
HAL Id: hal-04090684
https://hal.science/hal-04090684

Submitted on 5 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Saucissonnage of Long Sequences into a Multi-encoder
for Neural Text Summarization with Transformers

Jessica López Espejel, Gaël de Chalendar, Jorge Garcia Flores, Ivan Vladimir
Meza Ruiz, Thierry Charnois

To cite this version:
Jessica López Espejel, Gaël de Chalendar, Jorge Garcia Flores, Ivan Vladimir Meza Ruiz, Thierry
Charnois. Saucissonnage of Long Sequences into a Multi-encoder for Neural Text Summarization
with Transformers. Extraction et Gestion des Connaissances (EGC), Montpellier, France„ Jan 2021,
Montpellier, France. �hal-04090684�

https://hal.science/hal-04090684
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Saucissonnage of Long Sequences into a Multi-encoder for
Neural Text Summarization with Transformers

Jessica López Espejel∗,∗∗, Gaël de Chalendar∗

Jorge Garcia Flores∗∗, Ivan Meza∗∗∗, Thierry Charnois∗∗

∗Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France
{jessica.lopez-espejel, gael.de-chalendar}@cea.fr,

∗∗CNRS-LIPN-Université Paris 13, France
{jgflores, charnois}@lipn.univ-paris13.fr

∗∗∗IIMAS, UNAM, Mexico
ivanvladimir@turing.iimas.unam.mx

Abstract. Transformer deep models have gained lots of attraction in Neural
Text Summarization. The problem with existing Transformer-based systems
is that they truncate documents considerably before feeding them to the net-
work. In this paper, we are particularly interested in biomedical long text sum-
marization. However, current input sequences are far shorter than the average
length of biomedical articles. To handle this problem, we propose two improve-
ments to the original Transformer model that allow a faster training of long se-
quences without penalizing the summary quality. First, we split the input be-
tween four encoders to focus attention on smaller segments of the input. Sec-
ond, we use end-chunk task training at the decoder level for progressive fast
decoding. We evaluate our proposed architecture on PubMed, a well-known
biomedical dataset. The comparison with competitive baselines shows that our
approach: (1) allows reading large input sequences, (2) reduces the training time
considerably, and (3) slightly improves the quality of generated summaries.

1 Introduction
Recently, Transformer neural networks (Vaswani et al., 2017) have become the predomi-

nant model for a wide variety of Natural Language Processing (NLP) tasks. Transformers are
based on an attention mechanism that allows focusing on the positional value of each element
of a sequence. Contrarily to Long Short Term Memory (LSTMs) proposed by Hochreiter and
Schmidhuber (1997), Transformers are not recurrent and allow reading input sequences in a
parallel way. Transformers help avoiding the vanishing gradient problem, thus outperforming
LSTMs and many other architectures for Deep NLP tasks (Wood, 2020). The initially pro-
posed transformer architecture is based on an encoder and a decoder. The encoder represents
both the input words sequence and the positional information in a single encoding vector to be
fed later into the decoder. The latter transforms the encoded vector into a sequence of per-word
probabilities.



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

In this work, we propose an improvement of the Transformers model for Neural Text Sum-
marization (NTS), addressing two main problems in this task. The first one is the training time
of the model. Depending on the number of available GPUs, this phase could take from few
days to few weeks, even with transformers’ ability to process sequential input parallelly. The
second one is the size of the encoded document (i.e., input word sequence). With the birth
of deep learning, the length of the input sequence (Linput) fed into the model has been sig-
nificantly reduced compared to extractive predecessor systems from the 2000s (García Flores
et al., 2009). For example, some LSTM-based summarization systems (Cohan et al., 2018;
See et al., 2017) truncate the source document to 2000 and 400 tokens, respectively. The maxi-
mum input length for a Transformer-based NTS system is Linput = 1024 tokens (Zhang et al.,
2020). However, scientific articles are much larger. For instance, the biomedical dataset built
by Cohan et al. (2018) has, on average, 3016 tokens in each article.

Our main contribution is to modify the transformers model to reduce the training time
while increasing the input document size for summarization. To do so, we propose improving
the original Transformer architecture by increasing the number of encoders from 1 to 4 and
secondly splitting the input sequence between them. Experiments show that our architecture
reduces training time without penalizing the quality of generated summaries. Our second
contribution intervenes at the decoding level. Instead of presenting the gold summary to the
decoder all at once, we present it chunk by chunk to learn progressively. This contribution is
inspired by Hoang et al. (2019) that presents the gold summary to the decoder token by token.
Our approach makes a compromise between learning progressively and fast.

In French, saucissonner means to “slice” a dry-cured sausage. In their original Transformer
paper (Vaswani et al., 2017), the authors noted that self-attention models tend to perform better
with shorter input sequences. Our approach’s underlying rationale is to “slice” (saucissonner)
longer sequences. It distributes the slices between the encoders to reduce the training time and
consider a larger part of the documents to summarize. Our results show that our approach:
(1) summarizes documents having up to Linput = 2000 tokens, (2) reduces the training time
process, and (3) produces summaries with higher scores than the original Transformer archi-
tecture.

The rest of the paper is organized as follows. In Section 2, we describe the most popular
recurrent and transformers based approaches for the NTS task. Section 3 presents our improved
version of the original Transformer to train faster by processing longer source documents.
Section 4 presents the dataset used for evaluation, baselines, experimental framework, and the
implementation details. Section 5 provides an insight into the results, with a comprehensive
discussion. Finally, we conclude in Section 6 and provide some perspectives.

2 Related work

Automatic summarization is an NLP task whose objective is to automatically produce a
summary concentrating the most important information from a long source document or a
document collection (Mani, 2001). Extractive summaries simply copy the most relevant sen-
tences from the source document, while abstractive summaries reformulate and paraphrase the
main information from the source document into new sentences.



J. López Espejel et al.

The first approaches based on extractive summarization, assume that the most important
words are those repeated most frequently (Luhn, 1958; Sparck, 1972). The most impor-
tant such methods include probabilistic models such as Probabilistic Context-Free Grammars
(PCFG) (Rahman et al., 2001; Knight and Marcu, 2002), Markov Models (MM), and Hidden
Markov Models (HMM) (Chen and Withgott, 1992; Jing and McKeown, 1999; Conroy and
O’leary, 2001).

Automatic summarization evolved later, and extractive based methods relied on machine
learning to tackle the NTS as a classification problem, where new techniques were used, such
as Naive Bayes (Thu, 2014; Ramanujam and Kaliappan, 2016), Clustering (ShivaKumar and
Soumya, 2015), and Support Vector Machine (SVM) (Schilder and Kondadadi, 2008; Begun
et al., 2009). However, work is still needed to improve the automatic generation of summaries,
especially with the new challenges that arose along with neural networks.

The Deep Learning methodological leap has shifted research efforts into abstractive models
based on neural architectures. Deep models require a considerable amount of data for efficient
training and high GPU computational resources. Therefore, abstractive NTS has been gaining
momentum (See et al., 2017; Cohan et al., 2018) with the introduction of Recurrent Neural
Networks (RNNs), in particular LSTMs (Hochreiter and Schmidhuber, 1997) and Gated Re-
current Units (GRUs) (Cho et al., 2014). For instance, Rush et al. (2015) introduced pioneer
research to generate abstractive summarization at the sentence level. Further, Nallapati et al.
(2016) adapted an off-the-shelf attentional encoder-decoder RNN that was initially proposed
for translation (Rush et al., 2015) to tackle the summarization task. In recent years, Transform-
ers Neural Networks (Vaswani et al., 2017) has been gaining increased interest for summariza-
tion in the scientific community. Therefore, a new wave of pre-trained NTS systems saw the
light (Narayan et al., 2018; Kim et al., 2019; Zhang and Tetreault, 2019; Fabbri et al., 2019;
Zhang et al., 2020). Inspired by Transformers, several language models usable for automatic
summarization have been developed, such as BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019), MASS (Song et al., 2019), UniML (Dong et al.,
2019), T5 (Raffel et al., 2020), etc.

As stated above, our concern in this work is to reduce the training time while making it pos-
sible to summarize longer source documents in the context of a basic Transfomer NTS system
without any pre-training whatsoever. Therefore, we compare our system with two state-of-
the-art approaches. The first one was proposed by Cohan et al. (2018). It is an LSTM-based
approach with the longest size of summarized source documents (Linput = 2000 tokens). Au-
thors of the same paper introduced the PubMed dataset of biomedical documents, having each
an average of 3016 tokens. We used this dataset for our experiments insofar length of docu-
ments is convenient to test our multi-encoder model on long sequences. The second approach
is called PEGASUS (Pre-training with Extracted Gap-sentences for Abstractive Summariza-
tion) (Zhang et al., 2020). PEGASUS is a Transformer Neural Network pre-trained on massive
text corpora. It is based on an encoder and a decoder architecture. We compare our approach
with the non-pre-trained TransformerBASE model from the PEGASUS paper. For the sake
of comparability, we also do not pre-train our model in order to explicitly evaluate the modified
Transformer architecture.



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

3 Segmentation of long sequences into a multi-encoder

3.1 The original Transformer network

Our Transformer baseline (presented in Figure 1) was introduced by Vaswani et al. (2017).
It is a deep neural network based on an attention mechanism (Equation 1) and is based on
an encoder and a decoder. The encoder is a set of six layers, where each layer contains two
sub-layers: a multi-head attention layer and a feed-forward network. The decoder also has
six layers but is different from the encoder in two aspects. First, it has an additional multi-
head attention sub-layer, and second, the self-attention sub-layer is modified to avoid attending
subsequent positions. Each sub-layer of the encoder and the decoder is followed by a residual
connection and a normalization layer. Below, we call this baseline TransformerORIGINAL.

FIG. 1 – Transformer architecture (Vaswani et al., 2017)



J. López Espejel et al.

Attention(Q,K, V ) = Softmax(
QKT

√
dk

)V (1)

where Q are queries, K are keys, V are values, and dk is the dimension of Q and K.
There are three different ways to handle multi-head attention in Transformers: (1) at the

encoding level only, (2) at the decoding level only, or (3) at both the encoding and the decod-
ing levels. Multi-head attention is a set of self-attentions (heads) concatenated as shown in
Equation 2.

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (2)

where:
• h is the number of heads
• WO is the weight matrix of Queries (Q), Values (V), or Keys (K).
• headi = Attention(QWQ

i ,KW
K
i , V WV

i )

3.2 The multi-encoder Transformer model
Our contributions to the Transformers model are organized in two parts. First, we explain

the slicing of long sequences for multi encoding (Section 3.2.1), and later, we present the
end-chunk task training improvement (Section 3.2.2).

3.2.1 Slicing long sequences for multi-encoding

FIG. 2 – Segmentation of a long input sequence (Linput = 2000 tokens) and feeding it to the
multi-encoder layer

Figure 2 shows our improved architecture of the original Transformer model that targets
long input sequences. Instead of feeding the whole sequence to one encoder, as in the original
Transformer, we split the input into four chunks and feed each chunk to a different encoder.
Contrarily to TransformerORIGINAL that uses one encoder with eight self-attention heads
for the whole input, we use four encoders with eight self-attention heads each (see Figure 3).
This choice is motivated by works such as Fabbri et al. (2019) and Zhang et al. (2020) that
achieved competitive results compared to state of the art by using sequences having Linput =



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

500 and Linput = 512 tokens as input for the encoder, respectively. Since we experiment with
2000 tokens long sequences, it is fair to use four encoders, each with Linput = 500 tokens.

This improvement tries to cope with Transformer’s attention under-performance with long
input sequences. Four encoders with eight multi-attention heads each would improve the
Transformer processing of long sequences and reduce the training time without penalizing
the quality of generated summaries (see Section 5). As it is clearly stated in the original Trans-
former paper (Vaswani et al., 2017), self-attention models tend to perform better with shorter
token sequences. Thus, we suppose that splitting long sequences and distributing them in
the multi-encoder layer would reduce the training time and improve the processing of long
source documents. Our goal here is to measure the impact of a substantial modification in the
Transformer architecture before escalating to an intensive pre-training scenario, like in the PE-
GASUS approach (Zhang et al., 2020). The underlying rationale of both improvements from
this section is to better focus the model’s attention on shorter sequences with this saucissonnge
process.

FIG. 3 – Multi-head attention in each encoder

Figure 3 shows multi-head attention layers in each of the four encoders of our multi-
encoder architecture. This input of multi-head attention encoders is a slice of the source text’s
embeddings and positional encodings. This input can be linearly transformed to get queries
(Q), keys (K), and values (V) matrices from the original mono-encoder Transformer model.
Each attention head uses different linear transformations to represent words. For this reason,
different heads can learn different relationships between words. As a consequence of using a
multi-encoding schema with four encoders, our model contains 32 attention heads compared
to 8 in the original Transformer. We hypothesize that this increase in the number of atten-
tion heads would lead our multi-encoder Transformer to learn different relationships between
words. While most of the Transformer models read 512 or at most 1024 (Zhang et al., 2020) to-
kens, we use input sequences having Linput = 2000 tokens, which is closer to the average size
of 3016 tokens of medical documents from the PubMed dataset (Cohan et al., 2018). However,
this multi-encoding schema is only applied at the encoder level, not at the decoder level, where
sequences are short enough to generate summaries of the desired length (216 tokens long).



J. López Espejel et al.

3.2.2 End-chunk task training

End task training was introduced by Hoang et al. (2019). The goal of their approach was
to adapt a generic pre-trained text generation Transformer to the NTS task. End task training
is an extra training step that aims to constrain the neural network’s loss function to maximize
the log-likelihood probability of generating pertinent summary given the reference summary.
We adapted the equation from Hoang et al. (2019) to receive sequences of tokens (or chunks)
instead of a token-by-token flow. We call this improvement end-chunk task training (ECTT).
While the approach of Hoang et al. (2019) feeds increasing 1-token differential sentences, we
feed chunks of cs (chunk size) tokens. The new loss functionLECTT is provided in Equation 3.

LECTT = −
cn−1∑
i=0

log P ({xs}(i+1)×cs−1
0 |{xa}M−1

0 ) (3)

where:
• M is the number of tokens in the article
• cn is the number of chunks into which the summary is divided
• cs is the chunk size, such that cs = N/cn, where N is the number of tokens in the

summary
• xs is a token from the summary
• xa is a token from the article
• {xs}(i+1)×cs−1

0 is the summary chunk, counting from the first token (0) until the token
number (i+ 1)× cs− 1

• {xa}M−1
0 is the input article

4 Experimental framework

4.1 Evaluation dataset

Experiments were done using PubMed, a dataset collected by Cohan et al. (2018) from
the well-known PubMed scientific repository (PubMed.gov). This dataset is composed of
130397 documents, where 117108 are in the training set, 6631 documents are in the validation
set, and 6658 documents are in the test set. We used the validation set to tune hyper-parameters
during the training process and the test set to get the final summaries.

4.2 Baselines

Experiments have been conducted with strong baselines, described as follows:
• TransformerORIGINAL - This baseline is a mono-encoder architecture described in

Subsection 3.1. Inspired by Gehrmann et al. (2018), we use 4 layers contrarily to the
initially proposed 6-layers architecture (Vaswani et al., 2017).

• TransformerBASE - is the version of PEGASUSBASE without pre-training (Zhang
et al., 2020). The architecture of this model has L = 12, H = 768, F = 4096, and
A = 16, where L is the number of layers in the encoder and the decoder, H is the hidden



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

size, F is the feed-forward layer size, and A is the number of self-attention heads.

• LSTM - is an NTS system proposed by Cohan et al. (2018). It is based on a hierar-
chical encoder to model the discourse structure of documents. Both the encoder and the
decoder are implemented as Long Short Term Memory (LSTM) networks.

4.3 Implementation details and evaluation metric

In our experiments, we truncate scientific documents to their first 2000 tokens to evaluate
our model’s performance on long sequences. Generated summaries are 216 tokens long, and
only the most frequent 100,000 tokens are kept in the vocabulary.

We implemented TransformerORIGINAL and our multi-encoder Transformer with Keras
(Chollet et al., 2015). However, we report results of TransformerBASE from the Table 2 of
the PEGASUS paper. We trained the models on 8 GPUs of Nvidia Quadro P5000 with 16GB
of RAM capacity. We used sinusoidal positional encoding following Vaswani et al. (2017).
For optimization, we used Adam algorithm with β1 = 0.9, β2 = 0.98, and batch size = 32.
Besides, we used beam search with α = 0.8 and beam size = 6.

The TransformerORIGINAL and our multi-encoder Transformer were trained for 300
epochs. The end-chunk stage lasts ten epochs in both approaches. The optimal chunk size in
this stage was empirically set to cs = 27 tokens.

We used ROUGE (Lin, 2004) approach to evaluate generated summaries and thus compare
the proposed multi-encoder architecture with our implementation of TransformerORIGINAL

and TransformerBASE from the PEGASUS paper. The ROUGE method is based on lexical
overlaps between tokens and phrases in the reference (human-written) summaries and the gen-
erated ones. We report scores with ROUGE-1 (unigrams), ROUGE-2 (bigrams), and ROUGE-
L (longest common sub-sequence). Equally, we report the training time of the multi-encoder
architecture versus the mono-encoder one to compare their performance in terms of compu-
tational time. Note that we do not report the training time of TransformerBASE (Zhang
et al., 2020) since it was trained on TPUs instead of GPUs, and the authors did not provide any
information about execution time in their paper.

5 Results and discussion

Results in Table 1 show that our multi-encoder model outperforms the TransformerBASE

from the PEGASUS paper (Zhang et al., 2020) and TransformerORIGINAL from Vaswani
et al. (2017) in terms of ROUGE-1 and ROUGE-2 scores, while it gives slightly lower scores
in terms of ROUGE-L compared to TransformerBASE .

Our model can read sequences with Linput = 2000 tokens. This number is closer to the
average size of a standard biomedical article (3016 tokens) than the input length used by other
state-of-the-art approaches. To the best of our knowledge, there is no Transformer-based NTS
system able to read such length in the biomedical domain. The longest input text was used
by PEGASUSLARGE (Zhang et al., 2020), a pre-trained model with Linput = 1024 tokens.
Note that the non-pre-trained TransformerBASE uses sequences of length Linput = 512.



J. López Espejel et al.

The LSTM-based approach (Cohan et al., 2018) (called LSTM in Subsection 4.2) is still
the best NTS system producing summaries with the highest ROUGE scores. This system can
process 2000 tokens source documents, with ROUGE scores of R1/R2/RL = 39.93/15.37/35.21.

Transformer Multi-encoder Transformer
ORIGINAL Transformer BASE

+ end-chunk + end-chunk (ours)
Number of encoders 1 4 1
Number of layers 4 4 12
Input length (Linput) 2000 tokens 2000 tokens 512 tokens
Training time per epoch 58mn21s 33mn15s NA
ROUGE-1 32.7 34.11 33.94
ROUGE-2 7.11 7.68 7.43
ROUGE-L 18.14 18.56 19.02

TAB. 1 – ROUGE scores of the TransformerORIGINAL, the multi-encoder Transformer
(ours), and TransformerBASE from the PEGASUS paper. Best results are in bold.

Automatic summary generated with our approach

urothelial carcinoma of the bladder is a rare and aggressive
malignancy with a poor prognosis . there are only a few re-
ports of radical cystectomy for bladder carcinoma . we report
the case of a 61 year old male patient who presented to our
urology clinic with an initial diagnosis of bladder cancer ,
the patient was treated with radical nephroureterectomy and
adjuvant chemotherapy . the outcome was excellent for all pa-
tients and there was no evidence of local recurrence or distant
metastases . in this article we review the current litera-
ture on the use of neoadjuvant chemotherapy as the first line
treatment for patients presenting with bladder carcinomas

Human reference summary for the same scientific article

small cell carcinoma of the urinary bladder is an extremely
aggressive and rare tumor . even though small cell carcinoma
most commonly arises from the lungs there are several reports
of small cell carcinoma in extrapulmonary sites . due to its
low frequency there is no well - established management for
this disease . we report the case of a 61 year - old man with
small cell carcinoma of the bladder who underwent radical cys-
tectomy following neoadjuvant chemotherapy . we also reviewed
the literature for the optimal treatment strategy



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

Our multi-encoder Transformer model runs almost two times faster than the original Trans-
former baseline (TransformerORIGINAL). According to our quantitative results and our
qualitative analysis of the generated summaries, using a multi-encoder layer in the transformer
neural network architecture helps capturing the most important tokens from the input. This
finding is intuitive insofar we increase the number of head attentions when using more than an
encoder at a time. In general, each encoder has eight self-attention heads. However, in our ex-
periments, we have four encoders, leading to a total of 32 self-attention heads. Therefore, with
more self-attentions, the encoders of the model are able to capture the most relevant tokens
from the article, while we use a different number of self-attentions in the decoder.

Equally important, the second stage of training, called end-chunk task training, improves
our summaries’ quality. Indeed, learning chunk by chunk helps feeding information progres-
sively and relatively fast to the decoder. This training is inspired by how humans get knowledge
incrementally over time.

6 Conclusion and further work

In this work, we proposed two improvements for Neural Text Summarization using Trans-
formers (Vaswani et al., 2017), intended to improve the model’s performance with long input
sequences and reduce training time without penalizing the quality of the generated summaries.
The first contribution is to use a multi-encoder and to saucissonner (or slice) a long input
sequence to process each slice with one of the four encoders composing our multi-encoder
architecture. The second contribution is to modify the End Task Training technique (Hoang
et al., 2019) at the decoder level to process phrase chunks instead of individual words.

We evaluate these improvements on the medical articles summarization task, using the
PubMed (Cohan et al., 2018) dataset. Results show that our improved model was able to:

1. Reduce the training time to almost half compared to the original Transformer model,
2. Extend the size of the input source document to almost the double of the state-of-the-art

Transformer-based summarization system (Zhang et al., 2020)
3. Slightly improve the ROUGE scores of lexical similarity between the generated sum-

maries and their corresponding human reference abstracts

Pre-training was intentionally left aside to analyze the exact impact of our improvements
in the model. Further experiments will aim to pre-train our model with a large medical dataset
(such as the Covid-19 virus corpus (House, 2020)), and feed 2000 tokens long source doc-
uments to establish a comparison with other pre-trained models such as PEGASUSBASE

and PEGASUSLARGE (Zhang et al., 2020), whose longest length source document is 512,
and 1024 tokens, respectively. Both PEGASUS models are pre-trained on large text corpora.
Furthermore, a more detailed ablation analysis will be done to evaluate each contribution in-
dependently.



J. López Espejel et al.

References

Begun, N., M. A. Fattah, and F. Ren (2009). Automatic text summarization using support
vector machine. International Journal of Innovative Computing, Information and Control 5,
1987–1996.

Chen, F. R. and M. Withgott (1992). The use of emphasis to automatically summarize a spoken
discourse. In IEEE International Conference on Acoustics, Speech, and Signal Processing,
pp. 229–232.

Cho, K., D. Bahdanai, F. Bougares, H. Schwenk, and Y. Bengio (2014). Learning phrase
representation using rnn encoder-decoder for statistical machine translation. In Proceedings
of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
pp. 1724–1734. Association for Computational Linguistics.

Chollet, F. et al. (2015). Keras. https://github.com/fchollet/keras.
Cohan, A., F. Dernoncourt, D. S. Kim, T. Bui, S. Kim, W. Chang, and N. Goharian (2018).

A discourse-aware attention model for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), New
Orleans, Louisiana, pp. 615–621. Association for Computational Linguistics.

Conroy, J. M. and D. P. O’leary (2001). Text summarization via hidden markov models. In
Proceedings of the 24th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’01, New York, NY, USA, pp. 406–407. As-
sociation for Computing Machinery.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019). BERT: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp.
4171–4186. Association for Computational Linguistics.

Dong, L., N. Yang, F. Wei, X. Liu, Y. Wang, J. Gao, M. Zhou, and H.-W. Hon (2019). Unified
language model pre-training for natural language understanding and generation. In 33rd
Conference on Neural Information Processing Systems (NeurIPS 2019).

Fabbri, A., I. Li, T. She, S. Li, and D. Radev (2019). Multi-news: A large-scale multi-document
summarization dataset and abstractive hierarchical model. In Proceedings of the 57th Annual
Meeting of the Association for Computational Linguistics, Florence, Italy, pp. 1074–1084.
Association for Computational Linguistics.

García Flores, J., O. Ferret, and G. de Chalendar (2009). Summarizing through sense concen-
tration and contextual exploration rules: the CHORAL system at TAC 2009. In Proceedings
of the Second Text Analysis Conference, TAC 2009, Gaithersburg, Maryland, USA, Novem-
ber 16-17, 2009.

Gehrmann, S., Y. Deng, and A. M. Rush (2018). Bottom-up abstractive summarization. In
E. Riloff, D. Chiang, J. Hockenmaier, and J. Tsujii (Eds.), Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language Processing, Brussels, Belgium, October
31 - November 4, 2018, pp. 4098–4109. Association for Computational Linguistics.



Saucissonnage of Long Sequences into a Multi-encoder with Transformers

Hoang, A., A. Bosselut, A. Çelikyilmaz, and Y. Choi (2019). Efficient adaptation of pretrained
transformers for abstractive summarization. CoRR abs/1906.00138, online.

Hochreiter, S. and J. Schmidhuber (1997). Long short-term memory. Neural Computation 9(8),
1735–1780.

House, T. W. (2020). Covid-19 open research dataset challenge (cord-19).
Jing, H. and K. McKeown (1999). The decomposition of human-written summary sentences.

In Proceedings of the 22nd Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR ’99, pp. 129–136. Association for Computing
Machinery.

Kim, B., H. Kim, and G. Kim (2019). Abstractive summarization of Reddit posts with multi-
level memory networks. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), Minneapolis, Minnesota, pp. 2519–2531. Association
for Computational Linguistics.

Knight, K. and D. Marcu (2002). Summarization beyond sentence extraction: A probabilistic
approach to sentence compression. Artificial Intelligence 139, 91–107.

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of summaries. In Text Summa-
rization Branches Out: Proceedings of the ACL-04 Workshop, Barcelona, Spain, pp. 74–81.

Luhn, H. P. (1958). The automatic creation of literature abstracts. IBM Journal of Research
Development 2(2), 159–165.

Mani, I. (2001). Automatic Summarization. John Benjamins Publishing.
Nallapati, R., B. Zhou, C. Dos Santos, and B. Xiang (2016). Abstractive text summariza-

tion using sequence-to-sequence rnns and beyond. In Proceedings of The 20th SIGNLL
Conference on Computational Natural Language Learning, pp. 280–290. Association for
Computational Linguistics.

Narayan, S., S. B. Cohen, and M. Lapata (2018). Don’t give me the details, just the summary!
Topic-aware convolutional neural networks for extreme summarization. In Proceedings
of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels,
Belgium.

Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J.
Liu (2020). Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of Machine Learning Research 21(140), 1–67.

Rahman, A. F. R., H. Alam, R. Hartono, and K. Ariyoshi (2001). Automatic summarization
of web content to smaller display devices. In Proceedings of Sixth International Conference
on Document Analysis and Recognition, pp. 1064–1068.

Ramanujam, N. and M. Kaliappan (2016). An automatic multidocument text summarization
approach based on naïve bayesian classifier using timestamp strategy. In TheScientificWorld-
Journal.

Rush, A., S. Chopra, and J. Weston (2015). A neural attention model for sentence summa-
rization. Association for Computational Linguistics Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, 379–389.



J. López Espejel et al.

Schilder, F. and R. Kondadadi (2008). Fastsum: Fast and accurate query-based multi-document
summarization. In ACL.

See, A., P. Liu, and C. Manning (2017). Get to the point: Summarization with pointer-generator
networks. Trans. Amer. Math. Soc. Proceedings of the 55th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long Papers), 1073–1083.

ShivaKumar, K. and R. Soumya (2015). Text summarization using clustering technique and
svm technique. International Journal of Applied Engineering Research 10, 25511–25519.

Song, K., X. Tan, T. Qin, J. Lu, and T.-Y. Liu (2019). Mass: Masked sequence to sequence
pre-training for language generation. In International Conference on Machine Learning, pp.
5926–5936.

Sparck, K. (1972). A statistical interpretation of term specificity and its application in retrieval.
Journal of Documentation 28(1), 11–21.

Thu, H. (2014). An optimization text summarization method based on naive bayes and topic
word for single syllable language. Applied mathematical sciences 8, 99–115.

Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u. Kaiser, and
I. Polosukhin (2017). Attention is all you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Advances in Neural Infor-
mation Processing Systems 30, pp. 5998–6008. Curran Associates, Inc.

Wood, T. (2020). Transformer neural network. https://deepai.org/

machine-learning-glossary-and-terms/transformer-neural-network.
Accessed: 2020-12-12.

Zhang, J., Y. Zhao, M. Saleh, and P. J. Liu (2020). Pegasus: Pre-training with extracted gap-
sentences for abstractive summarization. https://arxiv.org/abs/1912.08777.

Zhang, R. and J. Tetreault (2019). This email could save your life: Introducing the task of
email subject line generation. In Proceedings of the 57th Annual Meeting of the Association
for Computational Linguistics, Florence, Italy, pp. 446–456. Association for Computational
Linguistics.

Résumé
Cet article présente une amélioration d’une approche de résumé automatique de textes avec

des réseaux de neurones de type Transformers. Notre méthode consiste à augmenter le nombre
d’encodeurs du modèle en découpant l’entrée entre eux afin de concentrer l’attention du mo-
dèle sur des sous parties du texte. En plus, notre méthode favorise l’apprentissage progressive
en présentant les résumés au décodeur partie par partie jusqu’à la consommation de toute la
séquence. Les résultats obtenus sont encourageants en comparant avec des méthodes compé-
tetive de l’état de l’art.


