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DYNAMICS OF QUINTIC NONLINEAR SCHRÖDINGER EQUATIONS IN
H2/5+(T)

JOACKIM BERNIER, BENOÎT GRÉBERT, AND TRISTAN ROBERT

Abstract. In this paper, we succeed in integrating Strichartz estimates (encoding the dispersive
effects of the equations) in Birkhoff normal form techniques. As a consequence, we deduce a result
on the long time behavior of quintic NLS solutions on the circle for small but very irregular initial
data (in Hs(T) for s > 2/5). Note that since 2/5 < 1 we cannot claim conservation of energy and,
more importantly, since 2/5 < 1/2, we must dispense with the algebra property of Hs. This is
the first dynamical result where we use the dispersive properties of NLS in a context of Birkhoff
normal form.
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1. Introduction

Schematically, the Birkhoff normal form method consists of a first algebraic step where we
transform the Hamiltonian of the PDE on a space of functions depending only on the space
variable, and then of a second dynamic step where we deduce a long time behavior of the solutions
of this PDE. In most of the results using this approach, the first step essentially involves multilinear
estimates based on algebraic properties of the function space used, here the Sobolev space on the
d-dimensional torus Hs(Td), and in this case a minimal regularity is required, here s > d/2. In
this paper, we develop a new approach: we use dispersion properties already in the first step. The
time oscillatory nature of the solutions, encoded in the Strichartz estimates, allows us to improve
the multilinear estimates (essentially by lowering the regularity) and to propagate them.
As a result, combining normal form techniques and dispersive techniques, we are able to specify
the dynamics of the quintic nonlinear Schrödinger equation (NLS) in Hs(T) with s < 1/2, i.e.
we can get rid of the algebra property so useful for non-linear equations. The proof is based on
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a normal form result without regularity, i.e. in L2, inspired by [Bou04b] appendix 7 (see also
[CKO12] and section 1.2).

1.1. Main results and comments. To clarify our point we will focus on an example, the quintic
NLS on the circle, but with two different linear perturbations:

• quintic NLS on the circle with a multiplicative potential

(NLS) i∂tu = −∂2
xu+Wu+ σ|u|4u, x ∈ T := R/2πZ, t ∈ R,

• quintic NLS on the circle with a convolution potential

(NLS*) i∂tu = −∂2
xu+ V ∗ u+ σ|u|4u, x ∈ T := R/2πZ, t ∈ R,

where, in both cases, σ = ±1 allows considering both the focusing and the defocusing cases and
the potentials W,V ∈ Hθ(T) (θ ≥ 0 will be specified later) will be chosen to avoid resonances
issues.

Before considering the long time behavior of the solutions, we recall that according to Bourgain
[Bou93], (NLS), with W = 0, is locally well posed in Hs(T) for s > 0 and according to Li-Wu-
Xu (see [LWX11]) it is globally well posed in Hs(T) for s > 2/5. In section 6 we extend these
results for both (NLS) and (NLS*) to obtain the following (the Bourgain spaces Xs,b are defined
in section 6 below).

Proposition 1.1. Let s > 2
5 . We assume that V ∈ L2(T;R), W ∈ H4(T;R). Then there exists

βs ≥ 1 such that the following holds. For any initial datum u0 ∈ Hs(T) with1 ∥u0∥Hs ≤ 1 there

exists a unique global mild solution u ∈ X
s, 1

2
+

−∂2
x+V ∗,loc (resp. u ∈ X

s, 1
2
+

−∂2
x+W,loc

) with initial data
u(0) = u0 to (NLS*) (resp. to (NLS)) provided that ∥u0∥Hs ≪ 1 in the focusing case σ < 0.
Moreover, we have the growth estimate

(1) ∥u(t)∥Hs ≲s ⟨t⟩βs∥u0∥Hs , t ∈ R.

We stress out that although this result is not surprising for specialists, it requires many gener-
alizations of multilinear estimates in the I-method of the first and second generation. Moreover,
due to homogeneity problems, the convolutional and multiplicative cases must be considered dif-
ferently. We refer the reader to the introduction of section 6 for a general presentation of the
method, and to appendices A and B for the technical details.

To state our dynamical results, which are the core of this work, we need to define the concept
of strongly-non-resonant frequencies:

Definition 1.2. Being given α > 0 and I ⊂ Z, we say that a family of frequencies ω ∈ RI

is strongly-non-resonant if there exist α, ρ > 0 such that for all q ≥ 1, m ∈ (Z∗)q satisfying
m1 + · · ·+mq = 0, h1, · · · ,hq ∈ I all distinct, it satisfies∣∣ q∑

j=1

mjωhj

∣∣ ≥ ρ
(
2 min
1≤j≤q

⟨hj⟩
)− exp(α|m|1)

where |m|1 := |m1|+ · · ·+ |mq|.
1Here, we only consider small initial data since this is the regime we are interested in to perform a Birkhoff

normal form transformation. But the same global well-posedness result holds for large data in the defocusing case
σ > 0.
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The reader used to the non-resonance conditions for PDEs may be surprised by our definition:
the estimate seems quite weak since, in the right-hand side, the exponent decreases exponentially
with the length of the linear combination of frequencies considered. We are more used to a
polynomial decay. However, one must keep in mind that here the control is done with respect to
the smallest index of the frequencies involved whereas, more classically, it is done with respect
to the largest index (weak non-resonance) or with respect to the third largest (condition used in
[BG06]). This type of condition was already used in [BG21] but quantified in a less precise way.
It is this additional precision in the exponent that will allow us to optimize the procedure and
reach exponential times.

1.1.1. Results with a convolution potential.

Theorem 1.3. Let V ∈ L∞(T;C) be a potential whose Fourier coefficients2, Vj, j ∈ Z, are real.
If the frequencies ωj = j2+(2π)−1/2Vj are strongly-non-resonant according to Definition 1.2, then
the solutions of (NLS*) enjoy the following property.
For all s > 2/5 and ν > 0, there exists ε0 ∈ (0; 1] and µ > 0 such that, if u(0) ∈ Hs(T) is a
function satisfying

ε := ∥u(0)∥Hs ≤ ε0,

then the global solution u ∈ C0(R;Hs(T)) of (NLS*) with initial condition u(0) = u(0) provided
by Proposition 6.1 satisfies, for all k ∈ Z and all t ∈ R,

|t| < ε
−µ log log ε−1

log(2⟨k⟩) =⇒
∣∣|uk(t)|2 − |uk(0)|2

∣∣ ≤ ε6−ν

where uk = (2π)−1/2
∫
T u(x)e

−ikxdx.

The next proposition states that, by randomizing the Fourier coefficient of V , with a reasonable
law (we choose Gaussian law, but other choices are possible), the strong non-resonance condition
is almost surely satisfied.

Proposition 1.4. Let s∗ > 0 and V (NLS*) ∈ D′(T;C) be the random potential defined by

(2) V (NLS*)(x) =
∑
k∈Z

Xk⟨k⟩−s∗eikx,

where Xk ∼ N (0, 1) are normalized independent real Gaussian random variables. For k ∈ Z, let
ω

(NLS*)
k := k2 + (2π)−1/2V

(NLS*)
k be the frequencies of (NLS*).

Then, almost surely, the frequencies ω(NLS*) of (NLS*) are strongly-non-resonant.

Remark 1.5. The constant µ in Theorem 1.3 depends only on the potential V through the param-
eter α (the exponent in Definition 1.2). Moreover, in Proposition 1.4, the parameter α depends
only on the potential V though its regularity s∗.

We postpone to section 1.1.3 the comments about Theorem 1.3.

1.1.2. Results with a multiplicative potential. Our result concerning (NLS) is a bit more compli-
cated to state, essentially due to spectral complications: −∂2

x + V ∗ diagonalizes in the Fourier
basis but −∂2

x + W diagonalizes in its own Hilbert basis. To simplify the presentation, we will
focus on the Dirichlet problem, and refer to [BG21] to explain why the result is more compli-
cated (but reachable) in the periodic case. We assume W to be even, so that we can identify the
Dirichlet condition with a symmetry condition on the solution of the periodic problem: we are

2defined by Vj := (2π)−1/2
∫
T V (x)e−ijx dx
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interested in solutions of (NLS) that satisfy u(x) = −u(−x) for almost any x ∈ T. This definition
of the Dirichlet problem still makes sense in low regularity, u ∈ Hs with s < 1/2. First, we need
some results about the Dirichlet spectrum of the Sturm–Liouville operator. Given a potential
W ∈ L2(T), we still denote by W its restriction on [0, π].

Proposition 1.6 (Thm 7 page 43 of [PT87]). For all W ∈ L2(0, π;R), there exist an increas-
ing sequence of real numbers (λn)n≥1 and a Hilbertian basis (fn)n≥1 of L2(0, π;R), composed of
functions fn ∈ H2 ∩H1

0 , such that for all n ≥ 1 we have fn(0) = fn(π) = 0 and

(3) −∂2
xfn(x) +W (x)fn(x) = λnfn(x), ∀x ∈ (0, π).

Now we can state our result for (NLS):

Theorem 1.7. Let W ∈ H4(T;R) be a real valued even potential, (λn)n≥1 be the increasing
sequence of eigenvalues of the Sturm–Liouville operator −∂2

x +W|[0,π] with homogeneous Dirichlet
boundary conditions and (fn)n≥1 be the associated eigenfunctions (see Prop 1.6). If the frequencies
ω = (λn)n≥1 are strongly-non-resonant according to Definition 1.2, then the solutions of (NLS)
enjoy the following property.
For all s > 2/5 and ν > 0, there exists ε0 ∈ (0; 1] and µ > 0 such that, if u(0) ∈ Hs(T) is an odd
function satisfying

ε := ∥u(0)∥Hs ≤ ε0,

then the global solution u ∈ C0(R;Hs(T)) of (NLS) with initial condition u(0) = u(0) provided by
Proposition 6.3 satisfies, for all k ≥ 1 and all t ∈ R,

|t| < ε
−µ log log ε−1

log(⟨k⟩) =⇒
∣∣|uk(t)|2 − |uk(0)|2

∣∣ ≤ ε6−ν

where uk =
∫ π
0 u(x)fk(x)dx.

Proposition 1.8. Let s∗ > 3/2 and V (NLS) ∈ L2(T;R) be the even random potential defined by

(4) V (NLS)(x) =
∑
k≥1

Xk⟨k⟩−s∗ cos(kx),

where Xk ∼ N (0, 1) are normalized independent real Gaussian random variables. For k ≥ 1, let
ω

(NLS)
k := λk be the k-th smallest eigenvalue of the Sturm–Liouville operator −∂2

x + V (NLS) with
homogeneous Dirichlet boundary conditions on [0, π] (see Proposition 1.6).
Then there exists a constant η > 0 such that, almost surely, provided that ∥V (NLS)∥H1 ≤ η, the
frequencies ω(NLS) are strongly-non-resonant.

Remark 1.9. • Remark 1.5 also holds in the case of Theorem 1.7 and Proposition 1.8.
• The constant η is universal: it does not depend on s∗.
• In Proposition 1.8, the average of the potential is equal to 0 (i.e. V

(NLS)
0 = 0). Neverthe-

less, this assumption is not restrictive. Indeed, due to the condition m1 + · · · + mq = 0
in Definition 1.2, if the frequencies associated with an even potential V ∈ L∞(T;R) are
strongly-non-resonant then the frequencies associated with V + υ are also strongly-non-
resonant for all υ ∈ R.

1.1.3. Comments on both results.
• Theorem 1.3 and Theorem 1.7 give a control on all the Fourier modes, but the time during

which we have this control depends on the index of the considered mode: the higher this
index is (high mode) the less the time is. The result is mostly interesting for the low
modes: in that case we have a control during exponentially long time in the spirit of some
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Nekhoroshev results recently obtained (see [BG22, BMP20, FG13]). In fact, for the very
high modes, the time becoming very short, the result is rather the consequence of the
well-posed character of the equation in Hs (see section 3.1).

• In fact, if we would focus only on the low modes (concretely 2|k| ≤ ε−υα,s,ν ; see section
3.2), we would not have to assume u(0) to be small in Hs norm but only in L2 norm (i.e.
u(0) ∈ Hs with ∥u(0)∥L2 ≪ 1). The reason being that we develop the normal form in L2.

• The Strichartz estimate ([Bou93])

(5)
( ∫

T2

|eit∆φ|6dxdt
)1/6 ≤ ( expC logN

log logN

)
∥φ∥L2

assuming suppφ̂ ⊂ [−N, · · · , N ], is used to initiate the Birkhoff normal form procedure
(see the sketch of proof below). This is actually one of the reasons why we have to truncate
to a finite number of modes from the very beginning.

• As said above, the results are consequences of Birkhoff normal forms in H0+ (or more
precisely in L2 with a logarithmic loss in terms of the order of the Fourier truncation).
The assumption on the regularity of the initial datum, u(0) ∈ Hs, is used to have a control
on the remainder term generated by the truncation to a finite number of modes of the
nonlinear term. Unfortunately, we are not able to control such remainder for solutions
that belong only in L2.

• Once we assume u(0) ∈ Hs, we need to control u(t) ∈ Hs. This a priori control of u(t) for
t large is a by-product of the argument used to globalize solutions in Li-Wu-Xu [LWX11]:
using the I-method, their argument implies, in the case V = W = 0, that ∥u(t)∥ growths
at most polynomially in time. In section 6 we extend this result to V ̸= 0 in (NLS*) and
to W ̸= 0 in (NLS).

• It is very likely that we could prove the same result for the cubic NLS

i∂tu = −∂2
xu+ V u+ |u|2u, x ∈ T

which is globally well-posed in L2 [Bou93]. Nevertheless, our method would require to
deal with solutions at least in H1/6 (to ensure the Sobolev embedding Hs ⊂ L3 used to
control the error term coming from the Fourier truncation). To get a dynamic result even
in L2 more work is needed, but it seems conceivable...

• In this paper, we really use the regularizing effect of the integration in time, since we
crucially use the Strichartz estimate (5). But we transform this effect in a structural
property on P6(u) = 1

6

∫
T |u|

6dx (see (6)). So we do not work in space-time (Fourier-
Lebesgue spaces) but only in space. It is likely that by working on our normal forms
directly in Bourgain spaces, and thus in space-time, the results would improve and in any
case be more intrinsic. Nevertheless, the normal forms as we know them at the moment
do not take into account the time variable, so it would be a non-trivial conceptual jump.

1.1.4. Related literature. Initiated by Bourgain [Bou96], and refined by Bambusi [Bam03] and
Bambusi-Grébert [BG06], the Birkhoff normal form method has been widely used in the last
decades to show, in its non-resonant version, stability over long times [Bou96, BG06, BDGS07,
GIP09, Del12, BD17, BFG20, BMP20, FI21, BFM22, BMM22]. However, all these results have a
major flaw, they only concern very regular solutions (in Hs for s ≫ 1). The numerical simulations
of Cohen-Hairer-Lubich ([CHL08a, CHL08b]) rather suggest that stability over long times is not
related to the regularity of solutions. On the other hand, and at the same time, the dispersive
PDE community has developed a lot of ingeniousness, based on linear (Strichartz) and multilinear
estimates, to demonstrate the local well-posedness for less and less regular initial data. By working
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in space-time spaces to use the regularizing effect of the integration in time and by working in a
neighborhood of the linear solutions (Bourgain space), one finally succeeds in showing the well-
posedness in Sobolev spaces Hs with s very small, even s = 0 [Bou93], for the cubic 1d-NLS; in
any case below s = d/2 (d being the spatial dimension, which in this paper will always be d = 1).
In this kind of space the nonlinear analysis becomes very delicate since the multiplication of two
functions is not a stable operation anymore. Dispersive properties have been first used in the
context of the whole space Rd (see [Klai84, Sha85]) but then extended in the periodic case by
Bourgain [Bou93] and more generally in a compact manifold [BGT04]. For a general overview,
one could consult the book by Tao [Tao06] or the book by Erdoğan-Tzirakis [ET16].
Recently (in [BG21, BGR21, Abou22]) we proved Birkhoff normal form results in the energy space
(H1 for NLS) leading to a control of the low actions of the equation. In [BG22] we succeeded to
control also the Hs norm but only for NLS (in any dimension, s > d/2) with specific convolutional
potentials.

1.2. Sketch of proof.

1.2.1. General strategy. Let us first briefly recall the general strategy of the Birkhoff normal form
(see [Bam07] or [Gré07] for a more detailed introduction to Birkhoff normal forms for Hamiltonian
PDEs). We begin with the Hamiltonian formulation of (NLS*) (in this section we focus on the
convolution version of NLS which is a bit simpler). Identifying a function with the sequence of its
Fourier coefficients L2(T) ∋ u ≡ (un)n∈Z where un := (2π)−1/2

∫
T u(x)e

inxdx, (NLS*) reads

i∂tuk = ∇H(u)k

where the Hamiltonian function of (NLS*) is given by

H(u) = Z2(u) + P6(u),

Z2(u) =
∑
k∈Z

ωk|uk|2

and

P6(u) =
1

6

∫
T
|u|6dx =

1

6

∑
k1+k2+k3=ℓ1+ℓ2+ℓ3

uk1uk2uk3 uℓ1uℓ2uℓ3 .

To a monomial uk1 · · ·ukq uℓ1 · · ·uℓq (q ≥ 3) we associate the small divisor

Ω(k, ℓ) := ωk1 + · · ·+ ωkq − ωℓ1 − · · · − ωℓq ̸= 0.

Given γ > 0, by solving a so-called cohomological equation, we can remove any monomials with
|Ω(k, ℓ)| > γ replacing it by a higher order term. So, for a given r ≥ 3, we formally construct a
change a variable τ such that

H ◦ τ = Zr +Rr

where Zr contains only monomials for which |Ω(k, ℓ)| ≤ γ (i.e. γ-resonant monomials in the
sense of (15))and Rr is of order r: Rr(u) = O(ur). We prove in section 3 that such γ-resonant
polynomial Zr will not modify3 the dynamics of the low actions (the precise meaning of "low"
depending on the value of γ). On the other hand, Rr is small in the sense that it has a high order,
but the precise meaning of this smallness will depend a lot on the topology in which we perform
the normal form.

3see in particular the beginning of the optimization procedure, section 3.5.
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1.2.2. BNF in Euclidean topology. Here the idea is to perform the normal form step without any
regularity, i.e. in L2. For that purpose, we use a strategy inspired by [Bou04b] appendix 7.
As explained above, we will need to truncate the nonlinear term to a finite number of modes.
So we shall consider polynomials depending only on a finite number of complex variables un,
n ∈ M := J−M,MK (i.e. polynomials defined on the space of the trigonometric polynomials of
degree smaller than or equal to M ≫ 1). The principal difficulty lies in the choice of the norm
(let us call it ∥ · ∥C ) that we can put on polynomials P homogeneous of degree 2q in order to have
an estimate on its gradient of the form

∥∇P (u)∥ ≤ C∥P∥C ∥u∥2q−1,

with C independent of M or at most with a logarithmic dependency and ∥·∥ denotes the canonical
Euclidean norm on CM (i.e. the L2 norm of the associated trigonometric polynomial up to the
usual Fourier identification). Because we work in Euclidean topology, we have that

∥∇P (u)∥ ≤ 2q∥P̃∥L2q∥u∥2q−1,

where P̃ ∈ L2q is the 2q-linear map that we can naturally associate with the homogeneous
polynomials of degree 2q. Furthermore, a standard result (due to S. Banach (1937)) says that

∥P̃∥L2q := sup
∥u∥L2=1

|P (u)| = ∥P∥∞.

So the good norm could be ∥ · ∥∞. But this norm is not controlled from the beginning (for P6),
and furthermore we cannot propagate such a control by Poisson brackets (which is necessary to
implement a Birkhoff normal form). The idea, inspired by Bourgain, consists in considering the
level sets of P according to Ω(i)(k, ℓ) = k2

1 + · · ·+ k2
q − ℓ21 − · · · − ℓ2q , the small divisor associated

to the integer part of ωk = k2 + V̂k. We define (see section 2.1 for a more intrinsic definition)

∥P∥H := sup
a∈Z

∥Πa⌊P ⌉(u)∥∞, and ∥P∥C =: sup
a∈Z

⟨a⟩∥Πa⌊P ⌉(u)∥∞

where, given a polynomial

P (u) =
∑

k1+···+kq=ℓ1+···+ℓq

Pk,ℓuk1 . . . ukquℓ1 . . . uℓq

we define
⌊P ⌉(u) =

∑
k1+···+kq=ℓ1+···+ℓq

|Pk,ℓ|uk1 . . . ukquℓ1 . . . uℓq

(the so-called modulus of P ) and4

ΠaP (u) :=
∑

k1+···+kq=ℓ1+···+ℓq
k2
1+···+k2

q−ℓ21−···−ℓ2q=a

Pk,ℓuk1 . . . ukquℓ1 . . . uℓq .

It is important to notice that, solving the cohomological equation, we transform a polynomial
controlled by ∥ · ∥H to polynomials controlled by ∥ · ∥C (this is a consequence of Lemma 2.7).
With these two topologies on homogeneous polynomials we prove in Lemma 2.9 that ∥P∥∞ ≤
5 log(2qM2)∥P∥C , which implies the desired estimate on ∥∇P (u)∥, and in Proposition 2.11 that

∥{P,Q}∥H ≤ 40qq′ log(2q′M2)∥P∥H ∥Q∥C ,

4Take care that in section 2.1 we have a more general definition of this projection, see (11).
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which is perfect to implement the Birkhoff normal form procedure (up to an unessential logM
loss).

Remark 1.10. The use of restrictions to level sets of the resonance function in multilinear esti-
mates is also reminiscent of the estimates used in performing Poincaré-Dulac normal forms; see
e.g. [BIT11, KO12, GKO13] and the abstract framework highlighted in [Ki19]. These estimates
are essentially just another facet of the multilinear estimates in Bourgain spaces, as was recently
pointed out in [COS23] (in the case of Rd instead of Td).

1.2.3. End of the proof. For the first step of normal form, we have to prove that P6 can be
controlled by ∥ · ∥H and this is a simple consequence of the Strichartz estimate (5) which leads
to (see section 3.3)

(6) ∥P (M)
6 ∥H ≤

(
expC

logM

log logM

)
,

where P
(M)
6 is the restriction of P6 to the modes whose indices are in J−M,MK. At some point

we have to take into account this truncation, i.e. we have to control the remainder term

∥ΠM

(
∇P6(u)−∇P

(M)
6 (u))∥L2

where ΠM denotes the projection on the modes whose indices are in J−M,MK (note that P (M)
6 :=

P6◦ΠM ). Unfortunately, we were not able to estimate such quantity for solutions that only belong
to L2. For solutions in Hs, s > 2/5, this follows by using the Sobolev embedding Hs ⊂ L10, which
leads to (see section 3.4)

∥ΠM

(
∇P6(u)−∇P

(M)
6 (u))∥L2 ≤ M−α(s)∥u∥5Hs ,

with α(s) > 0 for s > 2/5. Then it suffices to control the growth of the Hs norm of the solution,
∥u(t)∥Hs , and this follows from the argument in [LWX11] for s > 2/5 when V = 0, a result that
we extend to non-vanishing V in section 6. The last, but not least, step is to optimize the set of
parameters as a function of ε as it is usual to obtain an exponential time (see section 3.5).

1.3. Acknowledgments. During the preparation of this work the authors benefited from the
support of the Centre Henri Lebesgue ANR-11-LABX-0020-0 and J.B. was also supported by the
region "Pays de la Loire" through the project "MasCan". T.R. was partially supported by the
ANR project Smooth ANR-22-CE40-0017. J.B. and B.G. were partially supported by the ANR
project KEN ANR-22-CE40-0016.

2. A Birkhoff normal form theorem in Euclidean spaces

2.1. Functional setting. Let M be a finite set. We endow CM with its canonical Euclidean
structure

∀u, v ∈ CM, ⟨u, v⟩ = ℜ
∑
k∈M

ukvk, ∥u∥2 = ⟨u, u⟩,

and with its canonical symplectic form ⟨i·, ·⟩.
Being given two smooth real valued functions P,Q : CM → R, their Poisson bracket is defined

by
{P,Q}(u) = ⟨i∇P (u),∇Q(u)⟩.

In order to compute the gradients, it is useful to recall the usual formula

∀k ∈ M, (∇P (u))k = 2∂uk
P (u) := 2(∂ℜuk

P (u) + i∂ℑuk
P (u))
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of which we deduce, as usual, the formula

(7) {P,Q}(u) = 2i
∑
k∈M

∂uk
P (u)∂uk

Q(u)− ∂uk
P (u)∂uk

Q(u).

Note that this formula also makes sense if P,Q are complex-valued.

2.1.1. Polynomials. Being given two real vector spaces, a map P : E → F is called homogeneous
polynomial of degree d if there exists a d-R-linear symmetric map L : (E)d → F such that
P (u) = L(u, · · · , u). Note that L is unique. In order to estimate these polynomials, we recall the
following useful proposition:

Proposition 2.1 (Prop 1 page 61 of [BS71]). Let E be a real Hilbert space, F be a real Banach
space, P : E → F be a homogeneous polynomial of degree d and L be the associated d-linear
symmetric map. Then we have

∥P∥∞ := sup
∥u∥E≤1

∥P (u)∥F = sup
∥u(1)∥E≤1,··· ,∥u(d)∥E≤1

∥L(u(1), · · · , u(d))∥F .

Corollary 2.2. As a consequence, if P is real valued (i.e. F = R) we deduce that for all u, v ∈ E,

∥∇P (u)∥E ≤ d∥P∥∞∥u∥d−1
E and ∥d∇P (u)(v)∥E ≤ d(d− 1)∥P∥∞∥u∥d−2

E ∥v∥E .

Being given q ≥ 1, we denote by PM
K,2q the set of the K valued homogeneous polynomial of

degree 2q which commute with the Euclidean norm, i.e.

PM
K,2q :=

{
P : CM → K | P is a R−homogeneous polynomial of degree 2q and {P, ∥ · ∥2} = 0

}
.

Note that the polynomials P ∈ PM
C,2q are exactly those admitting a decomposition of the form

P (u) =
∑

k,ℓ∈Mq

Pk,ℓ uk1 . . . ukquℓ1 . . . uℓq

with Pk,ℓ ∈ C satisfying the symmetry condition

∀ϕ, σ ∈ Sq, Pϕk,σℓ = Pk,ℓ.

Moreover thanks to the symmetry condition, this decomposition is unique. Furthermore, if P ∈
PM
R,2q is real-valued, its coefficients satisfy the reality condition

Pℓ,k = Pk,ℓ.

Of course, as stated in the following lemma, thanks to the Jacobi identity, this class of Hamiltonian
is stable by Poisson bracket.

Lemma 2.3. Let K ∈ {R,C}, q, q′ ≥ 1, P ∈ PM
K,2q and Q ∈ PM

K,2q′ be two R-homogeneous
polynomials commuting with the Euclidean norm, then {P,Q} ∈ PM

K,2(q+q′−1) is also a homogeneous
polynomial commuting with the Euclidean norm.

2.1.2. Hamiltonian flows. We recall that a smooth map Ψ : CM → CM is symplectic if its
derivative preserves the canonical symplectic form, i.e.

∀u, v, w ∈ CM, ⟨idΨ(u)(v),dΨ(u)(w)⟩ = ⟨iv, w⟩.

In the following proposition, we give some of the properties enjoyed by Hamiltonian flows generated
by real valued homogeneous polynomials commuting with the Euclidean norm.
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Proposition 2.4. Let q ≥ 2 and χ ∈ PM
R,2q. Then the flow Φt

χ of the equation

(8) i∂tu = ∇χ(u)

is smooth and global. Moreover, it enjoys the following properties:
• preservation of the Euclidean norm:

∀t ∈ R, ∀u ∈ CM, ∥Φt
χ(u)∥ = ∥u∥.

• it is close to the identity:

∀t ∈ R,∀u ∈ CM, ∥Φt
χ(u)− u∥ ≤ 2q|t|∥χ∥∞∥u∥2q−1.

• it is symplectic: for all t ∈ R, Φt
χ is symplectic.

• its differential is under control:

(9) ∀t ∈ R,∀u, v ∈ CM, ∥dΦt
χ(u)(v)∥ ≤ exp(4q2t∥χ∥∞∥u∥2q−2)∥v∥.

Proof. The local well-posedness of the equation (8) follows directly from the Cauchy–Lipschitz
theorem. The preservation of the Euclidean norm comes directly from the commutation between
χ and ∥ · ∥2. This conserved quantity provides directly the global well-posedness of (8). Since (8)
is Hamiltonian, it is well-known that its flow is symplectic.

Integrating (8), thanks to Corollary 2.2, we get

∥Φt
χ(u)− u∥ =

∥∥∥∫ t

0
∇χ(Φτ

χ(u))dτ
∥∥∥ ≤ 2q∥χ∥∞

∫
[0;t]

∥Φτ
χ(u)∥2q−1dτ = 2q|t|∥χ∥∞∥u∥2q−1.

Differentiating (8), we have

−i∂tdΦ
t
χ(u)(v) = d∇χ(Φt

χ(u))(dΦ
t
χ(u)(v)).

Moreover, thanks to Corollary 2.2, we have

∥d∇χ(Φt
χ(u))(dΦ

t
χ(u)(v))∥ ≤ 4q2∥χ∥∞∥u∥2q−2∥(dΦt

χ(u))
∗(v)∥

and so, by Grönwall’s lemma, we get (9). □

2.1.3. Modulus. Following [Nik86, BG06], being given P ∈ PM
C,2q, we define its modulus ⌊P ⌉ ∈

PM
C,2q by

⌊P ⌉(u) =
∑

k,ℓ∈Mq

|Pk,ℓ|uk1 . . . ukquℓ1 . . . uℓq .

Of course, thanks to the triangle inequality, it is clear that ∥P∥∞ ≤ ∥⌊P ⌉∥∞. Furthermore, we
have the following useful lemma.

Lemma 2.5. Let q ≥ 1 and ck,ℓ ∈ C be some coefficients, with k, ℓ ∈ Mq. If P ∈ PM
C,2q is the

polynomial defined by
P (u) =

∑
k,ℓ∈Mq

ck,ℓuk1 . . . ukquℓ1 . . . uℓq

then, for all u ∈ CM, we have

|⌊P ⌉(u)| ≤
∑

k,ℓ∈Mq

|ck,ℓ||uk1 . . . ukquℓ1 . . . uℓq |
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Proof. Indeed, since the coefficients of P are given by

Pk,ℓ = (q!)−2
∑

ϕ,σ∈Sq

cϕk,σℓ

then, by the triangle inequality, we have

|⌊P ⌉(u)| =
∣∣∣ ∑
k,ℓ∈Mq

∣∣(q!)−2
∑

ϕ,σ∈Sq

cϕk,σℓ
∣∣uk1 . . . ukquℓ1 . . . uℓq

∣∣∣
≤ (q!)−2

∑
ϕ,σ∈Sq

∑
k,ℓ∈Mq

|cϕk,σℓ||uk1 . . . ukquℓ1 . . . uℓq |

=
∑

k,ℓ∈Mq

|ck,ℓ|(q!)−2
∑

ϕ,σ∈Sq

|uk
ϕ−1
1

. . . uk
ϕ−1
q
uℓ

σ−1
1

. . . uℓ
σ−1
q

|

=
∑

k,ℓ∈Mq

|ck,ℓ||uk1 . . . ukquℓ1 . . . uℓq |.

□

Moreover, we also have the following useful bilinear estimate.

Lemma 2.6. Let q, q′ ≥ 1, P ∈ PM
C,2q and Q ∈ PM

C,2q′ be two R-homogeneous polynomials com-
muting with the Euclidean norm, then {P,Q} enjoys the following estimate:

∥⌊{P,Q}⌉∥∞ ≤ 8qq′∥⌊P ⌉∥∞∥⌊Q⌉∥∞.

Proof. Thanks to the formula (7), setting q′′ = q + q′ − 1, the polynomial {P,Q}, writes

{P,Q}(u) =
∑

k,ℓ∈Mq′′

ck,ℓuk1 . . . ukq′′uℓ1 . . . uℓq′′ ,

with

ck,ℓ = 2iq
∑
j∈M

Pk1,··· ,kq ,ℓ1,··· ,ℓq−1,jQk1,··· ,kq−1,j,ℓ1,··· ,ℓq − Pk1,··· ,kq−1,j,ℓ1,··· ,ℓqQk1,··· ,kq ,ℓ1,··· ,ℓq−1,j .

Therefore, thanks to Lemma 2.5, we have

|⌊{P,Q}⌉(u)| ≤
∑

k,ℓ∈Mq′′

|ck,ℓ||uk1 . . . ukq′′uℓ1 . . . uℓq′′ |.

From now on, without loss of generality, we only consider vectors u ∈ (R+)
M with real non-

negative components. Then applying the triangle inequality on the expansion of ck,ℓ, we get (on
(R+)

M)
⌊{P,Q}⌉ ≤ 2

∑
j∈M

∂uj⌊P ⌉∂uj⌊Q⌉+ ∂uj⌊P ⌉∂uj⌊Q⌉.

Since all these partial derivatives are non-negative, applying the Cauchy–Schwarz inequality, we
get (on (R+)

M)

⌊{P,Q}⌉ ≤ 2
∑
j∈M

(∂uj⌊P ⌉+ ∂uj⌊P ⌉)(∂uj⌊Q⌉+ ∂uj⌊Q⌉)

= 2∥(∂uj⌊P ⌉+ ∂uj⌊P ⌉)j∥∥(∂uj⌊Q⌉+ ∂uj⌊Q⌉)j∥.
Finally, noticing that

(∇(⌊P ⌉|RM))j = ∂uj⌊P ⌉+ ∂uj⌊P ⌉.
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and applying Corollary 2.2, we get that, for all u ∈ (R+)
M,

⌊{P,Q}⌉(u) ≤ 2∥∇(⌊P ⌉|RM)(u)∥∥∇(⌊Q⌉|RM)(u)∥ ≤ 8qq′∥u∥2q′′∥⌊P ⌉∥∞∥⌊Q⌉∥∞.

□

2.1.4. Frequencies and spectral projectors. Being given a vector of frequencies with real coefficients
ω ∈ RM, we define the quadratic Hamiltonian

(10) Z2,ω =
1

2

∑
k∈M

ωk|uk|2.

The following lemma describes the action of adZ2,ω := {Z2,ω, ·} on PM
C,2q (it follows from a straight-

forward calculation).

Lemma 2.7. For all q ≥ 1, adZ2,ω is an endomorphism on PM
C,2q which is diagonal is the basis of

the monomials, i.e.

{Z2,ω, uk1 . . . ukquℓ1 . . . uℓq} = i(ωk1 + · · ·+ ωkq − ωℓ1 − · · · − ωℓq)uk1 . . . ukquℓ1 . . . uℓq

with u ∈ CM and k, ℓ ∈ Mq.

For all a ∈ R and q ≥ 1, we define

(11) Πω,a : PM
C,2q → Ker(adZ2,ω − iaId)

as the spectral projector on the eigenspace of adZ2,ω associated with the eigenvalue ia. More
concretely, Πω,a is also defined through the formula

Πω,aP (u) :=
∑

ωk1
+···+ωkq−ωℓ1

−···−ωℓq=a

Pk,ℓuk1 . . . ukquℓ1 . . . uℓq .

Thanks to these projectors, as stated in the following, the Poisson bracket can be seen as a kind
of convolution.

Lemma 2.8. Let q, q′ ≥ 1, P ∈ PM
C,2q and χ ∈ PM

C,2q′ then for all a ∈ R, we have

Πω,a{P, χ} =
∑

b+c=a

{Πω,bP,Πω,cχ}.

Proof. Decomposing P and χ as a sum of eigenvectors of adZ2,ω and then expanding the Poisson
bracket, we get

{P, χ} =
∑
b,c∈R

{Πω,bP,Πω,cχ}.

As a consequence, it is enough to see that {Πω,bP,Πω,cχ} is an eigenvector of adZ2,ω associated
with the eigenvalue i(b+ c). Applying the Jacobi identity, we have

{Z2,ω, {Πω,bP,Πω,cχ}} = −{Πω,cχ, {Z2,ω,Πω,bP}} − {Πω,bP, {Πω,cχ,Z2,ω}}
= −ib{Πω,cχ,Πω,bP}+ ic{Πω,bP,Πω,cχ} = i(b+ c){Πω,bP,Πω,cχ}.

□
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2.1.5. Spectral norms. Being given a vector of frequencies with integer coefficients ω(i) ∈ ZM, we
define the two following norms

∥P∥H (ω(i)) := sup
a∈Z

∥⌊Πω(i),aP ⌉∥∞ and ∥P∥C (ω(i)) := sup
a∈Z

⟨a⟩∥⌊Πω(i),aP ⌉∥∞

for all P ∈ PM
C,2q. First, we note, in the following lemma, that the norm ∥ · ∥H (ω(i)) is weaker than

the norm ∥⌊·⌉∥∞ and that the norm ∥ · ∥C (ω(i)) controls the norm ∥⌊·⌉∥∞ up to a logarithmic loss
.

Lemma 2.9. Let P ∈ PM
C,2q, q ≥ 1, and ω(i) ∈ ZM \ {0} be a vector of frequencies with integer

coefficients. Then we have

∥P∥H (ω(i)) ≤ ∥⌊P ⌉∥∞ ≤ 5q|ω(i)|∞∥P∥H (ω(i)) and ∥⌊P ⌉∥∞ ≤ 5 log(2q|ω(i)|∞) ∥P∥C (ω(i)).

where |ω(i)|∞ = maxj∈M |ω(i)
j |.

Proof. First, we note that the projectors Πω(i),a commute with the modulus ⌊·⌉. Therefore, we
have

⌊P ⌉ =
∑
a∈Z

Πω(i),a⌊P ⌉.

As a consequence, since, if u ∈ (R+)
M, we have Πω(i),a⌊P ⌉(u) ≥ 0, for all a ∈ Z, we get directly

that ∥P∥H (ω(i)) ≤ ∥⌊P ⌉∥∞.
Then, we note that if |a| > 2q|ω(i)|∞, then Πω(i),a⌊P ⌉ = 0. As a consequence, we get directly

that ∥⌊P ⌉∥∞ ≤ 5q|ω(i)|∞∥P∥H (ω(i)). Moreover, in the same way, we have

∥⌊P ⌉∥∞ ≤ ∥P∥C (ω(i))

∑
|a|≤2q|ω(i)|∞

⟨a⟩−1 ≤ ∥P∥C (ω(i))(3 + 2 log(2q|ω(i)|∞)).

Finally, since |ω(i)|∞ ≥ 1 and 2 log 2 ≥ 1, we get the second estimate. □

Remark 2.10. The logarithmic loss coming from the control of the ∥ · ∥∞ norm by the ∥ · ∥C (ω(i))

norm is different from that coming from the Strichartz estimate (5), and is rather comparable to
the logarithmic difference between Xs, 1

2 and C(R;Hs). This loss should be avoided by refining the
choice of topology on PM

C,2q, in particular the norm controlling the dependence in a for Πω(i),aP .

The following proposition provides a very useful refinement of the bilinear estimate given by
Lemma 2.6.

Proposition 2.11. Let ω(i) ∈ ZM \{0} be a vector of frequencies with integer coefficients, q, q′ ≥
1, P ∈ PM

C,2q and χ ∈ PM
C,2q′, then {P, χ} enjoys the following bilinear estimate :

(12) ∥{P, χ}∥H (ω(i)) ≤ 40 qq′ log(2q′|ω(i)|∞) ∥P∥H (ω(i))∥χ∥C (ω(i)).

Proof. First, applying Lemma 2.8, we have

Πω(i),a{P, χ} =
∑

b+c=a
|c|≤2q′|ω(i)|∞

{Πω(i),bP,Πω(i),cχ},
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the second condition coming from the fact that if |c| > 2q′|ω(i)|∞ then Πω(i),cχ = 0. Then applying
the triangle inequality and the bilinear estimate of Lemma (2.6), it comes

∥⌊Πω(i),a{P, χ}⌉∥∞ ≤
∑

b+c=a
|c|≤2q′|ω(i)|∞

∥⌊{Πω(i),bP,Πω(i),cχ}⌉∥∞

≤ 8qq′
∑

b+c=a
|c|≤2q′|ω(i)|∞

∥⌊Πω(i),bP ⌉∥∞∥⌊Πω(i),cQ⌉∥∞

≤ 8qq′∥P∥H (ω(i))∥χ∥C (ω(i))

∑
|c|≤2q′|ω(i)|∞

⟨c⟩−1.

Estimating this last sum as in Lemma 2.9, we get the estimate we aimed at proving (12).
□

2.2. Birkhoff normal form.

Theorem 2.12. Let H : CM → R be a polynomial of the form

H = Z2,ω + P,

where ω ∈ RM is a vector of frequencies with real coefficients, Z2,ω ∈ PM
R,2 is the quadratic diagonal

polynomial given by (10), and P ∈ PM
R,2p is a real valued homogeneous polynomial of degree 2p ≥ 4

commuting with the Euclidean norm.
Let ω(i) ∈ ZM \ {0} be a vector of frequencies with integer coefficients and ω(f) ∈ RM be the

vector of frequencies with real coefficients such that

ω = ω(i) + ω(f).

For all r ≥ p− 1 and all γ ∈ (0, 1), setting

(13) εr :=

(
γ

ABp r5⟨|ω(f)|∞⟩∥P∥H (ω(i)) log⟨|ω(i)|∞⟩

) 1
2p−2

,

where A > 1 is a universal constant and Bp > 1 depends only on p, there exists a symplectomor-
phism τ : CM → CM such that H ◦ τ−1 is analytic on the ball B(0, εr) with an analytic expansion
of the form

(14) H ◦ τ−1 = Z2,ω +
∑
j≥p

Q(2j)

where Q(2j) ∈ PM
R,2j is a real-valued homogeneous polynomial of degree 2j commuting with the

Euclidean norm such that:
• for j ≤ r, Q(2j) is γ-resonant, i.e.

(15) |ωk1 + · · ·+ ωkj
− ωℓ1 − · · · − ωℓj | ≥ γ ⇒ Q

(2j)
k,ℓ = 0;

• for all j ≥ p, Q(2j) enjoys the estimate

(16) ∥Q(2j)∥H (ω(i)) ≤ ε−2(j−p)
r ∥P∥H (ω(i)).

Moreover, the symplectomorphism τ enjoys the three following properties:
• it preserves the Euclidean norm, i.e. ∥τ(u)∥ = ∥u∥ for all u ∈ CM;
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• it is close to the identity, i.e.

(17) ∥u∥ ≤ εr ⇒ ∥τ(u)− u∥ ≤
(∥u∥

εr

)2p−2
∥u∥;

• its differential enjoys the following estimate

(18) ∥u∥ ≤ εr ⇒ ∀v ∈ CM, ∥dτ(u)(v)∥ ≤ exp
((∥u∥

εr

)2p−2
)
∥v∥.

Remark 2.13. Note that the convergence of the entire series (14) on B(0, εr) is ensured by
estimate (16) and Lemma 2.9.

Proof of Theorem 2.12. We proceed by induction on r ≥ p−1. First, we note that the initialization
is trivial. It is enough to choose τ = Id. Now, we assume that the theorem holds at the step r
and we aim at proving it at the step r + 1. The object we are going to design at the step r + 1
will be identified by a subscript ♯ (e.g. τ ♯ will be the change of variable at the step r + 1 while τ
denotes the change of variables at the step r).
▷ Step 1 : the new variables. Let χ ∈ PM

R,2r+2 be the polynomial defined by

χk,ℓ =
Q

(2r+2)
k,ℓ

iΩω(k, ℓ)
if |Ωω(k, ℓ)| ≥ γ and χk,ℓ = 0 else,

where
Ωω(k, ℓ) := ωk1 + · · ·+ ωkr+1 − ωℓ1 − · · · − ωℓr+1 .

Thanks to Lemma 2.7, it is clear that

(19) Q(2r+2),♯ := Q(2r+2) + {χ,Z2,ω} is γ − resonant (see (15)),

because it satisfies

(20) Q
(2r+2),♯
k,ℓ = 0 if |Ωω(k, ℓ)| ≥ γ and Q

(2r+2),♯
k,ℓ = Q

(2r+2)
k,ℓ else.

According to Proposition 2.4, let Φt
χ the Hamiltonian flow generated by χ. We define the new

change of variable by
τ ♯ := Φ1

χ ◦ τ.
Its properties will be studied in the last step of the proof. In order to have Poisson bracket
estimates, for the moment, let us estimate ∥χ∥C (ω(i)). First, we note that if |Ωω(k, ℓ)| ≥ γ then

(21) |Ωω(k, ℓ)| ≥
γ

8(r + 1)⟨|ω(f)|∞⟩
⟨Ωω(i)(k, ℓ)⟩.

Indeed,
• either ⟨Ωω(i)(k, ℓ)⟩ ≤ 8(r + 1)⟨|ω(f)|∞⟩ and so (21) is trivial
• or ⟨Ωω(i)(k, ℓ)⟩ > 8(r + 1)⟨|ω(f)|∞⟩ and so5

|Ωω(k, ℓ)| ≥ |Ωω(i)(k, ℓ)| − |Ωω(f)(k, ℓ)| ≥
1

2
⟨Ωω(i)(k, ℓ)⟩ − |Ωω(f)(k, ℓ)|

≥ 1

4
⟨Ωω(i)(k, ℓ)⟩+

1

4
⟨Ωω(i)(k, ℓ)⟩ − 2(r + 1)⟨|ω(f)|∞⟩

≥ 1

4
⟨Ωω(i)(k, ℓ)⟩ ≥

γ

8(r + 1)⟨|ω(f)|∞⟩
⟨Ωω(i)(k, ℓ)⟩.

5note that for the last estimate we have used the assumption γ ≤ 1.
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Finally, as a consequence of (21) and the induction hypothesis (16), χ enjoys the estimate

∥χ∥C (ω(i)) ≤ 8(r + 1)γ−1⟨|ω(f)|∞⟩∥Q(2r+2)∥H (ω(i))

≤ 8(r + 1)γ−1⟨|ω(f)|∞⟩∥P∥H (ω(i))ε
−2(r+1−p)
r .

(22)

Therefore, defining

(23) ηr+1 =
([8(r + 1)⟨|ω(f)|∞⟩

γ

][
40(r + 1) log(2(r + 1)|ω(i)|∞)

]
∥P∥H (ω(i))

)− 1
2p−2

,

as a consequence of Proposition 2.11, we get that for all q ≥ 1 and all Q ∈ PM
R,2q,

∥{χ,Q}∥H (ω(i)) ≤ qε−2(r+1−p)
r η

−(2p−2)
r+1 ∥Q∥H (ω(i)).

Therefore, noticing that (provided that A is chosen large enough)

(24) η
−(2p−2)
r+1 ≤ B−1

p r−2ε−(2p−2)
r ,

we get

(25) ∥{χ,Q}∥H (ω(i)) ≤
q

Bpr2
ε−2(r+1−p)
r ε−(2p−2)

r ∥Q∥H (ω(i)) =
q

Bpr2
ε−2r
r ∥Q∥H (ω(i)).

▷ Step 2 : the new expansion (algebra). We recall that by definition of Φ−t
χ , if K : CM → R is a

smooth function then for all t ∈ R and u ∈ CM, we have

∂tK(Φ−t
χ (u)) = {χ,K}(Φ−t

χ (u)).

Therefore, doing a Taylor expansion6, we get

H ◦ (τ ♯)−1(u) =

N∑
n=0

adnχ
n!

(H ◦ τ−1)(u) +
adN+1

χ

(N + 1)!
Z2,ω(u) +R(N)(u)

with

R(N)(u) :=

∫ 1

0

(1− t)N

N !
adN+1

χ (H ◦ τ−1 − Z2,ω)(Φ
−t
χ (u)) dt

+

∫ 1

0

(1− t)N+1

(N + 1)!
adN+2

χ Z2,ω(Φ
−t
χ (u)) dt.

Recalling that the analytic expansion of H ◦ τ−1 is given by (14), if ∥u∥ < εr, we have7

H ◦ (τ ♯)−1(u) =
N+1∑
n=0

adnχ
n!

Z2,ω(u) +
∑
j≥p

N∑
n=0

adnχ
n!

Q(2j)(u) +R(N)(u).

Recalling that, by definition, χ solves the cohomological equation (19), we have

H ◦ (τ ♯)−1(u) = Z2,ω(u) +
N+1∑
n=1

adn−1
χ

n!
(Q(2r+2),♯ −Q(2r+2))(u) +

∑
j≥p

N∑
n=0

adnχ
n!

Q(2j)(u) +R(N)(u)

= Z2,ω(u) +
∑
j≥p

N∑
n=0

adnχ
n!

Q(2j,n)(u) +R(N)(u)

6at the order N + 1 ≥ 3 for Z2,ω ◦ Φ−t
χ and at the order N for (H ◦ τ−1 − Z2,ω) ◦ Φ−t

χ .
7since the series (14) is analytic, we can permute sums and derivatives (here Poisson brackets) inside the domain

of convergence.
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where Q(2j,n) ∈ PM
R,2r+2 is defined by

Q(2j,n) = Q(2j) if j ̸= r + 1 and Q(2r+2,n) = (1− 1

n+ 1
)Q(2r+2) +

1

n+ 1
Q(2r+2),♯.

Note that, by definition of Q(2r+2),♯ (see (20)), it is clear that

∀j ≥ p,∀n ≥ 0, ∥Q(2j,n)∥H (ω(i)) ≤ ∥Q(2j)∥H (ω(i)).

Then, ordering the terms by degrees, we get

H ◦ (τ ♯)−1(u) = Z2,ω(u) +
∑
j≥p

K(2j,N)(u) +R(N)(u)

where K(2j,N) ∈ PM
R,2j is given by

(26) K(2j,N) =
∑

j=nr+k
n≤N

adnχ
n!

Q(2k,n).

Then, as usual, we also define its limit as

(27) Q(2j),♯ := K(2j,∞) =
∑

j=nr+k

adnχ
n!

Q(2k,n).

Of course, it can be easily checked that this definition is consistent with (19) if j = r+1 and that

(28) Q(2j),♯ = Q(2j) if j ≤ r.

As a consequence, Q(2j),♯ is γ-resonant for j ≤ r + 1 (see (15)).
Then, assuming for one instant that the series

∑
Q(2j),♯(u) converges if ∥u∥ < εr+1, we have

proven that

H ◦ (τ ♯)−1(u) = Z2,ω(u) +
∑
j≥p

Q(2j),♯(u) +
∑
j≥p

(K(2j,N) −Q(2j),♯)(u) +R(N)(u).

Therefore, it remains to prove that ∥Q(2j),♯∥H (ω(i)) ≤ ε
−2(j−p)
r+1 (which will imply the convergence

of the series) and that the last two go to zero as N goes to +∞.
▷ Step 3 : control of ∥Q(2j),♯∥H (ω(i)). First, we note that thanks to the relations (20) and (28),

since εr > εr+1, it is enough to estimate ∥Q(2j),♯∥H (ω(i)) when j ≥ r + 2.
Recalling that Q(2j),♯ is given by (27), by the triangle inequality, we have

(29) ∥Q(2j),♯∥H (ω(i)) ≤
∑

j=nr+k

∥
adnχ
n!

Q(2k,n)∥H (ω(i)).

Applying then the estimate (25) and the induction hypothesis (16), we get

∥Q(2j),♯∥H (ω(i)) ≤
∑

j=nr+k

k(k + r) · · · (j − r)

n!
(Bpr

2)−nε−2j
r ∥P∥H (ω(i))

≤
∑

j=nr+k

jn

n!
(Bpr)

−n

(
r

r + 1

)2j 5
2p−2

ε−2j
r+1∥P∥H (ω(i)).
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Then, using the estimate C−jjn ≤ e−nnn(log(C))−n, C > 1, we get

∥Q(2j),♯∥H (ω(i))

ε−2j
r+1∥P∥H (ω(i))

≤
(

r

r + 1

) 5j
p−1

+
∑
n≥1

nn(eBpr)
−n

n!

(
log
(
1 +

1

r

))−n(p− 1

5

)n

.

Since r ≥ p ≥ 1, j ≥ r + 2 and n ≥ 1, we use the three following useful estimates:(
r

r + 1

)j

≤
(

r

r + 1

)r+1

≤ e−1, nne−n ≤ n!, log
(
1 +

1

r

)
≥ log(2)

r
,

to get
∥Q(2j),♯∥H (ω(i))

ε−2j
r+1∥P∥H (ω(i))

≤ e
− 5

p−1 +
∑
n≥1

B−n
p (log(2))−n

(
p− 1

5

)n

−→
Bp→+∞

e
− 5

p−1 < 1,

and so ∥Q(2j),♯∥H (ω(i)) ≤ ε−2j
r+1∥P∥H (ω(i)) provided that Bp is chosen large enough.

▷ Step 4 : limit N → +∞. First, we note that by definition of K(2j,N) (see (26)) if j ≤ Nr then
K(2j,N) = Q(2j),♯. As a consequence, by Lemma 2.9, if ∥u∥ < εr+1, we have

|
∑
j≥p

(K(2j,N) −Q(2j),♯)(u)| ≤ 5|ω(i)|∞
∑
j≥rN

j∥K(2j,N) −Q(2j),♯∥H (ω(i))∥u∥
2j .

But applying the triangle inequality, we have

∥K(2j,N) −Q(2j),♯∥H (ω(i)) ≤
∑

j=nr+k

∥
adnχ
n!

Q(2k,n)∥H (ω(i)),

and so thanks to the estimate proved at the previous step (see (29)), we get

|
∑
j≥p

(K(2j,N) −Q(2j),♯)(u)| ≤ 5|ω(i)|∞∥P∥H (ω(i))

∑
j≥rN

jε
−2(j−p)
r+1 ∥u∥2j −→

N→+∞
0.

Now, it only remains to prove that R(N)(u) goes to 0 as N goes to +∞. First, we note that
using as previously the cohomological equation, the remainder term rewrites

R(N)(u) =

∫ 1

0

(1− t)N

N !

∑
j≥p

adN+1
χ Q

(2j,N+1)
t (Φ−t

χ (u)) dt,

where Q
(2j,n)
t ∈ PM

R,2r+2 is defined by

Q
(2j,n)
t = Q(2j) if j ̸= r + 1, and Q

(2r+2,n)
t = (1− 1− t

n
)Q(2r+2) +

1− t

n
Q(2r+2),♯.

Note that as previously, we have ∥Q(2j,n)
t ∥H (ω(i)) ≤ ∥Q(2j)∥H (ω(i)). Then, since Φ−t

χ preserves the
Euclidean norm, we have

|R(N)(u)| ≤
∑
k≥p

sup
0≤t≤1

∥
adN+1

χ

(N + 1)!
Q

(2k,N+1)
t ∥∞∥u∥2(k+(N+1)r)

=
∑

j≥(N+1)r+p

sup
0≤t≤1

∥
adN+1

χ

(N + 1)!
Q

(2(j−(N+1)r),N+1)
t ∥∞∥u∥2j

≤
∑

j≥(N+1)r+p

∑
j=nr+k

sup
0≤t≤1

∥
adnχ
n!

Q
(2k,n)
t ∥∞∥u∥2j .
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Then applying Lemma 2.9 to control the ∥ · ∥∞ norm and proceeding as we did for the other
remainder term8, we deduce that R(N)(u) goes to 0 as N goes to +∞.
▷ Step 5 : properties of τ ♯. First, we note that, by composition, it is clear that τ ♯ is a symplecto-
morphism which preserves the Euclidean norm.

Now, recalling the estimate (22) of ∥χ∥C (ω(i)) and the definition (23) of ηr+1 and applying the
last estimate of Lemma 2.9, we get

2(r + 1)∥χ∥∞ ≤ η
−(2p−2)
r+1 ε−2(r+1−p)

r .

Therefore, as previously, provided that A > 1 is large enough (see (24)), we have

(30) 2(r + 1)∥χ∥∞ ≤ B−1
p r−2ε−2r

r .

As a consequence, by Proposition 2.4, we have

∥Φ−1
χ (u)− u∥ ≤ B−1

p r−2
(∥u∥

εr

)2r
∥u∥.

Since Φ−1
χ preserves the Euclidean norm, applying the triangle inequality and the induction hy-

pothesis (17), provided that ∥u∥ ≤ εr, we get

∥τ ♯(u)− u∥ ≤ ∥τ(Φ−1
χ (u))− Φ−1

χ (u)∥+ ∥Φ−1
χ (u)− u∥

≤
(∥u∥

εr

)2p−2
∥u∥+B−1

p r−2
(∥u∥

εr

)2r
∥u∥

≤
( r

r + 1

)5
(1 +B−1

p r−2)
( ∥u∥
εr+1

)2p−2
∥u∥.

Since, provided that Bp > 1 is large enough, we have
(

r
r+1

)5
(1 + B−1

p r−2) ≤ 1, we deduce that
∥τ ♯(u)− u∥ is close to the identity.

Finally, it only remains to control dτ(u). Applying the estimate (9) of Proposition 2.4, for all
v ∈ CM, we have

∥dΦ−1
χ (u)(v)∥ ≤ exp

(
4r2∥χ∥∞∥u∥2r

)
∥v∥

(30)
≤ exp

( 2

Bpr

(∥u∥
εr

)2r)∥v∥.
Therefore, thanks to the induction hypothesis (18), if ∥u∥ ≤ εr, we get

∥dτ−1(u)(v)∥ ≤ exp
((∥u∥

εr

)2p−2
+

2

Bpr

(∥u∥
εr

)2r)∥v∥
≤ exp

(( r

r + 1

)5
(1 + 2B−1

p r−1)
( ∥u∥
εr+1

)2p−2
)
∥v∥.

Again, provided that Bp > 1 is large enough, we have
(

r
r+1

)5
(1 + 2B−1

p r−1) ≤ 1 for all r ≥ p, so
we get the expected estimate on ∥dτ−1(u)(v)∥. □

2.3. Dynamical corollary.

Definition 2.14 ((k, r, γ) non-resonance). Being given k ∈ M, r ≥ 1 and γ > 0, a vector of
frequencies ω ∈ RM is (k, r, γ) non-resonant if for all q ≤ r and all Q ∈ PM

R,2q,

Q is γ-resonant (see (15)) ⇒ Q commutes with |uk|2 (i.e. {Q, |uk|2} = 0).

8note that we have the same estimates as for the term in (29) (the bound are uniform with respect to t ∈ [0, 1]).
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Corollary 2.15. In the setting of the result of Theorem 2.12, if k ∈ M is an index such that the
frequencies ω are (k, r, γ) non-resonant and u ∈ C1([0, T ];CM) is the solution of an equation of
the form

(31) i∂tu(t) = ∇H(u(t)) + g(t),

with g ∈ C0([0, T ];CM), and if it satisfies the bound

δ := ∥u∥L∞(0,T ) := sup
0≤t≤T

∥u(t)∥ <
εr
2
,

then we have

||uk(T )|2 − |uk(0)|2| ≲ ε−(2p−2)
r δ2p + ∥P∥H (ω(i))|ω

(i)|∞δ2r+2ε−2r
r T + δ∥g∥L∞(0,T )T.

Remark 2.16. The first error term, ε−(2p−2)
r δ2p, is due to the difference between the change of

variable and the identity. The second error term, ∥P∥H (ω(i))|ω(i)|∞δ2r+2ε−2r
r , controls the growth

of the remainder term in the new variables (that is why it is of high order δ2r+2). Finally, the
third error term δ∥g∥L∞(0,T )T is just due to the presence of the source term g.

Proof of Corollary 2.15. Let v = τ(u). By composition, since τ is a symplectomorphism, we have

i∂tv = idτ(u)(−i∇H(u)− ig(t)) = ∇(H ◦ τ−1)(v)− idτ(u)(ig)

and thus
∂t|vk|2 = {H ◦ τ−1, |vk|2} − 2ℜ(vk[idτ(u)(ig(t))]k).

Now, note that since τ preserves the Euclidean norm, we also have

∥v∥L∞(0,T ) = δ <
εr
2
.

Therefore, on the one hand, thanks to the estimate (18) on dτ(u), we have

|ℜ(vk[idτ(u)(ig)]k)| ≤ ∥v∥∥dτ(u)(ig)∥ ≤ δe∥g∥.
On the other hand, since the frequencies ω are (k, r, γ) non-resonant and Q(2j) is γ-resonant for
j ≤ r (see (15)), we have

|{H ◦ τ−1, |vk|2}| =
∣∣∣∑
j>r

{Q(2j), |vk|2}
∣∣∣ ≤ 2∥v∥

∑
j>r

∥∇Q(2j)(v)∥.

Applying then Corollary 2.2 and Lemma 2.9, we get

|{H ◦ τ−1, |vk|2}| ≤ 2
∑
j>r

2j∥v∥2j∥Q(2j)∥∞ ≤
∑
j>r

2j∥v∥2j∥Q(2j)∥∞

≤ 2
∑
j>r

2j∥v∥2j5j|ω(i)|∞∥Q∥H (ω(i))

Next, using (16), we can continue with

≤ 20|ω(i)|∞∥P∥H (ω(i))

∑
j>r

j2δ2jε−2(j−p)
r

≤ 20|ω(i)|∞∥P∥H (ω(i))δ
2r+2ε2(r+1−p)

r

∞∑
j=r+1

j22−j .

At the end, we have proven that

||vk(T )|2 − |vk(0)|2| ≲ ∥P∥H (ω(i))|ω
(i)|∞δ2r+2ε−2r

r T + δ∥g∥L1(0,T ).
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Finally, to conclude, it is enough to note that, since τ is close to the identity (see (17)), we have

||uk|2 − |vk|2| ≤ ∥u− v∥(∥u∥+ ∥v∥) = 2∥τ(u)− u∥δ ≤ 2
( δ

εr

)2p−2
δ2.

□

3. Proof of Theorem 1.3

The proof of Theorem 1.3 relies on Corollary 2.15 of our Birkhoff normal form (Theorem 2.12).
Therefore, we are going to provide a decomposition of (NLS*) of the form (31) and to estimate
carefully each of its terms. Finally, Theorem 1.3 will follow from a careful optimization of all the
parameters involved.

In all the proof we consider a potential V ∈ L2(T;C), whose Fourier coefficients are real numbers
such that the frequencies

ωj = j2 + (2π)−1/2Vj

are strongly-non-resonant according to Definition 1.2 (and so we get an exponent α > 0).
Now, thanks to Proposition 1.1, we consider a global solution u ∈ C0(R;Hs(T)), s > 2/5, of

(NLS*) such that

∥u(0)∥Hs =: ε ≤ 1

100
.

Since the L2 norm is a constant of the motion for (NLS*), we have

(32) ∀t ∈ R, ∥u(t)∥L2 = ∥u(0)∥L2 ≤ ∥u(0)∥Hs = ε.

Moreover thanks to Proposition 1.1, we know that there exists βs ≥ 1 such that

(33) ∀t ∈ R, ∥u(t)∥Hs ≲s ε⟨t⟩βs .

3.1. Control of the high actions. When k is large enough, the normal form theorem is not
well suited to prove Theorem 1.3. Nevertheless, in this case the time of stability is not too long
and Theorem 1.3 is just a consequence of the local well-posedness of (NLS*). For simplicity (to
avoid the use of Bourgain spaces), here we propose a simple proof of this point, relying only on
the estimate (33).

Let k ∈ Z be such that

2⟨k⟩ ≥ ε−υα,s,ν

where υα,s,ν ∈ (0, 1) is a positive constant depending only on α, ν and s that will be optimized
later. Therefore, by assumption, we have

log ε−1

log(2⟨k⟩)
≤ υ−1

α,s,ν .

Consequently, it is enough to prove that there exists a constant µ depending on s, ν and α such
that, provided that ε is smaller than a constant ε0 depending only on V, s, ν, we have

(34) |t| ≤ εµ log(υ−1
α,s,ν) ⇒ ||uk(t)|2 − |uk(0)|2| ≤ ε6−ν .
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To prove such a property, setting Lu := −∂2
xu+ V ∗ u, we control the variation of the actions

uniformly with respect to k as follows:

||uk(t)|2 − |uk(0)|2| = ||uk(t)|2 − |e−itωkuk(0)|2| = ||uk(t)|2 − |(e−itLu(0))k|2|

= (|uk(t)|+ |uk(0)|)
∣∣|uk(t)| − |(e−itLu(0))k|

∣∣
≤ (∥u(t)∥L2 + ∥u(0)∥L2)|(u(t)− e−itLu(0))k|

≤ 2∥u∥L∞
t L2

x
∥u(t)− e−itLu(0)∥L2

On the one hand, using the preservation of the L2 norm (see (32)), we have ∥u∥L∞
t L2

x
= ε. On the

other hand, using the Duhamel formula, we have

∥u(t)− e−itLu(0)∥L2 =
∥∥∥∫ t

0
e−i(t−τ)L|u(τ)|4u(τ)dτ

∥∥∥
L2

≤
∫
[0;t]

∥|u(τ)|4u(τ)∥L2dτ ≤ |t|∥u∥5L∞([0;t];L10
x ).

Then, since s > 2/5, using the Sobolev embedding H2/5 ⊂ L10 and the a priori estimate (33) on
the growth of the Hs norm, we get

∥u(t)− e−itLu(0)∥L2 ≲s ε
5⟨t⟩1+5βs .

Finally, plugging these estimates together, we have proven that

||uk(t)|2 − |uk(0)|2| ≲s ε
6⟨t⟩1+5βs .

which implies, as we wanted, the estimate (34), provided that

(1 + 5βs)µ log(υ−1
α,s,ν) ≤

ν

2

(i.e. that µ is small enough) and ε is smaller than a constant depending only on s and ν.

3.2. Setting for the low actions. Now, and until the end of this proof, we aim at controlling
the variations of |uk(t)|2 when 2⟨k⟩ < ε−υα,s,ν . We consider a large parameter M ≥ ε−υα,s,ν that
will be optimized later, and we define

EM := SpanC{eijx | |j| ≤ M}.
As usual, we identify EM with CM (through the Fourier transform) where

M = J−M,MK.

We denote by Π(M) the L2-orthogonal projection on EM and we set

u(≤M) := Π(M)(u(t)).

Note that, L2 norm being a constant of the motion and Π(M) being an orthogonal projection, we
have

(35) ∀t ∈ R, ∥u(≤M)(t)∥ ≤ ∥u(t)∥L2 = ∥u(0)∥L2 ≤ ∥u(0)∥Hs = ε.

Moreover, u(≤M) solves the equation

(36) i∂tu
(≤M) = ∇H(u(≤M)) + g(t) with g(t) := σΠ(M)

[
|u(t)|4u(t)− |Π(M)u(t)|4Π(M)u(t)

]
where

H = Z2,ω + P with P =
1

12
(∥ · ∥6L6)|EM and Z2,ω is given by (10).
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3.3. Strichartz estimates. Now we aim at estimating ∥P∥H (ω(i)) where ω
(i)
j := j2. Let a ∈ Z,

by definition, we have

∀u ∈ EM , ⌊Πω(i),aP ⌉(u) = 1

12

∑
k1+k2+k3−ℓ1−ℓ2−ℓ3=0
k2
1+k2

2+k2
3−ℓ21−ℓ22−ℓ23=a

uk1uk2uk3 uℓ1uℓ2uℓ3 .

As a consequence, following a remark of Bourgain [Bou04b, eq. (7.20)], we have

⌊Πω(i),aP ⌉(u) = 1

24π

∫
T
eita∥eit∂2

xu∥6L6dt

and so, we have

|⌊Πω(i),aP ⌉(u)| ≤ 1

24π
∥eit∂2

xu∥6L6(Tx×Tt)
.

Then, applying the Strichartz estimate (5) to control this L6 space-time norm, we get

(37) ∥P∥H (ω(i)) = sup
a∈Z

sup
∥u∥L2≤1
u∈EM

|⌊Πω(i),aP ⌉(u)| ≲ e
c logM
log logM ,

where c > 0 is a universal constant.

3.4. Estimate of the remainder term. By definition of the remainder term g(t) (see(36)) and
the mean value inequality, we have

|g| ≤ 5(|u|4 + |Π(M)u|4)|u−Π(M)u|,

and so, by Hölder, we have

∥g∥L2 ≲ (∥u∥4L10 + ∥Π(M)u∥4L10)∥u−Π(M)u∥L10 .

Since by assumption s > 2/5 and since the Sobolev embedding H2/5 ⊂ L10 holds, we have

(38) ∥g∥L2 ≲ ∥u∥4Hs∥u−Π(M)u∥H2/5 .

Therefore, by definition of Π(M), we deduce that

∥g∥L2 ≲ ∥u∥5HsM−(s− 2
5
).

Finally, using the a priori bound we proved on ∥u∥Hs , we get

(39) ∥g∥L2 ≲ ε5⟨t⟩5βsM−(s− 2
5
).

3.5. Optimization of the parameters.
▷ Step 1 : Setting. Now we aim at controlling the variations of |uk| where k ∈ Z satisfies

2⟨k⟩ < ε−υα,s,ν .

We recall that we dealt with the case 2⟨k⟩ ≥ ε−υα,s,ν at the beginning of the proof. Note that
since M has to satisfy M ≥ ε−υα,s,ν , this implies that |k| ≤ M (i.e. k ∈ M).

We introduce an integer r ≥ p = 3 that will be optimized later, and we set

γ := ρ
(
2⟨k⟩

)−eαr

,

in such a way that, since, by assumption, the frequencies ω are strongly-non-resonant according
to Definition 1.2, ω is (k, r, γ)-non-resonant according to Definition 2.14.
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Therefore, applying Corollary 2.15 and using the preservation of the L2 norm (see (32)), we
know that if ε ≤ εr

2 then for all t ∈ R, we have

||uk(t)|2 − |uk(0)|2| ≲ ε−4
r ε6 + ∥P∥H (ω(i))|ω

(i)|∞ε2r+2ε−2r
r |t|+ ε∥g∥L∞(0;t)|t|.

First, we aim at establishing a simple lower bound on εr. Indeed, using the bound (37) on
∥P∥H (ω(i)) (with |ω(i)|∞ ≲ M2 and |ω(f)|∞ ≲ 1), we have

εr =

(
γ

AB3 r5⟨|ω(f)|∞⟩∥P∥H (ω(i)) log⟨|ω(i)|∞⟩

) 1
4

≳

(
e
−c logM

log logM

r5 logM

(
2⟨k⟩

)−eαr

) 1
4

.

Therefore, there exists a constant κ ∈ (0, 1), depending only on V , such that we have

2εr ≥ κe
− c

2
logM

log logM
(
2⟨k⟩

)− 1
2
eαr

=: ηr.

As a consequence, provided that ε ≤ ηr, we have

||uk(t)|2 − |uk(0)|2| ≲ ε−4
r ε6 + ∥P∥H (ω(i))|ω

(i)|∞ε2r+2η−2r
r |t|+ ε∥g∥L∞(0;t)|t|.

Hence, to prove that if |t| ≤ Tε (which will be optimized later), we have ||uk(t)|2−|uk(0)|2| ≤ ε6−ν ,
it is enough to prove that the following estimates holds

ε ≤ ηr,(I)

η−4
r ε6 ≲ν,s ε

6−ν/2,(II)

∥P∥H (ω(i))|ω
(i)|∞ε2r+2η−2r

r Tε ≲ν,s ε
6,(III)

ε∥g∥L∞(−Tε;Tε)Tε ≲s,ν ε6.(IV)

▷ Step 2 : Simplification of the estimates. Now we aim at simplifying these constraints.
First, we note that since, by assumption, without loss of generality, we can assume that ν ≤ 2,

we see that provided that ε is small enough, the first estimate (I) is a consequence of the second
one (II). Therefore, these estimate reduces to the second one (II) :

(IIb) εν/8 ≲ν,s ηr.

Then plugging this estimate (IIb) in the third one (III) and using the estimate we proved on
∥P∥H (ω(i)) (and using that, since r ≥ 3 and ν ≤ 2, we have 2r− 4− rν/4 ≥ r/3 ), the constraint
(III) can be replaced by

(IIIb) M3εr/3Tε ≲ν,s 1.

Finally, using the estimates we proved on ∥g∥L∞(−Tε;Tε), the last constraint (IV) can be replaced
by

(IVb) T 5βs
ε M−1 ≲ν,s 1.

▷ Step 3 : Choice of the parameters. In order to satisfy the estimates (IIIb) and (IVb), it is enough
to set

Tε = ε−(30βs)−1r and M = ε−r/12.

Now the only remaining constraint is (IIb), i.e.

εν/8 ≲ν,s e
− c

2
logM

log logM
(
2⟨k⟩

)− 1
2
eαr

.
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Then, noticing that (since M = ε−r/12) provided that ε is smaller than a constant depending only
on ν and α (i.e. uniform with respect to r ≥ 3), we have

e
− c

2
logM

log logM ≥ εν/162−
1
2
eαr

,

the constraint (IIb) can be replaced by

εν/16 ≲ν,s

(
2⟨k⟩

)−eαr

.

and so by

(IIt) ε ≲ν,s

(
2⟨k⟩

)−eανr

where αν := α+
1

3
log(16ν−1).

Now, we set

r∗ :=
1

2αν
log

log(ε−1)

log(2⟨k⟩)
,

in such a way that (
2⟨k⟩

)−eαν2r∗
= ε,

and so that if r ≥ 3 is an integer in the interval [r∗, 2r∗] then the constraint (IIt) holds. To be able
to choose such a r, it is enough to prove that r∗ ≥ 3/2. Fortunately, we recall that we are dealing
with the case 2⟨k⟩ < ε−υα,s,ν where υα,s,ν ∈ (0, 1) is a constant we have to optimize. Therefore,
we know that

r∗ ≥
1

2αν
log υ−1

α,s,ν ,

and so it is enough to require that υα,s,ν is small enough to have
1

2αν
log υ−1

α,s,ν ≥ 3

2
.

That is why we set

(40) υα,s,ν :=
ν

16
e−3α.

Note that therefore, since ν ≤ 2, we have υα,s,ν ≤ 1/8. Moreover, since r/12 ≥ 1/4, the assumption
|k| ≤ M is satisfied :

|k| ≤ ε−υα,s,ν ≤ ε−1/8 ≤ ε−1/4 ≤ ε−r/12 = M.

To conclude this proof, it is enough to note that by construction, we have proven that

||uk(t)|2 − |uk(0)|2| ≤ ε6−ν ,

while

|t| ≤ Tε = ε−(30βs)−1r where Tε ≥ ε−(30βs)−1r∗ = ε
− 1

60βsαν
log

log(ε−1)
log(2⟨k⟩) .

4. Proof of Theorem 1.7

The proof of Theorem 1.7 is very similar to the one of Theorem 1.3. It has the same structure,
but some estimates are more involved.

In all the proof we consider a real valued even potential W ∈ H4(T;R) (i.e. W (x) ∈ R and
W (−x) = W (x)) such that the frequencies ω = (λk)k≥1 are strongly-non-resonant according to
Definition 1.2, where (λk)k≥1 is the increasing sequence of eigenvalues of the Sturm–Liouville
operator −∂2

x +W|[0,π] with homogeneous Dirichlet boundary conditions. We denote by (fk)k≥1

the associated eigenfunctions (see Prop 1.6).
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Now, thanks to Proposition 6.3, we consider a global odd solution u ∈ C0(R;Hs(T)), s > 2/5,
of (NLS) such that

∥u(0)∥Hs =: ε ≤ 1

100
.

Note that the existence of odd solutions is ensured by the assumption that the potential V is
even. Without loss of generality, we assume that s ≤ 1. Since the L2 norm is a constant of the
motion for (NLS), we have

∀t ∈ R, ∥u(t)∥L2 = ∥u(0)∥L2 ≤ ∥u(0)∥Hs = ε.

Moreover thanks to Proposition 1.1, we know that there exists βs ≥ 1 such that

(41) ∀t ∈ R, ∥u(t)∥Hs ≲s ε⟨t⟩βs .

In this proof, being given an odd function v ∈ L2(T), we denote

vk =

∫ π

0
v(x)fk(x)dx.

Moreover, since (fk)k≥1 is a Hilbertian basis of L2(0, π) (see Proposition 1.6), we know that

v(x) =
∑
k≥1

vkfk(x)

where fk is extended as an odd function on T.

4.1. Control of the high actions. Proceeding exactly as in the proof of Theorem 1.3 (see
subsection 3.1), it can be proven that if ⟨k⟩ ≥ ε−υα,s,ν (where υα,s,ν is also given by (40)) then
there exists µ such that

(42) |t| ≤ ε
−µ log log ε−1

log(⟨k⟩) ⇒ ||uk(t)|2 − |uk(0)|2| ≤ ε6−ν .

4.2. Setting for the low actions. Now, and until the end of this proof, we aim at controlling
the variations of |uk(t)|2 when ⟨k⟩ < ε−υα,s,ν . We consider a large parameter M ≥ ε−υα,s,ν that
will be optimized later, and we define

EM := SpanC{fk | k ≤ M}.

As usual, we identify EM with CM (through the Fourier transform) where

M = J1,MK

We denote by Π(M) the L2-orthogonal projection on EM and we set

u(≤M) := Π(M)(u(t)).

Note that, the L2 norm being a constant of the motion and Π(M) being an orthogonal projection,
we have

(43) ∀t ∈ R, ∥u(≤M)(t)∥ ≤ ∥u(t)∥L2 = ∥u(0)∥L2 ≤ ∥u(0)∥Hs = ε.

Moreover, u(≤M) solves the equation

(44) i∂tu
(≤M) = ∇H(u(≤M)) + g(t) with g(t) := σΠ(M)

[
|u(t)|4u(t)− |Π(M)u(t)|4Π(M)u(t)

]
,

and
H = Z2,ω + P with P =

1

12
(∥ · ∥6L6)|EM and Z2,ω given by (10).
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4.3. Strichartz estimates. Now we aim at proving the same estimate on ∥P∥H (ω(i)) (where

ω
(i)
k := k2) as in the case of (NLS*). In the paragraph Identification of the Hamiltonian structure

page 737 of [BG21], it is proven that (provided that
∑

k≥1⟨k⟩2|uk|2 < ∞)

∥
∑
k≥1

ukfk∥6L6 =
∑

k,ℓ∈(N∗)3

Qk,ℓuk1uk2uk3 uℓ1uℓ2uℓ3

where the coefficients Qk,ℓ are symmetric and satisfy

|Qk,ℓ| ≲∥W∥L2

∑
ν,µ∈{−1,1}3

⟨ν1k1 + ν2k2 + ν3k3 + µ1ℓ1 + µ2ℓ2 + µ3ℓ3⟩−2.

Therefore, for all a ∈ Z, we have

∀u ∈ EM , ⌊Πω(i),aP ⌉(u) = 1

12

∑
k,ℓ∈J1,MK3

k2
1+k2

2+k2
3−ℓ21−ℓ22−ℓ23=a

|Qk,ℓ|uk1uk2uk3 uℓ1uℓ2uℓ3 .

and so

|⌊Πω(i),aP ⌉(u)| ≲∥W∥L2

∑
ν,µ∈{−1,1}3

∑
k,ℓ∈J1,MK3

k2
1+k2

2+k2
3−ℓ21−ℓ22−ℓ23=a

ν1k1+ν2k2+ν3k3+µ1ℓ1+µ2ℓ2+µ3ℓ3=j

|uk1uk2uk3 uℓ1uℓ2uℓ3 |
⟨j⟩2

=
∑

ν,µ∈{−1,1}3

∫
T

∫
T
w(x)e−ita

3∏
n=1

e−it∂2
xv(νn)(x)eit∂

2
xv(µn)(x)dxdt,

(45)

where v(±1)(x) :=
∑

1≤k≤M |uk|e±ikx and w(x) =
∑

k∈Z⟨k⟩−2eikx ∈ H1(T) ⊂ L∞(T). As a
consequence, applying Hölder’s inequality, we get

|⌊Πω(i),aP ⌉(u)| ≲∥W∥L2
∥w∥L∞

∑
ν,µ∈{−1,1}3

3∏
n=1

∥e−it∂2
xv(νn)∥L6(T2)∥eit∂

2
xv(µn)∥L6(T2).

Finally, noticing that ∥v(±1)∥L2 = ∥u∥L2 and applying the Strichartz estimate (5), we get

∥P∥H (ω(i)) ≲∥W∥L2
e
c logM
log logM ,

where c > 0 is a universal constant.

4.4. Estimate of the remainder term. As in subsection 3.4 (i.e. for (NLS*)), we aim at
proving that, provided that s ≤ 1, we have

(46) ∥g∥L2 ≲ ∥u∥5HsM−(s− 2
5
),

which, using the a priori bound (41) on the growth of the Hs norm, provides

(47) ∥g∥L2 ≲ ε5⟨t⟩5βsM−(s− 2
5
).

First, we note that for the same reasons as in subsection 3.4, the remainder term enjoys the
estimate

(48) ∥g∥L2 ≲ ∥u∥4Hs∥u−Π(M)u∥H2/5 ≃ ∥u∥4Hs∥
∑
k>M

ukfk∥H2/5 .
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Then we note that

(49) ∀s′ ∈ [0, 1],∀v ∈ ℓ2(N∗;C), ∥
∑
k≥1

vkfk∥2Hs′ ≃
∑
k≥1

⟨k⟩2s′ |vk|2.

Indeed, the case s′ = 1 is proven in Proposition 6.2 page 733 of [BG21] while the case s′ = 0 is
just a consequence of the fact that (fj)j≥1 is a Hilbertian basis. Therefore, the case 0 < s′ < 1
follows directly by interpolation9.

Finally, plugging (49) into (48), it comes (as expected)

∥g∥L2 ≲ ∥u∥4Hs∥
∑
k>M

ukfk∥H2/5 ≃ ∥u∥4Hs

( ∑
k>M

⟨k⟩4/5|uk|2
)1/2

≲ ∥u∥4HsM−(s− 2
5
)
( ∑
k>M

⟨k⟩2s|uk|2
)1/2 ≃ ∥u∥5HsM−(s− 2

5
).

4.5. Optimization of the parameters. Since the estimates on g and P are the same as for
(NLS*), the rest of the proof is exactly the same as in subsection 3.5. For completeness, it may
be just relevant to mention that the estimates

|ω(i)|∞ ≲ M2 and |ω(f)|∞ ≲ 1

follow directly from [PT87, Theorem 4 p.35]. We also mention that since |k| ≥ 1 then ⟨k⟩ ≥
√
2 > 1

and so the quantity 2⟨k⟩ of subsection 3.5 can always be replaced by ⟨k⟩ here.

5. Small divisor estimates

This section is devoted to the proof of Proposition 1.4 and Proposition 1.8.

5.1. Proof of Proposition 1.4. First, we recall the classical proof stating that, almost surely,
the frequencies of (NLS*) for the random convolution potential V as in (2) enjoy a weak non-
resonance condition.

Lemma 5.1. Almost surely, there exists γ > 0 such that, for all q ≥ 1, m ∈ (Z∗)q, h1, · · · ,hq ∈ Z
all distinct, we have

(50) ∀a ∈ Z,
∣∣a+

q∑
j=1

mjω
(NLS*)
hj

∣∣ ≥ γ
(
min
j

⟨hj⟩
)−s∗

q∏
j=1

|mj |−4⟨hj⟩−4.

Proof. Being given a, q,m,h satisfying the assumptions of the lemma, we recall that

∀γ > 0, P
(∣∣a+

q∑
j=1

mjω
(NLS*)
hj

∣∣ < γ
)
≲ γmin

j
⟨hj⟩s∗ .

9we refer the reader to [Tri78, Thm page 130] and [Agra15, Thm 13.2.2 page 198 and Thm 13.2.1 page 197] for
specific results of interpolation well suited to this setting.
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Therefore, for all γ > 0, we have

P
(
∃(a, q,m,h),

∣∣a+

q∑
j=1

mjω
(NLS*)
hj

∣∣ < γ⟨a⟩−2
(
min
j

⟨hj⟩
)−s∗

q∏
j=1

|mj |−2⟨hj⟩−2
)

≲ γ
∑
a∈Z

∑
q≥1

∑
m∈(Z∗)q

∑
h∈Zq

h1<···<hq

⟨a⟩−2
q∏

j=1

|mj |−2⟨hj⟩−2

≲ γ
∑
q≥1

∑
m∈(Z∗)q

∑
h∈Zq

(q!)−1
q∏

j=1

|mj |−2⟨hj⟩−2 ≲ γ−→
γ→0

0,

where at the first line (a, q,m,h) have implicitly to satisfy the assumptions of the lemma. It
means that, almost surely, there exists γ > 0 such that, for all q ≥ 1, m ∈ (Z∗)q, h1, · · · ,hq ∈ Z
all distinct, we have

(51) ∀a ∈ Z,
∣∣a+

q∑
j=1

mjω
(NLS*)
hj

∣∣ ≥ γ⟨a⟩−2
(
min
j

⟨hj⟩
)−s∗

q∏
j=1

|mj |−2⟨hj⟩−2.

Then, we note that either

|a| ≥ 1 +

q∑
j=1

|mj ||ω(NLS*)
hj

|,

and so the small divisor is larger than or equal to 1 (and so the estimate (50) is satisfied with
γ = 1) or (using that |ω(NLS*)

hj
| ≲∥V ∥L2

⟨hj⟩2)

|a| ≤ 1 +

q∑
j=1

|mj ||ω(NLS*)
hj

| ≲
q∑

j=1

|mj |⟨hj⟩2 ≲∥V ∥L2

q∏
j=1

|mj |2⟨hj⟩2

and so, plugging this estimate in (51) we get (50). □

Now, we aim at improving the small divisor estimate (50) in order to prove that almost surely
the frequencies of (NLS*) enjoy a strong non-resonance condition.
Step 1 : Setting. Let B > 0 be a constant such that

∀k ∈ Z, |ω(NLS*)
k − k2| ≤ B⟨k⟩−s∗ .

We fix q ≥ 1, m ∈ (Z∗)q, h1, · · · ,hq ∈ Z all distinct such that |h1| ≤ · · · ≤ |hq|. We define
q⋆ ∈ J1, qK as the maximal index such that

∀p ∈ J2, q⋆K, B

q∑
j=p

|mj |⟨hj⟩−s∗ ≥ γ

2
⟨h1⟩−s∗

p−1∏
j=1

|mj |−4⟨hj⟩−4.

Therefore it is enough to estimate
∣∣a +

∑q⋆
j=1mjω

(NLS*)
hj

∣∣ where a ∈ Z. Indeed, if q⋆ < q, by
maximality of q⋆ we have

B

q∑
j=q⋆+1

|mj |⟨hj⟩−s∗ <
γ

2
⟨h1⟩−s∗

q⋆∏
j=1

|mj |−4⟨hj⟩−4,
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and so applying the triangle inequality and the non-resonance estimate, we have

∣∣ q∑
j=1

mjω
(NLS*)
hj

∣∣
≥
∣∣ q∑
j=q⋆+1

mjh
2
j +

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣− q∑
j=q⋆+1

|mj ||ω(NLS*)
hj

− h2
j |

≥ 1

2

∣∣ q∑
j=q⋆+1

mjh
2
j +

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣+ γ

2
⟨h1⟩−s∗

q⋆∏
j=1

|mj |−4⟨hj⟩−4 −B

q∑
j=q⋆+1

|mj |⟨hj⟩−s∗

≥ 1

2

∣∣ q∑
j=q⋆+1

mjh
2
j +

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣.

(52)

Now, to estimate
∣∣a+∑q⋆

j=1mjω
(NLS*)
hj

∣∣ uniformly with respect to a ∈ Z, we are just going to use
the lower bound given by Lemma 5.1, but in order to have a bound depending only on h1, we
have to estimate ⟨hp⟩ for all p ∈ J2, q∗K.

Step 2 : Estimation of ⟨hp⟩ with respect to ⟨h1⟩. By definition of q⋆, we deduce that if p ∈ J2, q⋆K
then

B|m|1⟨hp⟩−s∗ ≥ γ

2
⟨h1⟩−s∗ |m|−4(p−1)

1

p−1∏
j=1

⟨hj⟩−4.

Applying the log function to this estimate, we get

(53) yp ≤ log(C) + 4s−1
∗ q⋆ log(|m|1) + y1 + 4s−1

∗

p−1∑
j=1

yj ,

where yj = log⟨hj⟩ and C := (2Bγ−1)s
−1
∗ . Here, we note that this last relation is also valid for

p = 1. Therefore, as a consequence of the discrete Grönwall inequality, we have

yp ≤ (log(C) + 4s−1
∗ q⋆ log(|m|1) + y1)e

4(p−1)
s∗ ,

and so

⟨hp⟩ ≤
(
C|m|4s

−1
∗ q⋆

1 ⟨h1⟩
)exp( 4q⋆

s∗
)
.

Step 3 : Conclusion. Plugging this last estimate in the classical non-resonance condition (50) yield

∣∣a+

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣ ≥ γ⟨h1⟩−s∗ |m|−4q⋆
1

(
C|m|4s

−1
∗ q⋆

1 ⟨h1⟩
)−4q⋆ exp( 4q⋆

s∗
)
.

Then, using the rough estimate q⋆ ≤ q ≤ |m|1 =: r, it comes

∣∣a+

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣ ≥ γC−4r exp( 4r
s∗

)r−4r−16r2s−1
∗ exp( 4r

s∗
)⟨h1⟩−s∗−4r exp( 4r

s∗
).
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As a consequence, a standard asymptotic analysis proves that there exists a constant ρ > 0 and
a constant α depending only on s∗ such that we have∣∣a+

q⋆∑
j=1

mjω
(NLS*)
hj

∣∣ ≥ 2ρ
(
2⟨h1⟩

)−e−αr

,

which plugged in (52) concludes this proof.

5.2. Proof of Proposition 1.8. The scheme of this proof is very similar to the previous one.
First, we recall the classical proof stating that, almost surely, provided that the potential is small
enough, the frequencies of (NLS) for the random multiplicative potential (4) enjoy a weak non-
resonance condition.

Lemma 5.2. There exists η > 0 such that, almost surely, provided that ∥W (NLS)∥H1 < η, there
exists γ > 0 such that, for all q ≥ 1, m ∈ (Z∗)q, h1, · · · ,hq ∈ N∗ all distinct, we have

(54) ∀a ∈ Z,
∣∣a+

q∑
j=1

mjω
(NLS)
hj

∣∣ ≥ γ
(
max

j
⟨hj⟩

)−s∗
q∏

j=1

|mj |−4⟨hj⟩−4.

Proof. Actually, we just have to prove that there exists η > 0 such that, being given a, q,m,h
satisfying the assumptions of the lemma, we have

(55) ∀γ > 0, P
(∣∣a+

q∑
j=1

mjω
(NLS)
hj

∣∣ < γ
∣∣∣ ∥W (NLS)∥H1 < η

)
≲ γmax

j
⟨hj⟩s∗ .

Indeed, the rest of the proof is the same as the one of Lemma 5.1 (the estimate |ω(NLS)
hj

| ≲ ⟨hj⟩2

follows directly from [PT87, Theorem 4 p.35]). Moreover, the existence of η > 0 and the estimate
(55) are proven in [BG21]. More precisely, we refer the reader to the proof of Proposition 1.12 in
[BG21] and in particular to the last estimate page 703 of [BG21]. □

Now, we aim at improving the small divisor estimate (54) in order to prove that almost surely
the frequencies of (NLS) are strongly non-resonant. From now on we condition the potential
W (NLS) in (4) to be small enough in H1 (in any case ∥W (NLS)∥H1 < η) in such a way that by
[BG21, Proposition 2.7 p.700] (which is a variation of [PT87, Theorem 4 p.35]), almost surely
ω

(NLS)
1 ≥ 1/2 and there exists B > 0 such that

∀k ∈ N∗, |ω(NLS)
k − k2| ≤ B⟨k⟩−1.

Note that here we have used that
∫ π
0 W (NLS)(x)dx = 0. We fix q ≥ 1, m ∈ (Z∗)q, h1, · · · ,hq ∈ N∗

all distinct such that h1 < · · · < hq. We define q⋆ ∈ J1, qK as the maximal index such that

∀p ∈ J2, q⋆K, B

q∑
j=p

|mj |⟨hj⟩−1 ≥ γ

2
⟨hp−1⟩−s∗

p−1∏
j=1

|mj |−4⟨hj⟩−4.

Therefore it is enough to estimate
∣∣a +

∑q⋆
j=1mjω

(NLS)
hj

∣∣ where a ∈ Z. Indeed, if q⋆ < q, by
maximality of q⋆ we have

B

q∑
j=q⋆+1

|mj |⟨hj⟩−1 <
γ

2
⟨hq⋆⟩−s∗

q⋆∏
j=1

|mj |−4⟨hj⟩−4,
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and so applying the triangle inequality and the non-resonance estimate, we have (as previously,
see (52) for details) ∣∣ q∑

j=1

mjω
(NLS)
hj

∣∣ ≥ 1

2

∣∣ q∑
j=q⋆+1

mjh
2
j +

q⋆∑
j=1

mjω
(NLS)
hj

∣∣.
Now, as previously, to estimate

∣∣a+∑q⋆
j=1mjω

(NLS)
hj

∣∣ uniformly with respect to a ∈ Z, we are just
going to use the lower bound given by Lemma 5.2, but in order to have a bound depending only
on h1, we have to estimate ⟨hp⟩ for all p ∈ J2, q∗K.

By definition of q⋆, we deduce that if p ∈ J2, q⋆K then

B|m|1⟨hp⟩−1 ≥ γ

2
⟨hp−1⟩−s∗ |m|−4(p−1)

1

p−1∏
j=1

⟨hj⟩−4.

Applying the log function to this estimate, we get

yp ≤ log(C)+4q⋆ log(|m|1)+s∗yp−1+4

p−1∑
j=1

yj ≤ log(C)+(4+s∗)q⋆ log(|m|1)+y1+(4+s∗)

p−1∑
j=1

yj ,

where yj = log⟨hj⟩ and C := 2Bγ−1. Note that this estimate is the same as (53) except that
4s−1

∗ is replaced by 4+ s∗. Up to this change of constant, the rest of the proof is exactly the same
as the one of Proposition 1.4.

6. Global well-posedness of the full dynamics

In this section, we give the proof of Proposition 1.1. We first review the general strategy of the
I-method and the argument of [LWX11], and then give the necessary modifications, first in the
case of a convolution potential, and then in the case of a multiplicative potential. The proofs of
the technical lemma will be postponed to Appendix B.

6.1. Strategy of the proofs. We will thus closely follow the argument in [LWX11] which dealt
with the periodic quintic NLS without potentials. This argument relies on the so-called “second
generation I-method”, introduced in [CKSTT01, CKSTT02, CKSTT03, CKSTT08] and widely
applied to nonlinear dispersive equations both on tori or on Euclidean spaces; see for example
[Bou04b, dSPST07, dSPST07b, dSPST08] and references therein. The (classical) I-method ex-
ploits the almost conservation of the modified energy E(INu) for some appropriate choice of
parameter N ≫ 1, where E is the standard energy functional associated with the Hamiltonian
structure of NLS, and IN is a smooth Fourier multiplier which behaves like the identity on fre-
quencies smaller than N and like a smoothing operator of order 1−s for higher frequencies, s < 1
being a regularity where local well-posedness holds. Indeed, the standard energy E is conserved
but cannot be used at this level of regularity. Then the core of the argument is to prove that
E(INu) is almost conserved, in the sense that its time derivative decays sufficiently fast with N .
Moreover, a faster decay yields a smaller threshold for the admissible regularity on the initial
data. Interestingly, regarding the case of the periodic quintic NLS without potential, in order to
extend globally the local solutions of [Bou93] when the regularity is s < 1, Bourgain [Bou04b]
combined the I-method with Birkhoff normal form transformations in order to get a better decay
of the time derivative of E(INu). This idea was also exploited in [CKO12] where the authors
implemented the upside-down I-method together with Birkhoff normal forms to study the growth
of Sobolev norms Hs(T) for s > 1; namely, replacing the fractional integration operator IN of
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order 1− s by a fractional derivative DN of order s− 1. However, in the aforementioned seminal
paper [Bou04b], the argument could only deal with regularity s∗ < s < 1 for some s∗ smaller but
very close to 1

2 . It was later pointed out in [dSPST07b, LWX11] that one can improve on the
range of s by letting aside the Birkhoff normal form transformation, and by resorting instead to
both rescaling and a “second” modified energy. The former point relies on the observation that in
the Euclidean space Rd, one has an improved bilinear estimate for the Schrödinger flow of type

(56)
∥∥eit∆fN1e

it∆gN2

∥∥
L2
t,x

≲ N
− 1

2
2 N

d−1
2

1 ∥fN1∥L2∥gN2∥L2

for any N1 ≪ N2 and functions fN1 (resp. gN2) whose Fourier transform is supported in the
region {|ξ| ∼ N1} (resp. {|ξ| ∼ N2}). This in turn provides some gain of negative powers of N
in the context of the I-method when estimating multilinear interactions where one input function
has dominant frequencies. The refined bilinear estimate above is however known to be false on
Td. One of the crucial observation in [CKSTT08, dSPST07b, LWX11] is that, after a proper
rescaling to work on a very large torus, one can still get an estimate which gets closer to (56) and
allows to get some decay in N ; see [LWX11, Proposition 2.1] and Lemma B.1 below. The latter
point is the introduction of correcting terms in the modified energy, which cancel the interactions
having less decay in the time derivative of E(INu). This actually amounts to performing one
step of a Poincaré-Dulac normal form transformation, but at the level of the energy functional
instead of the equation; see for example the discussion in [GKO13]. Implementing this method in
the context of (NLS*)-(NLS) yields the following results (see (60) below for the definition of the
Bourgain type space Xs,b

L ).

Proposition 6.1. Let V ∈ L2(T). Then for any 2
5 < s ≤ 1

2 and any u0 ∈ Hs(T) with ∥u0∥Hs ≤ 1,

there exists a unique global mild solution u ∈ X
s, 1

2
+

−∂2
x+V ∗,loc with initial data u(0) = u0 to (NLS*)

provided that ∥u0∥Hs ≪ 1 in the focusing case σ < 0. Moreover, we have the growth estimate

(57) ∥u(t)∥Hs ≲s C(t, ∥u0∥Hs)∥u0∥Hs , t ∈ R,

where

C(t, ∥u0∥Hs) =


⟨t⟩

1
2 , |t| ≲ ∥u0∥−1

Hs ;

∥u0∥−1
Hs , ∥u0∥−1

Hs ≲ |t| ≲ ∥u0∥
− 2

s
−α(s)

1−s
−

Hs

|t|
1−s
α(s) ∥u0∥

2(1−s)
sα(s)

Hs , |t| ≳ ∥u0∥
− 2

s
−α(s)

1−s
−

Hs

with α(s) = 3− 21−s
s .

In particular, note that the second regime gives the bound

∥u(t)∥Hs ≲ 1 ≲ |t|∥u0∥Hs .

Thus (57) implies the more standard growth estimate10

∥u(t)∥Hs ≲ ⟨t⟩βs∥u0∥Hs(58)

with

βs = max(
1− s

α(s)
, 1).

10Recall that α(s) increases in s, with α( 2
5
+) = 0+ and α( 1

2
) = 1.
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Remark 6.2.
(i) Proposition 6.1 only deals with the case s ≤ 1

2 . This is not restrictive since the point in this
paper is to run the Birkhoff normal form at regularity s ≤ 1

2 , the standard theory covering the case
s > 1

2 .
(ii) We point out again that we only consider initial data satisfying ∥u0∥Hs ≤ 1 since this will
be the case to apply the Birkhoff normal form. But in the defocusing case σ > 0, the same
result as in Proposition 6.1 holds for any initial data. Moreover, the above remarks also apply to
Proposition 6.3 below.

We have a similar result in the case of a multiplicative potential.

Proposition 6.3. Let W ∈ H4(T). Then for any 2
5 < s ≤ 1

2 and any u0 ∈ Hs(T) with ∥u0∥Hs ≤

1, there exists a unique global mild solution u ∈ X
s, 1

2
+

−∂2
x+W,loc

with initial data u(0) = u0 to (NLS)
provided that ∥u0∥Hs ≪ 1 in the focusing case σ < 0. Moreover, we have the growth estimate

(59) ∥u(t)∥Hs ≲s ⟨t⟩βs∥u0∥Hs , t ∈ R.

The proof of Propositions 6.1 and 6.3 will occupy the rest of this section. There are some
slight but essential modifications compared to the argument in [LWX11] in order to prove the
results above. First, for the local well-posedness theory, in order to get existence of local solutions
beyond times of order O((∥V ∥L2 + ∥W∥L2)−1) for small initial data (the case we are interested
in), we need to remove the linear terms from the nonlinearity by incorporating them in the linear
operator. This requires to prove that the Xs,b spaces adapted to lower order perturbations of −∂2

x

still have the same properties (see Lemma 6.4 and 6.10 below), in particular Strichartz estimates.
This also explains why we deal with (NLS*) and (NLS) separately in Propositions 6.1 and 6.3.

As for the globalization part, the extra linear terms V ∗u and Wu are also dealt with differently.
The potential term Wu is treated as a perturbation term with respect to the nonlinearity. Indeed,
as detailed below, the rescaling performed in the argument of [LWX11] is very favorable on the
potential and one gains for free a factor O(λ−2) when estimating terms with W in the time
variations of the modified energy, where λ ∼ N

1−s
s is the scaling factor. This is not quite enough

though, as the lower bound s > 2
5 in [LWX11] comes from the use of a modified energy where one

gains a factor N−3. But since the operator IN at the base of the I-method does not commute
with W , terms with W only appear in commutators where one can gain an extra N−1 factor at
the expense of requiring more regularity for W , which we can afford. In comparison, we do not
incorporate it in the linear operator as the eigenfunctions of the Sturm-Liouville operator −∂2

x+W ,
though localized on complex exponentials (see (91) and (94) below), only satisfy convolution
relations

∫
T fk1fk2fk3 ≈ δk1+k2=k3 up to error terms. This is good enough to handle trilinear

interactions. However, the argument in [LWX11] is really tailored to the precise restrictions on
frequencies in the multilinear forms, and in particular to the null moment condition k1+ · · ·+k6 =
0. But this is destroyed when replacing −∂2

x by −∂2
x +W (see e.g. (45) above), and so it is not

clear to us how to implement the second generation I-method for the quintic equation without
treating the term Wu as part of the nonlinearity as we do here.

On the contrary, the convolution potential V scales as W but commutes with IN . Thus, we need
to view it again as part of the linear operator and use the argument in [LWX11] with −∂2

x + V ∗
in place of −∂2

x. This brings small changes in all the parts of the argument which rely on the
particular form of the symbol of −∂2

x.

6.2. Proof of Proposition 6.1.
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6.2.1. Notations and local well-posedness. We first recall some notations. We will build the solu-
tion u to (NLS*) in the Bourgain type space Xs,b

−∂2
x+V ∗ adapted to the linear Schrödinger equation

with convolution potential, namely the Banach space defined through the norm

(60) ∥u∥Xs,b :=
∥∥⟨ωk⟩

s
2 ⟨τ − ωk⟩bûk(τ)

∥∥
L2
τ ℓ

2
k
,

for any s, b ∈ R, where ûk(τ) =
∫
R×T u(t, x)e

−i(tτ+kx)dxdt is the space-time Fourier transform of
u : (t, x) ∈ R× T 7→ u(t, x) ∈ C, and

ωk = k2 + (2π)−
1
2Vk.

In the rest of this section we will drop the subscript −∂2
x + V ∗ in the notation of the Bourgain

type space since there is no risk of confusion. We also define its time-localized version

(61) ∥u∥Xs,b(T ) = inf{∥v∥Xs,b , v ≡ u on [−T, T ]}.

Next we collect some linear estimates in the space Xs,b.

Lemma 6.4. The following properties hold:
(i) (Xs,b as a resolution space) If u ∈ Xs,b for some s ∈ R and b > 1

2 , then u ∈ C(R;Hs(T)) and
∥u∥L∞

t Hs ≲ ∥u∥Xs,b.
(ii) (Time localization) For any T ∈ (0; 1] and s ∈ R, −1

2 < b′ ≤ b < 1
2 , it holds ∥u∥Xs,b′ (T ) ≲

T b−b′∥u∥Xs,b(T ).
(iii) (Linear estimate) It holds ∥eit(−∂2

x+V ∗)u0∥Xs,b(T ) ≲ ⟨T ⟩
1
2 ∥u0∥Hs uniformly in T > 0, for any

s ∈ R and b > 1
2 .

(iv) (Energy estimate) For any s ∈ R and b > 1
2 it holds∥∥∥∫ t

0
ei(t−t′)(−∂2

x+V ∗)F (t′)dt′
∥∥∥
Xs,b(T )

≲ ⟨T ⟩2∥F∥Xs,b−1

uniformly in T > 0.
(v) (L4 Strichartz estimate) It holds ∥u∥L4

t,x
≲ ∥u∥

X0, 38+.
(vi) (Equivalence of norms) For any s, b ∈ R, there exists C(∥V ∥L2) ≥ 1 such that it holds
1
C ∥u∥Xs,b

−∂2x

≤ ∥u∥
Xs,b

−∂2x+V ∗
≤ C∥u∥

Xs,b

−∂2x

for any u ∈ Xs,b
−∂2

x+V ∗.

The general properties (i), (ii), and (v) of Xs,b spaces in Lemma 6.4 in the case V = 0 are
standard, and we refer to [Tao06] and [ET16]. See Appendix A for the modifications in the case
V ̸= 0. Note however that the estimates (iii) and (iv), due to the factors ⟨T ⟩

1
2 and ⟨T ⟩

3
2 , are

somewhat less standard; see also Remark 6.6 below and Appendix A for the proofs. In the case
V = 0, the Strichartz estimate (v) is due to Bourgain [Bou93]. The last estimate (vi) shows that
Xs,b norms with respect to V = 0 or V ̸= 0 are equivalent, which in particular implies properties
(i), (ii), and (v) for the case V ̸= 0 from the classical case V = 0. Let us also emphasize that in
order to close the fixed point argument, one needs to get a small factor of T . In this perspective,
(ii) is used for the large data local theory, whereas (iv) when T > 1 is more suited for the small
data theory.

As a consequence of the estimates in Lemma 6.4, we then have the following small11 data local
well-posedness result for (NLS*).

11Here we only treat the case of small initial data as this is the setting for the proof of Theorem 1.3. Of course
a similar local well-posedness result holds for large data, with a different time of existence, and with a proof which
relies on Lemma 6.4 (ii) on top of Lemma 6.4 (iv) to get a small power of T ∈ (0; 1].
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Lemma 6.5. Let s > 1
4 . Then for any u0 ∈ Hs(T) with ∥u0∥Hs ≤ 1, letting δ ∼ ∥u0∥

− 8
7

Hs , there
exists a unique mild solution u ∈ Xs, 1

2
+(δ) to (NLS*) on [−δ, δ]×T with u(0) = u0, which satisfies

(62) ∥u∥
Xs, 12+ϵ(t)

≲ ⟨t⟩
1
2 ∥u0∥Hs

for any 0 ≤ t ≤ δ.

Remark 6.6.
(i) The point in the previous lemma is the dependence of the local time δ on ∥u0∥Hs . Note that
the estimates (iii) and (iv) in Lemma 6.4 are somehow non-standard, since at scaling subcritical
regularity one is usually concerned with local well-posedness for large initial data, for which the
local time in the fixed point argument is taken to be δ ≤ 1. Here we have a time of existence
δ ∼ ∥u0∥

− 8
7

Hs ≥ 1, which is crucial to get the growth estimate (58) needed to control the high modes
in the proof of Theorem 1.3.
(ii) Note also that on the local time of existence, we can only get the local estimate (62) with
a loss of the factor ⟨t⟩

1
2 due to the linear estimate (iii) in Lemma 6.4, which is sharp. This is

different from what happens at higher regularity (s > d
2) where one can perform a fixed point

argument directly in C([−δ; δ];Hs(T)) without having to use Xs,b spaces, which in particular
provides a longer local time δ ∼ ∥u0∥−4

Hs and an estimate ∥u∥L∞
δ Hs ≲ ∥u0∥Hs . In particular, (68)

only provides stability of Fourier modes
∣∣|uk(t)|2 − |uk(0)|2

∣∣ ≪ ∥u0∥2Hs up to time O(1) instead
of times O(∥u0∥−4

Hs) compared to the local well-posedness theory at regularity s > d
2 . This loss

of ⟨t⟩
1
2 may be avoided by using refined versions of Xs,b spaces (U2/V 2 type spaces) used in the

Cauchy theory at scaling critical regularity, but we do not pursue this refinement here, as (59)
suffices for our purpose.

Proof of Lemma 6.5. Note that here we do no try to cover the best possible range for the regularity
of the initial data, namely s > 0, since we will be restricted to the range s > 2

5 by the globalization
argument. The proof would follow from a straightforward adaptation of Bourgain’s argument
[Bou93]; see also [ET16]. Let δ > 0 and R ∼ ⟨δ⟩

1
2 ∥u0∥Hs , and let B(R) be the ball of radius R in

Xs, 1
2
+(δ). Setting

Γ : u ∈ B(R) 7→ eit(−∂2
x+V ∗)u0 − iσ

∫ t

0
ei(t−t′)(−∂2

x+V ∗)(|u|4u)(t′)dt′,

we will prove that Γ is a contraction on B(R) for δ appropriately chosen. Let then u ∈ B(R), and
take v to be an extension of u such that ∥v∥

Xs, 12+ ≤ 2∥u∥
Xs, 12+(δ)

. First, using Cauchy-Schwartz
inequality, we have the Sobolev type estimate

∥v∥L∞
t,x

≤ ∥v̂k(τ)∥L1
τL

1(dk)λ ≤ ∥⟨τ − k2⟩−
1
2
−⟨k⟩−

1
2
−∥L2

τ ℓ
2(dk)λ∥v∥X 1

2+, 12+ ≲ ∥v∥
X

1
2+, 12+ .

Interpolating this estimate with the L4-Strichartz estimate of Lemma 6.4 (v), we get

∥v∥L8
t,x

≲ ∥v∥
X

1
4+, 7

16+ .(63)

Then, we first use Lemma 6.4 (iii) and (vi) to estimate∥∥Γu∥∥
Xs, 12+(δ)

≲ ⟨δ⟩
1
2 ∥u0∥Hs + ⟨δ⟩2

∥∥|v|4v∥∥
Xs,− 1

2+
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Next, using the dual version of the L4 Strichartz estimate of Lemma 6.4 (v), we can continue with

≲ ⟨δ⟩
1
2 ∥u0∥Hs + ⟨δ⟩2

∥∥|v|4v∥∥
L

4
3
t W s, 43

.

Now, by the fractional Leibniz rule (see e.g. [ET16, Lemma 1.11]), it holds∥∥|v|4v∥∥
L

4
3
t W s, 43

≲
∥∥∥∥v∥W s,4

x

∥∥|v|4∥∥
L2
x

∥∥∥
L

4
3
t

≲ ∥v∥L4
tW

s,4∥v∥4L8
t,x
,

where the second step follows from Hölder’s inequality. Using now (63), we finally get∥∥Γu∥∥
Xs, 12+(δ)

≲ ⟨δ⟩
1
2 ∥u0∥Hs + ⟨δ⟩2∥v∥5

Xs, 12+
≲ ⟨δ⟩

1
2 ∥u0∥Hs + ⟨δ⟩2∥u∥5

Xs, 12+(δ)
.

Therefore, with R ∼ ⟨δ⟩
1
2 ∥u0∥Hs , we get that Γ maps B(R) to B(R) provided that δ ∼ ∥u0∥−1

Hs in
case ∥u0∥Hs ≤ 1. The contraction property follows from similar estimate. This proves (62). □

6.2.2. Rescaling. In order to implement the I-method to globalize the local solution provided by
Lemma 6.5, recall that for N ≫ 1 to be chosen later, the I operator is defined as the Fourier
multiplier with symbol m(k) = ms(N

−1k) for some smooth even function ms which equals 1 on
[0, 1] and behaves like ⟨k⟩s−1 for |k| ≥ 1. In particular, for u0 ∈ Hs(T), we have INu0 ∈ H1(T)
and it holds

∥u0∥Hs ≲ ∥INu0∥H1 ≲ N1−s∥u0∥Hs .(64)

However, as we mentioned above, in order to benefit from the improved bilinear Strichartz
estimate and get a better decay of the modified energy E(INu), we will use a rescaling procedure.
Indeed, recall that (NLS*) has the following scaling property : u(t, x) solves (NLS*) on [−T, T ]×T
if and only if

uλ(t, x) = λ− 1
2u(λ−2t, λ−1x)

is a solution of

(65) i∂tuλ = −∂2
xuλ + Vλ ∗ uλ + σ|uλ|4uλ

on [−λ2T, λ2T ]× Tλ, where Tλ = R/(2πλ)Z and

Vλ(x) = λ−3V (λ−1x), x ∈ (−πλ, πλ).(66)

Following [CKSTT03, dSPST07, LWX11], let us then recall some properties of λ−periodic
functions. Define (dk)λ to be the normalized counting measure on 1

λZ:∫
a(k)(dk)λ =

1

λ

∑
k∈ 1

λ
Z

a(k).

We define the Fourier transform of u ∈ L1([0, 2πλ]) by

û(k) =

∫ 2πλ

0
e−ikxu(x)dx.

Fourier inversion formula reads
u(x) =

∫
eikxû(k)(dk)λ,

and the following identities are true:

(1) ∥u∥L2([0,2πλ]) = ∥û∥L2((dk)λ), (Plancherel)
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(2)
∫ 2πλ
0 u(x)v̄(x)dx =

∫
û(k)¯̂v(k)(dk)λ, (Parseval)

(3) ûv(k) = û ⋆λ v̂(k) =
∫
û(k − k1)v̂(k1)(dk1)λ,

The Sobolev space of λ-periodic functions is Hs
λ = Hs([0, 2πλ]) defined by the norm

∥u∥Hs
λ
= ∥⟨k⟩sû(k)∥L2((dk)λ).

We also denote by Xs,b
λ = Xs,b(Tλ×R) the Bourgain type space of space-time functions λ-periodic

in x endowed with

∥u∥
Xs,b

λ
= ∥⟨k⟩s⟨τ − k2⟩bûk(τ)∥L2

τL
2
(dk)λ

,

where as above ûk(τ) is the space-time Fourier transform. Then (64) implies

∥uλ(0)∥Hs
λ
≲ ∥INuλ(0)∥H1

λ
≲ N1−s∥uλ(0)∥Hs

λ
≲ N1−sλ−s∥u0∥Hs .(67)

Before starting to get long-time bounds on INuλ, we recast the local estimate (62) in terms of
INuλ.

Lemma 6.7. Let V ∈ L2(T), λ ≥ 1, s > 1
4 and uλ(0) ∈ Hs(Tλ). Then for

δ ∼∥V ∥L2
⟨∥INuλ(0)∥H1

λ
⟩−8−,

it holds

(68) ∥INuλ∥
X

1, 12+

λ (δ)
≲∥V ∥L2

∥INuλ(0)∥H1
λ
.

Proof. Again, we do not try to cover the whole range of regularity s > 0 where local well-posedness
of (NLS*) holds. The proof of (68) relies on the fact that, since uλ solves (65), INuλ solves

i∂tINuλ = −∂2
xINuλ + Vλ ∗ (INuλ) + σIN

(
|uλ|4uλ

)
(69)

with initial data INuλ(0) ∈ H1(Tλ). Thus, we will use estimates similar to that in the proof
of Lemma 6.5. Note that the estimates (i)–(iv) of Lemma 6.4 are unchanged for λ-periodic
functions, uniformly in λ ≥ 1. This is also the case for Lemma 6.4 (v) (see for example [dSPST07]
or Appendix A below), which will be enough for our purpose as mentioned above. Indeed, note
first that we have the Sobolev type inequality

∥u∥L∞
t,x

≤ ∥ûk(τ)∥L1
τL

1
(dk)λ

≤ ∥⟨k⟩−
1
2
+⟨τ − k2⟩−

1
2
+∥L2

τL
2
(dk)λ

∥u∥
X

1
2+, 12+

λ

.

Interpolating this bound with the L4 Strichartz estimate of Lemma 6.4 (v) gives

∥uλ∥L8
δ,x

≲ ∥uλ∥
X

1
4+, 7

16+

λ (δ)

for any δ > 0. Together with Lemma 6.4, duality, Hölder’s inequality and the fractional Leibniz
rule, this yields again (note that δ ≤ 1 now)∥∥|uλ|4uλ∥∥

X
s,− 1

2+

λ (δ)
≲ δ

1
8
−∥∥|uλ|4uλ∥∥

X
s,− 3

8−
λ (δ)

≲ δ
1
8
−∥∥|uλ|4uλ∥∥

L
4
3
δ W s, 43

≲ δ
1
8
−∥uλ∥L4

δ,x
∥u∥4L8

δ,x
≲ δ

1
8
−∥uλ∥

X
s, 38+

λ (δ)
∥u∥4

X
1
4+, 7

16+

λ (δ)
(70)

≲ δ
1
2
−∥uλ∥5

X
s, 12+

λ (δ)
(71)
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for s > 1
4 .

Now, from the mild formulation of (69) and Lemma 6.4, we have

∥INuλ∥
X

1, 12+

λ (δ)
≲ ∥INuλ(0)∥H1

λ
+
∥∥IN (|uλ|4uλ)

∥∥
X

1,− 1
2+

λ (δ)
.

Setting

U(t, x) =

∫
R

∫
ei(tτ+kx)m(k)⟨k⟩1−s|ûk(τ)|(dk)λdτ,

we can estimate the last term above by∥∥IN (|uλ|4uλ)
∥∥
X

1,− 1
2+

λ (δ)
≤
∥∥M5(U)

∥∥
X

s,− 1
2+

λ (δ)

where the multilinear operator is

M̂5(U)k(τ) =

∫
τ1+···+τ5=τ

∫
k1+···+k5=k

mN (k)⟨k⟩1−s∏5
j=1mN (kj)⟨kj⟩1−s

5∏
j=1

Ûkj (τj)(dkj)λdτj .

But since

mN (k)⟨k⟩1−s ∼

{
⟨k⟩1−s, |k| ≲ N

N1−s, |k| ≫ N
,

in particular

mN (k1 + · · ·+ k5)⟨k1 + · · ·+ k5⟩1−s ≲
5∑

j=1

mN (kj)⟨kj⟩1−s

and thus the symbol of M5 is bounded uniformly in λ,N . Together with (70), this yields∥∥IN (|uλ|4uλ)
∥∥
X

1,− 1
2+

λ (δ)
≲
∥∥M5(U)

∥∥
X

s,− 1
2+

λ (δ)
≲
∥∥|U |4U

∥∥
X

s,− 1
2+

λ (δ)

≲ δ
1
2
−∥U∥5

X
s, 12+

λ (δ)
= δ

1
2
−∥INuλ∥5

X
1, 12+

λ (δ)
.

All in all, we get

∥INuλ∥
X

1, 12+

λ (δ)
≲ ∥INuλ(0)∥H1

λ
+ δ

1
2
−∥INuλ∥5

X
1, 12+

λ (δ)
.

Thus (68) follows from the previous estimate with our choice of δ as in the proof of Lemma 6.5. □

6.2.3. Modified energy and globalization. Now we set up the I-method for rescaled functions. Let
T ≫ 1 be a target time of existence, and N = N(T ) ≫ 1 to be chosen later. Note that it is
enough to consider the case T ≥ ∥u0∥−1

Hs , the other case being dealt with by the local theory
(Lemma 6.5). Then in view of (67), we take

λ ∼ N
1−s
s ∥u0∥

1
s
Hs ,

so that ∥INuλ(0)∥H1 ∼ 1, and thus (68) holds with δ ∼ 1 by Lemma 6.7. From now on, we drop
the subscript λ.

The “first generation” I-method then corresponds to the use of the modified energy

E1(u) = E(INu) =
1

2
∥∂xINu∥2L2 +

γ

2
∥INu∥2L2 +

1

2

∫
Tλ

Vλ ∗ INu · INudx+
σ

6
∥INu∥6L6 .
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Here the mass γ > 0 is chosen such that γ > supk |Vk|, which ensures that

ω̃k := ωk + γ ≥ c > 0

and so that E1 controls ∥ · ∥2H1 . To estimate the time variations of the modified energy, let us
recall some notations on multilinear forms from [CKSTT03, dSPST07b, LWX11]. For n ∈ N,
Γn ⊂ (λ−1Z)n denotes the space

Γn := {(k1, . . . , kn) ∈ (λ−1Z)n, k1 + . . .+ kn = 0}.
For a smooth Mn : Γn → C, we define the n-linear functional

Λn(Mn;u1, . . . , un) :=

∫
Γn

Mn(k1, . . . , kn)
n∏

j=1

ûj(kj)(dkj)λ,

and for n even we simply write

Λn(Mn;u) := Λn(Mn;u, u, . . . , u, u).

Then

E1(u) = E(INu) = Λ2(σ
V
2 ;u) + Λ6(σ6;u),

where, as in [LWX11], σ6 = 1
6mN (k1) · · ·mN (k6), and

σV
2 =

1

4
mN (k1)mN (k2)(ω̃k1 + ω̃k2).

Recall that ω̃k are the eigenvalues of −∂2
x+γ+V ∗. In particular, σV

2 = σ2 = −1
2mN (k1)mN (k2)k1k2

as in [LWX11] when V = 0.
Similarly to the computation (3.35) in [LWX11], using (65), we have that for any symbol Mn,

d

dt
Λn(Mn) = Λn(Mnα

V
n ) + iσΛn+4

( n∑
j=1

(−1)jXj(Mn)
)
,

where in our case

αV
n = i

n∑
j=1

(−1)jω̃kj ,(72)

and as in [LWX11]

Xj(Mn) = Mn(k1, . . . , kj−1, kj + · · ·+ kj+4, kj+5, . . . , kn+4).

Since αV
2 = 0 on Γ2 (recall that V is real-valued), this yields

d

dt
E1(u) = Λ6(M

V
6 ;u) + σΛ10(M

V
10;u)

with

MV
6 =

1

6

6∑
j=1

(−1)j+1m(kj)
2ω̃kj + σ6α

V
6 = MV,1

6 +MV,2
6 ,(73)

and

MV
10 =

6∑
j=1

(−1)jXj(σ
V
6 ).
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To treat the main term Λ6(M
V
6 ), we follow [LWX11] and make the non-resonant/resonant

decomposition M̃V
6 = 1ΩM

V,1
6 + 1ΥM

V,2
6 and MV

6 = MV
6 − M̃V

6 . Here the sets of frequencies
Ω,Υ ⊂ Γ6 are the same as in [LWX11], namely

Υ = {(k1, . . . , k6) ∈ Γ6, |k1| ≥ |k3| ≥ |k5|, |k2| ≥ |k4| ≥ |k6|, |k1| ≥ |k2|, |k∗1| ∼ |k∗2| ≫ N},
(74)

Ω1 = {(k1, . . . , k6) ∈ Υ, |k1| ≫ |k2|},(75)

Ω2 = {(k1, . . . , k6) ∈ Υ, |k∗3| ≫ |k∗4|},(76)

Ω3 = {(k1, . . . , k6) ∈ Υ, |k1| ∼ |k5|, |k5| ≫ |k4|},(77)

Ω4 =
{
(k1, . . . , k6) ∈ Υ, |k1| ∼ |k6| ≫ |k3|,

(
||k1| − |k2|| ≪ |k1| or k2k4 > 0, k2k6 > 0

)}
,

(78)

and

Ω5 =
{
(k1, . . . , k6) ∈ Υ, |k1| ∼ |k2| ≳ N ≫ |k∗3|, |ω̃k1 − ω̃k2 | ≫

∣∣ 6∑
j=3

(−1)j+1ωkj

∣∣},(79)

and Ω = ∪5
j=1Ωj , where |k∗1| ≥ . . . ≥ |k∗6| denotes the decreasing rearrangement of (k1, . . . , k6).

With the decomposition above, the “second generation” I-method consists then in using the
modified energy

E2(u) = E(INu)− Λ6

(M̃V
6

αV
6

)
.

Indeed, from the conservation of the L2-norm and (67) it holds

∥u(t)∥Hs ≲ ∥u(0)∥L2 + ∥∂xINu∥L2 ≲ ∥u(0)∥Hs + E1(u(t))
1
2

≲ ∥u(0)∥Hs + E2(u(t))
1
2 +N0−E2(u(t))

3,(80)

where the second estimate follows from the positivity of E in the defocusing case and the Gagliardo-
Nirenberg inequality with the smallness assumption on ∥u0∥Hs in the focusing case, and the last
estimate is a direct consequence of the following lemma, which is the exact analogue of [LWX11,
Lemma 3.3] (see Appendix B for a proof).

Lemma 6.8. The following estimate holds for any 1
3 < s < 1 and t > 0:

∣∣Λ6

(M̃V
6

αV
6
;u(t)

)∣∣ ≲
N2(s−1)∥INu(t)∥6H1.

Thus, (80) implies that it is enough to prove the almost conservation of E2 in order to globalize
the solution provided by Lemma 6.5.

Now, with the previous computations and the fundamental theorem of calculus we have

E2(u(t)) = E2(u(0)) +

∫ t

0

{
iΛ6(M6

V
) + iΛ10(M10

V
)
}
dt′(81)
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with

M10
V
= MV

10 +
6∑

j=1

(−1)jXj

(M̃6
V

αV
6

)
.

Then we can estimate the terms above similarly as in [LWX11, Proposition 3.2 & 3.3].

Lemma 6.9. For any 2
5 < s ≤ 1

2 and δ ∈ (0, 1), the following estimates hold uniformly in λ,N :

(i)
∣∣ ∫ δ

0
Λ6(M6

V
)dt
∣∣ ≲ N−3λ0+∥INu∥6

X1, 12+(δ)
;

(ii)
∣∣ ∫ δ

0
Λ10(M10

V
)dt
∣∣ ≲ N−3λ0+∥INu∥10

X1, 12+(δ)
.

We also postpone the proof of Lemma 6.9 to Appendix B and conclude the proof of Proposi-
tion 6.1. Indeed, from (80), and (81) with Lemma 6.14 and 6.9, we get that there exists a constant
C(V ) > 0 such that for12 any t ∈ [0, 1],

∥INu(t)∥2H1 ≲ E2(u(t)) = E2(u(0)) +O(N−3λ0+).

We can iterate this bound for t ∈ [0;λ2T ] as long as ∥INu(t)∥H1 ≲ 1. Thus, after λ2T iterations
we get

∥INu(t)∥2H1 ≲ E2(u(t)) = E2(u(0)) +O(TN−3λ2+), |t| ≤ λ2T.

Since λ ∼ N
1−s
s ∥u0∥

1
s
Hs and s > 2

5 , by setting

α(s) = 3− 2
1− s

s
> 0

and13

N = max
(
T

1
α(s) ∥u0∥

2
sα(s)

Hs , ∥u0∥
− 1

1−s

Hs

)
,

we obtain that INu can be extended as a solution on [−λ2T ;λ2T ]× Tλ which satisfies

∥INu∥2L∞
λ2T

H1
λ
≲ 1.(82)

Reversing the scaling, this shows that the local solution u to (NLS*) provided by Lemma 6.5 can
be extended on [−T ;T ]× T, thus proving global well-posedness and the estimate

∥u∥L∞
T Hs ≲ λs∥uλ∥L∞

λ2T
Hs

λ
≲ λs∥INuλ∥L∞

λ2T
H1

λ
≲ λs ∼ N1−s∥u0∥Hs ∼ C(T, ∥u0∥Hs)∥u0∥Hs

with

C(T, ∥u0∥Hs) ∼


⟨t⟩

1
2 , |t| ≲ ∥u0∥−1

Hs ;

∥u0∥−1
Hs , ∥u0∥−1

Hs ≲ |t| ≲ ∥u0∥
− 2

s
−α(s)

1−s
−

Hs

|t|
1−s
α(s) ∥u0∥

2(1−s)
sα(s)

Hs , |t| ≳ ∥u0∥
− 2

s
−α(s)

1−s
−

Hs .

This proves (57).

12Recall that the local time is δ ∼ 1 by our choice of λ and Lemma 6.12, and ∥INu∥
X

1, 1
2
+
(δ)

≲ 1.
13Recall that the last lower bound on N comes from the need to have λ ≥ 1 together with the definition

λ = N
1−s
s ∥u0∥

1
s
Hs . This condition is only restrictive when ∥u0∥Hs ≪ 1, but this is the case we are interested in.
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6.3. Proof of Proposition 6.3. We now move on to the proof of the global well-posedness
for (NLS). We keep the same notations as for Proposition 6.1, except that now the Bourgain
type space Xs,b

−∂2
x+W

is defined with respect to the eigenvalues λk and eigenfunctions fk of the
Sturm-Liouville operator −∂2

x +W for an even potential W ∈ L2(T;R) (see Proposition 1.6):

∥u∥
Xs,b

−∂2x+W

=
∥∥⟨λk⟩

s
2 ⟨τ − λk⟩b⟨û(τ, ·), fk⟩L2

∥∥
L2
τ ℓ

2
k
,(83)

where now û is only the temporal Fourier transform of u, and the coefficients ⟨u, fk⟩L2 now play
the role of the Fourier coefficients.

In the rest of this subsection, however, we will keep the subscript −∂2
x +W , and simply write

Xs,b (without subscript) when W = 0. The time-localized version is defined as in (61), and we
have the same linear estimates as in Lemma 6.4.

Lemma 6.10. The following properties hold:
(i) (Xs,b

−∂2
x+W

as a resolution space) If u ∈ Xs,b
−∂2

x+W
for some s ∈ R and b > 1

2 , then u ∈
C(R;Hs(T)) and ∥u∥L∞

t Hs ≲ ∥u∥
Xs,b

−∂2x+W

.

(ii) (Time localization) For any T ∈ (0; 1] and s ∈ R, −1
2 < b′ ≤ b < 1

2 , it holds ∥u∥
Xs,b′

−∂2x+W
(T )

≲

T b−b′∥u∥
Xs,b

−∂2x+W
(T )

.

(iii) (Linear estimate) It holds ∥eit(−∂2
x+W )u0∥Xs,b

−∂2x+W
(T )

≲ ⟨T ⟩
1
2 ∥u0∥Hs uniformly in T > 0, for

any s ∈ R and b > 1
2 .

(iv) (Energy estimate) For any s ∈ R and b > 1
2 it holds∥∥∥∫ t

0
ei(t−t′)(−∂2

x+W )F (t′)dt′
∥∥∥
Xs,b(T )

≲ ⟨T ⟩2∥F∥Xs,b−1

uniformly in T > 0.
(v) (L4 Strichartz estimate) It holds ∥u∥L4

t,x
≲ ∥u∥

X
0, 38+

−∂2x+W

.

(vi) (Equivalence of norms) If W ∈ Hσ(T), σ ≥ 0, then for any s, b, β ≥ 0 satisfying b < 1
2 + β,

2b < 1+β+σ and 2b+s < 3
2+β+σ, there is C(∥W∥Hσ) ≥ 1 such that 1

C ∥u∥Xs−β,b ≤ ∥u∥
Xs,b

−∂2x+W

≤

C∥u∥Xs+β,b .

Note that compared to Lemma 6.4 (vi), here we have a loss of derivatives in the embeddings
between Xs,b and Xs,b

−∂2
x+W

. Indeed, in the following we build the local solution to (NLS) in

Xs,b
−∂2

x+W
(Lemma 6.11 below) but after rescaling we extend it globally by iterating the local

theory in Xs,b (Lemma 6.12 below), both with b > 1
2 . Thus, we need β > 0 in Lemma 6.10 (vi).

Again, we refer to Appendix A for the proof of this statement. In particular, as in Lemma 6.5,
the estimates above imply the following local well-posedness result.

Lemma 6.11. Let W ∈ L2(T), and s > 1
4 . Then for any u0 ∈ Hs(T) with ∥u0∥Hs ≤ 1, letting

δ ∼ ∥u0∥−1
Hs, there exists a unique mild solution u ∈ X

s, 1
2
+

−∂2
x+W

(δ) to (NLS) on [−δ, δ] × T with
u(0) = u0, which satisfies

(84) ∥u∥
X

s, 12+ϵ

−∂2x+W
(t)

≲ ⟨t⟩
1
2 ∥u0∥Hs

for any 0 ≤ t ≤ δ.
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The proof is exactly the same as for Lemma 6.5, as the latter only relied on the estimates of
Lemma 6.4 (i)–(v), which remain true in this context.

Next, we define again the I operator as the Fourier multiplier (now back to the usual Fourier
basis) with symbol m(k) = ms(N

−1k) for some smooth even function ms which equals 1 on [0, 1]
and behaves like ⟨k⟩s−1 for |k| ≥ 1. We will then make the same rescaling procedure and set

uλ(t, x) = λ− 1
2u(λ−2t, λ−1x)

which now is a solution of

(85) i∂tuλ = −∂2
xuλ +Wλuλ + σ|uλ|4uλ

on [−λ2T, λ2T ]× Tλ, where

Wλ(x) = λ−2W (λ−1x), x ∈ (−πλ, πλ).(86)

Again, we start with a local in time estimate for INuλ.

Lemma 6.12. Let W ∈ H4(T), λ ≥ 1, s > 1
4 and uλ(0) ∈ Hs(Tλ). Then for

δ ∼W (1 + ∥INuλ(0)∥H1
λ
)−8−,

it holds

(87) ∥INuλ∥
X

1, 12+

λ (δ)
≲ ∥INuλ(0)∥H1

λ
.

Proof. Note that this time we work in the standard Xs,b space, namely the one corresponding to
W = 0. In particular, the solution u to (NLS) with initial data u0 obtained from Lemma 6.11

belongs to X
s, 1

2
+

−∂2
x+W

(T ), T ∼ ∥u0∥−1
Hs . By Lemma 6.10 (vi), it thus belongs also to Xs−, 1

2
+(T ).

Then by rescaling uλ ∈ X
s−, 1

2
+

λ (λ2T ) and INuλ ∈ X
1−, 1

2
+

λ (λ2T ). On the other hand, we can
apply a fixed point argument to the equation solved by INuλ:

i∂tINuλ = −∂2
xINuλ + IN (Wλuλ) + σIN

(
|uλ|4uλ

)
(88)

with initial data INuλ(0) ∈ H1−(Tλ). We then proceed as in the proof of Lemma 6.7, except that
we have to deal with the extra term IN (Wλuλ) as part of the nonlinearity. To estimate this term,
we write it as

IN (Wλuλ) = WλINuλ + [IN ,Wλ]uλ.

The first term is straightforward to estimate with the fractional Leibniz rule:

∥WλINuλ∥
X1−,− 1

2+(δ)
≲ δ

1
2
−∥WλINuλ∥L2

δH
1−

≲ δ1−
(
∥Wλ∥W 1−,∞∥INuλ∥

X0, 12+(δ)
+ ∥Wλ∥L∞∥INuλ∥

X1−, 12+(δ)

)
≲ δ1−∥Wλ∥H4∥INuλ∥

X1−, 12+(δ)
.

As for the second term, we exploit that it is a commutator between IN and Wλ to gain a factor
N−1 at the expense of putting a derivative on Wλ. Indeed, for fixed t ∈ R we can write its Fourier
coefficient as∣∣([IN ,Wλ]uλ)k(t)

∣∣ = ∣∣∣ ∫
k1

(mN (k)−mN (k1))uk1(t)Wk−k1(dk1)λ

∣∣∣
≲ N−1

∫
|k|+|k1|≳N

∫ 1

0
⟨N−1(k1 + θ(k − k1))⟩s−2dθ|uk1(t)||(k − k1)Wk−k1 |(dk1)λ
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where we used that the commutator vanishes if |k| + |k1| ≲ N , and the mean value theorem to
estimate its symbol. Thus, we can estimate for fixed t ∈ R∥∥[IN ,Wλ]uλ(t)

∥∥2
H1−

≲ N−2

∫
k
⟨k⟩2−

(∫
|k|+|k1|≫N

∫ 1

0
⟨N−1(k1 + θ(k − k1))⟩s−2dθ|uk1(t)||(k − k1)Wk−k1 |(dk1)λ

)2
(dk)λ

≲ N−2

∫
k
⟨k⟩2−

(∫
|k−k1|∼|k1|≳max(|k|,N)

|uk1(t)||(k − k1)Wk−k1 |(dk1)λ
)2

(dk)λ

+N−2

∫
k
⟨k⟩2−

(∫
|k−k1|∼|k|≳max(|k1|,N)

|uk1(t)||(k − k1)Wk−k1 |(dk1)λ
)2

(dk)λ

(89)

+N−2

∫
k
⟨k⟩2−

(∫
|k|∼|k1|≫max(|k−k1|,N)

(N−1|k1|)s−2|uk1(t)||(k − k1)Wk−k1 |(dk1)λ
)2

(dk)λ

≲ N−2∥Wλ∥2W 2−,∞∥uλ(t)∥2L2 +N−2∥∂xWλ∥2L∞∥INuλ(t)∥2H1− .

Thus ∥∥[IN ,Wλ]uλ
∥∥
X1,− 1

2+(δ)
≲ δ1−λ−2∥W∥H4∥INuλ∥

X1−, 12+(δ)
.

Then we can finish as in the proof of Lemma 6.7 to get

∥INuλ∥
X1, 12+(δ)

≲ ⟨δ⟩
1
2 ∥INuλ(0)∥H1− + δ1−λ−2∥W∥H4∥INuλ∥

X1−, 12+(δ)

+ δ
1
2
−∥INuλ∥5

X1−, 12+(δ)
.

A similar estimate holds for the difference equation, allowing to close a fixed point argument
with our choice of δ. This shows local well-posedness of (88) in X1−, 1

2
+(δ) with initial data

INuλ(0), and which thus agrees with INuλ on [−δ; δ]. Moreover, similar estimates as above
replacing 1− by 1 show propagation of regularity, namely that since INuλ(0) ∈ H1(T) it actually
holds INuλ ∈ X1, 1

2
+(δ). Together with a similar estimate as above shows local well-posedness in

X1, 1
2
+(δ) and (87) by our choice of δ. □

Remark 6.13. Note that the local well-posedness results in Lemmas 6.5, 6.7, 6.11, and 6.12
are conditional, meaning that we cannot claim uniqueness of the solution in C([−T ;T ];Hs(T))
but only in the smaller space X

s, 1
2
+

−∂2
x+V ∗(T ) (respectively X1, 1

2
+(δ), Xs, 1

2
+

−∂2
x+W

(T ), and X1, 1
2
+(δ)).

In particular, we can only compare INuλ, where u is provided by Lemma 6.11, to the solution
of (88), if they both belong to X1, 1

2
+(δ). But the embeddings of Lemma 6.10 (vi) can only

guarantee that INuλ ∈ X1−, 1
2
+(δ). So we need both local well-posedness of (88) in X1−, 1

2
+(δ)

and the propagation of regularity to obtain that actually INuλ ∈ X1, 1
2
+(δ).

We can then proceed with the second modified energy as above, by introducing

E2(u) = E(INu)− Λ6

(M̃6

α6

)
= Λ2(σ2) + Λ3(σ3;u, u,W ) + Λ6(σ6)− Λ6

(M̃6

α6

)
where σ3 =

1
2mN (k1)mN (k2).
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From (NLS), we thus get

d

dt
E2(u(t)) = Λ2(σ2α2) + Λ6(M6) + Λ10(M10) + F (u,W )(90)

where

F (u,W ) = ⟨−∂2
xINu, iIN (Wλu)⟩L2 + ⟨WλINu,−i∂2

xINu+ iIN (Wλu) + iIN (|u|4u)⟩L2

+ ⟨|INu|4INu, iIN (Wλu)⟩L2 + Λ7(M7;u, . . . , u,W )

= I + II + III + IV + V+ Λ7(M7;u, . . . , u,W ),

where

M7 =

6∑
j=1

(−1)j
M̃6

α6
(k1, . . . , kj−1, kj + k7, kj+1, . . . , k6).

Again, recall that α2 ≡ 0 on Γ2, and moreover

I + II = ⟨∂xINu, ∂x[IN ,Wλ]u⟩L2 ,

III = −⟨WλINu, iIN (Wλu)⟩L2 = ⟨iWλINu, [IN ,Wλ]u⟩L2 ,

and

IV + V = −⟨iWλINu, IN (|u|4u)⟩L2 − ⟨IN (Wλu), |INu|4INu)⟩L2

= −⟨iWλINu− iIN (Wλu), IN (|u|4u)⟩L2 − ⟨iIN (Wλu), IN (|u|4u)− |INu|4INu⟩L2 .

The term Λ7(M7;u, . . . , u,W ), and the commutator terms I + II, III, and IV + V, are then
perturbation with respect to the analysis in [LWX11]. Indeed, we have the following lemma,
whose proof is postponed to Appendix B.

Lemma 6.14. The following estimates hold uniformly in λ,N and t ∈ [0; 1]:
(i)
∣∣I + II

∣∣ ≲∥W∥H4
λ−2N−1∥INu∥2H1 ;

(ii)
∣∣III∣∣ ≲∥W∥H4

N−1−sλ−4∥u∥2L2;

(iii)
∣∣IV + V

∣∣ ≲∥W∥H4
λ−2N−1

∥∥INu
∥∥6
H1;

(iv)
∣∣Λ7(M7;u, . . . , u,W )

∣∣∣ ≲∥W∥H4
N2(s−1)λ−2∥INu∥6H1.

Since the remaining main terms in (90) are the same as those treated in [LWX11], and s ≤ 1
2 ,

we can finally estimate the increments of the modified energy by

E2(u(t)) = E2(u(0)) +O(N−1λ−2) +O(N−3λ0+)

for |t| ≤ δ ∼ 1. Then, iterating λ2T times yields

E2(u(t)) = E2(u(0)) +O(TN−1) +O(TN−3λ2+).

We can thus conclude as in the proof of Proposition 6.1.

Appendix A. Estimates related to Xs,b spaces

In this section, we give a proof of the standard estimates in Xs,b spaces as stated in Lemma 6.4
and 6.10.
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A.1. Proof of Lemma 6.4. We start by proving the equivalence of norms, i.e. Lemma 6.4 (v).
Similarly, as in (99), we have

1 + |τ − k2 − Vk|2 ≤ 2(1 + ∥V ∥2L2)(1 + |τ − k2|2) ≤ 4(1 + ∥V ∥2L2)
2(1 + |τ − ωk|2),

for any τ ∈ R and k ∈ Z. This shows that

∥u∥2
Xs,b

−∂2x+V ∗
=

∫
R

∑
k∈Z

(1 + |τ − ωk|2)b(1 + ω2
k)

s|ûk(τ)|2dτ

≲∥V ∥L2

∫
R

∑
k∈Z

(1 + |τ − k2|2)b(1 + k2)2s|ûk(τ)|2dτ = ∥u∥2
Xs,b

−∂2x

≲∥V ∥L2
∥u∥2

Xs,b

−∂2x+V ∗

for any s, b ∈ R. This proves Lemma 6.4 (vi). In particular, it suffices to prove Lemma 6.4 (i),
(ii), and (v) in the case V = 0, which we now recall for completeness.

To show (v), we will use a dyadic decomposition in the modulation variable. Namely, for
K ∈ 2N running on dyadic integers, let χK be a smooth dyadic partition of unity: χK is a smooth
compactly supported function such that χK(x) = 1 on K ≤ |x| ≤ 2K and χK is supported on
3
4K ≤ |x| ≤ 5

2K, and
∑

K χK ≡ 1. Then for u ∈ Xs,b define the smooth projector P̂Ku(τ, k) =

χK(τ − k2)û(τ, k). Then, using Cauchy-Schwarz inequality, we get

∥u∥2L4
t,x

= ∥u2∥L2
t,x

≤
∑

K1,K2

∥PK1uPK2u∥L2
t,x

=
∑

K1,K2

(∫
R

∑
k∈Z

∣∣ ∫
R

∑
k1∈Z

P̂K1u(τ1, k1)P̂K2u(τ − τ1, k − k1)dτ1
∣∣2dτ) 1

2

≤
∑

K1,K2

(
sup
τ,k

|Aτ,k|∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x

) 1
2
,

where Aτ,k = {(τ1, k1) ∈ R×Z, ⟨τ1− k21⟩ ∼ K1, ⟨τ − τ1− (k− k1)
2⟩ ∼ K2}. In particular, using

that τ1 varies in a set of size min(K1,K2) and that for (τ1, k1) ∈ Aτ,k,

|τ − k21 − (k − k1)
2| ≤ |τ1 − k21|+ |τ − τ1 − (k − k1)

2| ≲ max(K1,K2),

we get

|Aτ,k| ≲ min(K1,K2)#{k1 ∈ Z, |τ − k21 − (k − k1)
2| ≲ max(K1,K2)}

= min(K1,K2)#{k1 ∈ Z, (k1 −
k

2
)2 =

τ

2
− k2

4
+O(max(K1,K2))}

≲ min(K1,K2)max(K1,K2)
1
2 .

Since min(K1,K2)max(K1,K2)
1
2 ≤ (K1K2)

3
4 , using Cauchy-Schwarz inequality to sum on K1,K2 ∈

2N and using that
∑

K K0− < ∞ and
∑

K K2b∥PKu∥2
L2
t,x

∼ ∥u∥2
X0,b concludes the proof of (v) in

the case V = 0. Note that the estimate on Aτ,k remains valid if k2 is replaced by k2 + Vk for
V ∈ L2(T).

Next, if u ∈ Xs,b for some s ∈ R and b > 1
2 , we have by Cauchy-Schwarz inequality

∥u(t)∥Hs ≤ ∥⟨k⟩sûk(τ)∥ℓ2kL1
τ
≤ ∥⟨τ − k2⟩−b∥ℓ∞k L2

τ
∥u∥Xs,b ≲ ∥u∥Xs,b ,

uniformly in t ∈ R. This shows (i).
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For (ii), if we take u ∈ Xs,b(T ) and v ∈ Xs,b be an extension such that ∥v∥Xs,b ≤ 2∥u∥Xs,b(T ),
then for a smooth cut-off function η such that η ≡ 1 on [−1; 1], η(T−1t)v is also an extension of
u. Thus,

∥u∥Xs,b′ (T ) ≤ ∥η(T−1·)v∥Xs,b′ = ∥η(T−1·)f∥
Hb′

t
,

with
f(t) =

∫
R
eitτ∥⟨k⟩sv̂(τ − k2)∥ℓ2kdτ

such that ∥f∥Hb
t
= ∥v∥Xs,b . Thus, the estimate of Lemma 6.4 (ii) is reduced to the general

estimate for functions of time only:

∥η(T−1·)f∥
Hb′

t
≲ T b−b′∥f∥Hb

t
,

for any T ∈ (0; 1], the proof of which is given in [ET16, Lemma 3.11].
It remains to prove (iii) and (iv). Just as for (ii), these estimates follow from

∥η(⟨T ⟩−1·)∥Hb
t
≲η ⟨T ⟩

1
2

and ∥∥∥η(⟨T ⟩−1·)
∫ t

0
f(t′)dt′

∥∥∥
Hb

t

≲η ⟨T ⟩
3
2 ∥f∥Hb−1

for any f ∈ Hb−1(R). The first one follows from a direct computation. As for the second one, we
first compute ∫ t

0
f(t′)dt′ =

∫
R

eitτ − 1

iτ
f̂(τ)dτ,

so that∥∥∥η(⟨T ⟩−1·)
∫ t

0
f(t′)dt′

∥∥∥2
Hb

t

=

∫
R
⟨τ⟩2b

∣∣∣ ∫
R
⟨T ⟩ η̂(⟨T ⟩(τ − τ1))− η̂(⟨T ⟩τ)

iτ1
f̂(τ1)dτ1

∣∣∣2dτ
=

∫
R
⟨τ⟩2b

∣∣∣ ∫
|τ1|≤1

⟨T ⟩ η̂(⟨T ⟩(τ − τ1))− η̂(⟨T ⟩τ)
iτ1

f̂(τ1)dτ1

∣∣∣2dτ
+

∫
R
⟨τ⟩2b

∣∣∣ ∫
|τ1|>1

⟨T ⟩ η̂(⟨T ⟩(τ − τ1))− η̂(⟨T ⟩τ)
iτ1

f̂(τ1)dτ1

∣∣∣2dτ.
As for the first term, using the mean value theorem, that η̂ is a Schwartz function, and Cauchy-
Schwarz inequality,∫

R
⟨τ⟩2b

∣∣∣ ∫
|τ1|≤1

⟨T ⟩ η̂(⟨T ⟩(τ − τ1))− η̂(⟨T ⟩τ)
iτ1

f̂(τ1)dτ1

∣∣∣2dτ
≲
∫
R
⟨τ⟩2b

∣∣∣ ∫
|τ1|≤1

⟨T ⟩2
∫ 1

0
|η̂′(⟨T ⟩(τ − θτ1))|dθ|f̂(τ1)|dτ1

∣∣∣2dτ
≲η

∫
|τ |≫1

|τ |2b
(∫

|τ1|≤1
⟨T ⟩2⟨⟨T ⟩τ⟩−10|f̂(τ1)|dτ1

)2
dτ

+

∫
|τ ′|≲⟨T ⟩

(∫
|τ1|≤1

⟨T ⟩2|f̂(τ1)|dτ1
)2

⟨T ⟩−1dτ ′

≲ (⟨T ⟩−16 + ⟨T ⟩4)
(∫

|τ1|≤1
|f̂(τ1)|dτ1

)2
≲ ⟨T ⟩4∥f∥2Hb−1 .
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For the second term, we use instead (recall that b > 1
2) ⟨τ⟩b ≲ ⟨τ − τ1⟩b⟨τ1⟩b to estimate with

Young and Cauchy-Schwarz inequalities together with b > 1
2 and that η̂ is a Schwartz function:∫

R
⟨τ⟩2b

∣∣∣ ∫
|τ1|>1

⟨T ⟩ η̂(⟨T ⟩(τ − τ1))− η̂(⟨T ⟩τ)
iτ1

f̂(τ1)dτ1

∣∣∣2dτ
≲
∫
R

(∫
|τ1|>1

⟨T ⟩
(
⟨τ − τ1⟩b⟨τ1⟩b−1|η̂(⟨T ⟩(τ − τ1))|+ ⟨τ⟩b⟨τ1⟩−1|η̂(⟨T ⟩τ)|

)
|f̂(τ1)|dτ1

)2
dτ

≲ ⟨T ⟩2∥⟨τ⟩bη̂(⟨T ⟩τ)∥2L1∥f∥2Hb−1 + ⟨T ⟩2∥⟨τ⟩bη̂(⟨T ⟩τ)∥2L2∥⟨τ1⟩−1f̂∥2L1

≲ ⟨T ⟩∥f∥2Hb−1 .

This finally shows Lemma 6.4 (iii) and (iv).

A.2. Proof of Lemma 6.10. Contrary to the previous case, in the case of a multiplicative
potential we could only prove the equivalence of norms with a derivative loss, see Lemma 6.10 (vi).
So instead we show the L4 Strichartz estimate of Lemma 6.10 (v) directly. Indeed, note that the
other estimates of Lemma 6.10 apart from (vi) are proved exactly as those for Lemma 6.4. Recall
from [BG21, Proposition 2.7] that for an even W ∈ Hσ(T) small enough, σ ≥ 0, the operator
−∂2

x +W has eigenvalues λn = n2 + 1
π

∫ π
0 W (x)dx + O( 1n), n ∈ Z. Its eigenfunctions fn are odd

(resp. even) when n is positive (resp. nonpositive) and satisfy for any k ∈ Z∣∣f̂n(k)1|n|̸=|k|
∣∣ ≲ ⟨|n|+ |k|⟩−1⟨|n| − |k|⟩−1−σ∥W∥Hσ(1 + ∥W∥Hσ).(91)

Indeed this follows by writing

λnf̂n(k) = ⟨(−∂2
x +W )fn, e

ikx⟩L2 = ⟨fn, (−∂2
x +W )eikx⟩L2 = k2f̂n(k) + ⟨fn,Weikx⟩L2

for any n, k ∈ Z. This yields

f̂n(k)1|n|̸=|k| =
1|n|̸=|k|

λn − k2

∑
k1∈Z

Wk−k1 f̂n(k1)

=
1|n|̸=|k|

λn − k2

{
Wk±nf̂n(±n) +

∑
|k1|̸=|n|

Wk−k1

1

λn − k21

∑
k2∈Z

Wk1−k2 f̂n(k2)
}
,

from which we indeed infer∣∣f̂n(k)1|n|̸=|k|
∣∣

≲ ⟨n2 − k2⟩−1⟨|n| − |k|⟩−σ∥W∥Hσ + ⟨n2 − k2⟩−1
∑
k1

⟨k − k1⟩−σ⟨n2 − k21⟩−1∥W∥2Hσ

≲ ⟨|n|+ |k|⟩−1⟨|n| − |k|⟩−1−σ∥W∥Hσ + ∥W∥2Hσ

∑
k2

⟨k2⟩−σ⟨n± (k − k2)⟩−1⟨|n|+ |k − k2|⟩−1

≲ ⟨|n|+ |k|⟩−1⟨|n| − |k|⟩−1−σ∥W∥Hσ

+ ∥W∥2Hσ

{
|n± k|−σ

∑
|k2|∼|n±k|≫|n±(k−k2)|

⟨n± (k − k2)⟩−2

+
∑

|k2|∼|n±(k−k2)|≳|n±k|

⟨k2⟩−σ−1 + |n± k|−1
∑

|k2|≪|n±k|∼|n±(k−k2)|

⟨k2⟩−σ
}

≲ ⟨|n|+ |k|⟩−1⟨|n| − |k|⟩−1−σ∥W∥Hσ(1 + ∥W∥Hσ).

This shows (91).
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On top of the estimate (91) on the eigenfunctions, we also have from the expansion of the
eigenvalues that

⟨λn⟩2 ≲⟨∥W∥L2 ⟩ ⟨n⟩
4 ≲ ⟨λn⟩2(92)

and

⟨τ − λn⟩2 ≲(⟨∥W∥L2 ⟩ ⟨τ − n2⟩2 ≲ ⟨τ − λn⟩2(93)

for any τ ∈ R and n ∈ Z.
To show Lemma 6.10 (v), we will then proceed as for Lemma 6.4 (v) and use a dyadic decom-

position in the modulation variable:

∥u∥2L4
t,x

= ∥u2∥L2
t,x

≤
∑

K1,K2

∥PK1uPK2u∥L2
t,x

=
∑

K1,K2

(∫
R

∑
n0∈Z

∣∣ ∫
R

∑
n1,n2∈Z

P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)⟨fn1fn2 , fn0⟩L2dτ1
∣∣2dτ0) 1

2
.

Now the main difference with the previous subsection is to estimate the coefficient ⟨fn1fn2 , fn0⟩L2 .
Using Plancherel’s theorem and (91) with σ = 0, we have

⟨fn1fn2 , fn0⟩L2

=
∑
k1,k2

f̂n1(k1)f̂n2(k2)f̂n0(k1 + k2)

=
∑
k1,k2

(
cn11|n1|=|k1| +O(⟨n2

1 − k21⟩−1)1|n1|̸=|k1|
)(
cn21|n2|=|k2| +O(⟨n2

2 − k22⟩−1)1|n2|̸=|k2|
)

(94)

×
(
cn01|n0|=|k1+k2| +O(⟨n2

0 − (k1 + k2)
2⟩−1)1|n0|̸=|k1+k2|

)
,

with |cnj | ≤ 1.
Letting anj ,kj denotes either 1|nj |=|kj | or ⟨n2

j − k2j ⟩−11|nj |̸=|kj |, we have∫
R

∑
n0∈Z

∣∣∣ ∫
R

∑
n1,n2∈Z

P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)⟨fn1fn2 , fn0⟩L2dτ1

∣∣∣2dτ0
≲
∫
R

∑
n0

(∫
R

∑
n1,n2,k1,k2

∣∣P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)
∣∣(95)

× 1Aτ0
(τ1, n1, n2)an1,k1an2,k2an0,k1+k2dτ1

)2
dτ0,

where similarly as before

Aτ0 = {(τ1, n1, n2) ∈ R× Z2, |τ1 − λn1 | ≲ K1, |τ0 − τ1 − λn2 | ≲ K2}.

To end the proof of Lemma 6.10, we do a case-by-case analysis on (95) depending on the value of
the anj ,kj ’s. We say that anj ,kj is of type I if anj ,kj = 1|nj |=|kj |, and of type II otherwise.
Case 1: I-I-I. In the diagonal case, we have n0 = ±1n1 ±2 n2 for some choices of signs ±j , so
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that we can estimate (95) as above by Cauchy-Schwarz inequality in τ1, n1:

∫
R

∑
n0

(∫
R

∑
n1

∣∣P̂K1u(τ1, n1)P̂K2u(τ0 − τ1,∓2(n0 ∓1 n1))1Aτ0
(τ1, n1,∓2(n0 ∓1 n1))dτ1

)2
dτ0

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0,n0

|{(τ1, n1) ∈ R× Z, (τ1, n1,∓2(n0 ∓1 n1)) ∈ Aτ0}|

≲ (K1K2)
3
4 ∥PK1u∥2L2

t,x
∥PK2u∥2L2

t,x
.

Case 2: II-I-I. If an0,k1+k1 = ⟨n2
0 − (k1 + k2)

2⟩−1 and an1,k1 = 1|n1|=|k1|, an2,k2 = 1|n2|=|k2|, we
use Cauchy-Schwarz inequality and then sum on n0, n2 to estimate (95) similarly as above by

∫
R

∑
n0

( ∑
n1,n2

∣∣P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)
∣∣1Aτ0

(τ1, n1, n2)⟨n2
0 − (±1n1 ±2 n2)

2⟩−1dτ1

)2
dτ0

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0

∫
R

∑
n0,n1,n2

1Aτ0
(τ1, n1, n2)⟨n0⟩−2⟨n0 ∓1 n1 ∓2 n2⟩−2dτ1

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0,n2

|{(τ1, n1) ∈ R× Z, (τ1, n1, n2) ∈ Aτ0}|

≲ (K1K2)
3
4 ∥PK1u∥2L2

t,x
∥PK2u∥2L2

t,x
.

The cases I-II-I and I-I-II are dealt with similarly.
Case 3: II-II-I. In this case we use Cauchy-Schwarz inequality and then sum on n0, n2, k1 to
estimate (95) by

∫
R

∑
n0

( ∑
n1,n2,k1

∣∣P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)
∣∣

× 1Aτ0
(τ1, n1, n2)⟨n0 − (k1 ±2 n2)

2⟩−1⟨n2
1 − k21⟩−1dτ1

)2
dτ0

≲ sup
τ0

∫
R

∑
n0,n1,n2,k1

1Aτ0
(τ1, n1, n2)⟨n0⟩−2⟨n0 − k1 ∓2 n2⟩−2⟨k1⟩−2⟨n1 − k1⟩−2dτ1

× ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0,n2

|{(τ1, n1) ∈ R× Z, (τ1, n1, n2) ∈ Aτ0}|

≲ (K1K2)
3
4 ∥PK1u∥2L2

t,x
∥PK2u∥2L2

t,x
.

The cases II-I-II and I-II-II are dealt with similarly.
Case 4: II-II-II. Finally, in this last case we use Cauchy-Schwarz inequality and then sum on
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n0, n2, k1, k2 to estimate (95) by∫
R

∑
n0

( ∑
n1,n2,k1,k2

∣∣P̂K1u(τ1, n1)P̂K2u(τ0 − τ1, n2)
∣∣

× 1Aτ0
(τ1, n1, n2)⟨n0 − (k1 + k2)

2⟩−1⟨n2
1 − k21⟩−1⟨n2

2 − k22⟩−1dτ1

)2
dτ0

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0

∫
R

∑
n0,n1,n2,k1,k2

1Aτ0
(τ1, n1, n2)

× ⟨n0⟩−2⟨n0 − k1 − k2⟩−2⟨k1⟩−2⟨n1 − k1⟩−2⟨k2⟩−2⟨n2 − k2⟩−2dτ1

≲ ∥PK1u∥2L2
t,x
∥PK2u∥2L2

t,x
sup
τ0,n2

|{(τ1, n1) ∈ R× Z, (τ1, n1, n2) ∈ Aτ0}|

≲ (K1K2)
3
4 ∥PK1u∥2L2

t,x
∥PK2u∥2L2

t,x
.

This concludes the proof of Lemma 6.10 (v).
It remains to prove the double estimate of Lemma 6.10 (vi). By duality, we can assume b ≥ 0.

Using (91) together with (92)-(93) and Cauchy-Schwarz inequality, we then find

∥u∥2Xs,b =

∫
R

∑
k∈Z

⟨τ − k2⟩2b⟨k⟩2s|ûk(τ)|2dτ ≲
∫
R

∑
k∈Z

⟨τ − k2⟩2b⟨k⟩2s
∣∣∣∑
n∈Z

⟨û, fn⟩L2
x
f̂n(k)

∣∣∣2dτ
≲ ∥u∥2

Xs,b

−∂2x+W

+

∫
R

∑
k∈Z

⟨τ − k2⟩2b⟨k⟩2s
( ∑

|n|̸=|k|

|⟨û, fn⟩L2
x
|⟨|n| − |k|⟩−1−σ⟨|n|+ |k|⟩−1

)2
dτ

≲ ∥u∥2
Xs+β,b

−∂2x+W

{
1 + sup

τ∈R

∑
n,k∈Z
|n|̸=|k|

⟨τ − k2⟩2b

⟨τ − n2⟩2b
⟨k⟩2s

⟨n⟩2(s+β)
⟨|n| − |k|⟩−2−2σ⟨|n|+ |k|⟩−2

}
.

To estimate the last sum, we treat separately different contributions. We have

sup
τ∈R

∑
n,k

|n|≪|k|

⟨τ − k2⟩2b

⟨τ − n2⟩2b
⟨k⟩2s

⟨n⟩2(s+β)
⟨|n| − |k|⟩−2−2σ⟨|n|+ |k|⟩−2 ≲

∑
n,k

|n|≪|k|

⟨k⟩4b+2s−4−2σ⟨n⟩−2(s+β) ≲ 1

provided that 2b+ s < 3
2 + σ and 2b < 1 + β + σ. Next,

sup
τ∈R

∑
n,k

|n|∼|k|≳|n±k|

⟨τ − k2⟩2b

⟨τ − n2⟩2b
⟨k⟩2s

⟨n⟩2(s+β)
⟨|n| − |k|⟩−2−2σ⟨|n|+ |k|⟩−2

≲
∑
n,k

|n|∼|k|≳|n±k|

⟨k⟩2b−2−2β⟨n± k⟩2b−2−2σ ≲ 1

provided that b < 1
2 + β and 2b < 1 + β + σ. Finally,

sup
τ∈R

∑
n,k

|n|≫|k|

⟨τ − k2⟩2b

⟨τ − n2⟩2b
⟨k⟩2s

⟨n⟩2(s+β)
⟨|n| − |k|⟩−2−2σ⟨|n|+ |k|⟩−2 ≲

∑
n,k

|n|≫|k|

⟨n⟩4b−2s−2β−4−2σ⟨k⟩2s ≲ 1

provided again that 2b+ s < 3
2 + σ + β and 2b < 1 + β + σ. This proves Lemma 6.10 (vi).
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Remark A.1.
(i) In the case V = 0, the Strichartz estimate of Lemma 6.4 (v) is due to Bourgain, and is an
improvement on the corresponding L4-Strichartz estimates proved in [Z74]:

(96) ∥eit∂2
xu0∥L4

t,x(T×T) ≲ ∥u0∥L2 .

Indeed, for u space-time periodic, expanding the space-time Fourier series and making a change
of variables we can write u(t, x) =

∑
j

eitjeit∂
2
xUj(x) with Uj(x) =

∑
k∈Z e

ikxûk(j + k2). Together

with (96) and Cauchy-Schwarz inequality we get

∥u∥L4
t,x

≤
∑
j∈Z

∥e−it∂2
xUj(x)∥L4

t,x
≲
∑
j∈Z

∥Uj∥L2
x
≲ ∥⟨j⟩

1
2
+Uj∥ℓ2jL2

x
= ∥u∥X0, 1

2
+.

Thus Lemma 6.4 (v) gains almost 1
8 regularity in modulation. On the contrary, (96) does not

hold directly anymore for lower order perturbations of −∂2
x, since the Schrödinger semigroup is

no longer time periodic. However, the estimate of Lemma 6.4 (v) remains true, as we have seen
above.
(ii) As a consequence of the equivalence of norms in Lemma 6.4 (vi), we also have the L6 Strichartz
type estimate in Xs,b

−∂2
x+V ∗ space for 0 < T ≤ 1

∥u∥L6
T,x

≲ ∥u∥
X

0+, 12+

−∂2x+V ∗
(T )

(97)

since it holds for the case V = 0 from the L6 estimate (5) and the argument in (i) above. Note
however that the corresponding L6 Strichartz estimate for linear solutions

∥eit(−∂2
x+V ∗)u0∥L6

T,x
≲ ∥u0∥H0+

cannot be proved directly with the original proof of Bourgain [Bou93] since it relied crucially on
the fact that the symbol of the linear operator is integer valued. In particular, it is not clear if
these estimates hold in the case of a multiplicative potential.

Appendix B. Proof of some technical lemmas

In this section we give the proofs of Lemmas 6.8, 6.9, and 6.14.

B.1. Multilinear estimates in case of a convolution potential. We start with the proof of
Lemmas 6.8 and 6.9. These are straightforward adaptations of [LWX11, Lemma 3.3, Propositions
3.2 & 3.3], that we detail here for completeness.

Proof of Lemma 6.8. We start with the proof of the equivalence of the modified energy E1 and
E2 in the sense of (80), which is the analogue to [LWX11, Lemma 3.3]. The latter relied mainly
on the bound on the symbol |M̃6| ≲ |α6|. Thus, we start by showing

|M̃6
V
| ≲ |αV

6 |(98)

where the symbols are defined in (72) and (73). In particular,

M̃6
V
= 1ΩM

V,1
6 + 1ΥM

V,2
6 =

1Ω
6

6∑
j=1

(−1)j+1m(kj)
2ω̃kj + 1Υσ6α

V
6 ,
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where the sets of frequencies have been defined in (74)–(79). Since σ6 = 1
6

∏6
j=1m(kj), we have

directly ∣∣1Υσ6αV
6

∣∣ ≲ |αV
6 |,

so that we only need to estimate 1Ω
∑6

j=1(−1)j+1m(kj)
2ω̃kj . We then follow the proof of Lemma

3.2 in [LWX11]. We will frequently make use of the equivalence between k2 and ω̃k. Indeed,
recalling that the eigenvalues of −∂2

x + γ + V ∗ are ˜̃ωk = k2 + γ + Vk, it holds for any V ∈ L2(T)

1 + |ω̃k|2 ≤ 2(1 + ∥V ∥2L2)(1 + k2)2 ≤ 6(1 + ∥V ∥2L2)
2(1 + |ω̃k|2).(99)

Then (99) implies the bound
|1ΩMV,1

6 | ≲ max
j

(|ω̃kj |).

In particular in Ω1 (75), we have |αV
6 | ∼ maxj(|ω̃kj |), which is enough for (98).

Next, in Ω2 \ Ω1, since |αV
6 | = |α6|+O(1) we have from [LWX11, (3.44)–(3.48)] and the mean

value theorem that

|1Ω2\Ω1
MV,1

6 | ≲ |m(k1)
2ω̃k1 −m(k2)

2ω̃k2 |+
6∑

j=3

|ω̃kj | ≲ |k21 − k22|+ |k3|2 ∼ k2k3 ≲ |αV
6 |

in case k∗2 = k2 and k∗3 = k3, while |αV
6 | = |α6|+ O(1) ∼ k2k4 ≳ |1Ω2\Ω1

MV,1
6 | similarly as above

in case k∗2 = k2 and k∗3 = k4. In the last case k∗2 = k3 and k∗3 = k2 it holds |αV
6 | = |α6|+ O(1) ∼

k21 ∼ maxj(|ω̃kj |) ≳ |1ΩMV,1
6 |.

To treat the contribution Ω3 \ Ω1, as in [LWX11] it holds

|αV
6 | = (k21 − k22 + k33 + k5)

2 + o(k21) +OV (1) ≳ k23 + k25 ∼ k21 ∼ max
j

(|ω̃kj |) ≳ |1ΩMV,1
6 |.

For the case Ω4 \ Ω1, [LWX11, (3.49)-(3.50)] are replaced by

|αV
6 | ≥ (k24 + k26)− |k21 − k22| − |k23 + k25|+OV (1) = (k24 + k26) + o(k21) ∼ k21 ∼ max

j
(|ω̃kj |)

≳ |1ΩMV,1
6 |,

and

|αV
6 | = (k21 − k22 − k24 − k26) + o(k21) +OV (1) ∼ k21 ∼ max

j
(|ω̃kj |) ≳ |1ΩMV,1

6 |.

At last, in Ω5, |αV
6 | ∼ |ω̃k1 − ω̃k2 |, and by the mean value theorem

∣∣MV
6

∣∣ ≤ |m(k1)
2ω̃k1 −m(k2)

2ω̃k2 |+
∣∣∣ 6∑
j=3

(−1)j+1ω̃kj

∣∣∣
= N2(1−s)

∣∣|k1|2s + |k1|2s−2V̂k1 − |k2|2s − |k2|2s−2V̂k2

∣∣+ ∣∣∣ 6∑
j=3

(−1)j+1ω̃kj

∣∣∣
≲ N2(1−s)|k1 − k2||k1|2s−1 +

∣∣∣ 6∑
j=3

(−1)j+1ω̃kj

∣∣∣ ≲ m(k1)
2|ω̃k1 − ω̃k2 |+

∣∣∣ 6∑
j=3

(−1)j+1ω̃kj

∣∣∣
≲ |αV

6 |.
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This proves (98). Recalling that |k∗1| ∼ |k∗2| ≳ N in Υ and m(k∗1)⟨k∗1⟩ ∼ N1−s|k∗1|s, we can then
use (98) with Hölder and Sobolev inequalities and (67) to finally bound for s > 1

3 :

∣∣∣Λ6

(M̃V
6

αV
6

;u(t)
)∣∣∣ = ∣∣∣ ∫

Γ6

M̃V
6

αV
6

(k1, . . . , k6)
6∏

j=1

û(t, kj)(dkj)λ

∣∣∣ ≲ ∫
Υ

6∏
j=1

|û(t, kj)|(dkj)λ

≲ ∥F−1{1|k∗1 |≫N |û(t, k∗1)|}|∥L6
x
∥F−1{1|k∗2 |≫N |û(t, k∗2)|}|∥L6

x
∥F−1{|û(t, k)|}|∥4L6

x

≲ ∥⟨k∗1⟩sû(t, k∗1)|∥ℓ2|k∗1 |≫N
∥⟨k∗2⟩sû(t, k∗2)|∥ℓ2|k∗2 |≫N

∥u(t)∥4Hs

≲ N2(s−1)∥INu(t)∥6H1 ,

where F−1{ak} =
∫
ake

ikx(dk)λ is the inverse spatial Fourier transform. This concludes the proof
of Lemma 6.8. □

Proof of Lemma 6.9. Let us start with the multilinear estimate on Λ6(M6
V
). First, we decompose

dyadically

Λ6

(
M6

V )
=

∑
N1,...,N6

∫
Υ

1Υ\Ω

6

6∑
j=1

(−1)j+1m(kj)
2ω̃kj

6∏
j=1

P̂Njukj (t)(dkj)λ,

where the Nj run over dyadic integers, and PNj is the projector on frequencies Nj ≤ |kj | < 2Nj .
Writing similarly as for the kj ’s N∗

1 ≥ N∗
2 ≥ . . . ≥ N∗

6 the decreasing rearrangement of the Nj ’s,

by definition of Υ it holds N∗
1 ∼ N∗

2 ≳ N . Moreover, we can replace u ∈ X
s, 1

2
+

λ (δ) above by an

extension v ∈ X
s, 1

2
+

λ satisfying ∥v∥
Xs, 12+ ≤ 2∥u∥

Xs, 12+(δ)
. To simplify notations, we still write u

in place of v.
Then, to deal with the sharp time truncation restricting the time integral to [0; δ], since multi-

plication by an indicator function is not bounded on Xs,b when b > 1
2 , we proceed as in [CKSTT01]

and decompose

1[0;δ] = f(t) + g(t) = 1[0;δ] ∗ (N∗
1 )

100χ((N∗
1 )

100·) +
[
1[0;δ] − 1[0;δ] ∗ (N∗

1 )
100χ((N∗

1 )
−100·)

]
for some smooth cut-off χ satisfying χ ≡ 1 on [−1; 1]. To estimate the contribution of the second
term to the integral, since we can bound crudely |M6

V | ≲ (N∗
1 )

2, we have by Hölder and Sobolev
inequalities

∣∣∣ ∫
R
g(t)

∫
Υ
M6

V
6∏

j=1

P̂Njukj (t)(dkj)λdt
∣∣∣ ≲ (N∗

1 )
2∥g∥L2∥PN1u∥L2

tL
6
x

6∏
j=2

∥PNju∥L∞
t L6

x

≲ (N∗
1 )

2∥g∥L2

6∏
j=1

∥PNju∥Xs, 12+
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for s > 1
3 . This is enough to sum on Nj ’s since by the mean value theorem

∥g∥2L2 =

∫
R

∣∣∣1− e−iδτ

iτ

(
1− χ̂((N∗

1 )
−100τ)

)∣∣∣2dτ
≲
∫
|τ |≲(N∗

1 )
100

(N∗
1 )

−200
(∫ 1

0

∣∣χ̂′(θ(N∗
1 )

−100τ
)∣∣dθ)2dτ +

∫
|τ |≫(N∗

1 )
100

|τ |−2dτ

≲ (N∗
1 )

−200

∫
|τ |≲(N∗

1 )
100

dτ + (N∗
1 )

−100 ≲ (N∗
1 )

−100.

To estimate the contribution of the first term, since H
1
2
+(R) is an algebra, we have

∥fu∥
Xs, 12+ =

∥∥f(t)∥e−it∂2
xu(t)∥Hs

x

∥∥
H

1
2+

t

≲ ∥f∥
H

1
2+∥u∥Xs, 12+ ,

and, since χ̂ is a Schwartz function,

∥f∥2
H

1
2+

=

∫
R
⟨τ⟩1+

∣∣∣1− eiδτ

iτ
χ̂
(
(N∗

1 )
−100τ

)∣∣∣2dτ
≲
∫
|τ |≲(N∗

1 )
100

⟨τ⟩−1+dτ +

∫
|τ |≳(N∗

1 )
100

⟨τ⟩−1+⟨(N∗
1 )

−100τ⟩−10dτ

≲ (N∗
1 )

0+.

Then, we define

ÛN1(t, k1) = g(t)1[N1;2N1)(k1)m(k1)⟨k1⟩|û(t, k1)|
and

ÛNj (τj , kj) = 1[Nj ;2Nj)(kj)m(kj)⟨kj⟩|û(τj , kj)|,
j = 2, . . . , 6, and seek to prove

∫
Γ6

∫
Υ\Ω

∣∣∑6
j=1(−1)j+1m(kj)

2ω̃kj
∣∣∏6

j=1m(kj)⟨kj⟩

6∏
j=1

ÛNj (τj , kj)dτj(dkj)λ ≲ N−3+(N∗
1 )

0−
6∏

j=1

∥UNj∥X0, 12+ .

(100)

In order to prove estimate (100), we will need the refined bilinear estimates for λ-periodic
functions that we alluded to before.

Lemma B.1. The bilinear map

J−
N : (u, v) 7→

∫
eikx

∫
k1+k2=k

1|k1−k2|≳N û(k1)v̂(k2)(dk1)λ(dk)λ

is bounded from (X
0, 1

2
+

λ )2 to L2(R× Tλ), with

∥J−
N (u, v)∥L2

t,x
≲
(
N−1 + λ−1

) 1
2 ∥u∥

X0, 12+∥v∥X0, 12+ .

The same property holds for

J+
N : (u, v) 7→

∫
eikx

∫
k1+k2=k

1|k1+k2|≳N û(k1)v̂(k2)(dk1)λ(dk)λ.
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We postpone the proof of Lemma B.1 to the end of this subsection and continue with the
proof of Lemma 6.9. With the same arguments as for the proof of (98), it is straightforward to
check that [LWX11, Lemma 3.4] remains true with MV

6 in place of M6. Then, since the proof of
[LWX11, Proposition 3.2] only relies on the bound on the symbol, Lemma B.1, Sobolev inequality
and (97), the exact same arguments prove (100) and thus Lemma 6.9 (i).

The same argument holds for the proof of [LWX11, Proposition 3.3] which relied again on
Lemma B.1, Sobolev inequality, (97), and (98), and thus remains true when replacing M10 by
MV

10. This concludes the proof of Lemma 6.9 (ii).
□

Finally, we give the proof of Lemma B.1.

Proof of Lemma B.1. We proceed as in the proof of Lemma 6.4 (v) given in Appendix A above
and decompose dyadically∥∥∥∫

k1+k2=k
1|k1±k2|≳N û(k1)v̂(k2)(dk1)λ

∥∥∥
L2
t,(dk)λ

≤
∑

K1,K2

∥∥∥∫
k1+k2=k

1|k1±k2|≳N P̂K1u(k1)P̂K2v(k2)(dk1)λ

∥∥∥
L2
t,(dk)λ

,

where PKj is the smooth projector on the modulation |τj −ωkj | ∼ Kj . Then proceeding as in the
proof of Lemma 6.4 (v),∫

R

∫ ∣∣∣ ∫
τ1+τ2=τ

∫
k1+k2=k

1|k1−k2|≳N P̂K1u(τ1, k1)P̂K2v(τ2, k2)dτ1(dk1)λ

∣∣∣2dτ(dk)λ
≲ ∥PK1u∥2L2

t,x
∥PK2v∥2L2

t,x
sup
τ,k

1

λ
|AN,λ,τ,k|,

where

AN,λ,τ,k =
{
(τ1, k1) ∈ R× 1

λ
Z, |k1 − (k − k1)| ≳ N, |τ1 − ωk1 | ∼ K1, |τ − τ1 − ωk−k1 | ∼ K2

}
.

In case max(K1,K2) ≳ N2, we proceed as in the proof of Lemma 6.4 (v) to get∣∣AN,λ,τ,k

∣∣ ≲ min(K1,K2)#
{
k1 ∈

1

λ
Z, |k1 − (k − k1)| ≳ N, |τ − ωk1 − ωk−k1 | ≲ max(K1,K2)

}
≲ min(K1,K2)#

{
k1 ∈

1

λ
Z, 2k21 + 2kk1 = τ − k2 = O(max(K1,K2))

}
≲ min(K1,K2)λmax(K1,K2)

1
2 ≲

λ

N
K1K2.

In case max(K1,K2) ≪ N2, noting that

(k1 − (k − k1))
2 = 2τ − k2 − 2(τ1 − ωk1)− 2((τ − τ1)− ωk−k1) +OV (1),(101)

we get∣∣AN,λ,τ,k

∣∣
≲ min(K1,K2)#

{
k1 ∈

1

λ
Z, |k1 − (k − k1)| ≳ N, |(k1 − (k − k1))

2 − 4τ + k2| ≲ max(K1,K2)
}

≲ min(K1,K2)#
{
k1 ∈

1

λ
Z, |k1 − (k − k1)| ≳ N, k1 =

k

2
± 1

2

√
2τ − k2 +O(max(K1,K2))

}
.
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But for k1, k̃1 in the above set, we have from (101) and the lower bound on |k1 − (k − k1)| that

|k1 − k̃1| ≲
∣∣√2τ − k2 +O(max(K1,K2))−

√
2τ − k2 +O(max(K1,K2))

∣∣
≲

O(max(K1,K2)√
2τ − k2 +O(max(K1,K2))

≲
max(K1,K2)

N
.

This finally gives ∣∣AN,λ,τ,k

∣∣ ≲ min(K1,K2)
(
1 + λ

max(K1,K2)

N

)
.

All in all, this yields∫
R

∫ ∣∣∣ ∫
τ1+τ2=τ

∫
k1+k2=k

1|k1−k2|≳N P̂K1u(τ1, k1)P̂K2v(τ2, k2)dτ1(dk1)λ

∣∣∣2dτ(dk)λ
≲

1

λ

(
1 + λ

1

N

)
K1K2∥PK1u∥2L2

t,x
∥PK2v∥2L2

t,x
.

This is enough to prove Lemma B.1 after summing on K1,K2.
When v is replaced by v, we have similarly∫

R

∫ ∣∣∣ ∫
τ1+τ2=τ

∫
k1+k2=k

1|k1+k2|≳N P̂K1u(τ1, k1)P̂K2v(τ2, k2)dτ1(dk1)λ

∣∣∣2dτ(dk)λ
=

∫
R

∫ ∣∣∣ ∫
τ1−τ2=τ

∫
k1−k2=k

1|k|≳N P̂K1u(τ1, k1)P̂K2v(τ2, k2)dτ1(dk1)λ

∣∣∣2dτ(dk)λ
≲

1

λ
sup
τ,k

|ÃN,λ,τ,k|∥PK1u∥2L2
t,x
∥PK2v∥2L2

t,x
,

with

ÃN,λ,τ,k =
{
(τ1, k1) ∈ R× 1

λ
Z, |k| ≳ N, |τ1 − ωk1 | ∼ K1, |τ1 − τ − ωk1−k| ∼ K2

}
.

Proceeding as above,

|ÃN,λ,τ,k| ≲ min(K1,K2)#
{
k1 ∈

1

λ
Z, |k| ≳ N, |τ − ωk1 + ωk1−k| ≲ max(K1,K2)

}
≲ min(K1,K2)#

{
k1 ∈

1

λ
Z, |k| ≳ N, k21 − (k1 − k)2 = τ +O(max(K1,K2))

}
≲ min(K1,K2)#

{
k1 ∈

1

λ
Z, |k| ≳ N, k1 =

τ + k2 +O(max(K1,K2))

2k

}
≲ min(K1,K2)

(
1 + λ

max(K1,K2)

N

)
.

This finishes the proof of Lemma B.1. □

B.2. Estimates in the case of a multiplicative potential. We finish this section by giving
the proof of Lemma 6.14.

First, from similar computations as for (89) we have for any t ∈ R∣∣⟨∂xINu, ∂x[IN ,Wλ]u⟩L2
x

∣∣ ≤ ∥INu∥H1∥∂x[IN ,Wλ]u∥L2

≲
(
N−1∥Wλ∥H4∥u∥L2 +N−1∥∂xWλ∥L∞∥INu∥H1

)
∥INu∥H1

≲ N−1λ−2∥W∥H4∥INu∥2H1 .

This proves (i).
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Similarly, ∣∣⟨WλINu, [IN ,Wλ]u⟩L2

∣∣ ≲ ∥Wλ∥L∞∥INu∥L2∥[IN ,Wλ]u∥L2

≲ N−1∥Wλ∥L∞∥∂xWλ∥L∞∥INu∥L2∥u∥L2

≲ N−1∥Wλ∥2H4∥u∥2L2 .

This proves (ii).
With Sobolev embedding and similar computations, we also have∣∣⟨[IN ,Wλ]u, IN (|u|4u)⟩L2

∣∣ ≲ N−1∥∂xWλ∥L∞∥u∥L2∥|u|4u∥L2 ≲ N−1∥Wλ∥H4∥u∥6Hs

≲ N−1∥Wλ∥H4∥INu∥6H1 ,

since s > 2
5 . Moreover,

⟨IN (Wλu), IN (|u|4u)− |INu|4INu⟩L2 =

∫
Γ6

m6(k1, . . . , k6)(Wλu)k1(dk1)λ

6∏
j=2

Ukj (dkj)λ,

where the symbol is given by

m6 =
m(k1)

(
m(k2 + · · ·+ k6)−

∏6
j=2m(kj)∏6

j=2m(kj)⟨kj⟩

and Ukj (t) = m(kj)⟨kj⟩|ûkj (t)|. In particular, if |kj∗ | = max(|kj |, j ≥ 2), then m6 vanishes unless
|kj∗ | ≳ N , and since

m(k)⟨k⟩ ∼

{
N1−s|k|s, |k| ≳ N,

⟨k⟩, |k| ≪ N,

we have the rough bound

|m6| ≲ N−1
∏
j ̸=j∗

⟨kj⟩−s.

Together with Hölder and Sobolev inequalities, we get∣∣⟨IN (Wλu), IN (|u|4u)− |INu|4INu⟩L2

∣∣ ≲ N−1∥Wλ∥L∞∥u∥L10∥⟨∂x⟩−sU∥4L10∥U∥L2

≲ N−1λ−2∥W∥H4∥u∥Hs∥U∥5L2

≲ N−1λ−2∥W∥H4∥INu∥6H1 .

This proves (iii).
Finally, it remains to estimate

Λ7(M7;u, . . . , u,Wλ)

=

∫
Γ7

∑6
j=1(−1)j M̃6

α6
(k1, . . . , kj−1, kj + k7, kj+1, . . . , k6)∏6

j=1m(kj)⟨kj⟩
(Wλ)k7(dk7)λ

6∏
j=1

Ukj (dkj)λ,

with Ukj = m(kj)⟨kj⟩|ûkj |. Recall from [LWX11, Lemma 3.2] that |M̃6| ≲ |α6|, and thus the
symbol above is bounded by∣∣ 6∑

j=1

(−1)j
M̃6

α6
(k1, . . . , kj−1, kj + k7, kj+1, . . . , k6)

∣∣ ≲ 1,
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thus proceeding as in [LWX11, Lemma 3.3] or equivalently as in the proof of Lemma 6.8, we get∣∣Λ7(M7;u, . . . , u,Wλ)(t)
∣∣ ≲ N2(s−1)λ−2∥W∥H4∥INu∥6H1 .

This shows (iv). This concludes the proof of Lemma 6.14.
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