,v € CM, (u,v) = R Z we T, lul)? = (u,u),
keM
and with its canonical symplectic form (i-,-).
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Being given two smooth real valued functions P,Q : CM — R, their Poisson bracket is defined
by
where the gradients are defined by duality by
Yu,v e CM,  (VP(u),v) = dP(u)(v)
and satisfy the usual formula
Vke M, (VP(u))y =205 P(u) = Opy, P(u) + i0gy, P(u).
Thus we have the formula
(7) {P,Q}u) =20 Y O P(0)0, Q(u) — Dy P() 0 Q(w).
keM
Note that this formula also makes sense if P, Q are complex-valued.
2.1.1. Polynomials. Being given two real vector spaces, a map P : F — F' is called homogeneous
polynomial of degree d if there exists a d-R-linear symmetric map L : (E)¢ — F such that

P(u) = L(u,--- ,u). Note that L is unique. In order to estimate these polynomials, we recall the
following useful proposition:

Proposition 2.1 (Prop 1 page 61 of [BS71]). Let E be a real Hilbert space, F be a real Banach
space, P : E — F be a homogeneous polynomial of degree d and L be the associated d-linear
symmetric map. Then we have

[Plloc == sup [[P(u)]r = sup L@, ul D).
Jullp<1 ) <1 @ | <1

Corollary 2.2. Under the assumptions of Proposition 2.1, if P is real valued (i.e. F =R), then
for all u,v € E,

VP < d||Pllcllulli " and  [[AVPw)(v)lle < d(d— D Pllollulg?[v]e.

Being given ¢ > 1, we denote by 77]1/{‘2(1 the set of the K valued homogeneous polynomial of
degree 2¢q which commute with the Euclidean norm, i.e.

Pﬁfgq = {P :CM — K | P is a R—homogeneous polynomial of degree 2¢ and {P, | - ||*} = 0}.
Note that the polynomials P € P&q are exactly those admitting a decomposition of the form
P(u) = Z Pkﬁukl .. .ukqu_gl. . .u_gq
ke Ma
with Py p € C satisfying the symmetry condition
Vo,0 € &y, Pyroe = Pre.

Moreover thanks to the symmetry condition, this decomposition is unique. Furthermore, if P €
73]{{(2(1 is real-valued, its coefficients satisfy the reality condition

Py = P e

Of course, as stated in the following lemma, thanks to the Jacobi identity, this class of Hamiltonian
is stable by Poisson bracket.
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Lemma 2.3. Let K € {R,C}, ¢, > 1, P € Pﬂfngq and @ € PH/(V‘%, be two R-homogeneous

polynomials commuting with the Euclidean norm, then {P,Q} € PHQAQ( _1) 1s also a homogeneous

a+q
polynomial commuting with the Euclidean norm.

2.1.2. Hamiltonian flows. We recall that a smooth map ¥ : CM — CM is symplectic if its
derivative preserves the canonical symplectic form, i.e.

Vu,v,w e CM, (GdU(u)(v), dP(u)(w)) = (iv, w).

In the following proposition, we give some of the properties enjoyed by Hamiltonian flows generated
by real valued homogeneous polynomials commuting with the Euclidean norm.

Proposition 2.4. Let ¢ > 2 and x € 77]{{12(1. Then the flow @& of the equation
(8) i0u = Vx(u)
is smooth and global. Moreover, it enjoys the following properties:

o preservation of the Euclidean norm:

M
vt e R, Yue CM, @ (u)]| = [lull.
e it is close to the identity:
vt € R,Yue CM, |10 (u) — ull < 2qftlIxlloo lul*~.

e it is symplectic: for allt € R, <I>§< s symplectic.
e its differential is under control:

(9) Vi€ R, Yu,0 € CM, [|d® (u)(v)]| < exp(dq®tlxocllul2) o]

Proof. The local well-posedness of the equation (8) follows directly from the Cauchy—Lipschitz
theorem. The preservation of the Euclidean norm comes directly from the commutation between
x and || -||?. This conserved quantity provides directly the global well-posedness of (8). Since (8)
is Hamiltonian, it is well-known that its flow is symplectic.

Integrating (8), thanks to Corollary 2.2, we get

t
% (u) = ul| = Vx(@3 (w)dr | < 2q(x|loo @7 (u)|** dr = 2q[t] || x| [Jul*7".
0 [052]

Differentiating (8), we have
0P, (1) (v) = AV (P, (1)) (A () (0)).
Moreover, thanks to Corollary 2.2, we have
1AV x (@% () (A (w) ()] < 4% [[xlloo || *7~2(|(AD% (w))* (v)|

and so, by Gronwall’s lemma, we get (9). O

2.1.3. Modulus. Following [Nik86, BGO6]|, being given P € P/C\jlzq, we define its modulus |P| €
73((/:\7/‘2(1 by
LP—| (u) = Z |Pk,£| Ukgy -+ - ukqu_gl. . ’LL_eq
k£ Ma

Of course, thanks to the triangle inequality, it is clear that ||P|lsc < ||[[P]|lcc- Furthermore, we
have the following useful lemma.
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Lemma 2.5. Let ¢ > 1 and cxe € C be some coefficients, with k,£ € MI. If P € P&q 1s the
polynomial defined by

P(u) = E Ck UKy - - Uk Ugy - - - Ug,
ke Ma

then, for all u € CM, we have
[PTw)| < > lenellun, - - uk, e - - T,
kLeMa
Proof. Indeed, since the coefficients of P are given by
Pre=(qg))? Z Cok,ob
$,0€64
then, by the triangle inequality, we have

|LP—|(U)|:‘ Z \(q!)_2 Z C¢k,gg|uk1...ukqu_gl...u_eq

ke M4 ¢,0€6,

< (q!)_2 Z Z \c¢k,og\]uk1...ukqu_gl...u_gq]

$,0€G, kLEMI

= D lemel@)™ > [ty e, i T ]

ke M4 ¢,0€6,
= E ’Ck’gH’u,kl ...?L]<,q?Lg1 ...UKq .
k. Lc Ma
(]

Moreover, we also have the following useful bilinear estimate.

Lemma 2.6. Let q,¢ > 1, P € P&q and Q € P(évéq, be two R-homogeneous polynomials com-
muting with the Fuclidean norm, then {P,Q} enjoys the following estimate:

I{P, Q}lloe < 8ad'[I[PTlloo I QT oo-

Proof. Thanks to the formula (7), setting ¢ = ¢+ ¢’ — 1, the polynomial {P, Q}, writes
{P, Q}(u) = Z Ch Uk - - - ukq,,u_gl - U¢q,,,

ke Ma’

with
Che =20 Y Pry oo loystso g1, @lor o ogr ot £y — Pher o g1 o1, g Qler o ey 1.
JEM
Therefore, thanks to Lemma 2.5, we have
H_{P,Q}—‘(U)‘ < Z ‘ck,eHukl ...’U,kq,,u_gl...u%,,’.
k,Le Ma"”

From now on, without loss of generality, we only consider vectors u € (R, )™ with real non-
negative components. Then applying the triangle inequality on the expansion of cg ¢, we get (on
(R+)™M)

L{P,Q}] <2 ) 955 P10, Q1 + 04, [ P10:51Q1.

JjEM
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Since all these partial derivatives are non-negative, applying the Cauchy—Schwarz inequality, we
get (on (R;)™)

{P.Q} <2 ) (0, [P] + 05| P10y, [Q] + 051Q1)
JEM
= 2[[(9u; [P + 05 [ P1);l1|(O; QT + 05 [ Q1) -
Finally, noticing that
(V([Pljgm))j = Ou; | P] + 05 | P
and applying Corollary 2.2, we get that, for all u € (R )M,

L{P.Q}1(w) < 2 V([P pm) @)1V (| Q1 ra0) () < 84q[ul* I P]|oo /I LQT los-
O

2.1.4. Frequencies and spectral projectors. Being given a vector of frequencies with real coefficients
w € RM, we define the quadratic Hamiltonian

1 2
(10 Zow =1 Y bl

keM

The following lemma describes the action of adz, , := {Z2,., -} on P/C\jlzq (it follows from a straight-
forward calculation).

Lemma 2.7. For all q > 1, adg, , is an endomorphism on P&q which is diagonal is the basis of
the monomials, i.e.

{Z3, uk, ukqu_glu_gq} = i(wg, + - +Wh, —wey, — - —wgq)ukl U, gy - g,
with w € CM and k,£ € M1,
For all ¢ € R and ¢ > 1, we define
(11) Iy : P&q — Ker(adz, , — iald)

as the spectral projector on the eigenspace of adg, , associated with the eigenvalue ia. More
concretely, II,, , is also defined through the formula

I, o P(u) == E Pr oty - . U, gy - . Ug,.
Wiy For Wi —wey = —we, =0

Thanks to these projectors, as stated in the following, the Poisson bracket can be seen as a kind
of convolution.

Lemma 2.8. Letq,¢ > 1, P € P(jc\/;q and x € Pé\/lzq, then for all a € R, we have

Hw,a{PyX} = Z {Hw,bPa Hw,cX}'
b+c=a

Proof. Decomposing P and x as a sum of eigenvectors of adz, , and then expanding the Poisson
bracket, we get

{Pox} = {lup P cx}
b,ceR
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As a consequence, it is enough to see that {Il,;P, I, x} is an eigenvector of adz, , associated
with the eigenvalue i(b 4 ¢). Applying the Jacobi identity, we have

{Z2,w7 {Hw,bpa Hw,cX}} = _{Hw,cX7 {Z2,w7 Hw,bP}} - {Hw,bpa {Hw,cX7 Z2,w}}
= —ib{IL, ox, Ly p P} + ic{IL, p P, 1L, o x } = i(b + ¢){IL, s P, IL, ¢ X }-

O

2.1.5. Spectral norms. Being given a vector of frequencies with integer coefficients w® e ZM, we
define the two following norms

1Pl oy = sUp [ o Plllee and [Pl = supla)[[Muw o Pl

for all P € P&q. First, we note, in the following lemma, that the norm [|-[| () is weaker than
the norm ||| -]||cc and that the norm || -

¢(wty controls the norm ||| ][l up to a logarithmic loss

Lemma 2.9. Let P € P&q, qg>1, and w® e ZM \ {0} be a vector of frequencies with integer
coefficients. Then we have

1Pl oy < 1Pl < 50w oo | Pllpoy and  [[LPTllso < 510g(2g1w™ |oo) [1Plles oy

where [w® |5, = max;je \wj(z)\

Proof. First, we note that the projectors II
have

() o commute with the modulus |-]. Therefore, we

[P =) TPl

a€L
As a consequence, since, if u € (R; )M, we have ) o[ Pl(u) > 0, for all a € Z, we get directly
that || P[] o) < ILP]]lso-
Then, we note that if |a| > 2¢|lw® |, then I, [ P] = 0. As a consequence, we get directly
that ||| P]]leo < 5q\w(i)\OOHPH%(w(¢)). Moreover, in the same way, we have

IPloo < 1Plgweny Do (@)™ S 1Pl (3 + 21og(2qlw? ).

‘a|S2Q|w(i)|oo
Finally, since ’W(i)’oo > 1 and 2log2 > 1, we get the second estimate. O

Remark 2.10. The logarithmic loss coming from the control of the || - || norm by the || - |4 o)
norm is different from that coming from the Strichartz estimate (5), and is rather comparable to

the logarithmic difference between X%3 and C(R; H®). This loss should be avoided by refining the

choice of topology on P(jc\/gq, in particular the norm controlling the dependence in a for U0 o P
The following proposition provides a very useful refinement of the bilinear estimate given by
Lemma 2.6.

Proposition 2.11. Let w® € ZM\ {0} be a vector of frequencies with integer coefficients, q,q >
1, Pe P&q and x € P(jc\/gq,, then {P, x} enjoys the following bilinear estimate :

(12) I{P, X3 o) < 4044 10g(2¢' | |o0) 1P|y I X

@ (w®):
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Proof. First, applying Lemma 2.8, we have

Hw(l) 7a{f)7 X} = Z {Hw(l) ,bP7 Hw(l) ’cX}7
b+c=a
le]<2¢|w®] oo
the second condition coming from the fact that if |¢| > 2¢/|w® | then i x = 0. Then applying
the triangle inequality and the bilinear estimate of Lemma (2.6), it comes

M0 P e < Y0 T P Mo X} oo

b+c=a
le] <2¢/|w® |0

<8¢ > Mo, P el M Q1
b+c=a
|C‘S2q/|w(i)|oo

I D (S

|e]<2¢/|w oo

< 8qq'[| P s (utiny lIx

Estimating this last sum as in Lemma 2.9, we get the estimate we aimed at proving (12).

2.2. Birkhoff normal form.
Theorem 2.12. Let H : CM — R be a polynomial of the form
H=25,+P,

where w € RM is a vector of frequencies with real coefficients, Zaw € PH% 1s the quadratic diagonal

polynomial given by (10), and P € P[{g},/lzp 1s a real valued homogeneous polynomial of degree 2p > 4
commuting with the Fuclidean norm.

Let w® € ZM\ {0} be a vector of frequencies with integer coefficients and w'/) € RM be the
vector of frequencies with real coefficients such that

w=w® 4
For allT > p—1 and all v € (0;1), setting

_1

2p—2
vy
13 Ep 1= - )
1) <ABPT5<|w(f)|OO>HPH%”(w(i))10g<|w(l)|oo>>

where A > 1 is a universal constant and B, > 1 depends only on p, there exists a symplectomor-
phism 7 : CM — CM such that H o7t~ ' is analytic on the ball B(0,e,) with an analytic expansion
of the form

(14) Hor ' =2Zy,+Y Q%)
Jjzp
where Q) ¢ 771{{12]- s a real-valued homogeneous polynomial of degree 2j commuting with the
FEuclidean norm such that:
o forj <r, Q@) is~y-resonant, i.e.

9
(15) |wk1+"'+wkj_Wel_"'—w£j|2’7 — Q;é):();
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e forall j > p, Q) enjoys the estimate

(16) QP i) < &7 20 PPl 0y
Moreover, the symplectomorphism T enjoys the three following properties:

e it preserves the Buclidean norm, i.e. ||7(u)|| = |Ju|| for all u € CM;
e it is close to the identity, i.e.

[[ul]\2P—2
(17) lll <er = lir —ul < (25) 7 Jul;
T
e its differential enjoys the following estimate

ul|\2p—2
(18) [l <e = weeM [arw) <esp (L))o

s
Remark 2.13. Note that the convergence of the entire series (14) on B(0,e,) is ensured by
estimate (16) and Lemma 2.9.

Proof of Theorem 2.12. We proceed by induction on r > p—1. First, we note that the initialization
is trivial. It is enough to choose 7 = Id. Now, we assume that the theorem holds at the step r
and we aim at proving it at the step » + 1. The object we are going to design at the step r + 1
will be identified by a subscript # (e.g. 7% will be the change of variable at the step r + 1 while 7
denotes the change of variables at the step 7).

> Step 1 : the new variables. Let x € 77]1/{12”2 be the polynomial defined by

(2r+2)

k.l .
= Skt e 10, (K, 0)] > — 0 else,
Xt =50 o) (k. €)=~y  and  xke=0 else

where
Q(k,£) = wp, + -+ Wy —Wey — — W,y
Thanks to Lemma 2.7, it is clear that
(19) QDR .= QB+ L (\ 7y} is ~y — resonant (see (15)),
because it satisfies
(20) QU =0 if Quk0) >~ and QP =@ else.

According to Proposition 2.4, let <I>§< the Hamiltonian flow generated by yx. We define the new
change of variable by

= <I)>1< oT.

Its properties will be studied in the last step of the proof. In order to have Poisson bracket
estimates, for the moment, let us estimate [|x||¢ (). First, we note that if [, (k, £)| = v then

g
(21) 190k, €)) 2 ey (B (0)

Indeed,
e cither (Q_ (k,£)) < 8(r + 1)(|Jw|w) and so (21) is trivial
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e or () (k,£)) > 8(r+1)(|w¥|) and so®

1
’Qw(k7£)’ > ‘Qw(i)(k7£)‘ - ’Qw(f)(kve)‘ > §<Qw(l)(k7£)> - ’Qw(f)(kae)’

= %<Qw(i)(k7£)> + %<me(k,£) —2(r + 1){Jw' |0
1 v
2 3o (k6 2 g oy (o (R )

—

Finally, as a consequence of (21) and the induction hypothesis (16), x enjoys the estimate

Xl oy < 8(r+ D7 (1w o) QP [y iy

(22) _ o1
< 8(r + 1y WD o) | Pl inyer 20

Therefore, defining

_1
2p—2

8(r + 1)(jw |oo>} [40(r + 1) log(2(r + 1)|w(i)|oo)] ||P||;f(wm)>_ ,

~y

(23) Mr4+1 = ([

as a consequence of Proposition 2.11, we get that for all ¢ > 1 and all QQ € P&q,

—o(r4+1—p) —(2p—2
166 Qo) < a2 P 1),

Therefore, noticing that (provided that A is chosen large enough)

—(2p—2 1 —92 —(2p—
(24) 77r4£1p ) S Bp 1T 267“ @p 2)7
we get

q —z(r - - — q —2r

(25) ”{X?Q}”ﬁ(w(l)) < BpT2ET 2r+L p)ET’ (2P 2)”Qujf(w(l)) = BpT2ET2 ”Qujf(w(l))

> Step 2 : the new expansion (algebra). We recall that by definition of @;t, if K:CM S Risa
smooth function then for all t € R and u € CM, we have

0K (D" () = {x, K}(@5" (u)).

6

Therefore, doing a Taylor expansion®, we get
N n N+1
ad ad
Ho (Tﬁ)_l(’u,) = Z n—'X(H o T_l)(u) + ﬁZg,w(u) + R(N)(u)
n=0 : :
with
(V) A=Y v 1 —t
RV () = /O o o (H o7 — 25.0)(5 () dt
1 (1 . t)N-I—l N2 i
+/0 madx Zg’w(q)x (’I,L))dt
5

note that for the last estimate we have used the assumption v < 1.
6at the order N +1>3for Zs, 0 @;t and at the order N for (H o - Zaw) o <I>;t.
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Recalling that the analytic expansion of H o 77! is given by (14) if ||ul| < &, we have”

Ho () Hu) =Y XZQW +ZZ ‘ + RN (w).

n=0 7j>pn=0

Recalling that, by definition, x solves the cohomological equation (19) we have

N+1 n—1
d
Ho (Tﬁ)—l( Z2w + Z Q(2r+2 Q(2r+2 + Z Z XQ(2y + R(N)( )
j>pn=0 n!
= Znu(u +ZZ XQ@J" ) + R™ (u)
j>p n=0 n!
where Q1) Pﬂ%r 4o is defined by
: . 1
(24,m) — ~H)(29) if . 1 (2r+2,n) _ 1 = (2r+2) - (27’+2),ti‘
Q Q if j#r+1 and @ ( n+1)Q a1
Note that, by definition of Q"+ (see (20)), it is clear that
Uiz p Y20, Q%] 0 < 1030
Then, ordering the terms by degrees, we get
Ho (%)™ (u) = Zo(u) + Y K@M (u) + RV (u)
jzp
where K&N) ¢ Pﬁéj is given by
. d?

(2,N) _ A% (k).

(26) K 2 a9
j=nr+k
n<N
Then, as usual, we also define its limit as
. . d?
24 . f(2,00) _ A o (2k,n)
(27) Q¥E = K _’Z —Q!
j=nr+k

Of course, it can be easily checked that this definition is consistent with (19) if j = r+ 1 and that
(28) Q(Qj),ﬂ — Q(2j) if <

As a consequence, Q%) is y-resonant for j <7 +1 (see (15)).
Then, assuming for one instant that the series S Q*)#(u) converges if ||u|| < .41, we have
proven that

Ho ()7 (u) = Zow(u) + Y QB (u) + ) (KN — QB (u) + RN (u).

Jj=p Jj=p

Therefore, it remains to prove that ||Q(2/)f|| () S s;ﬂj ) (which will imply the convergence

of the series) and that the last two go to zero as N goes to +o0o.

Tsince the series (14) is analytic, we can permute sums and derivatives (here Poisson brackets) inside the domain

of convergence.
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> Step 3 : control of HQ(zj)’ﬁH%(w(i)). First, we note that thanks to the relations (20) and (28),

since €, > e,41, it is enough to estimate HQ@j)’ﬁH%(w(i)) when j > r + 2.
Recalling that Q@) is given by (27), by the triangle inequality, we have
(29) 1B iy < D HW s oy
j=nr+k ’

Applying then the estimate (25) and the induction hypothesis (16), we get

Qe oy < 3 MEED G r
j=nr+k s

jn r \Y5s
—n
< E H(Bpr) (r—i—l) r+1||P||Jf(w()

j=nr+k

L (Byr2) e 1P|y,

Then, using the estimate C~75" < e~ "n"(log(C))™", C > 1, we get

HQ(%)’”’%(W(Z‘)) ro\ T n"(eByr)™" N " /p-1\"
. ' < Rt A Z £ -
—2j o <7‘—|—1> +Z n! <log (1+r)> < 5 )

Er—l—lHPH%”(w(l)) n>1

Since r >p>1,5>r+2and n > 1, we use the three following useful estimates:

i r+41
! < ! <e !, n"e " < nl, log (1 + l) > M,
r+1 r+1 r r

1QEDH| 1y 0y

—2;
Er—i—{HPH%(w(l))

to get

_ p—1\"
<e (1 I — — T <1,
<D B og(2) <5>Bw+oo”

and so ‘|Q(2j)7ﬁ||%(w(i)) < €T+1HPH%(w(i)) provided that B, is chosen large enough.
> Step 4 : limit N — +oo. First, we note that by definition of K(N) (see (26)) if j < N7 then
KCiN) = Q@9)f - As a consequence, by Lemma 2.9, if ||u| < &,4.1, we have

’Z(K(zj’m — Q) ()] < 50D Z K 23N —Q(Qj)’ﬁH%(w(i))”uHQj‘
i>p jzrN

But applying the triangle inequality, we have

. . ad?
1PN — QB oy < Y| nXQ S P
j=nr+k ’

and so thanks to the estimate proved at the previous step (see (29)), we get
: . . o
ISR — QP W) < 5o el Pl o) Y 372 Pl = 0.
Jjzp jzrN

Now, it only remains to prove that R(V) (u) goes to 0 as N goes to +00. First, we note that
using as previously the cohomological equation, the remainder term rewrites

R™)(u) = /0 DT S QR (a5 )

N!
Jj=p
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where Q( ) e Pﬂévgr+2 is defined by

1

1—t —t
- — " @r+2)t
—@

Q™ = QP it jAr+l, and QY= (1- —)QP 4
Note that as previously, we have HQ,E%’”)H%(W(Z-)) < Q) | (). Then, since ®* preserves the
Euclidean norm, we have

2k,N+1 r
R (u |<Zsup HN+1) PENED| a0+

adN+1 )
_ Z sup || X (2(]—(N+1)7“)7N+1)H ]| %
o<t<1 (N +1)1 >
JZ2(N+)r+p ==

(2k, i
< > Z s ||—Qt ™ oo ]|

J>(N+1)r+pj= nr-‘rk

Then applying Lemma 2.9 to control the || - ||« norm and proceeding as we did for the other
remainder term®, we deduce that R4Y) (u) goes to 0 as N goes to +ooc.
> Step 5 : properties of 8. First, we note that, by composition, it is clear that 7% is a symplecto-
morphism which preserves the Euclidean norm.

Now, recalling the estimate (22) of ||x|l4 ) and the definition (23) of 7,41 and applying the
last estimate of Lemma 2.9, we get

20r + 1) x/loo < n —(2p—2) —2(r+1—p)'

+
Therefore, as previously, provided that A > 1 is large enough (see (24)), we have
(30) 2(r + 1)[|xlloc < B, 'r %"

As a consequence, by Proposition 2.4, we have

: s
o3 (w) = ull < B2 () lull
T

Since ® I preserves the Euclidean norm, applying the triangle inequality and the induction hy-
pothesis (17), provided that ||ul| < &,, we get

H”@O—UHSHN¢§VM)— )l + 193

< (LY g+ s 2(“()

T \5 —1,.-2 (HU”> -2
< 1+B .

u) — ull

Since, provided that B, > 1 is large enough, we have (%) (14 B, 1r=2) < 1, we deduce that
| 7%(u) — u| is close to the identity.
Finally, it only remains to control d7(u). Applying the estimate (9) of Proposition 2.4, for all

v € CM, we have
() el
-1 2 2r r
403 (o)l < exp (4ol ) ol < exp (7 () ) ol

8note that we have the same estimates as for the term in (29) (the bound are uniform with respect to ¢t € [0; 1]).
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Therefore, thanks to the induction hypothesis (18), if ||u|| < &,, we get

Jar ) < exp ()77« 2o )y

Er

T N5 —1 -1 M 2p—2
Sexp((—r_i_l) (+28,'r () )HUH.

Again, provided that B, > 1 is large enough, we have (TLH)5(1 + 2Bp_17‘_1) <1 forall r > p, so

we get the expected estimate on [|d7~!(u)(v)]|. O

2.3. Dynamical corollary.
Definition 2.14 ((k,r,v) non-resonance). Being given k € M, r > 1 and v > 0, a vector of
frequencies w € RM is (k,r,~) non-resonant if for all ¢ < r and all Q € P{{gq,

if Q is y-resonant (see (15)) then Q commutes with |ug|? (i.e. {Q,|ur|*} =0).
Remark 2.15. The previous definition is the notion of non-resonance that we actually need for
our dynamical corollary; see Corollary 2.16 below. In the proof of Theorems 1.8 and 1.7, we will

use that strong non-resonance according to Definition 1.2 implies the non-resonance condition of
Definition 2.14 for all the “low modes” k satisfying (k) < eV for some exponent v > 0.

Corollary 2.16. In the setting of the result of Theorem 2.12, if k € M is an index such that the
frequencies w are (k,r,v) non-resonant and u € C*([0;T];CM) is the solution of an equation of
the form

(31) iOpu(t) = VH(u(t)) + g(t),
with g € CO([0; T); CM), and if it satisfies the bound

3
6= Juleor) = sup lu(e)] < 5.

then we have

[ur(T)? = luk ()] S e P28 + || Pll ot |0 o087 262> T + 8|9l e 07 T

Remark 2.17. The first error term, 6;(21)_2)5217, s due to the difference between the change of
variable and the identity. The second error term, HPH%(w(i))‘w(Z)’0052T+2€;2r, controls the growth

of the remainder term in the new variables (that is why it is of high order 6*"*2). Finally, the
third error term 6l|gl| oo 0,1y T is just due to the presence of the source term g.

Proof of Corollary 2.16. Let v = 7(u). By composition, since 7 is a symplectomorphism, we have
10w = idr(u)(—iVH (u) —ig(t)) = V(H o 771 (v) — id7(u)(ig)
and thus
Orlowl? = {H o 77, up[*} — 2R(xidr(u) (ig(t))]k).

Now, note that since 7 preserves the Euclidean norm, we also have

E
vl oo 07y = 6 < é

Therefore, on the one hand, thanks to the estimate (18) on d7(u), we have

[ R@[idT(u)(ig)]k)| < lvlllldT(u)(ig)]| < dellg]-
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On the other hand, since the frequencies w are (k,r,7) non-resonant and Q) is y-resonant for
j < (see (15)), we have

{H o7 P} = | S{@), [P < 20l Y IV@®@) )],
i>r >r

Applying then Corollary 2.2 and Lemma 2.9, we get
{H o7 [onPH <23 240l 1@ oo < D 2107 1R oo

j>r i>r
<23 24][v]7 5510 oo QUi (i)
i>r

Next, using (16), we can continue with
< 201w |0 1P sy iiny D 5267, 207)
j>r
< 20w oo | Pll o) 67220 D g2,
j=r+1

At the end, we have proven that
10k (T)1> = [k (0)*] S Pl tiny [0 o™ T2 T + 6l 21 (0,1 -

Finally, to conclude, it is enough to note that, since 7 is close to the identity (see (17)), we have

J\ 2p—2
[l = Jor | < u = vll(lull + [lv]}) = 2|17 («) — ullé < 2(;) 6.

3. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 relies on Corollary 2.16 of our Birkhoff normal form (Theorem 2.12).
Therefore, we are going to provide a decomposition of (NLS*) of the form (31) and to estimate
carefully each of its terms. Finally, Theorem 1.3 will follow from a careful optimization of all the
parameters involved.

In all the proof we consider a potential V' € L?(T; C), whose Fourier coefficients are real numbers
such that the frequencies

. 1
wj = 2+ (2m)2V;
are strongly-non-resonant according to Definition 1.2 (and so we get an exponent o > 0).

Now, thanks to Proposition 1.1, we consider a global solution u € C°(R; H*(T)), s > 2/5, of
(NLS*) such that

1
0 s = < —.
Ju(O)le = e < o
Since the L2 norm is a constant of the motion for (NLS*), we have
(32) vieR, [u(®)]r> = [u(0)]L2 < [u(0)]as =&

Moreover thanks to Proposition 1.1, we know that there exists 85 > 1 such that

(33) VteR, |lu()|ms <selt)Ps.



22 JOACKIM BERNIER, BENOIT GREBERT, AND TRISTAN ROBERT

3.1. Control of the high actions. When £ is large enough, the normal form theorem is not
well suited to prove Theorem 1.3. Nevertheless, in this case the time of stability is not too long
and Theorem 1.3 is just a consequence of the local well-posedness of (NLS*). For simplicity (to
avoid the use of Bourgain spaces), here we propose a simple proof of this point, relying only on
the estimate (33).

Let k € Z be such that

2(k) > e Ve

where vq5, € (0;1) is a positive constant depending only on «, v and s that will be optimized
later. Therefore, by assumption, we have

loge™! o1
log(2(k)) = ™

Consequently, it is enough to prove that there exists a constant y depending on s, and « such
that, provided that e is smaller than a constant g depending only on V, s, v, we have

(34) [t < o) ol (8)[2 — Juk(0)?) < 5.

To prove such a property, setting Lu := —8%u + V % u, we control the variation of the actions
uniformly with respect to k as follows:

() = [ur(0)]%] = [Jur (0 — | 5 up(0)]%] = [Jur(t)[* — (e~ ul®), |
= (|ug(®)] + [ur (0))|Jur (£)] — (e~ FulD)]|
< (JJu®)ll g2 + u(0)]z2)| (u(t) — e u®@)y]

< 2f|ul[ e p2|Ju(t) — e w1,

On the one hand, using the preservation of the L? norm (see (32)), we have |ullserz = €. On the
other hand, using the Duhamel formula, we have

t
Ju(t) = e~ a2 = | /0 eI () fu(r)ar |

< [ (e < el oy

)

Then, since s > 2/5, using the Sobolev embedding H?/> ¢ L'° and the a priori estimate (33) on
the growth of the H*® norm, we get

lut) — e a0 2 5, &3 8)155.

~oS

Finally, plugging these estimates together, we have proven that
lur()* = [ur(0)*] Ss €%(t)1+55.

which implies, as we wanted, the estimate (34), provided that

(1+58,)plog(vgs,) < %

(i.e. that p is small enough) and ¢ is smaller than a constant depending only on s and v.
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3.2. Setting for the low actions. Now, and until the end of this proof, we aim at controlling
the variations of |uy(t)|? when 2(k) < e~V>=». We consider a large parameter M > e~Ve=v that
will be optimized later, and we define

Enr = Spanc{eV” | || < M},
As usual, we identify £y, with CM (through the Fourier transform) where
M={-M,-M+1,...,M}.
We denote by II™) the L2-orthogonal projection on £y and we set
uEM = 10D (u(t)).

Note that, L? norm being a constant of the motion and II'™) being an orthogonal projection, we
have

(35) vteR, [uS) < ul®)llz = lluO)lz < [u(©)a: = .

Moreover, u(SM) solves the equation

(36) 0 = VHuEM) 4 g(t) with g(t) := 0TI [Ju(t) u(t) — [T u(r) IO ()]
where

1
H=Zy,+P with P=_—(]- 196)je,;, and  Zay, is given by (10).

3.3. Strichartz estimates. Now we aim at estimating HPH%J(M(U) where w](-i) = j2. Let a € Z,
by definition, we have

1 _

Yu € Ey, { (@) aP~|( ) — E Uk Ukgg Uk Uy Ugy Uy -
k%+k%+kg—£%—£%—£g=0
k2 +k2+ki—02—02—f3=a

As a consequence, following a remark of Bourgain [Bou04b, eq. (7.20)], we have®

1 - 52
(37) Moo PYw) = 5= [ el
and so, we have

0P| < gl ullboe, o,

Then, applying the Strichartz estimate (5) to control this L% space-time norm, we get

log M
(38) IPlluiy =sup sup [T  Pl(w)] S ePetoe,
a€Z ||lu|| 2 <1
ue€ny

where ¢ > 0 is a universal constant.

INote that the “time”  in (37) has nothing to do with the “actual” time ¢ of the evolution equation (NLS*). In
particular we use (37) with v = II*)y(t) for any fixed ¢ € R.
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3.4. Estimate of the remainder term. By definition of the remainder term g(t) (see(36)) and
the mean value inequality, we have

g1 < 5(Juf* + D) ju — 1T,
and so, by Holder, we have
lg@®)llzz < (lu@)ll720 + Tt [ 10) () = T u(t)]| o
Since by assumption s > 2/5 and since the Sobolev embedding H 2/5 < L9 holds, we have
(39) g2 < Nl s () = T u(t)] grass
Therefore, by definition of ™) we deduce that
(52
()2 < llu() |3 2~675).

Finally, using the a priori bound we proved on ||u(t)| gs, we get
2

(40) lg(0)| 12 < €2(t)58 (=),

3.5. Optimization of the parameters.
> Step 1 : Setting. Now we aim at controlling the variations of |ug| where k € Z satisfies

2(k) < g7 Vs,

We recall that we dealt with the case 2(k) > e~ V»=» at the beginning of the proof. Note that
since M has to satisfy M > e~ Y~s» this implies that |k| < M (i.e. k € M).
We introduce an integer r > p = 3 that will be optimized later, and we set

ar

vi=p(2(k)

in such a way that, since, by assumption, the frequencies w are strongly-non-resonant according
to Definition 1.2, w is (k,r,~y)-non-resonant according to Definition 2.14.

Therefore, applying Corollary 2.16 and using the preservation of the L? norm (see (32)), we
know that if ¢ < & then for all ¢ € R, we have

[lur () = [us (0)*] S &7 %€® + 1Pl (i |0 oo™ T2 [t] + ellgll oo (osey 22 £

First, we aim at establishing a simple lower bound on &,. Indeed, using the bound (38) on

[ P]] (i (With W] < M? and |w | < 1), we have
—c log M %
_ ,y > e loglog M 2 k, _ear
i (ABs RIS vy 1og<|w<i>|oo>> . ( Fogar ) )

Therefore, there exists a constant x € (0; 1), depending only on V', such that we have

NI

c_logM _ 1 ar
267‘ 2 K;e_iloglgogM (2<k>) 3¢ = .

As a consequence, provided that € < 7., we have

lur (P = TurO)P] S &% + 1Pl (o [ @ oo™ 2077 [t] + €llgll oo 010y 2 2]-
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Hence, to prove that if [t| < 7. (which will be optimized later), we have ||ug(t)|? —|ux (0)]?] < 57,
it is enough to prove that the following estimates holds

(I) e < ny,

(1) ;466 Sus 66_V/2,
(I11) “P“%(w(i))‘w(i)‘0052T+27771_2TTE Suys €%,
(IV) E”gHLO"(—TE;TE)L%TE S_,s,l/ 56-

> Step 2 : Simplification of the estimates. Now we aim at simplifying these constraints.

First, we note that since, by assumption, without loss of generality, we can assume that v < 2,
we see that provided that € is small enough, the first estimate (I) is a consequence of the second
one (II). Therefore, these estimate reduces to the second one (II) :

(Hb) 5V/8 <V,s M-

~

Then plugging this estimate (IIb) in the third one (III) and using the estimate we proved on
[Pl yp () (and using that, since r > 3 and v < 2, we have 2r —4 —rv/4 > r/3 ), the constraint
(ITI) can be replaced by

(ITTh) M3 BT <, 1.

Finally, using the estimate (40) that we proved on ||g[|ec(—7.;7.)12, the last constraint (IV) will
be satisfied if we can ensure the stronger constraint

(IVD) TP M~ <, 1.

> Step 3 : Choice of the parameters. In order to satisfy the estimates (IIIb) and (IVb), it is enough
to set

i e~B8)7Ir and M =e"/12,
Now the only remaining constraint is (IIb), i.e.
ev/S <,y e Bttt (2(k) TEC
Then, noticing that (since M = e~/ 12) provided that ¢ is smaller than a constant depending only
on v and « (i.e. uniform with respect to r > 3), we have
o~ 5 TEE N > gv/169= e

the constraint (IIb) can be replaced by

€V/16 SV,S (2<k’>) —€
and so by
—evT 1 _
(I1t) e Sus (2(k)) where o, = a+ 3 log(16v71).

Now, we set

1 log(e™1)
.= log ———~,
" 2y, °8 log(2(k))
in such a way that

_eﬂuz’r*
(2(k)) =¢,
and so that if » > 3 is an integer in the interval [ry; 2r,] then the constraint (IIt) holds. To be able
to choose such a r, it is enough to prove that r, > 3/2. Fortunately, we recall that we are dealing
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with the case 2(k) < e7V**¥ where v, 5, € (0;1) is a constant we have to optimize. Therefore,
we know that
-1

Ty > log v

,S8,V)
aV 1<
and so it is enough to require that v, s, is small enough to have
1 —1
70 log Vasw 2 5
14
That is why we set
v
41 v = —e 30,
( ) «,Ss,V ].6

Note that therefore, since v < 2, we have v, 5, < 1/8. Moreover, since /12 > 1/4, the assumption
|k| < M is satisfied :
|k| é g—va,S,V é 6_1/8 S 6_1/4 S 6—7”/12 — M
To conclude this proof, it is enough to note that by construction, we have proven that
2 2 6—
[luk ()7 = Juk(0)]F] < 77,

while .
_ _ 1 log(e™ ")
It < T. = G087 where T. > e B08) ' = 2~ 508y 18 Tos(2h)

4. PROOF OF THEOREM 1.7

The proof of Theorem 1.7 is very similar to the one of Theorem 1.3. It has the same structure,
but some estimates are more involved.

In all the proof we consider a real valued even potential W € H*(T;R) (i.e. W(z) € R and
W(—x) = W(x)) such that the frequencies w = (A\g)r>1 are strongly-non-resonant according to
Definition 1.2, where (A;)g>1 is the increasing sequence of eigenvalues of the Sturm-Liouville
operator —9d?2 + W(0;x] With homogeneous Dirichlet boundary conditions. We denote by (fe)r>1
the associated eigenfunctions (see Prop 1.6).

Now, thanks to Proposition 6.3, we consider a global odd solution v € C°(R; H*(T)), s > 2/5,

of (NLS) such that

1
0 s = < —.
(@)l ar- =2 € < o

Note that the existence of odd solutions is ensured by the assumption that the potential V' is
even. Without loss of generality, we assume that s < 1. Since the L? norm is a constant of the
motion for (NLS), we have

VteR, u@®)llrz = [luw(0)[[r2 < u(0)]m: =e.
Moreover thanks to Proposition 1.1, we know that there exists S5 > 1 such that
(42) VtER, fu(t)l|lms Sse(t).

In this proof, being given an odd function v € L?(T), we denote
Vg :/ v(x) fr(x)dz.
0

Moreover, since (fg)r>1 is a Hilbertian basis of L?(0;7) (see Proposition 1.6), we know that

v(x) = Z Vg fr(2)

k>1
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where fj is extended as an odd function on T.

4.1. Control of the high actions. Proceeding exactly as in the proof of Theorem 1.3 (see
subsection 3.1), it can be proven that if (k) > e™*s¥ (where v, s, is also given by (41)) then
there exists p such that

lo; 671
(43) [t < MBI = |u(t)]? — Juk(0)?] < 5.

4.2. Setting for the low actions. Now, and until the end of this proof, we aim at controlling
the variations of |uy(t)|* when (k) < e7Y>s». We consider a large parameter M > e~ Vo= that
will be optimized later, and we define

En = Spanc{fir | k < M}.
As usual, we identify £y, with CM (through the Fourier transform) where
M =11, M]
We denote by IIM) the L2-orthogonal projection on £y; and we set
wSM) =TI (1)),

Note that, the L2 norm being a constant of the motion and II™) being an orthogonal projection,
we have
(44) vieR, [u=M@] < fu®)lze = [w(0)]z2 < [[u(0)]|ns = e

(M)

Moreover, u solves the equation

(45) i0u=M) = VHuEM) 4 g(t) with  g(t) := oTIM [Ju(t) [ *u(t) — [T u() [ TTDu(t)],
and

1
H=Zy,+P with P=_(]- 196)1e,, and  Zay, given by (10).

4.3. Strichartz estimates. Now we aim at proving the same estimate on [|Pl| () (Where

w,(j) := k?) as in the case of (NLS*). In the paragraph Identification of the Hamiltonian structure
page 737 of [BG21], it is proven that (provided that szI(k>2\uk\2 < 00)

| Zu/ffkllis = Z Qk 0 Ukey Uk Uk Ugy Uy Ugy
k>1 k,Le(N*)3
where the coefficients Q¢ are symmetric and satisfy
Qe Spwy Z (v1ky + voks + vsks + pn 8y + pols + pals) >,
V,,LLE{—I,l}S
Therefore, for all a € Z, we have
1 _
Vue &y, (o Pllu) = = > | Qe e, ey ke, U gy g

12 .
kLc[1,M]?
k3+k3+k2—€2—02—£3=a
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and so
Uy Uy Uy g, Uy Uty
Moo L1 Sy D > e
vue{-1,1}3 kec1,M]3

k2 4-k3+k2—02 03— £3=a '

(46) viki+vokotvsks—+ €1 +p2la+pzlz=j
3

= Z //w(:z:)e—"t“ H e_iw%v(”")(:E)eitaﬂ%v(“”)(:n)dzndt,

v,ue{—1,1}3 TJT n=1

where v&D(2) == 30, oy [uklet®® and w(z) = 3, (k) "2e*® € HY(T) ¢ L™®(T). As a
consequence, applying Hélder’s inequality, we get

3
—1 62 n 83 n
o o 1@ Sywy Il Y- TT e 0| oz lle 0| o g2
I/,/J,G{—l,l}B n=1

Finally, noticing that [Jv™V]|| 2 = |Ju|;2 and applying the Strichartz estimate (5), we get

c log M
log log M
e loglog M |

1P sty SIwl
where ¢ > 0 is a universal constant.
4.4. Estimate of the remainder term. As in subsection 3.4 (i.e. for (NLS*)), we aim at
proving that, provided that s < 1, we have

(s—2

(47) lgll> S lulfps M =750,
which, using the a priori bound (42) on the growth of the H® norm, provides
(48) lgllze S € 6)P M6=5).

First, we note that for the same reasons as in subsection 3.4, the remainder term enjoys the
estimate

(49) lgllre S lullfsllw — T ags = flallfre | Y full goss-
k>M
Then we note that
(50) Vs € [0;1],Yv € A(N5C), 1> vkfullzpe = > (k) uil”.
k>1 k>1

Indeed, the case s’ = 1 is proven in Proposition 6.2 page 733 of [BG21] while the case s’ = 0 is
just a consequence of the fact that (f;);>1 is a Hilbertian basis. Therefore, the case 0 < s’ < 1
follows directly by interpolation'.

Finally, plugging (50) into (49), it comes (as expected)

1/2
lgllze S Nl D wnfillgars = lullds (D )0 ugl?) /
k>M k>M
< 4 ar-(s=2) )25 000, |2 /2 5 (=3
S lullzs DY R )T = s 5.
E>M

10ywe refer the reader to [Tri78, Thm page 130] and [Agral5, Thm 13.2.2 page 198 and Thm 13.2.1 page 197]
for specific results of interpolation well suited to this setting.
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4.5. Optimization of the parameters. Since the estimates on g and P are the same as for
(NLS*), the rest of the proof is exactly the same as in subsection 3.5. For completeness, it may
be just relevant to mention that the estimates

W) S M? and |w| <1
follow directly from [PT87, Theorem 4 p.35]. We also mention that since |k| > 1 then (k) > v/2 > 1
and so the quantity 2(k) of subsection 3.5 can always be replaced by (k) here.

5. SMALL DIVISOR ESTIMATES

This section is devoted to the proof of Proposition 1.4 and Proposition 1.8.

5.1. Proof of Proposition 1.4. First, we recall the classical proof stating that, almost surely,
the frequencies of (NLS*) for the random convolution potential V' as in (2) enjoy a weak non-
resonance condition.

Lemma 5.1. Almost surely, there exists v > 0 such that, for allg > 1, m € (Z*)?, hy,--- ,hy € Z
all distinct, we have

q
(51) Va€Z, |a+ ijw(NLS | > 7<mm ) H lmy| 4
j=1

Proof. Being given a, ¢, m, h satisfying the assumptions of the lemma, by definition of the random
convolution potential (see (2)), we have for all v > 0 and all j. € [1,¢]

(‘a—i—Zme NLS* )

:—E 1 NLS* -
Vo g Imin S @m 2ymg, (b ) ek D, myep <y

~H(hy,)>

<E [ 1 NLS* dy ~ v|m,;
~ /]R ‘mj* L +(2m)/2ym;, (hy, )~ fatdlisg, mJW( )‘< y | I

and so
<|a + ijw (NLS™) ‘ < 7) < ymm(h])

Therefore, for all v > 0, we have

P(El(a,q,m, h), |a+j§i:lmjw(NLS* ‘ < v{a 2(mln > H |m;|~ X )

S D IDIRCES | LA

a€Z q>1 me(Z*)1  heZl
h1<---<hgq

q
~EODED DD B 11_[1|mj|_2<hj>_2§77—_>(>]0,
i

q>1 me(Z*)7 heZa



30 JOACKIM BERNIER, BENOIT GREBERT, AND TRISTAN ROBERT

where at the first line (a,q, m,h) have implicitly to satisfy the assumptions of the lemma. It
means that, almost surely, there exists v > 0 such that, for all ¢ > 1, m € (Z*)?, hy,--- ,hy € Z
all distinct, we have

— Sy

[T Iml2(hy) 2.

(52) Va€Z, |a+ ijw NLS* > 7(a>_2<mjin(hj>>
j=1

Then, we note that either
q
] (NLS*)
|al 21+Z|m]||whj B
j=1
and so the small divisor iS larger than or equal to 1 (and so the estimate (51) is satisfied with

~v = 1) or (using that |wh | SV L2 (hj)?)

q q
(NLS*)
la| <1 +Z ]m]Hw s > Imilh)? Spvye T Imal? k)
7j=1 7=1 7=1
and so, plugging this estimate in (52) we get (51). O

Now, we aim at improving the small divisor estimate (51) in order to prove that almost surely
the frequencies of (NLS*) enjoy a strong non-resonance condition.
Step 1 : Setting. Let B > 0 be a constant such that

VkeZ, |w) — k2 < B(k)*

We fix ¢ > 1, m € (Z*)9, hy,--- ,hy € Z all distinct such that |hi| < --- < |hy|. We define
g« € [1,¢] as the maximal index such that

q
Vpel2,q], B |m;l(hy) S*> H!mg\_4 -
J=p

Therefore it is enough to estimate !a + Zq* lm]w,(zNLS ! where a € Z. Indeed, if ¢, < ¢, by

maximality of ¢, we have

q
B Y Imylthy) ™ < 3 Hm“

J=aqx+1

and so applying the triangle inequality and the non-resonance estimate, we have

NLS*
| Z mjw
q

q
B> m]h2+Zm]w(NLS)| 3 ]m]HwNLS) h?|

>
J=qx+1 j=1 j=qx+1
(53) 1 q g% qx
NLS* Y _
> 51 D2 myhd 4 Y mye 4 S (ha) 7 T Iyl ) B Y lmlny
J=q«+1 j=1 j=1 J=qx+1

q

1 - .
5| > mjh?JFijngS)\-

J=aqx+1 Jj=1

v
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(NLS*)

Now, to estimate !a + ;1,*: | My, * ‘ uniformly with respect to a € Z, we are just going to use
the lower bound given by Lemma 5.1, but in order to have a bound depending only on hi, we
have to estimate (h,) for all p € [2, ¢.].

Step 2 : Estimation of (h,) with respect to (h1). By definition of ¢,, we deduce that if p € [2, ¢,]
then

p—1
> 7 —4(p—1 —
Blmly ()~ = 3 (ha) > [m| 7Y ] ()~
j=1
Applying the log function to this estimate, we get
p—1
(54) yp < log(C) + 45, g log(jm|1) + 1 +4s;12yj,
j=1

where y; = log(h;) and C := (237_1)3:1. Here, we note that this last relation is also valid for
p = 1. Therefore, as a consequence of the discrete Gronwall inequality, we have

4(p—1)

yp < (log(C) + 4s71q, log(|/m|1) +y1)e s

and so

4
exp(2x)

(hy) < (Clml1 % (o))

Step 3 : Conclusion. Plugging this last estimate in the classical non-resonance condition (51) yield

g exp(2)

(NLS*) S o | — A 455" qu
\a+Zme > ()~ 10 (Clml{ (k)
Then, using the rough estimate ¢, < ¢ < |m|; =: 7, it comes
ot Zm]w LS| 5 ) i), —ar1073 expl) g o)

As a consequence, a standard asymptotic analysis proves that there exists a constant p > 0 and
a constant « depending only on s, such that we have

efar'

|a+2m]w(NLS* | >2p(2(h1))" .

which plugged in (53) concludes this proof.

5.2. Proof of Proposition 1.8. The scheme of this proof is very similar to the previous one.
First, we recall the classical proof stating that, almost surely, provided that the potential is small
enough, the frequencies of (NLS) for the random multiplicative potential (4) enjoy a weak non-
resonance condition.

Lemma 5.2. There exists n > 0 such that, almost surely, provided that ||W(NLS)HH1 < n, there
exists v > 0 such that, for all ¢ > 1, m € (Z*)?, hy,--- ,hy € N* all distinct, we have

q
(55) Va € Z, ‘a+Zm]wNLS |>7<max > H|mj| )T
=1
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Proof. Actually, we just have to prove that there exists 7 > 0 such that, being given a,q, m,h
satisfying the assumptions of the lemma, we have

q
(56) Yy >0, IP’<|a + 3 myen ) <y ‘ IWNES)|| 0 < n) < ymax(h;)*
7=1

Indeed, the rest of the proof is the same as the one of Lemma 5.1 (the estimate |w (NLS) | < (h;j)?

follows directly from [PT87, Theorem 4 p.35]). Moreover, the existence of n > 0 and the estimate
(56) are proven in [BG21|. More precisely, we refer the reader to the proof of Proposition 1.12 in
[BG21] and in particular to the last estimate page 703 of [BG21]. O

Now, we aim at improving the small divisor estimate (55) in order to prove that almost surely
the frequencies of (NLS) are strongly non-resonant. From now on we condition the potential
WWONLS) in (4) to be small enough in H' (in any case |[W®™S)|| ;1 < n) in such a way that by
[BG21, Proposition 2.7 p.700] (which is a variation of [PT87, Theorem 4 p.35]), almost surely

ngLS) > 1/2 and there exists B > 0 such that

VEeN*, w2 < B(k)!

Note that here we have used that [ WNLS) (2)dz = 0. We fix ¢ > 1, m € (Z*)7, hy,--- ,h, € N*
all distinct such that hy < --- < hy. We define ¢, € [1,¢] as the maximal index such that

q p—1
I e _ _
Vpel2.q], B |mjlh;)™" 2 5 {hp-1) [T Iy~
j=p J=1

Therefore it is enough to estimate !a + _1 m]wh ! where a € Z. Indeed, if ¢, < ¢, by
maximality of ¢, we have

qx

7 — 54 —4 —4

B S lmlths) ™ < Lihe) > T lmyl-4ths)
J=qx+1 j=1

and so applying the triangle inequality and the non-resonance estimate, we have (as previously,

see (53) for details)

1 q
‘Zm]w(NLS _§| Z m]hz—l—Zm]w(NLS)‘.

J=aqx+1 Jj=1

Now, as previously, to estimate ‘a—i— ] 1 m]wh | uniformly with respect to a € Z, we are just
going to use the lower bound given by Lemma 5 2, but in order to have a bound depending only
on hy, we have to estimate (hy) for all p € [2, g.].

By definition of ¢, we deduce that if p € [2, ¢+]] then

p—1
_ vy sy —4(p—1 _
Blmly(hy) ™ = 2 ()™ [m|7 7Y T] ()~
i=1
Applying the log function to this estimate, we get
p—1 p—1

yp < 10g(C) +4q. log(Im1) + s.yp-1+4 >y < 1og(C) + (44 s.)qu log(fmly) +y1 + (4+5.) 3y,
j=1 j=1
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where y; = log(h;) and C := 2By~ !. Note that this estimate is the same as (54) except that

45,1 is replaced by 4+ s,. Up to this change of constant, the rest of the proof is exactly the same
as the one of Proposition 1.4.

6. GLOBAL WELL-POSEDNESS OF THE FULL DYNAMICS

In this section, we give the proof of Proposition 1.1. We first review the general strategy of the
I-method and the argument of [LWX11], and then give the necessary modifications, first in the
case of a convolution potential, and then in the case of a multiplicative potential. The proofs of
the technical lemma will be postponed to Appendix B.

6.1. Strategy of the proofs. We will thus closely follow the argument in [LWX11] which dealt
with the periodic quintic NLS without potentials. This argument relies on the so-called “second
generation I-method”, introduced in [CKSTTO01, CKSTT02, CKSTT03, CKSTT08] and widely
applied to nonlinear dispersive equations both on tori or on Euclidean spaces; see for example
[Bou04b, dSPSTO07, dSPST07b, dSPST08] and references therein. The (classical) I-method ex-
ploits the almost conservation of the modified energy E(Iyu) for some appropriate choice of
parameter N > 1, where FE is the standard energy functional associated with the Hamiltonian
structure of NLS, and Iy is a smooth Fourier multiplier which behaves like the identity on fre-
quencies smaller than N and like a smoothing operator of order 1 — s for higher frequencies, s < 1
being a regularity where local well-posedness holds. Indeed, the standard energy E is conserved
but cannot be used at this level of regularity. Then the core of the argument is to prove that
E(Inu) is almost conserved, in the sense that its time derivative decays sufficiently fast with N.
Moreover, a faster decay yields a smaller threshold for the admissible regularity on the initial
data. Interestingly, regarding the case of the periodic quintic NLS without potential, in order to
extend globally the local solutions of [Bou93] when the regularity is s < 1, Bourgain [Bou04b|
combined the I-method with Birkhoff normal form transformations in order to get a better decay
of the time derivative of E(Inyu). This idea was also exploited in [CKO12| where the authors
implemented the upside-down I-method together with Birkhoff normal forms to study the growth
of Sobolev norms H*(T) for s > 1; namely, replacing the fractional integration operator Iy of
order 1 — s by a fractional derivative Dy of order s — 1. However, in the aforementioned seminal
paper |[Bou04b], the argument could only deal with regularity s* < s < 1 for some s* smaller but
very close to % It was later pointed out in [dSPST07b, LWX11| that one can improve on the
range of s by letting aside the Birkhoff normal form transformation, and by resorting instead to
both rescaling and a “second” modified energy. The former point relies on the observation that in
the Euclidean space R?, one has an improved bilinear estimate for the Schrédinger flow of type

. . 1
(57) HeltAleeltAgmHng SNy 2N 1 fé ez llgns Il e

for any N3 < Ny and functions fy, (resp. gn,) whose Fourier transform is supported in the
region {|¢| ~ Ny} (resp. {|¢] ~ N2}). This in turn provides some gain of negative powers of N
in the context of the I-method when estimating multilinear interactions where one input function
has dominant frequencies. The refined bilinear estimate above is however known to be false on
T?¢. One of the crucial observation in [CKSTT08, dSPST07b, LWX11] is that, after a proper
rescaling to work on a very large torus, one can still get an estimate which gets closer to (57) and
allows to get some decay in N; see [LWX11, Proposition 2.1] and Lemma B.1 below. The latter
point is the introduction of correcting terms in the modified energy, which cancel the interactions
having less decay in the time derivative of E(Iyu). This actually amounts to performing one
step of a Poincaré-Dulac normal form transformation, but at the level of the energy functional
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instead of the equation; see for example the discussion in [GKO13|. Implementing this method in
the context of (NLS*)-(NLS) yields the following results (see (61) below for the definition of the

Bourgain type space XZ’b).

Proposition 6.1. Let V € L%(T). Then for any % <s< % there exists €9 € (0;1] such that for

1
any ug € H*(T) with ||up|| s < €o, there exists a unique global mild solution u € Xi’g;;v* loe With
initial data u(0) = ug to (NLS*). Moreover, we have the growth estimate

(58) [u@)[rs Ss O, [luollae)l[uollas, t R,

where

1 -3
()2, 1t S lluoll g2

155 Juoll g2 1 2 ot
with a(s) = 3 — 2122,
In particular, note that the second regime gives the bound
lu@)llzs S 1S [Elluol s
Thus (58) implies the more standard growth estimate!!
(59) lu()llrs < ()% l[uol s

with
1—s

a(s)

Bs = max( ,1).

Remark 6.2.

(i) Proposition 6.1 only deals with the case s < % This is not restrictive since the point in this
paper is to run the Birkhoff normal form at regularity s < %, the standard theory covering the case
s> 1.

(ii) We point out again that we only consider initial data satisfying ||uollms < 1 since this will
be the case to apply the Birkhoff normal form. But in the defocusing case o > 0, the same
result as in Proposition 6.1 holds for any initial data. Moreover, the above remarks also apply to
Proposition 6.3 below.

We have a similar result in the case of a multiplicative potential.

Proposition 6.3. Let W € H*(T) be even. Then for any % < s < 5 there exists g € (0;1]
such that for any uy € H*(T) with ||uol|ms < €o, there exists a unique global mild solution u €

D=

1
Xi’;;;WlOC with initial data w(0) = ug to (NLS). Moreover, we have the growth estimate
(60) lu()llzs Ss (0 luollm=, t € R.

The proof of Propositions 6.1 and 6.3 will occupy the rest of this section. There are some
slight but essential modifications compared to the argument in [LWX11]| in order to prove the
results above. First, for the local well-posedness theory, in order to get existence of local solutions
beyond times of order O((||V||z2 + [[W||z2)~!) for small initial data (the case we are interested

HRecall that a(s) increases in s, with a(2+) =0+ and a(3) = 1.
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in), we need to remove the linear terms from the nonlinearity by incorporating them in the linear
operator. This requires to prove that the X*? spaces adapted to lower order perturbations of —92
still have the same properties (see Lemma 6.4 and 6.10 below), in particular Strichartz estimates.
This also explains why we deal with (NLS*) and (NLS) separately in Propositions 6.1 and 6.3.
As for the globalization part, the extra linear terms V xu and Wu are also dealt with differently.
The potential term Wu is treated as a perturbation term with respect to the nonlinearity. Indeed,
as detailed below, the rescaling performed in the argument of [LWXI11] is very favourable on
the potential and one gains for free a factor O(A~2) when estimating terms with W in the time

variations of the modified energy, where A ~ N 5% is the scaling factor. This is not quite enough
though, as the lower bound s > % in [LWX11] comes from the use of a modified energy where one
gains a factor N™3. But since the operator Iy at the base of the I-method does not commute
with W, terms with W only appear in commutators where one can gain an extra N ! factor at
the expense of requiring more regularity for W, which we can afford. In comparison, we do not
incorporate it in the linear operator as the Dirichlet and Neumann eigenfunctions of the Sturm-
Liouville operator —92 + Wjo.) on [0; 7], though localized on complex exponentials (see (94) and
(97) below), only satisfy convolution relations [1 fi, fo ks A Oky4ko—ky up to error terms. This is
good enough to handle trilinear interactions. However, the argument in [LWX11] is really tailored
to the precise restrictions on frequencies in the multilinear forms, and in particular to the null
moment condition kj + --- + kg = 0. But this is destroyed when replacing —9? by —92 + W (see
e.g. (46) above), and so it is not clear to us how to implement the second generation I-method
for the quintic equation without treating the term Wwu as part of the nonlinearity as we do here.

On the contrary, the convolution potential V' scales as W but commutes with Iy. Thus, we need
to view it again as part of the linear operator and use the argument in [LWX11] with —92 + V'
in place of —92. This brings small changes in all the parts of the argument which rely on the
particular form of the symbol of —d2.

6.2. Proof of Proposition 6.1.

6.2.1. Notations and local well-posedness. We first recall some notations. We will build the solu-
s,b

—024+V*
with convolution potential, namely the Banach space defined through the norm

tion u to (NLS*) in the Bourgain type space X adapted to the linear Schrodinger equation

(61) lall o 1= [[{wr) 3 (7 = wi) i (7)]| 22
for any s,b € R, where (1) = [, ul(t, x)e” T HE2) dadt is the space-time Fourier transform of
w: (t,z) € Rx T u(t,z) € C, and

WE = k2 + (27)%Vk

Recall that we assume that the V. are real.
In the rest of this section we will drop the subscript —9? + V* in the notation of the Bourgain
type space since there is no risk of confusion. We also define its time-localized version

(62) [ullxso(r) = mf{[[v]| xs0, v =won [-T,T]}.
Next we collect some linear estimates in the space X*?.

Lemma 6.4. The following properties hold:

(i) (X** as a resolution space) Let s € R and b > 5. Then there exists C = C(s,b,14[|V||z2) >0
such that for any u € X*° it holds u € C(R; H*(T)) and ||ul|poc s < Cllu| .-

(i) (Time localization) Let s € R and —1 < b < b < &. Then there exists C = C(s,b, 14|V ||12) >
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0 such that for any T € (0;1] and v € X*(T), it holds [l xsr () < CTb_b/”UHXS,b(T).
(iii) (Linear estimate) For any s € R, b> 3, there is C(s,b,1+ ||V 12) > 0 such that

—024V%)

1
el Vug|| sy < C{T)2 |lug| s

for any T >0 and uy € H*(T).
(iv) (Energy estimate) For any s € R, b > L, there is C(s,b,1 + ||V||2) > 0 such that it holds

H/ (1) OV P g

for any T >0 and F € X%b~1,

(v) (L* Strichartz estimate) There is C(1+ ||V||12) > 0 such that it holds lullga < CHU||X0,§+-

(vi) (Equivalence of norms) For any s,b € R, there exists C(s,b,14||V||12) > 1 such that it holds

%HU”Xs,bz < HuHXs,b2 < CHUHXS 3 for any u € X*°
0 *

—Yx 7&E+

< C(TY?||F|| y s
Xs,b(T)_C< VNE] xs0-1

—02+Vx"

The general properties (i), (ii), and (v) of X*® spaces in Lemma 6.4 in the case V = 0 are
standard, and we refer to [Tao06] and [ET16]. See Appendix A for the modifications in the case

V' # 0. Note however that the estimates (iii) and (iv), due to the factors (T >% and (T >%, are
somewhat less standard; see also Remark 6.6 below and Appendix A for the proofs. In the case
V =0, the Strichartz estimate (v) is due to Bourgain [Bou93|. The last estimate (vi) shows that
X% norms with respect to V=0 or V # 0 are equivalent, which in particular implies properties
(1), (ii), and (v) for the case V # 0 from the classical case V' = 0. Let us also emphasize that in
order to close the fixed point argument, one needs to get a small factor of T". In this perspective,
(ii) is used for the large data local theory, whereas (iv) when 7" > 1 is more suited for the small
data theory.

As a consequence of the estimates in Lemma 6.4, we then have the following smal
well-posedness result for (NLS*).

112 data local

Lemma 6.5. Let V € L*(T) and s > . Then there exists €g € (0;1] such that for any ug € H*(T)

with |uo|| s < €0, letting & ~ |lug|| 7t > 1, there exists a unique mild solution u € Xs’%"'(é) to
(NLS*) on [—6,0] x T with u(0) = ug, which satisfies
1
(63 ol gy S ) ol
for any 0 <t < 4.

Remark 6.6.

(i) The point in the previous lemma is the dependence of the local time & on ||ug| gs. Note that
the estimates (iii) and (iv) in Lemma 6.4 are somehow non-standard, since at scaling subcritical
regularity one is usually concerned with local well-posedness for large initial data, for which the
local time in the fixed point argument is taken to be § < 1. Here we have a time of existence
& ~ |luo||zs > 1, which is crucial to get the growth estimate (59) needed to control the high modes
in the proof of Theorem 1.3.

(ii) Note also that on the local time of existence, we can only get the local estimate (63) with

a loss of the factor <t>% due to the linear estimate (iii) in Lemma 6.4, which is sharp. This is

2Here we only treat the case of small initial data as this is the setting for the proof of Theorem 1.3. Of course
a similar local well-posedness result holds for large data, with a different time of existence, and with a proof which
relies on Lemma 6.4 (ii) on top of Lemma 6.4 (iv) to get a small power of T" € (0; 1].
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different from what happens at higher regularity (s > %l) where one can perform a fixed point
argument directly in C([—;6]; H*(T)) without having to use X*? spaces, which in particular
provides a longer local time & ~ ||lug||7;: and an estimate |ull Lge s < Nlwol|zrs- In particular, (70)
only provides stability of Fourier modes ||ux(t)|? — |ug(0)]?| < [lug||%s up to time O(1) instead
of times O(|jug||;+) compared to the local well-posedness theory at regularity s > %l. This loss
of <t>% may be avoided by using refined versions of X*° spaces (U?/V? type spaces) used in the

Cauchy theory at scaling critical regularity, but we do not pursue this refinement here, as (60)
suffices for our purpose.

Proof of Lemma 6.5. Note that here we do no try to cover the best possible range for the regularity
of the initial data, namely s > 0, since we will be restricted to the range s > % by the globalization
argument. The proof would follow from a straightforward adaptation of Bourgain’s argument
[Bou93|; see also [ET16]. Let e € (0;1], |luollas < €0, 6 = Alluoll;+ > 1 for some A > 1, and

R = 2062 luol| s for some C' > 0, and let B(R) be the ball of radius R in Xs’2+(5). Setting
t
T:ue B(R)w— 8V i / )TV |y |4 ()t
0

we will prove that T" is a contraction on B(R) for § appropriately chosen. Let then u € B(R), and
take v to be an extension of u such that ||21||X5’%Jr < 2Hu||Xs,%+ . First, using Cauchy-Schwartz

(9)

inequality, we have the Sobolev type estimate

ollzzs < 19 lspicans < 1T = K733 iz 0] yags S ol goge-
Interpolating this estimate with the L*-Strichartz estimate of Lemma 6.4 (v), we get
(64) lollzs, S Mol ge gy

Then, we first use Lemma 6.4 (iii) and (vi) to estimate

< 6% |luo| s + 62|[[v]*]|

HFUHX&%‘F(é) Xs,7%+

Next, using the dual version of the L* Strichartz estimate of Lemma 6.4 (v), we can continue with

< (52 HUOHHS + (52‘“?}‘4?}“ 3W5

Now, by the fractional Leibniz rule (see e.g. [ET16, Lemma 1.11]), it holds

1 S

ollyys.a [l 0] 12 lzawsallvlgs .

Jloftel g, < g

where the second step follows from Holder’s inequality. Using now (64), we finally get

Pull g 5y = 5% ol s +0 ol 54 < % fuo| = + Colull’.. b s)

1
Therefore, from § = Aljug|5, R = 20(5%Hu0HHs = 2CA%HUOHES, and HuHXs% < R, taking

€o € (0;1] such that

()

1
2CAz€2 < 1,

we have R < 1. Then choosing A such that

1

C&2R* = 28CP64 |ug ||y = 21 CPA* < 5
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we get that I' maps B(R) to B(R). The contraction property follows from similar estimate. This
proves (63). O

6.2.2. Rescaling. In order to implement the I-method to globalize the local solution provided by
Lemma 6.5, recall that for N > 1 to be chosen later, the I operator is defined as the Fourier
multiplier with symbol m(k) = ms(N~1k) for some smooth even function ms which equals 1 on
[0;1] and behaves like (k)*~! for |k| > 1. In particular, for ug € H*(T), we have Iyug € H'(T)
and it holds

(65) luoll s S [[Tvuollgr S N5 ||uol| s

However, as we mentioned above, in order to benefit from the improved bilinear Strichartz
estimate and get a better decay of the modified energy E(Inu), we will use a rescaling procedure.
Indeed, recall that (NLS*) has the following scaling property : wu(t, z) solves (NLS*) on [-T; 7] x T
if and only if

up(t,x) = )\_%u()\_zt, A lz)
is a solution of

(66) 10uy = —Q,%u)\ + Vi xuy + U]uA\‘lu)\
on [=A2T; \2T] x Ty, where Ty = R/(27A\)Z and
(67) Va(z) = A3V (A ta), x € (=7, ).

Following [CKSTTO03, dSPST07, LWX11]|, let us then recall some properties of A—periodic
functions. Define (dk)y to be the normalized counting measure on %Z:

/ a(k)(dk)y = % S k).

keiz
We define the Fourier transform of u € L'([0;27)\]) by
2T
(68) ak) = (2m) / e~k () dar,
0

ke %Z. Fourier inversion formula reads
u(w) = (2m)7+ [ e*a)(an),
and the following identities are true:
(1) [lullz2o;2er)) = 1@l £2¢(an) > (Plancherel)
(2) 02“ u(z)v(x)de = [a(k)o(k)(dk)y, (Parseval)
(3) wo(k) = @y (k) = (2m) "2 [ a(k — k)d(k1)(dk1)a,

The Sobolev space of A-periodic functions is H§ = H*([0;27\]) defined by the norm

Nl = 1CR) @B )| L2 ((ar) ) -
Then (65) implies
(69) lun ()l S I nvua ()1 S N2 [lun(0) g S N'2Auol|a=-
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We also denote by X)S\’b = X*%(T, x R) the Bourgain type space of space-time functions \-
periodic in x associated to —92 + Vi, endowed with

o = BN (r — b
Jullzo = 10847 = wr) () zae,
where as above (1) is the space-time Fourier transform, and

We A = K+ (QF)%(V)\)k =K%+ (2%)%)\_2V)\k

for k € %Z.
Before starting to get long-time bounds on Inuy, we recast the local estimate (63) in terms of
Inuy.

Lemma 6.7. Let V € L*(T), A > 1, s > % and u,(0) € H*(T)). Then for

8~ (IHnvua(0)]] )™,

1t holds

(70) vl g+ ) SVl 1Ever @ g

Proof. Again, we do not try to cover the whole range of regularity s > 0 where local well-posedness
of (NLS*) holds. The proof of (70) relies on the fact that, since uy solves (66), Inuy solves

(71) 10 I Nuy = —a:%IN’LL)\ + Vo« (Iyuy) + O'IN(|’LL)\|4’LL)\)

with initial data Iyuy(0) € H'(T)). Thus, we will use estimates similar to that in the proof of
Lemma 6.5. Note that the estimates (i)—(iv) of Lemma 6.4 are unchanged for A-periodic functions,
uniformly in A > 1 due to the dependence of the constants in 1+ ||Vy||z2 ~ 1+ A3 IV|lz2. This
is also the case for Lemma 6.4 (v) (see for example [dSPST07] or Appendix A below), which will
be enough for our purpose as mentioned above. Indeed, note first that we have the Sobolev type
inequality

~ _1 _1
oz, < () leay,, < IR0 =)™ iz, g

Interpolating this bound with the L* Strichartz estimate of Lemma 6.4 (v) gives

<
luallzg, S \\UAIIX%+,%+(5)

for any § > 0. Together with Lemma 6.4, duality, Holder’s inequality and the fractional Leibniz
rule, this yields again (note that § < 1 now)

< 05 |l fu|

4 <S55 4
uy|*u ux|*u
A T [T P et
1 1
72 < 537 ||lu ullts <857 ||u ul|t
(72 S o unlsg Iy S ¥ ol e Il g
1
73 <027 ||uy °
(73) [V
for s > %.

Now, from the mild formulation of (71) and Lemma 6.4, we have

Hvuall b S nua(0)]| g2 + HIN(!UA\%A)HX;?%

©)

1,
A
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Setting
Ulta) = [ [ Dm0~ () (@)
we can estimate the last term above by
sttty g, < IOy

where the multilinear operator is

— m 1-s 5 .
Ms(U)k(T):/+ o /k+ v I 1:%(152;?%%_5 11 U, (7)) (dk;)adry.
SETI— [n—— NG

j=1
But since
(k)'=%, [k| SN

mN(k)<k>1_s ~ {Nl—s |]€| > N 3

in particular

5
my (ky A+ - k) (k4 Es) 70 S m (k) ()0
=1
and thus the symbol of Mj is bounded uniformly in A\, N. Together with (72), this yields
4 4
Y T N T

P (%)

1 1
So || U b =02 |[Iyuy >
01, 3, = 3 Il

All in all, we get

1
< 1 5
Mvuall s g S Ivan Ol + 027wl g

Thus (70) follows from the previous estimate with our choice of ¢ as in the proof of Lemma 6.5. O

6.2.3. Modified energy and globalization. Now we set up the I-method for rescaled functions. Let
T > 1 be a target time of existence, and N = N(T') > 1 to be chosen later. Note that it is
enough to consider the case T > ||U0HI_{18, the other case being dealt with by the local theory
(Lemma 6.5). Then in view of (69), we take

1—s
s

1
A~ N7 luol| s

so that [[Iyux(0)|/g1 ~ 1, and thus (70) holds with § ~ 1 by Lemma 6.7. From now on, we drop
the subscript A.
The “first generation” I-method then corresponds to the use of the modified energy

1 1 - o
Ey(u) = E(Iyu) = §||ax1Nu\|iz + %HINUH%Q + 5/T (Vi # Inu) - Tyudz + EHINUH(;S.
A

Here the mass v > 0 is chosen such that v > (277)%)\_2 supy, |Vz|, which ensures that

W i=wp+7>c>0
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and so that Ey controls || - ||2,. To estimate the time variations of the modified energy, let us
recall some notations on multilinear forms from [CKSTT03, dSPST07b, LWX11|. For n € N,
I, C (A™1Z)" denotes the space

Tpi={(k1,..., k) € NZ)", ky+ ...+ Kk, =0}

For a smooth M, : I';, — C, we define the n-linear functional
An(Myun, . un) = | My(ky, oo k) T (k) (dkj)a,

and for n even we simply write

Then

El(u) = E(INU) = AQ(O';/;U) + AG(O'G;U),

where, as in [LWX11], o6 = gmn (k1) - - - mny(kg), and

1 - -
oy = 7 (R )mav (k2) Wiy + Wiy )-
Recall that «j, are the eigenvalues of —92+v+V*. In particular, o) = g9 = —%mN(kl)mN(kg)kl ko

as in [LWX11] when V' = 0.
Similarly to the computation (3.35) in [LWX11], using (66), we have that for any symbol M,

d e g :
(M) = An(Mnay)) + zaAn+4(j§_:1(—1)JXj(Mn)),
where in our case
j=1

and as in [LWX11]
X](Mn) = Mn(lﬁl, ce kj_l, kj + -+ kj+4, kj+5, o ,kn+4).

Since @y = 0 on I'y (recall that V and the Vj, are real-valued), this yields

d
aEl(U) = Ag(Mg ;) + oAio(Mig; u)
with
1 .
(75) M = 6 31 kP, + ogal] = M+ M,
j=1
and

6
My = (1) X;(0¢).
=1
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To treat the main term Ag(M{), we follow [LWX11] and make the non-resonant/resonant
decomposition Mé/ = IQMé/’l + lyMé/’2 and Mé/ = Mby — Mé/. Here the sets of frequencies
Q,T C T'g are the same as in [LWX11|, namely
(76)

T ={(k1,....ke) € U, |k1| > [ks| > |ks|, |ko| > [ka| > |Ke|, [k1] > |ko|, [KT|~ k3| > N},

(77) Qr ={(k1,.... ko) €T, [ka]| > |kao[},

(78) Qo ={(k1,... ko) €T, |k3|> [k]l},

(79) Qs ={(k1,....ke) €T, [ka| ~ [ks|, |ks| > [kal},
(80)

Q= {(kl,...,kG) €Y, |ki| ~ ke > ksl, ([kr] = kall < k1] or koky > 0, koke > o)},

and
6 .

(1) 5= {(kr. ko) €T, Il ~ kel 2N K], iy — ol 3 | 3010, |},
=3

and Q = U?Zle, where |kf| > ... > |k§| denotes the decreasing rearrangement of (ki, ..., kg).

With the decomposition above, the “second generation” I-method consists then in using the
modified energy

My
Ey(u) = E(Inu) — Ag(—-).
Q6
Indeed, from the conservation of the L2-norm and (69) it holds

() e S (Ol 2 + 10 Inull 2 S [1w(0)] e + Ex(u(t))?
(82) S 1[u(0) e + Ea(u(t))? + NO Ea(u(t))?,

where the second estimate follows from the positivity of E in the defocusing case and the Gagliardo-
Nirenberg inequality with the smallness assumption on ||ug||zs in the focusing case, and the last
estimate is a direct consequence of the following lemma, which is the exact analogue of [LWX11,
Lemma 3.3 (see Appendix B for a proof).

Lemma 6.8. The following estimate holds for any % <s<landt>0: ‘AG(]aw—g;u(t)H <
6
N2 [ Iyvu(t) 5.

Thus, (82) implies that it is enough to prove the almost conservation of Fs in order to globalize
the solution provided by Lemma 6.5.
Now, with the previous computations and the fundamental theorem of calculus we have

(53) Ba(utt) = Baul®) + [ {iMe(T5") + o (V")
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with

Then we can estimate the terms above similarly as in [LWX11, Proposition 3.2 & 3.3].

Lemma 6.9. For any % <s< % and 0 € (0;1), the following estimates hold uniformly in A\, N :
§

- SVl —-340 6

(1) |/0 AG(M6 )dt‘ S N7\ +||INu||X1»%+

H

(9)

S
s 7V —340 10
(11) ‘/0 AIO(MIO )dt‘ S N )\ +HINU||X1,%+(5)'

We also postpone the proof of Lemma 6.9 to Appendix B and conclude the proof of Proposi-
tion 6.1. Indeed, from (82), and (83) with Lemma 6.14 and 6.9, we get that there exists a constant
C(V) > 0 such that for'® any ¢ € [0;1],

Hnu®) I S Ba(u(t) = Ea(u(0)) + O(N72XF).
We can iterate this bound for ¢ € [0; A2T] as long as |[Iyu(t)|| g1 < 1. Thus, after A2T iterations
we get
Hnu@®)7n < Ba(u(t) = Ex(u(0)) + O(TNT2N*), [t < N*T.

1—s

Since A ~ N 5

1
l|uol|j7« and s > 2, by setting

1_
>0
S

a(s) =3—-2

and™*
L 2 1
N = mas (T7 [[uo| 77, ol 7).

we obtain that Iyu can be extended as a solution on [~A2T; A>T x T, which satisfies
(1) Mvule, g S 1.
AZTA

Reversing the scaling, this shows that the local solution u to (NLS*) provided by Lemma 6.5 can
be extended on [—T;7T] x T, thus proving global well-posedness and the estimate

lullgems < X Nuallsy, mg S A Ivuallsy g S A~ N luollms ~ C(T, [luollms)luol

with
1
)2, [t < lluoll s
" (s)
_2_as)
C(T, luollms) ~ 1 lluollzs, Nuollzs < 1S lluoll g ™
1-s 2(1—s) _2\_&3)_
5 ol =™, 1] 2 ol

This proves (58).

I3Recall that the local time is & ~ 1 by our choice of A and Lemma 6.12, and ||INUHX1’%+(6) <1

MRecall that the last lower bound on N comes from the need to have A > 1 together with the definition

1—s 1
A= N7 ||uo||frs- This condition is only restrictive when ||uo||zrs < 1, but this is the case we are interested in.
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6.3. Proof of Proposition 6.3. We now move on to the proof of the global well-posedness
for (NLS). We keep the same notations as for Proposition 6.1, except that now the Bourgain

type space Xi’gz w18 defined with respect to the eigenvalues A\ and eigenfunctions fj of the
Sturm-Liouville operator —d2 4+ W for an even potential W € H'(T;R) (see Proposition 1.6):

(85) HUHX:{; o H k)2 T—)\k> (a(r 7’):fk>L2Hng%a

where now @ is only the temporal Fourier transform of u, and the coefficients (u, fi) 2 now play
the role of the Fourier coefficients.

In the rest of this subsection, however, we will keep the subscript —92 + W, and simply write
X b (without subscript) when W = 0. The time-localized version is defined as in (62), and we
have the same linear estimates as in Lemma 6.4.

Lemma 6.10. The following properties hold:
(i) (XSgZJFW as a resolution space) If u € Xi’ngrW for some s € R and b > %, then u €
C(R; H¥(T)) and ||ul| oo S lull =,

oF+W

(i) (Time localization) For any T € (0;1] and s € R, —3 < ¥ < b < &, it holds l[ull s

S
X1y (D)

bb/
T ”UHng% (1)

(iii) (Linear estimate) It holds Heit(_aﬂ%JrW)uoHXs ()

—Yx

< <T>%Hu0HHs uniformly in T > 0, for

any s €R and b > L 3
(iv) (Energy estimate) For any s € R and b > 3 it holds

H/ tt’(82+W)()t
uniformly in T > 0.

(v) (L* Strichartz estimate) It holds HUHLQ{Z Sllull oz

—924+W
(vi) (Equivalence of norms) If W € H(T), o > 1, then for any s,b, 8 > 0 satisfying b < 1 5 + 5,
2b < 1+fB+0 and 2b+s < 3+B+0, there is C(||W | o) > 1 such that 5 |ul| xs—s0 < ”UHXsb <

+W

SAT?IIF || o1

XS, b(T)

Cllullxs+so-

Note that compared to Lemma 6.4 (vi), here we have a loss of derivatives in the embeddings
between X*° and X* gz Lw- Indeed, in the following we build the local solution to (NLS) in
Xi’gz W (Lemma 6.11 below) but after rescaling we extend it globally by iterating the local
theory in X*° (Lemma 6.12 below), both with b > 4. Thus, we need 8 > 0 in Lemma 6.10 (vi).

Again, we refer to Appendix A for the proof of this statement. In particular, as in Lemma 6.5,
the estimates above imply the following local well-posedness result.

Lemma 6.11. Let W € H'(T), and s > %. Then there exists €y € (0;1] such that for any g €

H*(T) with |Juo||g= < €0, letting § ~ |lug||5;s, there exists a unique mild solution u € X ot (0)

—92+W
o (NLS) on [—6,0] x T with u(0) = ug, which satisfies
1
(50 ol e ) S ¥l
—02+w

for any 0 <t <4.
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The proof is exactly the same as for Lemma 6.5, as the latter only relied on the estimates of
Lemma 6.4 (i)—(v), which remain true in this context.

Next, we define again the I operator as the Fourier multiplier (now back to the usual Fourier
basis) with symbol m(k) = ms(N ~1k) for some smooth even function mgs which equals 1 on [0; 1]
and behaves like (k)*~! for |k| > 1. We will then make the same rescaling procedure and set

u(t,x) = )\_%u()\_zt, A l)

which now is a solution of

(87) 10puy) = —8520\ + Wiyuy + 0|’LL)\|4’LL>\
on [~A2T, A\2T] x Ty, where
(88) Wi(z) = A2W(\"la), =€ (—mA\ 7).

Again, we start with a local in time estimate for Inuy.
Lemma 6.12. Let W € HY(T), A > 1, s > + and u)(0) € H¥(Ty). Then for

§ ~ow (L [ Ivua(0) )™
it holds

(59) sl g ) % Vs 0) .

1
A
Proof. Note that this time we work in the standard X space, namely the one corresponding to
W = 0. In particular, the solution u to (NLS) with initial data ug obtained from Lemma 6.11

1
belongs to Xi’g;;_W(T), T ~ |juo|/gs- By Lemma 6.10 (vi), it thus belongs also to Xs_’%+(T).

_ 1 _ 1
Then by rescaling uy € X; ’2+()\2T) and Inuy € X)l\ ’2+()\2T). On the other hand, we can
apply a fixed point argument to the equation solved by Inuy:
(90) 10 I nuy = —8£IN’LL>\ + In(Wyuy) + UIN(|U)\|4U>\)

with initial data Iyuy(0) € H'=(T)). We then proceed as in the proof of Lemma 6.7, except that
we have to deal with the extra term In(Wyuy) as part of the nonlinearity. To estimate this term,
we write it as

[N(W)\u)\) = WilIyuy + [IN, W)\]u)\.
The first term is straightforward to estimate with the fractional Leibniz rule:

1_
||W)\INU)\||X17,7%+ 5 02 HW)\INUAHL§H1*

(9)

S8 (IWallwr-elTvuall yo3+ ) + WAl HEnuall

1
XO,%+ X17y§+(5))

S8 Wallgs N N

As for the second term, we exploit that it is a commutator between Iy and W) to gain a factor

N~ at the expense of putting a derivative on Wy. Indeed, for fixed ¢t € R we can write its Fourier
coefficient as

|([Ins Walua)i(t)] = ‘/k (mn (k) — mn (k1)) ug, (£)We—g, (dk1)

1
SN e |>N/0 (NTH(ky + 0(k — k1)) 2dblug, (1)]|(k — k1) Wi, | (dk1)
1<
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where we used that the commutator vanishes if |k| + |k1| < N, and the mean value theorem to
estimate its symbol. Thus, we can estimate for fixed ¢t € R

| [In, WaJux(t HHlf

—2 2_ ! —1 s—2 2
N7 (O 00 )R, (11— ) Wi i) ) (000

2 2 _ 2
<N /k O 10— k)W (k)5 (@)

-2 2— U _ 2
e L (IOl k)Wl (@)s) (@0

2
e fo(f (N )™ g, (11 — k) Wi |(dka)2) ()
|k|~|k1|>max(|k—k1|,N)

SN2 Walle- e llua ()2 + N 72102 Wl oo [ Ivun () [[71- -
Thus

v WaJta | o g gy S 05 AW s vl 1

Then we can finish as in the proof of Lemma 6.7 to get

1 =
Invuall 1 3+ 5 S 02 HINun(0)ll - + 8 "X W | ga | Ivun |

) P A0)

1 5
+02 “INUA“X177%+(5).

A similar estimate holds for the difference equation, allowing to close a fixed point argument
with our choice of §. This shows local well-posedness of (90) in X 1_’%+(6) with initial data
Inux(0), and which thus agrees with Inyuy on [—d;d]. Moreover, similar estimates as above
replacing 1— by 1 show propagation of regularity, namely that since Iyuy(0) € H'(T) it actually
holds Inuy € X 1’%+(5). Together with a similar estimate as above shows local well-posedness in
Xl’%+(5) and (89) by our choice of ¢. O

Remark 6.13. Note that the local well-posedness results in Lemmas 6.5, 6.7, 6.11, and 6.12
are conditional, meaning that we cannot claim uniqueness of the solution in C([-T;T]; H*(T))

. 1 5,5+ 1

+V*(T) (respectively X127(4), X_(%%JFW(T), and Xl’é+(5)).
In particular, we can only compare Inyuy, where u is provided by Lemma 6.11, to the solution
of (90), if they both belong to Xl’%+(5). But the embeddings of Lemma 6.10 (vi) can only
guarantee that Iyuy € X1_7%+(5). So we need both local well-posedness of (90) in Xl_’%+(6)

and the propagation of regularity to obtain that actually Iyuy € X 1’%"'(6).

but only in the smaller space x” 2

We can then proceed with the second modified energy as above, by introducing

Mﬁ)

E2 (’LL) = E(IN’LL) A6( o6
= Ao(02) + Az(o3;u,@, W) + Ag(06) — Mg (—

Mg
ag

)

where g3 = %mN(k‘l)mN(kg).
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From (NLS), we thus get
d

(92) EEQ (u(t)) = A2(0'2a2) + AG(WG) + A10(M—10) + F(u, W)

where
F(u, W) = <—8§[Nu, iIN(W)\U)>L2 + (W,\[Nu, —i@ﬁINu + iIN(W)\U) + iIN(]u\‘lu)}Lz
+ <’INU‘4[NU, iIN(W)\u)>L2 + A7(M7; Uy ..., U, W)
— T4+ I+ 4 IV + V4 Ar(Mrsu, ..., 7, W),

where
6

M
M7 - -221(_1)]04_66(k17 cee 7k7j—1’k:j + k7’ kj+1’ B k6)
]:

Again, recall that ap = 0 on I's, and moreover

I+1I= <8IINU, 896[[]\7, W)\]U>L2,

I = —(WiInu, ily(Wau)) 2 = iWaInu, [In, Walu) 2,
and
IV +V = —(iWxIyu, In(Ju|*w)) 2 — In(Waw), [Inu[*Iyu)) 2
= —(iWxInu — iIy(Wyu), In(Ju|*u)) 2 — (il (Waw), In(|Ju[*u) — [Iyu[*Tyu) 2.

The term A7(M7;u,...,w,W), and the commutator terms I 4 II, III, and IV + V, are then
perturbation with respect to the analysis in [LWX11]. Indeed, we have the following lemma,
whose proof is postponed to Appendix B.

Lemma 6.14. The following estimates hold uniformly in A\, N and t € [0;1]:
(W) [T+ T1] Sy e AN Invull3
(i) [T] Sywy,,e N3N ull25
(i) [TV 4+ V] Spow AN [Tval [
(iV) |A7(M7; Uy ..., U, W)‘ SJ”W”H‘l Nz(s_l))\_2HINuH§{1.

Since the remaining main terms in (92) are the same as those treated in [LWX11], and s < 1,
we can finally estimate the increments of the modified energy by

Ea(u(t)) = E2(u(0)) + O(NT'AT?) + O(N 3\
for |[t| < 6 ~ 1. Then, iterating AT times yields
Eo(u(t)) = Ey(u(0)) + O(TN™Y) + O(TN 3\,

We can thus conclude as in the proof of Proposition 6.1.

APPENDIX A. ESTIMATES RELATED TO XY SPACES

In this section, we give a proof of the standard estimates in X spaces as stated in Lemma 6.4
and 6.10.
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A.1. Proof of Lemma 6.4. We start by proving the equivalence of norms, i.e. Lemma 6.4 (v).
Similarly, as in (102), we have

L |r = k2 = Vi? 200+ [V[72) (1 + 7 = K2?) <41+ [VI[72)° (1 + |7 — wil?),
for any 7 € R and k € Z. This shows that

e, = [ ST+ I = P+ i)

7(9 +V ]{JEZ
< Cy(1+ |VIz2) / SO0+ I — 2P+ R ()2 = [l
keZ —82
< G+ VIl
73 +V*

for any s,b € R and some constants C, = Cy(1 + ||V|[2) > 0 and C; = C;(1 4 ||V 2) > 0. This
proves Lemma 6.4 (vi). In particular, it suffices to prove Lemma 6.4 (i), (ii), and (v) in the case
V =0, which we now recall for completeness.

To show (v), we will use a dyadic decomposition in the modulation variable. Namely, for
K € 2% running on dyadic integers, let xx be a smooth dyadic partition of unity: xx is a smooth
compactly supported function such that xx(z) =1 on K < |z| < 2K and xx is supported on
3K < |z| < 3K, and " xx = 1. Then for u € X*® define the smooth projector PKu(T k) =
XK(T — k)i (7' k). Then, using Cauchy-Schwarz inequality, we get

lull2s = l?llze, < 3 IP,uPryul e,

Ki1,K2
2
/ /ZPKl (71, k1) Proyu(r — 71,k — by )dr | dT)
Ki,Ko R ez Rklez
1
< > (s lAcsllPiull IPull; )
K1,K> Tk

where A,y = {(r1,k1) E RXZ, (11 —k}) ~ Ky, (t—71—(k—k1)?) ~ Ky}. In particular, using
that 7 varies in a set of size min(K1, K») and that for (71, k1) € A,

Tk — (k—k1)? < |m — B} + |7 — 11 — (k — k)% < max(K, K»),

[NIES

we get
Azl S min(Ky, Ko)#{ki € Z, |7 — ki — (k — k1)?| < max(K;, Ka)}
) k T k?

= min(Ky, Ko)#{k1 € Z, (k1 — 5)2 =5~ 7 + O(max(Ky, K2))}

5 min(Kl, Kg) maX(Kl, KQ)%
Since min (K7, Ky) max (K7, Kg)% < (KlKg)%, using Cauchy-Schwarz inequality to sum on K1, Ky €
2V and using that Y K% < 0o and >, K2b||PKu||%%z ~ Hu||‘2X0’b concludes the proof of (v) in
the case V' = 0. Note that the estimate on A, remains valid if k? is replaced by k? + Vj, for
V € L*(T).

Next, if u € X for some s € R and b > %, we have by Cauchy-Schwarz inequality

lu() e < 1Kk) (Tl 1 < 14T = K2 P llgge rzllull o S Nullxons



DYNAMICS OF QUINTIC NONLINEAR SCHRODINGER EQUATIONS IN H2/5" (T) 49

uniformly in ¢t € R. This shows (i).
For (i), if we take u € X®%(T) and v € X*? be an extension such that |[v]| yss < 2wl xsb (1),

then for a smooth cut-off function 1 such that n = 1 on [~1;1], (T~ t)v is also an extension of
u. Thus,

[ull o ¢y < M10(T™ )0l o = ||77(T_1-)f||Hg,
with

10 = [ o= )gdr

such that |f|lzs = [Jvfxse. Thus, the estimate of Lemma 6.4 (i) is reduced to the general
estimate for functions of time only:

(T ) g S T £l

for any T' € (0; 1], the proof of which is given in [ET16, Lemma 3.11].
It remains to prove (iii) and (iv). Just as for (ii), these estimates follow from

(T ) e Sy (T2

and

oty [ @], <0 @15

Hp

for any f € H*“'(R). The first one follows from a direct computation. As for the second one, we
first compute

1T

[ sy = [ = far

so that

oty [ e

=[] [ RO A

171

N /R<T>2b‘ /|7'1<1<T> ﬁ(<T>(T — Tl)) — 7/7\(<T>T) fA(Tl)dTl‘2dT

171

e L] [ TR i o

171
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As for the first term, using the mean value theorem, that 7 is a Schwartz function, and Cauchy-
Schwarz inequality,

(7] /mgl 2y DN =) =T o

171

S/R<T>2b(/|T1|<1<T>2/01W(<T>(T—971))\d9\f(71>\dﬁ(2d7
Sn /|T>>1 ’T‘Zb(/n<1(T>2<<T>T>_1O\f(7'1)]d7-1)2d7—

" /T’|5(T> (/n|<1<T>2‘f(ﬁ)!dn)2<T>—1dr'
ST+ <T>4)(/ \f(ﬁ)!drlf T

‘Tl‘ﬁl

For the second term, we use instead (recall that b > 1) (1)’ < (1 — 71)%(m1)" to estimate with
Young and Cauchy-Schwarz inequalities together with b > % and that 7 is a Schwartz function:

[ e

171

A

/R(/ |>1<T>(<T—n>b<n>”‘1lﬁ(<T>(T_n))| + <T>b<ﬁ>—1|ﬁ(<T>7)|)|f(71)|dﬁ>2d7

(D21 AT o + (DO A2 ()~ f 17
(T f N 71
This finally shows Lemma 6.4 (iii) and (iv).

S
S

A.2. Proof of Lemma 6.10. Contrary to the previous case, in the case of a multiplicative
potential we could only prove the equivalence of norms with a derivative loss, see Lemma 6.10 (vi).
So instead we show the L* Strichartz estimate of Lemma 6.10 (v) directly. Indeed, note that the
other estimates of Lemma 6.10 apart from (vi) are proved exactly as those for Lemma 6.4. Recall
from [PT87, Theorem 4] that for an even W € H(T), o > 1, the operator —92+W has eigenvalues
A satisfying

1 [ 1
(93) A —n? — _/ W (x)dz| < C(IW]ae)
m™Jo n
n € Z. Here and below C(||W | ge), C'(||W || me) are various constants which may vary from line
to line.

Its orthonormal eigenfunctions f, are odd (resp. even) when n is positive (resp. nonpositive)
and satisfy for any k € Z

(94) | Falk)Lnjzng | < CUW (e ){Inl + k)™ Inl — [k~
Indeed this follows by writing

Anfa(k) = (=02 + W) f, ) 2 = (fu, (=07 + W)™ 12 = K2 F(k) + (f, W) 2



DYNAMICS OF QUINTIC NONLINEAR SCHRODINGER EQUATIONS IN H2/5" (T) 51

for any n, k € Z. This yields

e n|#|k
T (k) 2k = ‘ #‘ | 5 > Wi pa S (R1)
k1€Z

_ 1\n|7é\k|
bW {ij:nfn (£n) |k§?;| Wi— kl)\ 2 I;:EZWM szn(kz)}
1 n 2

Since we have from (93) that

—

1
An = B2 2 [n® = &% = —[Wl|ps = C(|W =)~ > C(IW [ ) (n* = k)
for |n| # |k|, together with the trivial bounds

FGDI <N fllze =1 and (W] < (In| = )~ |W | a=,

we indeed infer

| F ) g
< O([|[W]|ge){n® — k*)~ <|n|—|k‘|>_U+C(HW\|HU)<n2—k2>_12(k‘—k1>_0(n2—k%>_1
k1
CUIW g=){Inl + k)™ (In] = k)™= + CUW|ae) Y (ka) 7 (n £ (k — ko))~ (In| + [k — ko)~

k2
C(IW |z ){|n] + &)~ (n| — k)71~

+ C(Wle){ In = k= > (0 (k = k)~
|ka|~[nEk[>[nE(k—k2)|

+ 3 (k)" L+ n £ k| 3y <k2>“’}

k2|~ |n=E(k—k2)|Z|nEk]| ko | < | ntk|~|nd(k—k2)]|
< C(IIWlz=){Inl + [E) " (] = k)~

This shows (94).
On top of the estimate (94) on the eigenfunctions, we also have from the expansion (93) of the
eigenvalues that

(95) (An) < C(IW o) (n)* < C"(IW ll1o) (An),
and thus also
(96) (1= An)* < CWlle){r = n*)* < C(IW o) (T = An)®
for any 7 € R and n € Z, since
L+ |7 = M| S 1|7 = 0|+ C(W o) < C'(|Wllae) (1 + |7 —n?])

and similarly for the second estimate in (96).
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To show Lemma 6.10 (v), we will then proceed as for Lemma 6.4 (v) and use a dyadic decom-
position in the modulation variable:

[y =l < 3 Pk uPiullss,
’ K1,K>
YN 5 2 3
= Z < Z‘ Z PKlu(Tlvnl)PKzu(TO_Tlan2)<fn1fn27fno>L2dTl| dT()) .
Ki,K> RnoEZ Rnl,nQEZ

Now the main difference with the previous subsection is to estimate the coefficient (fn, fn,, frno) 12-
Using Plancherel’s theorem and (94) with ¢ = 0, we have

<fn1fn27fn0>L2
= 3" Foon (k1) Frg (k2) Fg (k1 + K2)

k1,k2

O7) =D (em Ly =) + OUNT = kD) ™)Ly 2100)) (Cmo gl =ia] + O((03 = K3) ™) Ly k)
k1,k2

X (CnoLjng|=iky+hs| + OUNG — (k1 + k2)*) ™) g | k1 +ha)

with |e,, [ < 1.
Letting an; k; denotes either 1, |, or <n§ — kj2»>_11|nj#|kj‘, we have

o~ — 2
/ E ‘/ E PKlu(Tlanl)PKgu(TO_717n2)<fn1fn27fno>L2d7—1‘ dry
R R

noEZ ni,no€ZL
(95) SIY([ X 1Pwutnom) Poun - o)
R no Rm,ﬂmkl,kz

x1a,, (lenlan2)an1,k1an2,k2ano,k1+k2d7'l>2d7'07
where similarly as before
Ay = {(11,n1,n2) ER X Z2 |71 — Ay | S K1, |70 — 71 — Ayl S Ko}
To end the proof of Lemma 6.10, we do a case-by-case analysis on (98) depending on the value of
the ap; k;’s. We say that a5, is of type L if apn; k; = Lj5,=k,;|, and of type II otherwise.

Case 1: I-I-I. In the diagonal case, we have ng = +1n; £2 ng for some choices of signs &, so
that we can estimate (98) as above by Cauchy-Schwarz inequality in 71,n;:

—_— —_— 2
/Z (/ > | Pryul(ri,n1) Pryu(ro — 71, F2(no F1m1))1a,, (11,1, Fa(no F1 nl))dﬁ) dro
R no Ry

< 1P ulls 1 Pryul?, sup [{(r1,m0) € R X Z, (1,1, Falng Fi 1)) € Any}|

7 T0,10

3
S (K1 K) || Pryulg [1Pryulls -



DYNAMICS OF QUINTIC NONLINEAR SCHRODINGER EQUATIONS IN H2/5" (T) 53

Case 2: II-I-L If apng ky+k, = <n(2) — (k1 + k2)2>_1 and an, g, = 1\”1|=\k1|7 Ang ko = 1\”2|=\k2|’ we
use Cauchy-Schwarz inequality and then sum on ng,ny to estimate (98) similarly as above by

2
/Z ‘PKl (m1,n1) Pryu(ro — 71,n2)| 1, (11,71, m2)(n§ — (£1n1 2 n2)2>_1d71) dro

ni,n2

< ”PKluHLz ”PK2UHL2 sup/ Z 1A7’0 Tl,nl,n2)<n0> <n0 F1n1 F2 n2> dTl

nop,ni,n2

< HPKluuigx”PKz“”%@ sup [{(11,n1) € R X Z, (711,n1,n2) € A}
» T T0,M2
3
S (K1 K) 3| Prcyul 7 [1PreyullZs -

The cases I-II-I and I-I-IT are dealt with similarly.
Case 3: II-II-1. In this case we use Cauchy-Schwarz inequality and then sum on ng,ns, ky to
estimate (98) by

—_ —_
/ Z ‘PKlu(Tl,nl)PKzu(To - Tl,ng)‘
n1,n2,k1

o 2\—1/.2 1.2\—1 2
XlATO(Tl,nl,n2)<n0 (kl :t2n2)> <n1 k1> dTl dTQ

S Sllp/ > L, (rinana){ne) A (no — ky Fang) 2 (kr) " (my — k) 2dry

o R”Oynlyn%kl
< Pyl [Pyl

S 1Pxully IPiul?; sup [{(nn) €R X Z, (r,m,m2) € An}
» T To,M2
3
< (K1K2)4HPK1UH2L§QCHPKz“H%gz'

The cases II-I-1I and I-II-II are dealt with similarly.
Case 4: II-II-II. Finally, in this last case we use Cauchy-Schwarz inequality and then sum on
ng, a2, k1, ko to estimate (98) by

/Z | Prc, u(r1,m1) Preyu(mo — 71,m2)|

n17n2,k17k2
2
x 14, (T1,m1,m2)(ng — (k1 + ko)?)"Hn? — kD" (n3 — k§>_1d7-1) dry
S WPyl Pl swp [ 30 ta (ronm)
: o

no,n1,n2,k1,k2

x (no) "2 ng — k1 — ko) "2 (k1) "2 (ny — k1) "2 (ko) "2 (ng — ko) "2dm
< HPKluuig |Pcyull72 sup [{(71,m1) € R X Z, (71,11,n2) € Agy}|
,T t,x 0,N2

3
S (K1 K) || Pryulg [1Prcyuls -

This concludes the proof of Lemma 6.10 (v).
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It remains to prove the double estimate of Lemma 6.10 (vi). By duality, we can assume b > 0.
Using (94) together with (95)-(96) and Cauchy-Schwarz inequality, we then find

ol = [ 3ot = R0 ()P [ S = 20| X sz )| o

keZ keZ nez
2
Shulles [ St = kP (3 1 fadrelnl = 7 il + k) ) e
“opaw Rkez In|#[k|

2 T k’2> <k>28 —2-20 -2

< ul|% s 14 sup n| — |k n|+ |k .
S lelferss TGRMZEZ< — 7y Tyt 1l = 672727l 4+ K1) 72
In|#|k|

To estimate the last sum, we treat separately different contributions. We have

up 5 AT )yl 2 Y (e ) e
TeR <T—’I’L> <> (s+6) n,k

In|<|k| In|<|k|
provided that 2b + s < % + o0 and 2b < 1+ 3+ 0. Next,
(T — k‘2>26 <k>2s —2-20 -2
D R N (U
[l ~| k]2 |-k

5 Z <k>2b—2—2ﬁ<n 4 k>2b—2—2cr S 1

n,k
||~ [k[Z|ntk|

provided that b < % + f and 2b < 1+ B+ o. Finally,
(T — k‘2>2b (k)*s —2-2 -2 4b—25—2B—4—
_ o < s—23—4—-20 2s <
Sup 2 <n>2(5+6)<!n! |[) (Inl+ &)™ nZ]; (n) (k)™ <1
[l k| Il k|

provided again that 2b + s < % + o0+ and 2b < 1+ 8+ 0. This proves Lemma 6.10 (vi).
Remark A.1.

(i) In the case V' = 0, the Strichartz estimate of Lemma 6.4 (v) is due to Bourgain, and is an
improvement on the corresponding L*-Strichartz estimates proved in [Z74]:

192
(99) Helta”“’UOHL;l@(TxT) S lluollze-

Indeed, for u space-time periodic expanding the space-time Fourier series and making a change
of variables we can write u(t, z) Z e “awU ) with Uj(z) = 3,z € ug(j + k?). Together

with (99) and Cauchy-Schwarz 1nequahty we get
_itd?
lallzs, <Dl Us@) s, S D IUsla S 11?2 +Uj|!szg = [lullxo 14
JEL JEL

Thus Lemma 6.4 (v) gains almost # regularity in modulation. On the contrary, (99) does not
hold directly anymore for lower order perturbations of —d?2, since the Schrédinger semigroup is
no longer time periodic. However, the estimate of Lemma 6.4 (v) remains true, as we have seen
above.
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(ii) As a consequence of the equivalence of norms in Lemma 6.4 (vi), we also have the LS Strichartz
type estimate in Xi’ngrV* space for 0 < T <1

(100) lullzs,, S el or 34

—a%+V*(T)

since it holds for the case V' = 0 from the LY estimate (5) and the argument in (i) above. Note
however that the corresponding L8 Strichartz estimate for linear solutions

a2
[ Dugll s < ol o

cannot be proved directly with the original proof of Bourgain [Bou93| since it relied crucially on
the fact that the symbol of the linear operator is integer valued. In particular, it is not clear if
these estimates hold in the case of a multiplicative potential.

APPENDIX B. PROOF OF SOME TECHNICAL LEMMAS

In this section we give the proofs of Lemmas 6.8, 6.9, and 6.14.

B.1. Multilinear estimates in case of a convolution potential. We start with the proof of
Lemmas 6.8 and 6.9. These are straightforward adaptations of [LWX11, Lemma 3.3, Propositions
3.2 & 3.3], that we detail here for completeness.

Proof of Lemma 6.8. We start with the proof of the equivalence of the modified energy F; and
E, in the sense of (82), which is the analogue to [LWX11, Lemma 3.3]. The latter relied mainly

on the bound on the symbol |Mg| < |ag|. Thus, we start by showing
— v

(101) Mo | < log |

where the symbols are defined in (74) and (75). In particular,

6
—V 1 ; -
Mg = 1QM6V’1 + 1TM6V’2 = FQ Z(—l)]+1m(kj)2wkj + 1~f06ag,
j=1

where the sets of frequencies have been defined in (76)—(81). Since o = %H?Zl m(k;), we have
directly

[1vosay | < lag |,

so that we only need to estimate 1 Z?-:l(—l)j m(k;)?@p,. We then follow the proof of Lemma
3.2 in [LWX11]. We will frequently make use of the equivalence between k? and @j. Indeed,

recalling that the eigenvalues of —02 + v + Vyx are Oy = k? + v + (2%)%)\_2%, it holds for any
V € L*(T)

(102) 1+ @2 <201+ A2 VI22) (1 + k%) < 6(1+ A3 | V][22)2(1 + |a]?).
Then (102) implies the bound

v, ~
[T M| S max(|@y, ).

In particular in Q; (77), we have |af | ~ max;(|@g,|), which is enough for (101).
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Next, in Qg \ Q1, since |af | = |ag| + O(1) we have from [LWX11, (3.44)—(3.48)] and the mean
value theorem (recall that V' and Vj, are real-valued) that

6
V1 ~ ~ ~
o0, Mg | S [m(kn) e, — m(k2)Ony| + D 10w, | S [k — K| + [kal” ~ ks S o
i=3
in case kj = ko and k} = k3, while |a | = |ag| + O(1) ~ koky > ]192\91M(¥’1\ similarly as above

in case ki = ko and k3 = ky. In the last case kj = k3 and kj = kq it holds |a | = |ag| + O(1) ~
kit ~ max;(|n,[) 2 1o ")
To treat the contribution 3\ Q, as in [LWX11] it holds

g | = (6 = K5 + &+ k) + 0(KD) + Ov (1) 2 05+ K ~ b ~ ma([n ) 2 |10 Mg
For the case Q4 \ 1, [LWX11, (3.49)-(3.50)] are replaced by
log'| 2 (ki + k) = [kF — k3| — k5 + k3| + Ov (1) = (ki + k§) + o(kf) ~ kY ~ max(fi, |)
2 1M,
and

g | = (K — k3 — ki — kg) + o(k}) + Ov (1) ~ ki ~ max(|@x,|) 2 [1oMg™"|.
J

At last, in Q5, | | ~ |0k, — @k, |, and by the mean value theorem

6
M| < ka2, — (ko) + | Y2 (<17,
j=3

6
_ N2(1—s)“k1|2s k252, — (ka2 — |k:2|28_2Vk2| n ‘ Z(_ Hl@k ‘
=3

< N20-9) Iy — Ko ||~ 1_|_‘Z J+1@k
7j=3

6
(k1)2|@k, — @y + ‘ S (—1)ita,
=3

This proves (101). Recalling that |k}| ~ |k3| = N in T and m(k})(k}) ~ N'=%|k}|*, we can
then use (101) with Hélder and Sobolev inequalities and (69) to finally bound for s > 1:

(A6 ‘_‘/F (i, ..., H (t, k;)(dk;) (</H|utk |(dk;)
6

SIF kg s nlat, KD g IF ™~ {Lag s vl k) s IF {ladt, &)} 7e

SIED at k) e, (s alt, k)e, - Ju®)e

[BT 1> |k3[>N

=]

S NPV Ivu(t) |G

where F~Hay}(z) = (27)~ f are™(dk)y is the inverse spatial Fourier transform for A-periodic
functions. This concludes the proof of Lemma 6.8. O
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Proof of Lemma 6.9. Let us start with the multilinear estimate on Ag (WGV). First, we decompose
dyadically

1 Trom
_ ¥ /T TN 1) k) o, [ Pavyun, (8)(dkg),
j=1

Ni,...,Ng Jj= 1

where the N; run over dyadic integers, and Py, is the projector on frequencies N; < [k;[ < 2N;.

Writing similarly as for the k;’s Nf > Ny > ... > Ng the decreasing rearrangement of the IV;’s,
1

by definition of Y it holds N ~ NJ 2 N. Moreover, we can replace u € X)s\’2+(5) above by an

< 2]

1
extension v € X)s\’2+ satisfying ||v]] . To simplify notations, we still write u

Xzt X2 (5)
in place of v.

Then, to deal with the sharp time truncation restricting the time integral to [0; d], since multi-
plication by an indicator function is not bounded on X*° when b > %, we proceed as in [CKSTT01]

and decompose
Lo = F(t) + g(t) = L5 % (N7 OO ((NT)'%) + [1jo.5) — Ljozs) * (N7)OOx((NT) 710
for some smooth cut-off x satisfying y = 1 on [—1;1]. To estimate the contribution of the second

term to the integral, since we can bound crudely ]ﬁ@v] < (N7)?2, we have by Holder and Sobolev
inequalities

‘/ /Mﬁ HPNJUk t)(dk; /\dt‘ (M) ”gHLZHPJ\fluHLZLGHHPNJUHLO"LG
7j=2

< (VD)2 .2 H 1Pnjull ots
j=1

for s > % This is enough to sum on Nj;’s since by the mean value theorem

2 1— e tr ~/ 7 nrk\—100 2
2 = — 1 - 1
il = (1= X(ND)™7))| dr
1 2
5/ (Nf)—mo(/ [ (6(VF) ™) |do) dT+/ 7| 2dr
[l (Np)100 0 [l (N7 100
< (Np) 2 / dr + (N7)™190 < (N7) 7190,
7| (Np)100

To estimate the contribution of the first term, since H %JF(R) is an algebra, we have

it(—02 *
full yege = @A u(t)| s

e Sl

and, since X is a Schwartz function,

10T

11,5, = [ SR on

1T

5/ <T>_1+d7'—|—/ < >—1+<(N*) 1007’>_10d7'
IT[S(Ny)Lo0 T2 (Ny)1o0

< (N7)°F
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Then, we define
U, (1, k1) = ()L, oy (b Jm(ka ) ) [a(2, k)|
and
O, (75, k5) = Vv, (kg )miky) (kg (7, k),
j=2,...,6, and seek to prove

=2}

(103)
‘ZJ 1 ]+1 ( Wk"
Un, (75, kj)dr;(dk; <N3+N 1Un, L
/TG/f\Q ?1m(k‘)<k‘j> ]1_[1 Nt Jdri(dkj) 1) U‘ NJ”XO'2+

In order to prove estimate (103), we will need the refined bilinear estimates for A-periodic
functions that we alluded to before.

Lemma B.1. The bilinear map
5 (o) / ike / Lo (1 Y9k (e )2 ()
k1+ko=k
. 0,1+ 9 .
is bounded from (X, )% to L*(R x Ty), with

1
In ez, S (VA 2l oy ol o

The same property holds for

JE : (u,v) — /ezkx/ 1|k1+k2|2N17,(]€1)%(k2)(dk1))\(dk))\.
k1+ko=k

We postpone the proof of Lemma B.1 to the end of this subsection and continue with the
proof of Lemma 6.9. With the same arguments as for the proof of (101), it is straightforward to
check that [LWX11, Lemma 3.4] remains true with Mby in place of Mg. Then, since the proof of
[LWX11, Proposition 3.2| only relies on the bound on the symbol, Lemma B.1, Sobolev inequality
and (100), the exact same arguments prove (103) and thus Lemma 6.9 (i).

The same argument holds for the proof of [LWX11, Proposition 3.3] which relied again on
Lemma B.1, Sobolev inequality, (100), and (101), and thus remains true when replacing Mg by
M. This concludes the proof of Lemma 6.9 (ii).

O

Finally, we give the proof of Lemma B.1.

Proof of Lemma B.1. We proceed as in the proof of Lemma 6.4 (v) given in Appendix A above
and decompose dyadically

H / 1Ik1ik2\zNﬁ(kl)@(kz)(dkl)A(
k1+ko=k

t,(dk)y,

2 ’
t,(dk)

H/ 128 Prcy (k1) Prcyv (k) (ke ) 3 ‘
K1 k1+ko=k
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where Py is the smooth projector on the modulation |7; — ij| ~ K. Then proceeding as in the
proof of Lemma 6.4 (v),

. _ 2
//‘/ / Ly —ko| >N Prcyu(T1, k1) Prc, 0(72, k2 )dri (dk ) x| dr(dk)y
R T14+7m2=7 Jki1+ko=k
1
S HPKluH%gZHPKgUH%gZ SU}?}MN,M,%
: .

where

1
AN,)\J,k:{(Tl,kl)GRXXZa ki —(k—k)| Z N, |11 —wp|~ K1, |7—71 —wpep|~ Ko}

In case max (K7, Ko) = N2, we proceed as in the proof of Lemma 6.4 (v) to get

. 1
|AN7)\,T7]€| S mln(Kl,Kg)#{k‘l € —Z, |k’1 — (k‘ — k1)| Z N, |7’ —wkl —wk_k1| S maX(Kl,KQ)}

A

< min(Ky, Ko)#{ki € %Z, 2k3 + 2kky = 7 — k* = O(max(K1, K»))}

< min(K;, K3)Amax (K, K2)2 < %Kllﬁ.
In case max(K1, K3) < N2, noting that
(104) (ky — (k= k1) =21 — k? —2(11 —wp,) — 2((T — 71) — wi—k,) + Oy (1),
we get
| AN r k|
< min(Ky, Ko)#{k € %Z, k1 — (k= k1) 2 N, |(k1 — (k — k1))? — 47 + k*| < max(K1, K2)}
< min(Ky, Ko)#{ki € %Z, k1 — (k— k)| = N, k= g + %\/27 — k2 + O(max(K1, K2)) }.

But for ki, k1 in the above set, we have from (104) and the lower bound on |k — (k — k1) that

|k — k1| < [v/21 — k2 + O(max(K1, K2)) — /27 — k% + O(max(Ky, Ko))|
< O(maX(Kl,Kg) < maX(Kl,Kg)
V21 — k2 + O(max(K1, K»)) ™~ N

This finally gives

max (K1, K2)

| AN k| S min(Ky, Ko) (14 A ~ ).

All in all, this yields

. _ 2
//‘/ / 1|k1—k2\ZNPK1u(7'17kl)Psz(TZak2)d7'1(dkl)>\‘ dr(dk)x
R T14+7m2=7 Jki1+ko=k
1 1
S 5 (L A5) K K| Pl [[Pvllzs -

This is enough to prove Lemma B.1 after summing on K7, K.
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When v is replaced by v, we have similarly

— — 2
//‘/ / 1|k1+k2‘ZNPK1’LL(T1,kl)PK25(TQ,k‘Q)dTl(dk’l))\‘ dT(dk‘))\
R T14+7m2=7 Jki1+ko=k

-1/

1 ~
< _ ; i
< )\ S;’}]E‘) |AN,)\7T,]€|HPK1UHL%J||PK2UHL%,¢’

—_— —_— 2
/ / 1|k‘ZNPK1u(T1,kl)PKZU(TQ,kQ)dTl(dkl))\‘ dT(dk))\
T1—To=T7 J k1—ko=k

with

~ 1

Anpre = {(r1,k1) € R x XZ’ k| Z N, |1 —wp |~ Ky, |71 —7—wg—i| ~ K2}
Proceeding as above,

_ , 1
’AN,)\,T,IC‘ S mln(Kl,Kg)#{kl S XZ, ’k‘ Z N, ‘T — Wi, +wk1_kl 5 maX(Kl,Kg)}

1
< min(Kq, Ko)#{k; € XZ, k| 2 N, Kk — (ki — k)*> =7 + O(max(K1, K»)) }

T+ k2 + O(max (K, Ks)) }
2k

1
S min(Kl,KQ)#{k‘l S XZ’ |k‘| 2 N, k=
maX(Kl,Kg))
—~ )
This finishes the proof of Lemma B.1. O

S min(Kl, Kg)(l + A

B.2. Estimates in the case of a multiplicative potential. We finish this section by giving
the proof of Lemma 6.14.
First, from similar computations as for (91) we have for any ¢t € R
|(OeInw, Ou[In, Walu) 2 | < [[Inw]| g2 [|0 [T, Walul| 2
S (NTHWllasllullzz + N =MWl o [ Inul g ) | Il e

SNTIN W gra | I 3.

This proves (i).
Similarly,

|(WaInu, [In, Wlu) 2| S Wil e [ Inull g2 ||[In, Walul| 2
S N7 Wallpoe 10: Wl zoe | Invul| g2 ||ull 2
S NTHWAlZallull?

This proves (ii).
With Sobolev embedding and similar computations, we also have

([T, Walu, In (Jul*w)) 2| S N7H0 Wil oo [[ull 2l Jul “ull L2 S N7HIWA g lull s
SN WAl | vl s
since § > % Moreover,

6
(In(Waw), In(Jul*e) = [Ivul* Inu) 2 = [ me(kr ... ko) (Waw)r, (k) [T Uk, (dkj)a,

FG ]:2
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where the symbol is given by
m(ky)(m(ks + -+ + kg) — [T)—p m(k))
T15_y m(k;) (k;)

and Uy, (t) = m(k;)(k;)|ax, (t)]. In particular, if |kj«| = max(|k;[, j > 2), then mg vanishes unless
|kj«| 2 N, and since

me =

(k), |k[ <N,

we have the rough bound
Ime| < N H (kj)—°
J#I*
Together with Holder and Sobolev inequalities, we get
[(In(Ww), In (Jul*u) — [Inul* Iyu) 2| S N7HWal |l ol (0:) U LolU] 22
S NI |W | galfull = | U 1172
S NTIATW | gral Il |
This proves (iii).
Finally, it remains to estimate

A7(M7; Uy ..., U, W)\)

S0 (1M (kL kg Ky ks k) -
= ! : (W )y (dk7)x ] ] Uk, (),
Iy Hj:l m(k;)(k;) j=1
with Uy, = m(k;)(k;)|uk,|. Recall from [LWX11, Lemma 3.2] that |Ms| < |og|, and thus the
symbol above is bounded by

‘Z k‘l, ..,k’j_l,k’j—|—k77,k’j+1,...,k’6)|51,

thus proceeding as in [LWXll, Lemma 3.3] or equivalently as in the proof of Lemma 6.8, we get
| A7 (M7, ou, W) (8)| S N2ETDNT2W | g [ v | s
This shows (iv). This concludes the proof of Lemma 6.14.
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