
HAL Id: hal-04090611
https://hal.science/hal-04090611v2

Submitted on 11 May 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modeling of the driver transverse profile for laser
wakefield electron acceleration at APOLLON Research

Facility
Ioaquin Moulanier, Lewis Dickson, Charles Ballage, Ovidiu Vasilovici, Aubin
Gremaud, Sandrine Dobosz Dufrenoy, Nicolas Delerue, Lorenzo Bernardi, Ali

Mahjoub, Antoine Cauchois, et al.

To cite this version:
Ioaquin Moulanier, Lewis Dickson, Charles Ballage, Ovidiu Vasilovici, Aubin Gremaud, et al.. Mod-
eling of the driver transverse profile for laser wakefield electron acceleration at APOLLON Research
Facility. Physics of Plasmas, 2023, 30, pp.053109. �10.1063/5.0142894�. �hal-04090611v2�

https://hal.science/hal-04090611v2
https://hal.archives-ouvertes.fr


,

Modeling of the driver transverse profile for laser wakefield electron acceleration at
APOLLON Research Facility

I. Moulanier1, L.T. Dickson1, C. Ballage1, O. Vasilovici1, A. Gremaud1, S. Dobosz Dufrénoy2, N.

Delerue3, L. Bernardi4, A. Mahjoub4, A. Cauchois4, A. Specka4, F. Massimo1, G. Maynard1, B. Cros1

1 LPGP, CNRS, Université Paris Saclay, 91405 Orsay, France
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The quality of electron bunches accelerated by laser wakefields is highly dependant on the tem-
poral and spatial features of the laser driver. Analysis of experiments performed at APOLLON
PW-class laser facility shows that spatial instabilities of the focal spot, such as shot-to-shot point-
ing fluctuations or asymmetry of the transverse fluence, lead to charge and energy degradation
of the accelerated electron bunch. It is shown that PIC simulations can reproduce experimental
results with a significantly higher accuracy when the measured laser asymmetries are included in
the simulated laser’s transverse profile, compared to simulations with ideal, symmetric laser profile.
A method based on a modified Gerchberg-Saxton iterative algorithm is used to retrieve the laser
electric field from fluence measurements in vacuum in the focal volume, and accurately reproduce
experimental results using PIC simulations, leading to simulated electron spectra in close agree-
ment with experimental results, for the accelerated charge, energy distribution and pointing of the
electron beam at the exit of the plasma.

I. INTRODUCTION

In the process of Laser WakeField Acceleration
(LWFA) [1, 2], an ultra-high intensity laser is focused in-
side a gas target, ionizes the medium and creates a trail-
ing perturbation in its wake in an underdense plasma.
The generated plasma cavity sustains intense longitudi-
nal and transverse electric fields that can trap, acceler-
ate and focus bunches of electrons to the GeV range [3]
within a few centimeters. Injection of plasma electrons
makes LWFA a compact option for the generation of rel-
ativistic electron sources. However, despite numerous
studies, the use of electron beams from LWFA for appli-
cations is impeded by insufficient beam quality and sta-
bility. Therefore, detailed diagnostics, realistic modeling
and analysis are needed to achieve a precise understand-
ing of the key mechanisms controlling the laser plasma
interaction in experiments.

The main schemes for the injection of plasma electrons
into the plasma wave are self-injection [4] and ionization
injection [5–8]. In LWFA experiments with PW-class
laser drivers, both injection schemes can occur in the
so-called bubble regime [9], in which the ponderomotive
force of the laser repels plasma electrons from its propa-
gation axis, generating an electron-free cavity behind the
laser pulse. In the process of self-injection, a portion of
the expelled plasma electrons travel around the cavity
before getting trapped in the wakefield [10]. In ioniza-
tion injection, the gas target is a mixture of light atomic
species, typically hydrogen, ionized early before the peak

of the laser pulse, and a dopant species, e.g. nitrogen,
presenting an energy-gap in its ionization potential struc-
ture [7], leading to ionization of some electrons close to
the peak of the laser pulse.

With peak intensities above I0 = 1018 W/cm2, the
pulse temporal front ionizes hydrogen and nitrogen up to
N5+. Remaining nitrogen L-shell electrons are primar-
ily born around laser peak intensities, inside the bub-
ble [11]. Ionization injection has several properties of
interest for tuning electron injection and trapping, and
favors highly charged electron beams. It operates at an
intensity below self-injection [8] and the two mechanisms
can be optimized in different parameter areas. As ioniza-
tion injection depends on the local intensity of the laser
pulse, it can be particularly sensitive to laser beam qual-
ity and its evolution during propagation in the evolving
plasma density. These properties can be used to control
the injection process in electron density tailored profile
or diagnose laser beam quality.

The electron beam charge can be increased by increas-
ing the driving laser power, providing a large range of
parameters to explore for optimizing the properties of
laser driven electron sources with PW class short pulse
laser facilities.

This complex nonlinear physics is described using par-
ticle in cell (PIC) simulations [12], using as input pa-
rameters the laser temporal and spatial shapes, and
the gas density profile. Experimentally achieved laser
beams often differ from perfectly symmetrical distribu-
tions. Hence, in order to understand the role of laser
imperfections on the quality of the produced electron
bunches, and compare to experimental results, refined
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PIC simulations describing realistically the injection and
acceleration physics occurring at the ps scale were per-
formed. These realistic simulations require a proper de-
scription of the gas density profile, as well as of the driver
(laser profile transverse asymmetries) to accurately re-
produce laser-plasma interactions affecting the electron
beams characteristics. For instance, laser asymmetries
have been shown to lead to asymmetric wakefields affect-
ing the output accelerated electron beam, with charac-
teristics directly correlated with the laser stability and
quality [13–17].

In this paper the method used to analyze characteris-
tic results obtained during commissioning experiments at
APOLLON PW facility [18] is presented. Focusing the
F2 laser beam at 0.4 PW in the long focal area inside a
gas cell [19], experiments were performed to characterize
laser beam quality and evaluate its impact on electron
properties.

It is shown that PIC simulations can reproduce exper-
imental results with a significantly higher accuracy when
the measured laser asymmetries are included in the simu-
lated laser’s transverse profile. This enhanced agreement
is meant in comparison with simulations with an ideal,
axisymmetric laser profile, which is often used in the de-
sign stage of LWFA experiments and in preliminary ex-
perimental analyses. The results described in this work
thus show the importance of more realistic initial condi-
tions in numerical modeling used for these studies. The
simulation results shown in this work were obtained with
the quasi-3D PIC code FBPIC [20], but the same method
can be applied with other PIC codes in quasi-3D [21] or
full 3D geometry.

In comparison to previous investigations made with
realistic PIC simulations in [14], this work uses an al-
ternative fast Gerchberg-Saxton algorithm [22] based on
mode decomposition to reconstruct the laser field, which
allows the accurate simulation of an experimental elec-
tron bunch spectrum in the energy-angle plane. This
method has already been used to present experimental
results in [15], in a regime with a lower peak laser inten-
sity and characterized by a more stable transverse laser
profile from shot-to-shot. In addition, in this work, the
physical effects of the realistic laser driver (in particular
its asymmetries) on the electron injection in the bub-
ble are described. An agreement between realistic nu-
merical modeling and experiment is obtained also in the
electron beam spectra in the energy-angle plane. Fur-
thermore, the realistic simulations in [14] have been per-
formed in 3D, while the realistic simulations of this work
were performed in quasi-3D geometry [21], highlighting
that high-fidelity simulations can be obtained also with
this less computationally-demanding technique for pre-
liminary analyses.

The remainder of this paper is organized as follows.
Characteristic experimental results are presented in sec-
tion II. The method used to retrieve the laser electric field
from experimentally recorded fluence images is described
in section III, followed by the description of the method

to generate data to initialize FBPIC simulations. A com-
parison of experimental and numerical electron spectra is
discussed in section IV.

II. EXPERIMENTAL RESULTS

An experiment was performed in April 2021 during the
commissioning phase of the long focal area of APOLLON
facility to characterize laser beam quality inside the ex-
perimental area and evaluate its impact on electron beam
quality.

After compression, the F2 laser beam was transported
into the experimental area and focused in vacuum using
an on-axis spherical mirror 3 m focal length, after reflec-
tion from a turning mirror with a hole, as illustrated in
Fig. 1.

FIG. 1 : Schematic of experimental set-up : the driver laser
beam (in red) is focused through the turning mirror (I) at the
entrance of the gas cell (II), generating a diverging electron
bunch (in green) at the exit. The electron bunch is then
deflected by a magnetic dipole (III) and sent onto a LANEX
screen (IV) to measure its Energy-Angle distribution. A small
percentage of the laser driver is used to probe the plasma
density transversely. Vacuum imaging of the focal volume is
completed with a CCD (V).

The central part of the laser beam incident on the turn-
ing mirror was collected and used partly to monitor the
laser beam energy from shot-to-shot using a leak through
a wedge and a calorimeter. The remainder of the laser
beam was used as a probe laser to diagnose plasma den-
sity transversely to the main pulse. The relative probing
time was controlled by an in vacuum delay stage.

For this experiment, the APOLLON F2 Ti : Sa laser
with a central wavelength λ = 0.8, µm was measured
to deliver a pulse with a FWHM intensity duration
τFWHM = 25 fs, a post-compression energy El = 5 to
10 J, with a repetition rate of 1 shot per minute. The
peak intensity estimated in the ideal Gaussian transverse
profile approximation in vacuum is 5×1019 W/cm2. The
laser beam was focused inside a 6 mm long gas cell [19]
filled with a mixture of 99% H2 and 1% N2. Electrons
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FIG. 2 : Measured laser beam stability during 2 sequences
of multiple vacuum shots taken on 2 separate days with laser
settings 1 and 2: (a) and (b) laser fluence of 4 consecutive
shots measured in the focal plane; (c) and (d) x − xf , laser
beam relative centroid in the xOz plane, with respect to the
focal plane centroid, for three positions z− zf along the laser
propagation axis; the data for z = zf is from the 4 fluence
images of (a) and (b), while the other points are data collected
from 2 separate shots at each position; (e) and (f) fraction of
energy αgauss inside a Gaussian fit of waist w0. Error bars
along z come from the determination of the focal plane zf .

were trapped through ionization and accelerated in the
wakefield. After plasma exit, their energy was mea-
sured using a dipole magnet and LANEX screen imaged
onto a CCD camera. The spectrum was recorded in the
300− 900 MeV energy range within a ±20 mrad viewing
angle.

The laser beam was characterized in detail in the focal
volume every day prior to shots on the gas-filled tar-
get. Using a movable CCD camera in vacuum, the laser
energy distribution was measured inside the interaction
chamber before, at and after focus. The Rayleigh length
in vacuum, defined as zR = (πw2

0)/λ, with w0 being the
1/e2 radius of the focal plane intensity, was zR = 1 mm.
The waist of a Gaussian best fit in the focal plane is
w0 = 16.6±0.3 µm. Fig. 2 shows 2 sets of data taken on
two different days, illustrating instabilities both in laser
pointing and in spatial fluence symmetry between con-
secutive shots and for different days. Fig. 2.(a) and (b)
show the fluence distribution in the focal plane z = zf .

Fig. 2.(c) and (d) show the shot-to-shot transverse cen-
troid displacement fluctuations x−xf in the focal volume
(vertical error bars). The horizontal error bars come from
the determination of the focal plane zf . The xOz plane
is the plane where electrons centroid fluctuations have
been measured, perpendicularly to the laser polarization
plane yOz. Fig. 2.(c) and (d) underline instabilities of the
laser centroid in both cases. For Set 1 data the centroid
is moving linearly, going from +3 µm at z − zf = −0.6
mm to −6 µm at z − zf = +0.6 mm. Set 2 data show
larger fluctuations x − xf = −7 µm at z − zf = −0.6
mm and x− xf = −18 µm at z− zf = +0.6 mm. Multi-

directional fluctuations of the centroid around the focal
plane are the signature of a non zero temporal phase and
the asymmetry of the laser fluence.

In Fig. 2.(e) and (f), αgauss, defined as the fraction
of total energy inside a Gaussian fit with waist w0, is
plotted as a function of position in the focal volume.
Values of αgauss at z 6= zf are calculated using a waist

w(z) = w0[1+(z/zR)
2
]1/2 for the Gaussian fit. At z = zf ,

αgauss is averaging 46 % for Set 1 and 40 % for Set 2. This
demonstrates that the experimental fluence departs sig-
nificantly from a perfect Gaussian approximation in both
cases.

Figure 3 shows the average of 10 consecutive electron
bunch spectra measured on the same day as Fig. 2 Set
1, in yOx, also defined as the Energy − θx angle plane.
The average bunch charge measured between 300 and

FIG. 3 : Average electron spectrum of 10 consecutive shots
acquired the same day as Fig. 2 Set 1 laser measurements
for an average plasma electron density n0 = 2.2 × 1018

cm−3. The color scale shows the spectral charge density in
the Energy − θx angle plane. The full green line along the
Energy axis is the average spectral charge density, dQ/dE,
profile (scale on left vertical axis) calculated within ±3 mrad
around each individual maximum dQ/dθx. The full green
line along the θx axis (right-handside vertical axis) represents
the average dQ/dθx profile (scale on the top horizontal axis)
integrated over energy. The green areas are the confidence in-
tervals bounded by the standard deviation extremes (dashed
curves). θx = 0 corresponds to the laser axis alignment posi-
tion in vacuum.

900 MeV and within ±20 mrad is Qtot = 95±46 pC. For
this sequence, the mean measured laser energy is El =
4.8 ± 0.2 J, and average plasma electron density n0 =
2.2± 0.2× 1018 cm−3. The measured charge fluctuations
are δQtot/Qtot = 47 %, which shows a clear sensitivity to
input parameters.
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III. MODELING OF THE LASER BEAM

The analysis and implementation of the laser experi-
mental data into PIC simulations are performed in three
steps. First, the laser electric field is retrieved from the
measured fluence data. Then, the reconstructed laser
electric field is represented as a mode sum of fields that
are used as parameters at the start of PIC simulations.
Finally, the calculated electron parameters at the end of
each simulation are compared with measured results.

A. Fit of the laser electric field

A modified version of the reconstructive Gerchberg-
Saxton algorithm (GSA) [22], described in Appendix A,
was used to retrieve the laser electric field corresponding
to the laser fluence measured at 3 positions : z − zf =
0, +1.2, −1.8 mm.

The algorithm was used in particular to retrieve an un-
known phase map, ψ(x, y), associated to a set of fluence
images measured at different positions (z0, z1... zkmax

).
We selected laser data from the same day as Fig. 2 Set

1, which exhibit better focal spot stability than Set 2,
to reconstruct a realistic laser electric field distribution.
For each position, the corresponding fluence distribution
has been re-centered around the origin in order to reduce
in advance the shot-to-shot fluctuations error on the fit.
The selected experimental distributions (upper row) and
results of the fit algorithm (middle row) are plotted in
Fig. 4.

Using a combination of low order fits to establish an ed-
ucated guess, then refining the optimization with a higher
order Hermite-Gaussian modes projection, a realistic re-
constructed distribution is calculated as represented in
Fig.4, (middle row).

The laser fluence reconstructed with Laguerre-Gauss
modes is plotted in Fig. 4 (lower row) and shows a
relatively good agreement between the reconstructed
Laguerre-Gauss distribution and the experimental laser
data.

B. PIC simulation set-up

Due to the cylindrical representation used in FBPIC,
the reconstructed Hermite-Gauss laser electric field
EHG(r, θ, zf ) is projected on Laguerre-Gauss modes [23]
in the focal plane z = zf :

Cl,m =

∫ rmax

r=0

∫ 2π

θ=0

r dr dθ EHG(r, θ, zf )

× LG∗l,m(r, θ, zf )(r, θ, zf , r0,opt, θ0,opt, w0r)

(1)

with Cl,m being the complex amplitudes of the LGl,m

Laguerre-Gauss modes, l the azimuthal order, m the
radial order, ∗ the complex conjugate operator, w0r =

FIG. 4 : Experimental laser fluence measured in the focal
volume (upper row), corresponding Hermite-Gaussian recon-
struction (middle row), Laguerre-Gauss fit with L = 3 and
M = 40 used in simulations (lower row): (a), (b) and (c)
z − zf = −1.8 mm - (d), (e) and (f) z − zf = +0 mm - (g),
(h) and (i) z − zf = +1.2 mm. Each distribution has been
normalized by its peak fluence.

(w2
0x + w2

0y)1/2 the projection waist, (r0,opt, θ0,opt) the
GSA cycle optimized origins in cylindrical coordinates at
z = zf and rmax = min (∆X/2,∆Y/2). The rectangular
grid length along each axis is denoted by (∆X,∆Y ).

For a given number M of radial modes, the quality of
the Laguerre-Gauss projection as a function of the num-
ber of azimuthal modes taken into account (azimuthal
order L) is evaluated by calculating εfit, the integral er-
ror, defined as :

εfit =

∫ rmax

r=0

∫ 2π

θ=0
r dr dθ |FHG(r, θ, zf )− FLG(r, θ, zf )|∫ rmax

r=0

∫ 2π

θ=0
r dr dθ FHG(r, θ, zf )

(2)
with FLG(r, θ, zf ) being the normalized fluence of the
Laguerre-Gauss modes, FHG(r, θ, zf ) the normalized flu-
ence of the Hermite-Gauss modes from the laser electric
field fit, both in the focal position z = zf .

The integral error εfit decreases with the integration
radius rmax for a fixed set of LG modes. εfit was cal-
culated for an effective interaction radius, reff , to eval-
uate the quality of the Laguerre-Gauss fit near the peak
fluence of the reconstructed profile. As injection and ac-
celeration of electrons both occur within a characteristic
radius around the laser centroid, on a scale of the order
of the bubble radius Rb ∝ w0 [24], we set reff = Rb and
evaluate the error for r ≤ reff to measure the accuracy
of the fit. In PIC simulations performed with a perfect
Gaussian laser, the plasma cavity has values of Rb rang-
ing from 15 to 20 µm. Therefore, we set reff = 20 µm as
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FIG. 5 : Integral error εfit for M = 40 radial modes, as
a function of the maximum number of azimuthal modes L.
Red squares: εfit calculated in a disk of radius reff = 20 µm;
black circles: εfit calculated in a disk of radius rmax = 200
µm; blue diamonds (vertical axis on the right): cumulative
energy fraction included in each configuration.

the value corresponding to the maximum observed bub-
ble radius.

Figure 5 shows the evolution of εfit for M = 40 and L
ranging from 0 to 10. The error of the fit converges to-
ward εfit = 0 both within reff and rmax = 200 µm as the
number of azimuthal modes used for projection increases.
A share of 43 % of the total energy is contained within
the first mode L = 0 within a radius reff , which shows
that the remainder is contained within non-symmetrical
azimuthal modes.

The number of azimuthal modes for the Laguerre-
Gauss harmonics needs N = 5 azimuthal modes to
be simulated with the azimuthal harmonics of type
exp{−inθ} used in quasi-3D geometry [21]. In addition,
the number of macro-particles per cell in the simulations
in this work has been increased with the number of az-
imuthal modes to maintain a constant signal to noise
ratio (whose value in quasi-3D simulations is discussed
in [21]). As a result, the computational time required
for a simulation with a Laguerre-Gauss laser field is in-
creased due to the increased number of modes and of
macro-particles per cell. Every simulation in this work
with a Laguerre-Gauss sum laser profile used L = 3 and
M = 40, which reproduces 75% of the total energy as
shown in Fig. 5. For L >3, the fit error εfit decreases
slowly compared to the increase in computational time
associated with the corresponding number of modes.

All numerical results presented in this paper were ob-
tained with input parameters in the same range as those
of the data shown in Fig. 3. The simulated laser beam has
a FWHM duration τFWHM,sim = 25 fs (Gaussian tem-
poral profile) and the focal plane fluence is fitted with a
Gaussian waist w0,sim = 16 µm. The laser is propagated
over 10 mm in a gas cell filled with 99 %H2 − 1 %N2 gas,
including a starting 1.4 mm up-ramp from n = 0 to a
density plateau of n = n0,sim, as well as a down-ramp to
n = 0 from ct = 7.4 mm to ct = 10 mm. The plasma
density longitudinal profile profile is inferred from Open-
FOAM simulations [19]. For both Gaussian and realistic

simulations, the laser driver is focused onto the start of
the density plateau at zf = 1.4 mm.

For simulations using the Gaussian profile, the energy
was fixed at El,sim = αgauss×El, with αgauss = 0.46 the
value calculated in Fig. 2.(e) at z = zf . For simulations
using the Laguerre-Gauss profile, simulated with L = 3
and M = 40, El,sim = 0.75× El.

The simulation grid is represented along z by Nz =
3000 points with an increment ∆z = 0.025 µm, and along
r by Nr = 1100 points with an increment ∆r = 0.2 µm.

In the simulations with the reconstructed laser field
profile, each population of H2 and N2 was simulated with
[Pz, Pr, Pθ] = [2, 2, 16] macro-particles per cell along z, r
and θ respectively. In the following, these simulations
will be referred to as ”realistic simulations”.

Instead, every simulation using a perfect Gaussian
laser profile was performed with Nm = 2 azimuthal
modes. For these simulations, each population of H2

and N2 was simulated with [Pz, Pr, Pθ] = [2, 2, 4] macro-
particles per cell.

IV. REALISTIC PIC SIMULATIONS RESULTS

A. Influence of laser asymmetry on electron beam
spectra

To understand the physical impact of laser asymmetry
on the electron bunch quality, realistic simulations were
performed with FBPIC using the reconstructed laser
driver retrieved from fluence distributions shown in
Fig. 4. Input parameters were set as described in the
previous section, and the electron density was fixed to
n0,sim = 2.1× 1018 cm−3.

For the sake of comparison between simulation and ex-
perimental results, 5 electron spectra are shown in Fig. 6:
(a) simulation with a Gaussian laser driver, (b) simula-
tion with a Laguerre-Gauss laser driver using distribution
described by Figs. 4 and 5, both with electron density
n0,sim = 2.1 × 1018 cm−3, and (c) to (e) experimental
spectra (single instances of the data shown in Fig. 3)
measured with electron densities n0 = 2.1 × 1018 cm−3

for (c) and (e), n0 = 2 × 1018 cm−3 for (d) and laser
energy El = 4.7 J for (c) to (e). The total charge of the
average of the experimental spectra from (c) to (e) is 111
pC, and their average central divergence is −6.6 mrad.

These results show that a Gaussian driver Fig. 6.(a)
gives rise to a wide, high-energy, high-charge electron
spectrum, peaked spatially on the laser axis. Using a
realistic laser driver generates an off-axis electron beam
with lower energy, lower charge, a structure in agreement
with experimental results as shown in Fig. 6.(b) and (c)
to (e), where all these spectra exhibit an off-axis dQ/dθx
profile centered toward negative values. The final spec-
trum contains 20 % (0 %) of self-injected electrons for
the Gaussian case (realistic cases).

Table I provides quantitative data for comparison
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Spectrum Qtot θx,max Peak Label Epeak ∆Epeak/Epeak Qpeak dQ/dEmax.

Units pC mrad MeV % pC pC/MeV

Simulation
Gauss

174 -0.3
1 556 3.2 7 0.38

2 629 3.3 8 0.41

Simulation
Laguerre-Gauss

109 -4.7
1 466 23.2 18 0.23

2 632 8.6 5 0.11

Experimental
Data

96 -3.8
1 424 20.3 17 0.21

2 653 9.8 5 0.10

TABLE I : Comparison of electron properties retrieved from simulated (with ideal Gaussian and reconstructed laser profile) and
experimental θx −E spectra shown in Fig. 6. Qtot is the total charge on each Fig. 6 spectrum, θx,max the central divergence of
the angular distribution, while the ”peak” labelled quantities refer to the dQ/dE profiles that result from selection of dQ/dEdθx
within a ±3 mrad range around the maximum dQ/dθx. Boldface denotes specific peak labels identified in Fig. 6 (a)-(c) dQ/dE
profiles. ∆Epeak/Epeak is the energy spread FWHM for each peak, Qpeak is the FWHM charge contained within each peak
and dQ/dEmax. is the maximum dQ/dE value reached within each peak.

of electron beam properties for the 3 cases shown in
Fig. 6.(a) to (c). The total charge Qtot is summed be-
tween ±20 mrad and 300− 900 MeV. We define the exit
angle θx,max as the angle at which the maximum dQ/dθx
is reached. Within ±3 mrad, peaks with center energy
Epeak, FWHM width ∆Epeak/Epeak, and FWHM charge
Qpeak, are identified based on minimum peak prominence
δdQ/dE = 0.05 pC/MeV and minimum base to base width
δE = 45 MeV. Values of Table I show that the results of
the simulation with reconstructed laser field profile are
in good agreement with the detailed electron beam struc-
ture measured in experiment, while the Gaussian simula-
tion results in electron beam characteristics significantly
different from the measured ones. Two major differences
are Qtot value, which is 45 % higher than the experimen-
tal data for the Gaussian case, and the overall dQ/dE
structure which has a highest peak energy of 875 MeV
against 653 MeV in the experimental data. The charge
difference stems from the quality of the laser angular in-
tensity profile as it is the only input difference between
Gaussian and Laguerre-Gauss simulations.

The analysis of the evolution of laser symmetry during
the propagation coupled to electron injection is discussed
in the next section.

B. Evolution of the laser asymmetry and effects on
electron dynamics

Figure 7 shows the simulated evolution of the laser
beam and electron bunch characteristics in the xOz plane
for the case with ideal Gaussian laser profile (left-hand
column) and the case with the reconstructed laser field
(right-hand column). It can be inferred from Fig. 7 that
the evolution of laser asymmetry and maximum field am-
plitude define the conditions for electron injection and
the dynamics of electrons during the acceleration process
in the plasma cavity.

Figures 7.(a) and (b) show the evolution of the laser
driver in the plasma density profile. As the realistic sim-
ulated transverse distribution is asymmetric with respect
to the focal plane and changes before and after z = zf
[Fig. 4], different spatial distortions occur during non-
linear self-focusing inside the plasma.

To quantify the deviation from cylindrical symmetry
of the transverse fluence F (r, θ) and track its evolu-
tion throughout the simulated propagation, we define an
asymmetry coefficient σl [15] as :

σl =

∫ rmax

r=0

r dr

√∫ 2π

θ=0

(
dθ
(
f(r, θ)− f(r)

))2
, (3)

where the normalized laser fluence f(r, θ) is defined as

f(r, θ) =
F (r, θ)∫ rmax

r=0

∫ 2π

θ=0
r dr dθ F (r, θ)

, (4)

and f(r) is the mean normalized fluence over θ. The
integral origin r = 0 is defined as the position of the
fluence maximum. By definition, σl converges toward 0
for a cylindrically symmetric fluence profile.

This asymmetry coefficient σl is plotted for the
Gaussian laser profile and realistic laser profile in
Fig. 7.(a) and (b) respectively as a function of position
along propagation axis. Figure 7.(a) confirms that
the Gaussian profile is angularly symmetric. In this
ideal case σl undergoes variations between 0.5e−5 and
2.5e−5. In comparison, its variations in the simulation
with realistic laser field profile are on a scale 102 times
larger. In the realistic case (Fig. 7.(b)), the amplitude
of the symmetry coefficient drops by 67 % between
600 and 2000 µm, the focal plane in the plasma being
in the middle of this area. This reduction of σl is
simultaneous with the increase in a0, showing that tight
focusing of the laser reduces its imperfections. In the
realistic case, a0 reaches values similar to the Gaussian



7

FIG. 6 : Electron bunch dQ/dEdθx spectral density in the
energy θx divergence plane for 3 different cases : (a) simulated
Gaussian spectrum - (b) simulated Laguerre-Gauss spec-
trum - (c) to (e) single experimental spectra from Fig. 3.(a)
sequence. White (green) lines represent spectral charge,
dQ/dE, (divergence charge density dQ/dθx) integrated over
the divergence (energy) respectively. The shaded area under
the green dQ/dθx line shows the range ±3 mrad around the
peak of dQ/dθx, used to produce the dQ/dE curve and calcu-
late the spectrum peaks properties. The label 1 and 2 refer-
ence specific peaks within the dQ/dE profiles corresponding
to Table I.

a0 through the first self-focusing due to a near Gaussian
shape in its focal plane (Fig. 4.(d)). However, the
asymmetry of the intensity around the focal plane and
relatively short typical variation length (zR = 1 mm) are
responsible for a 1 mm shift of the maximum in compar-
ison to the Gaussian symmetric pulse [Fig. 7.(a) and (b)].

Figures 7.(c) and (d) show line profiles of injected
charge Qinj (right hand-side vertical axis), and spectral
charge density dQ/dEenddz of electrons (black-red-yellow
histogram) with final energy Eend, as functions of injec-
tion position z. In other words, this spectrum describes

distribution of the initial z positions of electrons for given
final energies Eend.

The simulation with ideal Gaussian laser profile
[Fig. 7.(c)] shows a correlation between final energy and
injection position as electrons trapped earlier gain more
energy over the interaction distance. The injection of
electrons in ±3 mrad around axis (green line) occurs in-
side a 400 µm window centered around the maximum
laser amplitude amax at ct1 = 1800 µm. The green in-
jected charge in this region (Fig. 7.(c)) is maximal be-
cause the process occurs over 0.4zR within the density
plateau, in the portion where a0 ' amax. Electrons in-
jected at the start of this region see a longer accelerating
length than the ones at the end, which results in decreas-
ing final energy depending on the injection position. The
resulting spectrum is evenly spread between 300 and 900
MeV as observed in Fig. 6.(a).

For a realistic laser driver, the injected charge spec-
trum (Fig 7.(d)) exhibits multiple injection positions.
The higher energy electrons are injected 1 mm after ct1,
when a0 has dropped to 2.5, and contribute to the high
energy peak centered on 632 MeV in Fig. 6.(b). The
lower energy peak at 466 MeV in Fig. 6.(b) is composed
of electrons trapped at different positions: 1 mm after
ct1 and at ct2, which explains why this peak (Index 1 of
Figs. 6.(b) and (c)) has a relatively higher energy spread
than peak 1 for Gaussian driver (Table I).

The dynamics of electron injection results from the
evolution of the laser and plasma cavity. Snapshots of
the first plasma cavity behind the laser pulse are shown
for the Gaussian driver in Fig. 7.(e) and (g), and for a
realistic driver in Fig. 7.(f) and (h), at ct1 = 1800 µm
and ct2 = 4000 µm respectively. At ct1, for the ideal
Gaussian laser simulation, injection of electrons on axis
has just begun in a perfectly symmetric bubble, while for
the realistic case most of the already injected electrons
are greatly defocused and spread from −30 to 30 µm.
The accelerating fields are similar for Fig. 7.(e) and (f).
However, in the realistic case, electrons ionized early are
desynchronized with the trapping portion of the bubble
due to off axis laser fluence fluctuations resulting in a 3
µm shorter bubble compared to the Gaussian case. This
prevents continuous injection and the generation of elec-
trons with energy above 700 MeV [Fig. 6.(a) and (b)].

Comparison of the two cavity structures at ct2 (Fig. 7
(g) and (h)), provides insight on the effects of transverse
asymmetry evolution on the acceleration process.

In the ideal Gaussian laser case, most of the initially
injected charge is accelerated, and the injection process
remains continuous.

The transverse centroid variations and stronger defo-
cusing with the realistic laser profile induce important
losses throughout the interaction process, which enables
trapping of up to 10 pC around ct2, in an off-axis bub-
ble with half of the accelerating maximum compared to
a Gaussian cylindrically symmetric driver.

Laser and electron beam positions in the xOz trans-
verse plane are plotted in Fig. 8 as functions of the po-
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FIG. 7 : Simulated evolution of laser pulse and electron bunch characteristics for the ideal Gaussian laser profile (columns on
the left) and the realistic laser field profile [columns on the right]. Panels (a) and (b): laser asymmetry function σl (red dots) and
spline approximated asymmetry function curve (red curve) as functions of position on the propagation axis; peak normalized
laser potential a0 (black dashed-line), and normalized longitudinal unperturbed plasma density profile (grey area). Panels (c)
and (d): injected charge Qinj (vertical axis on the right) as function of position (all electrons plotted as a white line, and
angularly selected ±3 mrad electrons as green line); The panels (c) and (d) also show the spectral charge density dQ/dEenddz
of electrons (black-red-yellow colormap) with final energy Eend for the angular selection as a function of the injection position
z. Panels (e) and (g) [(f) and (h) for the simulation with realistic laser field]: transverse slice of the normalized charge density
perturbation ρ/en0 on the z − x plane at ct1 = 1800 µm and resp. ct2 = 4000 µm; in these panels the electron macro-particles
positions are shown as small black dots (with their size pondered by their individual charge). Superposed in these panels is
the laser driver intensity’s normalized envelope (orange colormap); in the same panels, the black and red lines correspond
respectively to the density and the longitudinal electric field Ez on the axis of maximum laser intensity.

sition along the propagation axis in vacuum. The ideal
Gaussian laser trajectory is centered on the laser axis
in vacuum, closely followed by the electron beam tra-
jectory. The electron beam transverse size remains rel-
atively constant in the plasma and grows symmetrically
around x = 0 after plasma exit. For a realistic laser
driver, the laser trajectory [Fig. 8.(b) ]in vacuum oscil-
lates around the x = 0 axis. Self-focusing in the plasma
lowers the amplitude of the displacement off-axis (com-
pare red line and black dashed line).

After electron trapping, z > 2000 µm, the electron
bunch trajectory is centered on the laser centroid, and its
standard deviation reaches up to 10 µm. This behavior
clearly demonstrates the impact of the asymmetry of the
transverse laser driver on the pointing of the electron
beam at the exit of the plasma.

C. Charge fluctuations due to laser intensity
distribution

Simulations were performed to analyze the effects of
variations of the intensity profile on the resulting charge.
The laser electric field was reconstructed for 3 reference
profiles with the modified GSA algorithm described in
Appendix A and the remaining simulation input param-
eters are the same as in Fig. 6.(b) (reported in section

IV A). The density was varied between 1.7 × 1018 and
2.3× 1018 cm−3.

To characterize the laser energy distribution for each
profile, we define the following effective energy ratio :

Eratio =
1

Nz

+zR∑
z=−zR

∫ reff

r=0

∫ 2π

θ=0
r dr dθ F (r, θ, z)∫ rmax

r=0

∫ 2π

θ=0
r dr dθ F (r, θ, z)

, (5)

with z being the propagation position of the laser with
respect to zf , Nz the number of evenly spaced positions
z used to perform the summation in the Rayleigh range
[−zR, ..., 0, ..., zR] and F (r, θ, z) the fluence at each prop-
agation position in vacuum. The integral origin is defined
as the position of the fluence maximum. This ratio quan-
tifies the average effective energy in the characteristic di-
vergence boundaries [−zR, zR] of the laser propagation
axis, and within an area of radius reff . Improving this
ratio increases the portion of energy usable for the injec-
tion of electrons.

The total accelerated charge Q is calculated within the
whole E − θx space and plotted in Fig. 9 as a function
of n0 for the 3 laser profiles and densities ranging from
1.7 to 2.3 × 1018 cm−3. In this regime, within the cho-
sen set of parameters, the total charge Q remains lower
than the theoretical value calculated for a matched laser
for most of the input densities n0. This is a consequence
of the non-Gaussian laser transverse distributions, and
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FIG. 8 : Laser beam (solid red line) and electron bunch
(solid blue line) positions in the xOz plane for (a) Gaussian
case and (b) Laguerre-Gauss case. The blue dashed lines are
the ± RMS σx size of the selected bunch. The laser position is
defined as the centroid of the fluence distribution in an area
of radius reff around the fluence maximum. For reference,
the dash-dotted black line represents the position of the laser
beam in vacuum and the grey area is the longitudinal density
profile (right-end side vertical axis scale).

FIG. 9 : Total injected bunch charge Q for 3 different sim-
ulated laser profiles as a function of n0. For each profile, the
corresponding Eratio is calculated by eq. (5), setting Nz = 21:
black squares profile with Eratio = 0.47 - red diamonds profile
with Eratio = 0.48 - green circles profile with Eratio = 0.52.
For each profile, the dashed curve is the linear regression of
the data points.

of the fact that the laser spot size is not matched with
the bubble radius. Comparing the 3 values simulated
for n0 = 2.1 × 1018 cm−3, while Eratio fluctuates be-
tween 0.47 and 0.52, the total charge Q varies from
198 to 434 pC. A relative effective energy fluctuation
δEratio/Eratio = 5 % leads to a relative charge fluctu-

ation δQ/Q = 38 %. For the laser profile resulting in the
highest total charge, i.e. Eratio = 0.48, increasing the
density n0 from 1.9×1018 to 2.1×1018 cm−3 increases Q
from 295 to 434 pC. A relative density fluctuation of 5 %
leads to a relative charge fluctuation δQ/Q = 19 %. This
shows that taking into account small errors either on the
gas density value or on the calculated effective energy
ratio leads to significant charge fluctuations, of the same
order of magnitude as the one measured experimentally
(Fig. 3).

The averaged calculated charge measured within the
same boundaries as experimental data is 113 pC (Qtot =
95 pC in experiment), with an RMS relative charge
fluctuation of 56% (δQtot/Qtot = 47 % in experiment).
There is a good agreement between the average simu-
lated and experimental charge for the same central den-
sity n0 = 2.2 × 1018 cm−3. In conclusion, this analysis
shows that improving the quality and the stability of the
laser energy distribution and the stability of the plasma
density are crucial to achieve stable and high-energy, high
charge electron spectra.

V. CONCLUSIONS

Experiments were carried out during the commission-
ing phase in the long focal area of the APOLLON laser fa-
cility, to study the influence of the laser beam properties
on the quality of electron beams generated by ionization
injection and laser wakefield acceleration in a gas cell.
A detailed analysis of the laser beam in the transverse
plane was performed using fluence measurements in the
focal volume. Particle in Cell simulations were performed
with a reconstruction of the laser field obtained from the
measured laser fluence map as input, leading to electron
spectra in close agreement with experimental results, for
the accelerated charge, energy distribution and pointing
of the electron beam at the exit of the plasma. The pre-
sented results also show that this degree of quantitative
agreement can be found without using computationally
demanding full 3D simulations.

These high fidelity simulations rely on the calculation
of the laser electric field from experimental data provid-
ing the fluence at different positions along the propaga-
tion in vacuum.

An iterative method based on a modified version of
the Gerchberg-Saxton algorithm [22], which allows the
reconstruction of a realistic laser electric field based on a
collection of fluence images in vacuum (Fig. 4), was used.
The implementation of asymmetric laser drivers leads to
better agreement of the simulation output bunch charac-
teristics to measured experimental data in comparison to
simulations using a perfect Gaussian driver (Fig. 6 and
Table I).

These realistic simulations highlight the effects of laser
field spatial characteristics (centroid fluctuations and
asymmetry quantified by σl) on the injection and acceler-
ation of the electrons (Fig. 7 and Fig. 8). The symmetry
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degradation from a Gaussian laser driver leads to a loss
of both peak energy and total accelerated bunch charge
(Table I), which could be mitigated through optimization
of the gas cell density characteristics.
The impact of shot-to-shot fluctuations of the laser trans-
verse distribution and of plasma density on the acceler-
ated bunch charge, have been quantified and the source
of charge fluctuations in experiments identified. The sta-
bilization of these fluctuations would lead to an improved
stability of the produced electron spectra.
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Appendix A: Modified Gerchberg-Saxton algorithm
(GSA) to model the laser driver

In the experimental campaign described in this work,
only the fluence maps F (x, y, z) of the laser pulse at spe-
cific distances zk, with k = 0, 1, ..., kmax from the focal
spot were measured.

A Gaussian temporal profile was assumed for the laser
pulse, with the measured FWHM duration in intensity
τFWHM . Under this hypothesis, the linear relation be-
tween the peak fluence F0 and peak intensity I0 is :

F0 =
τFWHM

2

√
π

log 2
I0. (A1)

Given this linear relation between fluence F (x, y, z)
and intensity I(x, y, z), an electric field at position z
can be defined from a phase map ψ(x, y) and a fluence
F (x, y, z):

E(x, y, z) = E[F (x, y, z), ψ(x, y)] =

=
√
I(x, y, z0) exp{iψ(x, y)}. (A2)

To initialize the realistic PIC simulations of this work,
a reconstruction of the laser electric field at a given plane
was necessary. Since only the fluence (and thus intensity)
maps at multiple planes were known experimentally, to
reconstruct the laser electric field using Eq. A2 the field
phase map had to be reconstructed.

For this purpose, a modified implementation of the
Gerchberg-Saxton algorithm (GSA) [22] was used to find
the field phase ψ(x, y) at z0 and thus the laser electric

field EGSA,z0(x, y, z0) = E[F (x, y, z0), ψ(x, y)], from the
available data on the the fluence F (x, y, z0) at z0 and
other planes, each referred to as zk.

In the following a simplified description of the field
reconstruction algorithm used in this work is reported.

This version of the GSA aims at finding a reconstruc-
tion of the laser field at z0 through an expansion in
Hermite-Gauss (HG) modes [23], using the measured
F (x, y, zk) fluence maps. Since the propagation of the
HG modes HGn,p at zk is analytically known, this re-
construction is equivalent to finding the estimated HG
expansion coefficients Dn,p (and thus the corresponding
field phase map). The indices n,p denote the order of the
HG mode along the x, y axis respectively.

At each iteration iter of the algorithm, the estimated
expansion in HG modes is propagated from the position
z0 to zkmax

, with an improvement of the estimate at each
of the intermediate positions zk. This update of the es-
timated coefficients for the HG expansion uses the esti-
mated coefficients from the previous measurement plane
at zk−1 and the measured fluences F (x, y, zk). As in the
original GSA formulation [22], the estimated propagated
phase is combined with the fluence at the measurement
planes in the calculations.

After one iteration ends, the procedure is repeated
starting from z0, using the coefficients (and thus the
phase map) estimated from the previous iteration.

The implementation of the modified GSA used for this
work can be described by the following pseudocode:

• Find an initial estimate of the coefficients Dn,p pro-
jecting the intensity corresponding to the fluence
F (x, y, z0) on the HGn,p(x, y, z0) modes at z0. In
the following we denote the projection of a function
f(x, y, z) on the HG modes with the notation Proj:

Dn,p = Proj[f(x, y, z),HGn,p(x, y, z)]. (A3)

• For iter = 0→ Niter and for k = 0→ kmax:

– define the propagated field as

EGSA,zk(x, y, zk) =
∑
n,p

Dn,p ·HGn,p(x, y, zk); (A4)

– find the phase map ψ as:

ψ(x, y) = arg (EGSA,zk(x, y, zk)); (A5)

– combine the measured fluence F (x, y, zk) with
the phase ψ(x, y) to find the function E′GSA,zk
using Eq. A2:

E′GSA,zk(x, y, zk) = E[F (x, y, zk), ψ(x, y)]; (A6)

– combine the previous estimate of the HG co-
efficients with those obtained from the projec-
tion of E′GSA,zk on the HG modes at zk:

Dn,p = (1− α) ·Dn,p +

+α · Proj[E′GSA,zk ,HGn,p(x, y, zk)]; (A7)
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For this work the number of iterations was chosen as
Niter = 10. The coefficient α for the weighted sum of the
previous and new HG expansion coefficients are chosen
in order to obtain convergence.

Once the algorithm has performed the iterations pass-
ing through the measurements planes, using Eq. A2
the estimated field phase ψ(x, y) can be easily found
and combined with the measured fluence F (x, y, z0) of
the laser to reconstruct its field EGSA,z0(x, y, z0) =
E[F (x, y, z0), ψ(x, y)].

In this algorithm, the mentioned projection of a func-

tion f(x, y, zk) on the HG modes at zk was defined as:

Proj[f(x, y, zk),HGn,p(x, y, zk)] =

=

∫ ∆X/2

−∆X/2

∫ ∆Y/2

−∆Y/2

dx dy f(x, y, zk)×

×HG∗n,p(x, y, zk), (A8)

where (∆X,∆Y ) are the data rectangular grid length
along each axis. The HG modes at zk are defined also
using the origins (x0,k, y0,k) and the projection waists
w0x,y. The latter are set sufficiently small to make the
Hermite-Gauss modes decay within the projection inte-
gral boundaries, and sufficiently large to fit the part of
the transverse intensity map further away from the ori-
gin. The values of (x0,k, y0,k) are optimized to improve
the quality of the laser field reconstruction, as will be
described in a future work.

The field reconstruction obtained with described phase
retrieval algorithm would be sufficient to initialize the
laser pulse in a realistic PIC simulation in 3D Cartesian
geometry. However, for the simulations in quasi-3D ge-
ometry [21] of this work, which use a cylindrical grid, a
further decomposition in Laguerre-Gauss modes is nec-
essary, as described in Section III B.
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