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In this work, we design primal and dual bounding methods for multistage adaptive robust optimization

(MSARO) problems motivated by two decision rules rooted in the stochastic programming literature. From

the primal perspective, this is achieved by applying decision rules that restrict the functional forms of only

a certain subset of decision variables resulting in an approximation of MSARO as a two-stage adjustable

robust optimization problem. We leverage the two-stage robust optimization literature in the solution of

this approximation. From the dual perspective, decision rules are applied to the Lagrangian multipliers of

a Lagrangian dual of MSARO, resulting in a two-stage stochastic optimization problem. As the quality

of the resulting dual bound depends on the distribution chosen when developing the dual formulation, we

define a distribution optimization problem with the aim of optimizing the obtained bound and develop

solution methods tailored to the nature of the recourse variables. Our framework is general-purpose and

does not require strong assumptions such as a stage-wise independent uncertainty set, and can consider

integer recourse variables. Computational experiments on newsvendor, location-transportation, and capital

budgeting problems show that our bounds yield considerably smaller optimality gaps compared to the

existing methods.

Key words : Optimization under uncertainty, Robust optimization, Decision rules

1. Introduction

Many practical planning, design and operational problems involve making decisions under uncer-

tainty at consecutive stages, where the decisions in one stage affect the decisions of the future

stages. In such sequential decision-making problems, first-stage (here-and-now) decisions are the
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ones that are immediately implementable. Subsequent recourse (wait-and-see) decisions depend on

the state of the system, which is a result of previous decisions and observations of the uncertain

parameters. A solution is then an adaptable policy or decision rule that takes the previous decisions

and history of uncertainty realizations as an input, and returns a new implementable decision. The

dynamics of a sequential decision-making problem is depicted in Figure 1.

Decisions at

stage 1

Decisions at

stage 2

Decisions at

stage t− 1

Decisions at

stage t

Uncertainty Uncertainty Uncertainty

Figure 1 Sequential decision-making under uncertainty

There are several modeling frameworks for sequential decision-making problems under uncer-

tainty. When the probability distribution governing the uncertain parameters is known, these prob-

lems may be addressed by the multistage stochastic programming (MSP) paradigm, with the goal of

optimizing some statistical performance measure over the planning horizon. There is an extensive

body of research on MSP problems of various structures, with a rich literature on problems with

continuous decision variables. However, Bertsimas and Thiele (2006) point out that implemented

solutions may perform poorly if the probability distribution used in the MSP model is different

than the true distribution, even if both distributions share the same first and second moments. To

mitigate this effect, distributionally robust optimization (DRO) models are proposed for making

decisions that are based on a family of probability distributions, often defined by using historical

data (Goh and Sim 2010). These models aim to hedge against tuning decisions to a perceived

distribution. While the DRO framework has received significant attention (Mohajerin Esfahani

and Kuhn (2018), Cheramin et al. (2022)) from the research community and some recent stud-

ies have proposed tractable solution methods for linear DRO problems under certain conditions

(Philpott et al. 2018, Bertsimas et al. 2019), they remain largely challenging to solve especially in

the multi-stage setting.

Multistage adaptive/adjustable robust optimization (MSARO) is another framework for modeling

sequential decision-making problems under uncertainty that does not require any knowledge about

the probability distribution governing the uncertain parameters. This framework is also adapted to

contexts where the underlying uncertainty is not stochastic in nature, for instance, in the case of

adversarial participants. In MSARO, the uncertainty is represented as belonging to a pre-structured

(often compact) set, called the uncertainty set, and the decisions are optimized with respect to the

worst-case outcome in this set.
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In this paper, we focus on the MSARO framework. Throughout, we use [a] := {1,2, . . . , a} and

[a, b] := {a,a+1, . . . , b} for positive integers a and b (with a≤ b), and (·)> for the transpose operator.

For a problem with T decision-making stages, we denote with ΞT ⊆R`T the uncertainty set which

governs the set of uncertain parameters (ξ1, ξ2, . . . , ξT ), where ξt denotes the vector of parameters

associated with stage t, and ξ1 = 1, by convention. For ease of presentation, we also define the

sequence of uncertain parameter vectors up to stage t along with their (projected) support as

ξt := (ξ1, . . . , ξt) ∈ Ξt := projξt(Ξ
T )⊆R`t . We assume Ξt is compact for all t ∈ [T ]. Then, we study

the following general MSARO problem:

min
x1∈X1(ξ1)

c1(ξ1)>x1 + sup
ξ2:(ξ1,ξ2)∈Ξ2

min
x2∈X2(ξ2):

A2(ξ2)x2+B2(ξ2)x1≤b2(ξ2)

c2(ξ2)>x2 + · · · (1)

· · ·+ sup
ξt:(ξt−1,ξt)∈Ξt

min
xt∈Xt(ξt):

At(ξ
t)xt+Bt(ξ

t)xt−1≤bt(ξt)

ct(ξ
t)>xt + · · · + sup

ξT :(ξT−1,ξT )∈ΞT
min

xT∈XT (ξT ):

AT (ξT )xT+BT (ξT )xT−1≤bT (ξT )

cT (ξT )>xT

where Xt(ξ
t) :=

{
xt ∈Rnt−n

i
t ×Znit : Dt(ξ

t)xt ≤ dt(ξt)
}

and ct : R`t→Rnt , bt : R`t→Rms
t , dt : R`t→

Rmr
t ,At : R`t → Rms

t×nt ,Bt : R`t → Rms
t×nt−1 ,Dt : R`t → Rmr

t×nt for t ∈ [T ]. The main output of

model (1) is the first-stage deterministic (here-and-now) decisions x1 which minimize the worst-

case objective value over T stages taking into account the sequential uncertainty realizations and

optimal wait-and-see decisions. In the sequential framework, at each stage t ∈ T , the worst-case

realization ξt that is consistent with the history of the realizations up to stage t−1, ξt−1, is revealed.

The vector ξt combined with the history ξt−1 yields the history of realizations up to stage t, that

is, ξt = (ξt−1, ξt) from the support Ξt. This determines the parameters of the stage-t minimization

problem, from which the optimal wait-and-see decision vector xt is obtained. As such, the wait-

and-see decisions, x2, . . . , xT , also known as recourse decisions, are adapted to the history of the

uncertain parameter realizations up to their decision-making stage, ξ2, . . . , ξT , respectively. We

remark that, by definitions of Xt and Ξt, we allow for the possibility of mixed-integer wait-and-see

decisions and dependence between the uncertain parameters of different stages. In the following, we

assume, for the data, that all uncertain vectors and matrices are affine functions of the associated

uncertain parameters ξt, as the majority of the literature mentioned makes this assumption; further

assumptions will be specified explicitly when necessary. When the set Xt(ξ
t), t ∈ [2, T ] does not

have integrality restrictions (ni
t = 0), MSARO problem has continuous recourse, otherwise, it has

(mixed-)integer recourse.

MSARO problems are highly challenging to solve. Indeed, as has been recently proven by Goerigk

et al. (2024), they are, in general, harder than NP-hard problems, lying at the higher levels of the

polynomial hierarchy, and their complexity increases with the number of decision stages. Specifi-

cally, T -stage MSARO problems with certain uncertainty set structures are ΣP
2T−1-hard. However,
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some sub-classes and special cases of MSARO problems are theoretically and/or computationally

more tractable, depending on the number of stages, the structure of the uncertainty set, and the

nature of recourse decisions. Among these, the most well-known is static robust optimization, which

considers that all decisions are here-and-now. For a considerable number of problem structures,

e.g., when the uncertainty set is a polyhedron or an ellipsoid, it is possible to derive a mono-

lithic reformulation of the static robust optimization problem through a compact reformulation

of the adversarial problem, usually relying on duality techniques (Ben-Tal and Nemirovski 1999,

Ben-Tal et al. 2009, Bertsimas et al. 2011a, 2015). However, this paradigm cannot capture the

flexibility offered by the possibility of adapting some decisions to the realization of uncertainty,

thus often producing overly conservative decisions. As such, there has been significant research

effort on developing exact and approximate solution methods for two-stage adjustable robust opti-

mization (2ARO) problems, i.e., MSARO with T = 2 (Ben-Tal et al. 2004, Zeng and Zhao 2013,

Postek and Hertog 2016, Subramanyam et al. 2020). In developing these methods, the presence

of discrete recourse variables, known as (mixed-)integer recourse, poses additional challenges in

ensuring exact or high-quality solutions within a reasonable computational effort compared to the

continuous recourse case.

On the other hand, scientific progress on general MSARO has been much more limited. Given

the aforementioned theoretical complexity of these problems, the focus of most existing studies is

the approximate solution of these problems. Approximations proposed for MSARO mostly rely on

reducing the multi-stage problem to a static problem, with a view to leverage the tractability of

these problems. While these approximations can produce feasible solutions for MSARO problems,

they can lead to a significant degradation in solution quality. Furthermore, some of these methods

are quite restrictive being only applicable to special classes such as MSARO with continuous

recourse.

To address these limitations, this paper aims to develop approximations for general MSARO

problems of form (1). More specifically, inspired by the recent developments in the MSP literature,

namely the two-stage linear decision rules (Bodur and Luedtke 2018), we propose applying decision

rule approximations to only a certain subset of decision variables, resulting in an approximation of

MSARO problems as 2ARO problems. In so doing we have three motivations: (i) the strength of the

added flexibility in adapting recourse decisions to uncertainty in 2ARO compared to static robust

optimization, (ii) the significantly reduced theoretical complexity of 2ARO compared to MSARO,

and (iii) the progress made in computationally viable exact and approximate solution methodologies

for 2ARO. As a result of point (iii), our proposed framework is capable of considering a large

variety of MSARO classes, most notably the mixed-integer recourse case, and will directly benefit
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from the developments in the highly active 2ARO literature in the future, e.g., the incorporation

of machine learning for computational enhancements (Julien et al. 2022, Dumouchelle et al. 2023).

While the aforementioned ideas are aimed at providing feasible solutions for MSARO problems,

an important question arises as to the quality of the obtained solution. In order to evaluate the

quality of a feasible policy, one could use a dual bound on the optimal value of the MSARO

problem. Unfortunately, obtaining dual bounds for MSARO problems is a largely unexplored topic

in the literature, especially in the case of mixed-integer recourse. To fill this gap, we propose to

develop dual approximations for MSARO. In particular, we propose a Lagrangian dual for the

MSARO problem and apply decision rules to the Lagrangian multipliers, leveraging ideas rooted

in the MSP literature, namely, Lagrangian dual decision rules (Daryalal et al. 2024). In deriving

a Lagrangian dual of the MSARO problem, we assign a probability distribution with the support

as the uncertainty set and use the assigned distribution in dualizing a subset of constraints along

with their Lagrangian multipliers. As a result, we obtain a dual approximation of MSARO in

the form of a two-stage stochastic optimization problem, which can be solved with the help of

state-of-the-art methods for two-stage stochastic problems. Since the quality of the resulting dual

bound depends on the assigned distribution used while developing the dual formulation, we define

a distribution optimization problem with the aim of identifying the strongest such dual bound.

We develop appropriate solution methods tailored to the nature of the recourse variables for the

resulting distribution optimization problem.

The contributions of our work are summarized as follows:

• We develop a solution framework for MSARO problems that returns adaptable policies as well

as a dual bound measuring the quality of these policies. We do this by employing two-stage

and Lagrangian dual decision rules, leading to novel techniques that reveal new theoretical

and practical avenues.

• We propose to approximate MSARO problems via 2ARO problems to leverage existing solu-

tion methodologies and future developments for the latter in designing adaptable policies for

the former. To this end, we present two-stage decision rules for MSARO, the first adaptation

of a generalization of two-stage linear decision rules from the MSP literature in robust opti-

mization, which can be applied to a broad range of problems. We employ, for an illustration

of our approach, a tailored constraint-and-column generation algorithm to solve the resulting

2ARO approximation. The optimal solution of this approximation not only provides a primal

policy but can also contribute to the calculation of a dual bound through identification of

critical realizations in the uncertainty set.

• With a similar motivation, we derive a dual approximation of MSARO in the form of a two-

stage stochastic optimization problem, which we show to be a strong dual in certain cases.
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Moreover, in order to obtain the strongest possible such dual bound, we study the numerical

solution of a distribution optimization problem. More specifically, we apply decision rules to

dual variables, and design a cutting-plane algorithm to solve the obtained restricted dual prob-

lem. We also show that in the special case of continuous recourse, the restricted dual problem

can be reformulated as a monolithic bilinear program. Additionally, we present an alternative

decomposable dual problem which offers an improved numerical performance. These novel

techniques contribute to the scarce literature for obtaining dual bounds for MSARO problems

with mixed-integer recourse.

• We evaluate the performance of our solution framework over multistage versions of three

classical problems from the MSARO literature: (i) the newsvendor problem, (ii) the location-

transportation problem, and (iii) the capital budgeting problem. Each of these problem classes

is suitable for a different solution method developed in this work and our analysis over various

instances attests to the quality of the returned primal and dual bounds.

The remainder of the paper is organized as follows. In Section 2 we review the literature relevant

to our work. In Section 3 we introduce two-stage decision rules for obtaining primal adaptable

policies. In Section 4 we present our approach to deriving dual bounds. This is followed by numer-

ical experiments in Section 5 and concluding remarks. We remark that all proofs are deferred to

Appendix B.

2. Literature Review

Figure 2 presents a summary of existing solution methods for obtaining exact/approximate solu-

tions and dual bounds for MSARO, with methods developed specifically for 2ARO separately

categorized. In the following, we briefly discuss each method and the specific problem structure it

can address.

Exact solution methods are scarce in the MSARO literature and the existing studies mostly focus

on 2ARO. For 2ARO problems with fixed recourse and finite or polyhedral uncertainty set, Zeng and

Zhao (2013) developed a constraint-and-column generation algorithm. For the same type of prob-

lems restricted to continuous recourse, Bertsimas et al. (2012) designed a Benders decomposition-

type algorithm and applied it to a unit commitment problem, whereas Georghiou et al. (2020)

proposed a convergent method based on enumeration of the extreme points of the uncertainty set

combined with affine decision rules to provide gradually improving primal and dual bounds. For

2ARO problems with continuous fixed recourse, Zhen et al. (2018) used Fourier-Motzkin elimi-

nation iteratively to remove the second-stage decisions, eventually forming an equivalent static

robust optimization problem. This computationally expensive approach is also extended to multi-

stage problems. In the case of mixed-binary recourse and only objective uncertainty, Arslan and
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Bertsimas and Caramanis 2010, Hanasusanto et al. 2015

Subramanyam et al. 2020

Primal Approximation

Bertsimas et al. 2012, Zeng and Zhao 2013, Zhen et al. 2018, Georghiou et al. 2020,

Hashemi Doulabi et al. 2021, Arslan and Detienne 2022

Exact

Ben-Tal et al. 2004, Chen et al. 2008, Chen and Zhang 2009, Goh and Sim 2010,

See and Sim 2010, Bertsimas et al. 2011b, Bertsimas and Georghiou 2015,

Bertsimas and Dunning 2016, Postek and Hertog 2016, Bertsimas and Georghiou 2018,

Ben-Tal et al. 2020, Romeijnders and Postek 2020, Xu and Hanasusanto 2021

Primal Approximation

2ARO

MSARO

ExactDual Bound

Zhen et al. 2018

Georghiou et al. 2019

Kuhn et al. 2011

Hadjiyiannis et al. 2011

Georghiou et al. 2019

Figure 2 Solution methods for MSARO

Detienne (2022) proposed an exact method based on a Dantzig-Wolfe reformulation of the recourse

problem based on a technical assumption on the structure of the linking constraints. Similarly,

using Dantzig-Wolfe reformulation, for a subclass of 2ARO problems with fixed and mixed-integer

recourse, block diagonal recourse matrix and a finite uncertainty set, Hashemi Doulabi et al. (2021)

derived a static formulation which is amenable to Benders decomposition. For continuous MSARO

problems with a stage-wise rectangular uncertainty set, Georghiou et al. (2019) developed robust

dual dynamic programming (RDDP) and proved finite/asymptomatic convergence for various prob-

lem sub-classes. RDDP is an adaptation of the stochastic dual dynamic programming algorithm

from the MSP literature (Pereira and Pinto 1991) to MSARO.

Approximate solution methods are more common in the MSARO literature, with the central idea

of restricting adaptable/adjustable decisions to follow a certain functional form, known as decision

rules. Ben-Tal et al. (2004) proposed the first decision rule for MSARO problems with continuous

recourse, LDRs, where recourse decisions are expressed as affine functions of uncertain parameters

where the parameters of this function are to be optimized. The resulting LDR-restricted problem

being a static optimization problem, it can be reformulated as a linear optimization problem

in certain cases. Nonlinear decision rules were also proposed, such as deflected and segregated
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affine (Chen et al. 2008), extended affine (Chen and Zhang 2009), piecewise affine (Goh and Sim

2010), truncated linear (See and Sim 2010), piecewise affine with exponentially many pieces (Ben-

Tal et al. 2020), quadratic (Xu and Hanasusanto 2021) and polynomial (Bertsimas et al. 2011b)

decision rules. However, the resulting reformulations when using non-linear decision rules are often

nonlinear, e.g, semidefinite or copositive programs. For a comprehensive list of nonlinear decision

rules, interested reader may refer to the survey by Yanıkoğlu et al. (2019).

In the case of mixed-integer recourse, LDRs and most of its aforementioned extensions lead to

non-adjustable decisions for the integer variables. Thus, alternative approaches have been proposed,

with the key idea of (implicitly or explicitly) partitioning the uncertainty set and determining

a constant recourse solution corresponding to each subset. A popular approach for 2ARO prob-

lems uses the notion of finite adaptability, first introduced by Bertsimas and Caramanis (2010).

In finite or K-adaptability, the decision-maker a priori commits to K recourse decisions (while

making the first-stage decisions), and then chooses among them after observing the uncertainty

realization which leads to an implicit K-partition of the uncertainty set. While Bertsimas and

Caramanis (2010) presented an exact formulation for the 2-adaptability problem, for the general

K-adaptability case, Hanasusanto et al. (2015) proposed a monolithic formulation for problems

with binary recourse, and Subramanyam et al. (2020) developed a branch-and-bound algorithm for

problems with mixed-integer recourse. For MSARO problems on the other hand, explicit uncer-

tainty set partitioning is considered in an iterative heuristic framework, with the aim of obtaining

a sequence of improving approximations (Bertsimas and Dunning 2016, Postek and Hertog 2016,

Romeijnders and Postek 2020). Lastly, for MSARO problems with pure-binary recourse, Bertsimas

and Georghiou (2018) introduced binary decision rules, whereas for the mixed-binary recourse case,

Bertsimas and Georghiou (2015) implicitly designed piecewise linear/constant decision rules.

While the aforementioned primal approximations can be shown to be exact in some special cases

(Bertsimas et al. 2010, Bertsimas and Goyal 2012, Iancu et al. 2013, Hanasusanto et al. 2015, Zhen

et al. 2018), in general they do not provide optimal solutions. In order to assess the quality of their

feasible solutions, dual bounds can be used. To this end, Kuhn et al. (2011) presented the idea of

deriving a dual problem for MSARO with only continuous variables and applying LDRs on the

dual variables. Since their approach was originally derived for stochastic programs its application

to MSAROs requires assigning a probability distribution to the uncertainty set. The impact of the

chosen distribution on the quality of the obtained dual bound was observed by Kuhn et al. (2011),

as such a distribution optimization problem was mentioned. This problem was later formalized

by Hadjiyiannis et al. (2011) for a 2ARO with continuous variables and shown to be of the same

theoretical difficulty as the original problem. Hadjiyiannis et al. (2011) proposed to solve instead

a 2ARO problem for a finite set of scenarios from the uncertainty set, selected based on a primal
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decision rule restriction, to reach a dual bound. This procedure can also be extended to obtain dual

bounds for general MSAROs. Finally, for special cases of 2ARO problems with continuous recourse,

Georghiou et al. (2020) proposed a framework to derive progressive dual bounds, by considering

the linear programming dual of their primal extreme point reformulation.

3. Primal Bounding

The MSARO problem given in a nested form in (1) can be reformulated as a monolithic opti-

mization problem by explicitly introducing the functional form of the decision variables, xt(ξ
t) :

Ξt→Rnt−nit ×Znit for all t∈ [T ], along with a deterministic variable, z, representing the worst-case

objective value:

ν? := min z (2a)

s.t.
∑
t∈[T ]

ct(ξ
t)>xt(ξ

t)≤ z ξT ∈ΞT (2b)

At(ξ
t)xt(ξ

t) +Bt(ξ
t)xt−1(ξt−1)≤ bt(ξt) t∈ [2, T ], ξt ∈Ξt (2c)

xt(ξ
t)∈Xt(ξ

t) t∈ [T ], ξt ∈Ξt. (2d)

Together with constraints (2b), the objective function (2a) minimizes the worst outcome. Con-

straints (2c) and (2d) are state and recourse constraints, respectively: while the former link different

stages, the latter are local restrictions for a specific stage.

Throughout the paper, we make the following assumptions:

Assumption 1. X1(ξ1) is non-empty.

Assumption 2. The problem has relatively complete recourse, i.e., for all t∈ [2, T ], ξt ∈Ξt and a

history of feasible decisions made up to t, {xt′(ξt
′
)}t′∈[t−1], there always exists a feasible decision

at stage t, xt(ξ
t).

Assumption 3. For t∈ [T ] and ξt ∈Ξt, the maximum diameter of Xt(ξ
t) is finite, i.e., the feasi-

bility sets are bounded.

We note that combined with the compactness assumption of the uncertainty set and its projections,

these assumptions imply that the studied MSARO problem has a finite optimal objective value.

To derive feasible policies to the MSARO problem, it is quite common in the literature to restrict

all the decisions xt(ξ
t) to follow a simple functional form, such as an affine or piecewise constant

decision rule. By breaking the temporal dependencies between stages, this approach approximates

problem (2) with a static robust optimization problem. Our goal in this section is to employ a new

paradigm where a specific subset of the decision variables xt(ξ
t) are enforced to follow a structured

decision rule, leading to a restriction in the form of a 2ARO problem. We introduce this approach,

two-stage decision rules for MSARO, in Section 3.1, then present its specific instantiation and

possible solution methodologies in Sections 3.2 and 3.3.
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3.1. Two-stage Decision Rules

In a similar manner to constraints (2c) and (2d), we partition the decision variables xt(ξ
t), t∈ [T ]

into xst(ξ
t) ∈ Rqt and xrt(ξ

t) ∈ Rpt , state and recourse variables, as those that appear in the state

constraints of subsequent stages and the others, respectively. We have qt +pt = nt, with integrality

restrictions on the variables, if any, embedded in the set Xt(ξ
t). Then the MSARO (2) can be

written more explicitly as follows:

ν? = min z (3a)

s.t.
∑
t∈[T ]

cst(ξ
t)
>
xst(ξ

t) + crt(ξ
t)
>
xrt(ξ

t)≤ z ξT ∈ΞT (3b)

As
t(ξ

t)xst(ξ
t) +Bs

t (ξ
t)xst−1(ξt−1) +Ar

t(ξ
t)xrt(ξ

t)≤ bt(ξt) t∈ [2, T ], ξt ∈Ξt (3c)

(xst(ξ
t), xrt(ξ

t))∈Xt(ξ
t) t∈ [T ], ξt ∈Ξt (3d)

where cst(ξ
t),As

t(ξ
t),Bs

t (ξ
t),Ds

t (ξ
t) are sub-arrays/sub-matrices of ct(ξ

t),At(ξ
t),Bt(ξ

t),Dt(ξ
t) asso-

ciated with the state variables with appropriate dimensions, while crt(ξ
t),Ar

t(ξ
t),Dr

t (ξ
t) have the

same role for the recourse variables, and Xt(ξ
t) =

{
xst ∈Rqt−q

i
t ×Zqit , xrt ∈Rpt−p

i
t ×Zpit : Ds

t (ξ
t)xst +

Dr
t (ξ

t)xrt ≤ dt(ξt)
}

. For notational convenience, we drop the parametrization for the first-stage vari-

ables as well as their feasible set and the objective vector, i.e., use x1 = (xs1, x
r
1),X1, and c1 = (cs1, c

r
1).

For t ∈ [2, T ], let xst(ξ
t) be approximated by a decision rule, i.e., xst(ξ

t) = Θt(ξ
t, βt), where Θt :

R`t ×RKt → Rqt represents the rule, and βt ∈ RKt represents its vector of design parameters. By

substituting this rule in problem (3), we obtain an approximation that can be reformulated as:

ν2S := min c>1 x1 + max
ξT∈ΞT

min
xr∈X (xs1,β,ξ

T )

∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) + crt(ξ

t)
>
xrt (4a)

s.t. x1 ∈X1 (4b)

βt ∈RKt t∈ [2, T ], (4c)

where:

X (xs1, β, ξ
T ) :=

{(
xrt
)
t∈[2,T ]

∈Rp2 ×Rp3 × · · ·×RpT :

Ar
t(ξ

t)xrt ≤ bt(ξt)−
(
As
t(ξ

t)Θt(ξ
t, βt) +Bs

t (ξ
t)xs1

)
t= 2

Ar
t(ξ

t)xrt ≤ bt(ξt)−
(
As
t(ξ

t)Θt(ξ
t, βt) +Bs

t (ξ
t)Θt−1(ξt−1, βt−1)

)
t∈ [3, T ]

(Θt(ξ
t, βt), x

r
t)∈Xt(ξ

t) t∈ [2, T ]
}
.

Note that the decision rules are solely applied to the state variables, whereas the recourse variables

remain fully adjustable to the uncertain parameters (see Figure 3). Problem (4) is a 2ARO since

the temporal dependency between stages is removed thanks to the application of the two-stage
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x1

xst(ξ
t)

xrt(ξ
t)

xsT (ξT )

xrT (ξT ) x1,{βt}t∈[2,T ] {xrt(ξt)}t∈[2,T ]

Stage 1 Stage 2Stage 1 Stage t Stage T

xst(ξ
t) = Θt(ξ

t, βt)MSARO 2ARO

Figure 3 Two-stage decision rules

decision rules (see Appendix A for a detailed proof). We remark that the relatively complete

recourse assumption stated in Assumption 2 for the MSARO problem, does not guarantee that the

2ARO model has relatively complete recourse, but it can be ensured, for instance, by following the

techniques mentioned in (Bodur and Luedtke 2018).

A practical result of such an approximation is that the resulting problem can be solved using

the existing solution methods for 2ARO. In the following sections, we present two possible choices

for the decision rule Θt(ξ
t, βt), respectively applicable to continuous and integer state variables.

Together, they permit the approximation of an MSARO problem with mixed-integer state variables

via a 2ARO model. We remark that the nature of the recourse variables does not impact the

reduction of an MSARO to a 2ARO, but plays an important role in the choice of an appropriate

solution method for the resulting 2ARO model. In what follows, we illustrate the application of

these decision rules and the algorithmic solution of ensuing 2ARO models. For ease of exposition,

we present MSARO problems with only continuous and only integer state variables separately.

3.2. Two-stage Linear Decision Rules for MSAROs with Continuous State Variables

If the state variables are continuous, we can approximate them via a decision rule with an affine

form. For t∈ [2, T ], letting Φt(ξ
t) =

(
Φt1(ξt), . . . ,ΦtKt(ξ

t)
)

:R`t→Rqt×Kt be a vector of chosen basis

functions, the two-stage LDR is enforced by using

Θt(ξ
t, βt) = Φt(ξ

t)βt (5)

in (4) where we use a compact matrix representation1 for notational convenience. The resulting

2ARO is written as:

ν2S-LDR := min c>1 x1 + max
ξT∈ΞT

min
xr∈X (xs1,β,ξ

T )

∑
t∈[2,T ]

cst(ξ
t)
>

Φt(ξ
t)βt + crt(ξ

t)
>
xrt (6a)

1 This representation is obtained, without loss of generality, by concatenating individual LDR restrictions applied
to each state variable xsti(ξ

t) for i ∈ [qt]. For example, consider an instance where there are two state variables at
stage t= 2 and the history consists of two components ξ2 = (ξ1, ξ2)∈R2 (with the convention that ξ1 = 1). Then the
decisions rules x21(ξ2) = β1

21ξ1 + β1
22ξ2 and x22(ξ2) = β2

21ξ1 + β2
22ξ2 can be represented in the more compact matrix

form with K2 = 4 using the concatenated decision vector β ∈R4 and the basis function matrix Φ2(ξ2) =

ï
ξ1 ξ2 0 0
0 0 ξ1 ξ2

ò
.
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s.t. x1 ∈X1 (6b)

βt ∈RKt t∈ [2, T ]. (6c)

As reviewed in Section 2, the 2ARO problem (6) can either be solved by means of approximation

(e.g., K-adaptability (Subramanyam et al. 2020), uncertainty set partitioning (Postek and Hertog

2016, Bertsimas and Dunning 2016), Neur2RO (Dumouchelle et al. 2023)) or exactly, most notably

via the commonly used constraint-and-column generation (C&CG) method, initially proposed by

Zeng and Zhao (2013), which we detail next.

The C&CG method draws on the fact that not all realizations in ΞT contribute to the worst-

case objective value. It then strives to identify necessary realizations by starting from a smaller

uncertainty set and gradually expanding it. This leads to the generation of new columns and

constraints, respectively corresponding to recourse variables and second-stage constraints for the

newly identified realization. More specifically, consider a relaxation of problem (6) where instead

of the uncertainty set ΞT , a potentially empty subset Ξ̂⊆ΞT is used to obtain the following master

problem, which we denote by MP(Ξ̂):

min c>1 x1 + η (7a)

s.t. η≥
∑
t∈[2,T ]

(
cst(ξ

t)>Φt(ξ
t)βt + crt(ξ

t)>xrt,ξT
)

ξT ∈ Ξ̂Feas (7b)

Ar
t(ξ

t)xrt,ξT +As
t(ξ

t)Φt(ξ
t)βt +Bs

t (ξ
t)xs1 ≤ bt(ξt) t= 2, ξT ∈ Ξ̂ (7c)

Ar
t(ξ

t)xrt,ξT +As
t(ξ

t)Φt(ξ
t)βt +Bs

t (ξ
t)Φt−1(ξt−1)βt−1 ≤ bt(ξt) t∈ [3, T ], ξT ∈ Ξ̂ (7d)

(Φt(ξ
t)βt, x

r
t,ξT )∈Xt(ξ

t) t∈ [2, T ], ξT ∈ Ξ̂ (7e)

x1 ∈X1, η ∈R (7f)

βt ∈RKt t∈ [2, T ], (7g)

where Ξ̂Feas ⊆ Ξ̂ is the set of identified necessary realizations ξT for which there exists a feasible first-

stage solution β̂ such that the feasibility space X (xs1, β̂, ξ
T ) is nonempty. If the recourse variables

are all continuous (i.e., pit = 0, t ∈ [2, T ]), then (7) is a linear program, otherwise it is a mixed-

integer linear program. We remark that if Ξ̂Feas is empty at initialization, a valid lower bound on

the η variable can be added to the model to avoid unboundedness. If MP(Ξ̂) is infeasible for any

Ξ̂⊆ΞT , the 2ARO model (6) is proven to be infeasible. Next, we consider the cases whereMP(Ξ̂)

is feasible and bounded.

The optimal objective value ofMP(Ξ̂) is a lower bound on ν2S-LDR, the optimal objective value

of (6). To obtain an exact solution to problem (6), we may need to gradually expand Ξ̂ with

necessary realizations (and consequently the set of recourse variable copies xr
t,ξT

). At convergence,
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solving MP(Ξ̂) should return an optimal solution (x̂1, β̂, η̂) such that η̂ accurately measures the

worst-case second-stage cost over the complete uncertainty set ΞT (or conclude infeasibility of (6)).

To check whether this convergence criterion is satisfied, we solve the adversarial problem for a

given first-stage solution (β̂, x̂s1), which results in the following subproblem:

SP(β̂, x̂s1) := max
ξT∈ΞT

{ ∑
t∈[2,T ]

cst(ξ
t)>Φt(ξ

t)β̂t + min
xr∈X (x̂s1,β̂,ξ

T )

∑
t∈[2,T ]

crt(ξ
t)>xrt

}
. (8)

If η̂ = SP(β̂, x̂s1), then η̂ exactly measures the worst-case cost of the second-stage problem and

(x̂1, β̂, η̂) is an optimal solution to problem (6), i.e., ν2S-LDR = c>1 x̂1 + η̂. Otherwise, let ξ̂T be

the optimal solution of subproblem (8) if it is feasible, or a scenario such that X (x̂s1, β̂, ξ̂
T ) is an

empty set. We create new variables xr
t,ξ̂T

, t ∈ [2, T ] and update the set of necessary realizations

with Ξ̂ = Ξ̂∪
{
ξ̂T
}

, and accordingly update (7c)-(7e). If subproblem (8) is feasible, then we update

Ξ̂Feas = Ξ̂Feas ∪
{
ξ̂T
}

and (7b) as well. In this case, constraints (7b)-(7e) make up the optimality

cuts. If subproblem (8) is infeasible, then (7c)-(7e) act as feasibility cuts. We repeat solving the

master problem and the subproblem in a cutting-plane fashion and add the appropriate cuts until

Ξ̂ includes all the necessary realizations and η̂= SP(β̂, x̂s1), or MP(Ξ̂) becomes infeasible.

In general, subproblem (8) can be numerically challenging to solve especially if the inner mini-

mization problem contains integer variables and/or non-linearities in ξT . However, there are cer-

tain practical cases in which (8) can be reformulated as a mixed-integer linear program and then

directly be given to an optimization solver. In the context of our subproblem, one notable example

of this is provided in Remark 1. Further, extending this case to allow integer recourse variables

(pit 6= 0, t ∈ [2, T ]), while keeping the other assumptions in Remark 1, Zhao and Zeng (2012) pro-

posed a nested constraint-and-column generation algorithm. In addition, we note that it is not

necessary to solve the subproblem exactly at each iteration; the solution process can be stopped

as soon as a violated cut for the master problem is identified. Recent studies have also considered

the use of neural networks in order to approximate the inner minimization problem (Dumouchelle

et al. 2023), especially to handle integer recourse variables and non-linearities.

Remark 1. Consider an MSARO where the uncertainty set is a polytope, the basis functions

Φt(ξ
t) are chosen to be affine in ξt for all t ∈ [2, T ], all the recourse variables are continuous (i.e.,

pit = 0, t ∈ [2, T ]) and we have fixed parameters associated with the state variables, i.e., cst(ξ
t) =

cst ,A
s
t(ξ

t) =As
t ,B

s
t (ξ

t) =Bs
t ,D

s
t (ξ

t) =Ds
t for all t∈ [2, T ] and ξt ∈Ξt. In this case, using linear pro-

gramming duality or the KKT optimality conditions (under a further relatively complete recourse

assumption for the 2ARO problem (6)) yields a monolithic bilinear continuous optimization prob-

lem, which can further be linearized using big-M constraints to obtain a mixed-integer linear

program (see Appendix C.1 for details).
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We further remark that the presence of decision-rule design variables β may make the master

problem MP(Ξ̂) numerically challenging to solve, compared to traditional use cases of C&CG. In

that regard, recently proposed enhancement ideas can be employed, such as the inexact C&CG

algorithm proposed by Tsang et al. (2023). In their framework, master problems are solved to a

given relative optimality gap which gradually reduces to zero over the course of the algorithm.

Additionally, it is possible to design the basis functions Φt(·) to use a small information basis

rather than the entire history ξt so that the number of design variables is reduced. This would be

especially helpful for problems with larger number of decision stages.

Another consideration concerning the exact solution of (6) using the C&CG algorithm is its

convergence. Indeed, the C&CG may not have finite convergence in general. If ΞT is a finite set,

then the finite convergence is straightforward, otherwise more conditions are needed to ensure this

property. Zeng and Zhao (2013) proved finite convergence, considering a (bounded) polyhedral

uncertainty set, for problems with only right-hand-side uncertainty represented as an affine function

of uncertain parameters. However, in problem (6), basis functions Φt(ξ
t) appear as coefficients of

βt, both in the objective function (6a) (in the term cst(ξ
t)
>

Φt(ξ
t)) and the second-stage constraints

(terms As
t(ξ

t)Φt(ξ
t),Bs

t (ξ
t)Φt−1(ξt−1) and Ds

t (ξ
t)Φt(ξ

t)). The following proposition provides a suf-

ficient condition for finite convergence of the C&CG algorithm (proof is given in Appendix B) in

this more general context.

Proposition 1. Consider an MSARO with only right-hand-side uncertainty, continuous recourse,

and (bounded) polyhedral uncertainty set. If the basis functions Φt(ξ
t) are chosen to be affine in ξt

for all t∈ [2, T ], the C&CG algorithm converges to ν2S-LDR in a finite number of iterations.

In case the conditions of Proposition 1 are not satisfied, the C&CG algorithm still converges but

asymptotically to an optimal solution of problem (6) if it is feasible (since it is bounded under the

boundedness assumption imposed on the original MSARO problem).

Lastly, we note that in the case of continuous recourse, a linear decision rule can be applied to

the recourse decision variables as well resulting in the LDR approach proposed by Ben-Tal et al.

(2004). Since recourse variables xrt(ξ
t) in (6) are fully adjustable, it immediately follows that

ν? ≤ ν2S-LDR ≤ νLDR,

where νLDR refers to the bound obtained from the commonly used LDR approach.

3.3. Two-stage Piecewise-constant Decision Rules for MSAROs with Integer State Variables

In this section, we study the application of two-stage decision rules in another special case of

MSAROs, where each state variable xsti(ξ
t)∈Z, i∈ [qt], t∈ [2, T ] is a bounded integer with a given
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domain [κti, κti] where boundedness follows from Assumption 3. We enforce the two-stage piecewise-

constant decision rule (PCDR) by using xsti(ξ
t) = Θti(ξ

t, βit) where

Θti(ξ
t, βit) =


κti Υti(ξ

t, βit)∈Kit1
κti + 1 Υti(ξ

t, βit)∈Kit2
...

...
κti Υti(ξ

t, βit)∈KitJi ,

(9)

where Kitj ⊂ [−1,1], j ∈ [Ji] are disjoint sets with
⋃
j∈[Ji]

Kitj = [−1,1], and Υti(ξ
t, βit) : R`t ×RKt→

[−1,1] are functions defining the policy for t∈ [2, T ] and i∈ [qt]. Semantically, the PCDR partitions

the interval [−1,1] into subsets, and then assigns an integer value to each partition.

A special case of PCDRs can be defined by restricting the form of all mappings Υti(ξ
t, βit) to

be a linear function of the decision rule design variables β. In the following, we show that such

a decision rule results in a model that is structurally very similar to (6), thus it is amenable to

the C&CG method. Let, without loss of generality, Kit1 = [ait1, b
i
t1], and Kitj = (aitj, b

i
tj], j ∈ [Ji] \ {1}

be intervals with ait1 = −1, bit,Ji = 1, and aitj = bit,j−1 for j ∈ [2, Ji]. Let further, for t ∈ [2, T ],

Υti(ξ
t, βit) = Υ̂ti(ξ

t)>βit be chosen as an affine function of basis functions Υ̂ti(ξ
t). This implies, in

particular, that −1≤ Υ̂ti(ξ
t)>βit ≤ 1 which is enforced through robust constraints. Then problem

(4) becomes:

ν2S-PCDR := min c>1 x1 +SPPCDR(β,xs1) (10a)

s.t. x1 ∈X1 (10b)

βt ∈RKt t∈ [2, T ] (10c)

−1≤ Υ̂ti(ξ
t)>βit ≤ 1 t∈ [2, T ], i∈ [qt], ξ

T ∈ΞT (10d)

where:

SPPCDR(β,xs1) := max
ξT∈ΞT

∑
t∈[2,T ]

cst(ξ
t)
>
xst + min

xr∈X (xs1,β,ξ
T )

∑
t∈[2,T ]

crt(ξ
t)>xr (11a)

s.t.
∑
j∈[Ji]

(κti + j− 1)υtij = xsti t∈ [2, T ], i∈ [qt] (11b)∑
j∈[Ji]

ωtij = Υ̂ti(ξ
t)>βit t∈ [2, T ], i∈ [qt] (11c)

(aitj + εj)υtij ≤ ωtij ≤ bitjυtij t∈ [2, T ], i∈ [qt], j ∈ [Ji] (11d)∑
j∈[Ji]

υtij = 1 t∈ [2, T ], i∈ [qt] (11e)

υtij ∈ {0,1} t∈ [2, T ], i∈ [qt], j ∈ [Ji]. (11f)

with ε1 = 0. The PCDR is modeled using the auxiliary variables υtij, ωtij and constraints (11b)-

(11f). Variables υ determine in which interval the quantity Υ̂ti(ξ
t)>βit falls, in accordance with the
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variables ω, and the integer values assigned to the state variables. Here, εj is added to the lower

bound on ωtij to ensure that partitions Ktj are disjoint. We remark that, it is possible to choose

εj = 0 for j ∈ [Ji], in which case the intervals would intersect at their boundaries. In this case,

whenever the quantity Υ̂ti(ξ
t)>βit is a boundary point, the model allows assigning either one of the

corresponding integer values to the associated state variable. The objective function then dictates

that the solution leading to the worst objective value is chosen.

Similar to Remark 1, in certain special cases, we can reformulate problem (11) as a monolithic

mixed-integer linear program.

Remark 2. Consider an MSARO where the uncertainty set is a polytope, the basis functions

Υ̂ti(ξ
t) are chosen to be affine in ξt for all t ∈ [2, T ] and i ∈ [qt], all the recourse variables are con-

tinuous, and we have fixed parameters associated with the state variables, i.e., cst(ξ
t) = cst ,A

s
t(ξ

t) =

As
t ,B

s
t (ξ

t) = Bs
t ,D

s
t (ξ

t) = Ds
t for all t ∈ [2, T ] and ξt ∈ Ξt. In this case, using linear programming

duality yields a monolithic bilinear continuous optimization problem whose objective function

involves products between variables xsit and linear programming dual variables of the inner min-

imization problem. Thanks to constraints (11b), variables xsit can be substituted for a weighted

sum of binary variables υ, as such these bilinear terms can be linearized using big-M constraints

to obtain a mixed-integer linear program.

Further, in applying the C&CG method to model (10), robust constraints (10d) will appear in

the master problem. If the uncertainty set is a polytope and the basis functions Υ̂ti(ξ
t) are chosen

to be affine in ξt for all t∈ [2, T ] and i∈ [qt] then these semi-infinite constraints can be reformulated

as a finite set of linear constraints using classical robust optimization techniques based on linear

programming duality. We also note that the arguments presented in Section 3.2 imply similarly

that the C&CG algorithm converges asymptotically to the optimal solution of ν2S-PCDR if it is

feasible.

Lastly, the methods presented in Sections 3.2 and 3.3 can be combined to address MSAROs with

mixed-integer state variables.

Remark 3. For an MSARO with mixed-integer state variables, the application of linear and piece-

wise constant decision rules, given by equations (5) and (9), to the continuous and integer state

variables, respectively, yields a 2ARO approximation. The resulting model is presented in detail in

Appendix C.2. This model is similarly amenable to the C&CG method for exact solution but can

also benefit from other 2ARO solution methods from the literature.
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4. Dual Bounding

In this section, we introduce a new dual problem that provides a lower bound for MSARO problems

with mixed-integer recourse. Due to the existence of integer variables, we rely on Lagrangian

duality techniques, where we create a Lagrangian relaxation and optimize over the Lagrangian dual

multipliers. As the MSARO involves constraints corresponding to every realization of uncertainty,

Lagrangian multipliers are functions of uncertainty, as such they are usually high (possibly infinite)

dimensional. To overcome the difficulty in their optimization, we propose to apply decision rule

restrictions to Lagrangian multipliers, leveraging ideas rooted in the MSP literature (Kuhn et al.

2011, Daryalal et al. 2024). In deriving a Lagrangian dual of the MSARO problem, we choose a

probability distribution with the support as the uncertainty set, and use the associated density

function to scale the constraints to be dualized, resulting in expectation terms in the objective

function of the relaxation. Accordingly, we obtain a dual approximation of MSARO in the form of

a two-stage stochastic program. This probability distribution-based approach has several benefits,

most notably the possibility of leveraging state-of-the-art stochastic programming techniques to

solve the dual problem. However, the quality of the resulting dual bound depends on the probability

distribution used while developing the dual formulation, as previously observed by Kuhn et al.

(2011) for MSAROs with continuous recourse. With the aim of identifying the strongest such

dual bound, we formally pose a distribution optimization problem (akin to what was developed

in (Hadjiyiannis et al. 2011)) and develop appropriate solution methods (tailored to the nature

of the recourse variables) for the resulting distribution optimization problem. To the best of our

knowledge, numerical solution of such a bounding problem and the quality of the obtained bounds

have not been studied before.

In what follows, in Section 4.1, we introduce the nonanticipative reformulation of the MSARO

problem and its Lagrangian dual. In Section 4.2, we present the restricted Lagrangian dual problem

and define the associated distribution optimization problem for which we develop solution methods

in Section 4.3. Lastly, in Section 4.4, we propose an alternative dual problem, which can be weaker

in terms of the quality of the obtained bound but has computational advantages thanks to its

decomposable structure.

4.1. Nonanticipative Dual of the MSARO

The nonanticipative (NA) dual is based on a reformulation of the MSARO problem where we create

a copy of decision variables for every stage and every realization, and explicitly enforce nonantici-

pativity constraints. To this end, we introduce the copy variables y(ξT ) = (y1(ξT ), . . . , yT (ξT )) for

all ξT ∈ ΞT as perfect information variables depending on the entire realization ξT = (ξ1, . . . , ξT ).
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We denote the decision variables by y instead of x used in previous sections to emphasize the fact

that they are perfect information variables. We also note that we do not need to distinguish state

and recourse variables in this section, thus vectors y involve all the decisions. We can then obtain

the NA reformulation of the MSARO problem (2) as:

min z (12a)

s.t.
∑
t∈[T ]

ct(ξ
t)>yt(ξ

T )≤ z ξT ∈ΞT (12b)

At(ξ
t)yt(ξ

T ) +Bt(ξ
t)yt−1(ξT )≤ bt(ξt) t∈ [2, T ], ξT ∈ΞT (12c)

Dt(ξ
t)yt(ξ

T )≤ dt(ξt) t∈ [T ], ξT ∈ΞT (12d)

yt(ξ
T ) = yt(ξ

′T ) t∈ [T ], ξT , ξ′
T ∈ΞT with ξt = ξ′

t
(12e)

yt(ξ
T )∈Rnt−n

i
t ×Zn

i
t t∈ [T ], ξT ∈ΞT . (12f)

Constraints (12e) are nonanticipativity constraints which ensure that at stage t for every partial

realization of ξT , the decisions made are consistent (i.e., the decisions made in all realizations

sharing the history ξt are the same).

Remark 4. The nonanticipativity constraints are redundant for stage T , however, we include

them in model (12) for notational convenience. In our implementation for the numerical results

presented in Section 5, we exclude those redundant constraints.

In deriving a Lagrangian relaxation, we will first scale the constraints to be relaxed. As the

constraints correspond to uncertainty realizations, we choose the scaling factors in such a way that

they induce a probability measure over the support ΞT . To this end, we let P denote this probability

measure such that P(ΞT ) = 1, which we interchangeably refer to as the probability distribution. We

define pP : ΞT → R+ as the associated density function. Lastly, we let P> := {P | pP(ξT )> 0, ξT ∈

ΞT}, i.e., every P∈P> has a density function assigning a strictly positive value to all ξT ∈ΞT .

Before introducing the NA dual derived from (12), we present the following lemma, which we

use to reformulate the nonanticipativity constraints (proof in Appendix B).

Lemma 1. For any P∈P>, constraints (12e) are equivalent to the following:

yt(ξ
T ) =Eξ′T∼P

[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
, t∈ [T ], ξT ∈ΞT . (13)

One advantage of this reformulation is the reduction in the number of constraints and in turn

in the number of dual multipliers to be introduced. Let, to this end, λt(·) : R`t → Rnt for t ∈ [T ],

where EξT∼P[λt(ξ
T )] < +∞, be the dual functionals to be used in relaxing the nonanticipativity

constraints (13). Let further the feasibility space for ξT ∈ΞT be Y (ξT ) :=
{(
z, y1(ξT ), . . . , yT (ξT )

)
:
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(12b)− (12d) and (12f)
}

. Then, after scaling (13) with the probability densities associated with

the distribution P, we obtain the following NA Lagrangian relaxation problem:

LNA
LR (P, λ1(·), . . . , λT (·)) := min z+

∑
t∈[T ]

EξT∼P
[
λt(ξ

T )
>
(
yt(ξ

T )−Eξ′T∼P
î
yt(ξ

′T )
∣∣ξ′t = ξt

ó)]
(14a)

s.t.
(
z, y1(ξT ), . . . , yT (ξT )

)
∈ Y (ξT ) ξT ∈ΞT . (14b)

whose optimal objective value yields a lower bound for the original MSARO problem for any

P∈P>. The NA Lagrangian dual problem aims to find the best bound among all such Lagrangian

relaxation bounds:

LNA(P) := max
λ1(·),...,λT (·)

LNA
LR (P, λ1(·), . . . , λT (·)). (15)

The following proposition shows that regardless of the choice of P, LNA(P) is an exact dual bound

for MSARO problems with continuous recourse (proof in Appendix B).

Proposition 2. Let P be any probability measure in P>. For MSARO problems with continuous

recourse, (15) is a strong dual of (2), i.e., LNA(P) = ν?.

We remark that our construction of the dual postulates that we multiply the constraints with

a density function whose support is ΞT . Therefore, the strictly positive density property of P> is

necessary for the exactness of our formulation. Proposition 2 suggests that the solution of problem

(15) gives an exact dual bound for (2) (hence for (12)) if all decision variables are continuous.

Although this bound is not necessarily exact in the case of mixed-integer recourse, the potential

of leveraging the literature of multistage stochastic programming in achieving a dual bound for

MSARO is quite appealing.

The objective function of the NA Lagrangian relaxation problem (14) contains (conditional)

expectations of decision variables yt(ξ
T ), which is computationally challenging. Because of our

initial assumption that Xt(ξ
t) are bounded (Assumption 3) we have, by letting Ỹ (ξT ) :=

projy1(·),...,yT (·)Y (ξT ), that EξT∼P[diam(Ỹ (ξT ))]<+∞. Since we further have that EξT∼P[λt(ξ
T )]<

+∞, we can apply Lemma 1 of (Daryalal et al. 2024) and replace the expectation term for t in the

objective function (14a) with:

EξT∼P
[(
λt(ξ

T )−Eξ′T∼P
î
λt(ξ

′T )
∣∣ξ′t = ξt

ó)>
yt(ξ

T )
]
.

For given λt(ξ
T ), this exchange allows us to compute the coefficients of yt(ξ

T ) in the Lagrangian

relaxation problem. Still, the optimal form of the dual functionals λt(·) need to be determined, mak-

ing the problem (15) computationally intractable. In the next section, we restrict these Lagrangian

multipliers to follow LDRs and obtain a restricted dual problem with decision variables of smaller

(finite) dimension. Furthermore, this new dual problem is amenable to well-known solution tech-

niques from the literature of two-stage stochastic programming which are designed to approximately

solve a problem with expectation in the objective function.
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4.2. Lagrangian Dual Decision Rules

We restrict the NA Lagrangian dual problem (15) for a given P ∈ P> by enforcing LDRs on the

Lagrangian multipliers, referred to as Lagrangian dual decision rules (LDDRs). For a set of pre-

determined basis functions Ψt : ΞT →Rnt×Kt and LDR decision variables αt ∈RKt , we restrict the

form of λt(ξ
T ) at stage t∈ [T ] as follows:

λt(ξ
T ) = Ψt(ξ

T )αt,

which gives us a restricted NA Lagrangian dual problem with respect to P:

LNA
R (P) := max

α1,...,αT
LNA

LR (P,Ψ1(ξT )α1, . . . ,ΨT (ξT )αT ). (16)

Since problem (16) is a restriction of (15), we have LNA
R (P)≤LNA(P).

Using Lemma 2 in (Daryalal et al. 2024), the primal characterization of LNA
R (P) is:

min z (17a)

s.t.
(
z, y1(ξT ), . . . , yT (ξT )

)
∈ conv(Y (ξT )) ξT ∈ΞT (17b)

EξT∼P

[
Ψt(ξ

T )>
(
yt(ξ

T )−Eξ′T∼P
[
yt(ξ

′T ) | ξ′t = ξt
])]

= 0 t∈ [T ] (17c)

For a given P, comparing (17) to the primal characterization of the (unrestricted) NA Lagrangian

dual problem (15) (provided in (42) of Appendix B), it is clear that, the former is a relaxation of the

latter since constraints (17c) are an aggregation of their counterpart (42c). Consequently, unlike

LNA(P), even for MSARO with continuous recourse, LNA
R (P) is not necessarily a strong bound.

Furthermore, due to constraints (17c), the strength of the restricted NA Lagrangian dual bound

depends on the choice of probability measure P. A similar observation was made by Kuhn et al.

(2011) and Hadjiyiannis et al. (2011) concerning their dual bound for MSARO problems with only

continuous variables. This observation motivates us to optimize over the probability distribution P

and LDR variables α to find the best such dual bound. As such, we propose to solve a distribution

optimization (DO) problem over the set of probability distributions P>, defined as follows:

νNA-DO
R := sup

P∈P>
LNA
R (P) (18)

where, as before, P> = {P | pP(ξT )> 0, ξT ∈ΞT}.

In linear and mixed-integer programming, strict inequalities such as the ones required for P ∈

P> (the strictly positive density property for all ξT ∈ ΞT ) often cause numerical and theoretical

difficulties, thus are not desirable. To avoid these inequalities, in the following discussions, we
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modify the DO model to improve its numerical behaviour. Denote by P≥ a superset of P> that

also admits distributions that allow p(ξT ) = 0 for some ξT ∈ΞT . Consider the problem:

ν̄NA-DO
R := max

P∈P≥
LNA
R (P). (19)

Because (19) is a relaxation of (18), it yields an upper bound for νNA-DO
R . Thus, it does not imme-

diately follow that such a bound is a valid lower bound for the optimal value of the MSARO

problem, ν?. The following proposition shows that (19) indeed leads to a valid dual (lower) bound

(see Appendix B for proof).

Proposition 3. ν̄NA-DO
R is a lower bound for ν?.

Hereafter, we refer to (19) or its equivalent explicit form

ν̄NA-DO
R = max

P,α
Q(P, α) (20a)

s.t. αt ∈RKt t∈ [T ] (20b)

P∈P≥, (20c)

as the DO problem, where

Q(P, α) := min z+
∑
t∈[T ]

EξT∼P

[Å(
Ψt(ξ

T )−Eξ′T∼P
î
Ψt(ξ

′T )
∣∣ξ′t = ξt

ó)
αt

ã>
yt(ξ

T )

]
(21a)

s.t.
(
z, y1(ξT ), . . . , yT (ξT )

)
∈ Y (ξT ) ξT ∈ΞT . (21b)

Problem (21) is a two-stage stochastic program (2SP) and can benefit from its rich literature. In the

next section, we build on well-known stochastic programming techniques to design a decomposition

method to solve the DO problem (20).

4.3. Solving the DO Problem

There are two main challenges associated with the solution of the DO problem: the expectation

terms in the objective of (21a) and the max-min structure in (20).

If the uncertainty set of the MSARO problem, ΞT , is not discrete, objective function (21a)

includes the expectation of a nonsmooth concave function. Further, even when ΞT is discrete

calculating the expectation term exactly can be prohibitive from a computational point of view. The

literature of two-stage stochastic programming addresses such a difficulty by means of sampling-

based approaches that replace the expectation in the objective function with the average of a

sample drawn from the underlying distribution and has favourable theoretical convergence results

(see e.g., Shapiro et al. (2009)). We follow the sample average approximation (SAA) approach in
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overcoming the first challenge and show in Section 4.3.1 that it leads to a valid dual bound for the

MSARO problem.

With regards to the second challenge, we propose a cutting plane algorithm that iteratively

constructs improving approximations of Q(P, α) through its supporting hyperplanes obtained by

solving the SAA approximation of (21). We present this general algorithm in Section 4.3.2 and

propose an alternative monolithic formulation in the special case of MSARO with continuous

recourse in Section 4.3.3. Figure 4 summarizes the methods presented in this section for solving

the DO model.

Bilinear program (29)

Sampling

β̂

Cutting-plane method

Continuous recourse Mixed-integer recourse

Cut (27)

Solve master problem (26)

Solve subproblem (25)

Discrete uncertainty set
Continuous/Large discrete

uncertainty set

Figure 4 Solution methods for the DO problem

4.3.1. Sample average approximation (SAA) Let Ω⊆ΞT be a finite subset of the uncer-

tainty set ΞT . We define the set of probability measures P≥Ω such that PΩ ∈ P≥Ω implies that

PΩ(Ω) = 1 and the associated density function has value zero for any realization not in Ω:

pPΩ(ξT ) = 0, ξT ∈ΞT \Ω, and pPΩ(ξT )≥ 0, ξT ∈Ω.

Since P≥Ω ⊆ P≥ and ν̄NA-DO
R is obtained by maximizing LNA

R (P) over P ∈ P≥, we have, for any

PΩ ∈P≥Ω , that LNA
R (PΩ)≤ ν̄NA-DO

R ≤ ν?. It then follows that

max
PΩ∈PΩ

LNA
R (PΩ)≤ ν̄NA-DO

R ≤ ν?. (22)

We finally have that

max
PΩ∈P

≥
Ω

LNA
R (PΩ) = max

PΩ,α
Q(PΩ, α) (23)

s.t. αt ∈RKt t∈ [T ]

PΩ ∈P≥Ω ,
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where for any PΩ ∈ P≥Ω the expectation terms in the objective function (21a), used in calculating

Q(PΩ, α), are replaced by their sample average over Ω.

In the remainder of this section, we omit the notation Ω and write our models with a finite

discrete uncertainty set ΞT which can either be the full uncertainty set of the MSARO problem or

a set of realizations sampled from it.

4.3.2. MSARO with mixed-integer recourse In a discrete uncertainty set with realiza-

tions ξT ∈ ΞT , P≥ can be modeled by a set of (in)equalities, that is P≥ =
{
ρ ∈ R|Ξ

T |
+ | 1>ρ= 1

}
,

where a vector ρP ∈ P≥ characterizes the probability measure P such that for all ξT ∈ ΞT , ρP
ξT

is

the probability of realization ξT with respect to P. Define ρP|ξt :=
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T

as the sum of the

probabilities of all realizations sharing the same history ξt up to stage t and let ρP
ξ′T |ξt be the condi-

tional probability of realization ξ′T ∈ΞT given history ξt. More precisely, given ξt, for ξ′T ∈ΞT with

ξ′t = ξt we have that ρP
ξ′T |ξt =

ρP
ξ′T

ρP
|ξt

if ρP|ξt > 0 and that ρP
ξ′T |ξt = 0 otherwise. Then, the expectation

term in the objective function (21a) can be written as:

∑
t∈[T ]

∑
ξT∈ΞT

ρPξT

Å(
Ψt(ξ

T )−
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T |ξtΨt(ξ

′T )
)
αt

ã>
yt(ξ

T ).

Let Ψtk(ξ
T ) be the kth column of the matrix Ψt(ξ

T ). Then Q(P, α) can be expressed as:

min z+
∑
t∈[T ]

∑
ξT∈ΞT

ρPξT

Å ∑
k∈[Kt]

(
Ψtk(ξ

T )−
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T |ξtΨtk(ξ

′T )
)
αtk

ã>
yt(ξ

T )

s.t.
(
z, y1(ξT ), . . . , yT (ξT )

)
∈ Y (ξT ) ξT ∈ΞT .

Let γtkξT := ρP
ξT
αtk and define βtξT :=

∑
k∈[Kt]

(
γtkξTΨtk(ξ

T )−
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T |ξtγtkξTΨtk(ξ

′T )
)

as the coef-

ficient vector of variables yt(ξ
T ). Then with a change of variables in the DO problem (20) we have:

ν̄NA-DO
R = max

ρ,α,γ,β
Q(β) (24a)

s.t.
∑
ξT∈ΞT

ρξT = 1 (24b)

γtkξT = ρξTαtk t∈ [T ], k ∈ [Kt], ξ
T ∈ΞT (24c)∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T
βtξT −

∑
k∈[Kt]

( ∑
ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T
γtkξTΨtk(ξ

T )−
∑

ξ′T∈ΞT :

ξ′t=ξt

ρξT γtkξTΨtk(ξ
′T )
)

= 0

t∈ [T ], ξT ∈ΞT (24d)

−MρξT ≤ βtξT ≤MρξT t∈ [T ], ξT ∈ΞT (24e)
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ρ∈R|Ξ
T |

+ (24f)

αt ∈RKt , γt ∈RKt×|Ξ
T |, βt ∈R|Ξ

T |×nt t∈ [T ] (24g)

where

Q(β) = min
{
z+

∑
t∈[T ]

∑
ξT∈ΞT

β>tξT yt(ξ
T )
∣∣∣ (z, y1(ξT ), . . . , yT (ξT )

)
∈ Y (ξT ), ξT ∈ΞT

}
, (25)

and M ≥ 0 is a vector of sufficiently large numbers.

In model (24), constraints (24b) along with the nonnegativity restrictions imposed on variables ρ

induce a probability distribution over the realizations ΞT with some realizations potentially assigned

zero probability. For given ξT , if its associated probability ρξT is zero, then constraints (24c) and

(24e) imply, respectively, that all variables γ and β indexed by ξT are zero, as such constraints

(24d) trivially hold. Otherwise, since probability ρξT > 0, we have that
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T

> 0, as such

constraints (24d) correctly impose the definition of β by dividing all terms by
∑

ξ′T∈ΞT :

ξ′t=ξt

ρP
ξ′T

and

plugging in the definition of γ from constraints (24c). Then given coefficients β, (25) evaluates the

expected value of the optimal decisions y(·).

Remark 5. The choice of values for the vector M impacts the quality of the bound obtained

from model (24). In particular, in the limit case where M = 0, one obtains the perfect information

bound, that is, all nonanticipativity constraints are relaxed from the NA reformulation of the

MSARO problem. Otherwise, for larger values of M , the optimal value of (24) is lower bounded

by the perfect information bound since choosing β = 0 is always feasible. One can therefore expect

to obtain a better bound from (24).

Model (24) can be solved via a cutting-plane method in which Q(β) is approximated by a set of

linear inequalities. At each iteration, we solve the following bilinear program as the master problem:

max
ρ,α,γ,β

{
η
∣∣∣ (24b)− (24g), (η,β)∈H

}
, (26)

where η is an auxiliary variable representing Q(β), and H is a set described by optimality cuts

approximating Q(β). Note that, as β only parameterizes the objective function of Q(β), i.e., it

does not impact the feasibility space, there is no need for feasibility cuts. With (η̂, β̂) returned

from solving the master problem (26), we solve the subproblem (25) to compute Q(β̂), resulting in

ŷt(ξ
T ) as the optimal solution. If η̂≤Q(β̂), we have found the optimal solution of the DO problem.

Otherwise we add the following optimality cut to the master problem:

η≤Q(β̂) +
∑
t∈[T ]

∑
ξT∈ΞT

(
βtξT − β̂tξT

)>
ŷt(ξ

T ). (27)
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This procedure continues until no more optimality cuts are found. The objective function of the

subproblem, Q(β), is a concave function in β (pointwise minimum of linear functions with respect

to β). Each cut (27) is a hyperplane approximating the subproblem from above. The cutting-plane

method iteratively finds improving approximations of Q(β). We note that it is not necessary to

execute the cutting-plane procedure until convergence in order to obtain a valid dual bound. Indeed

at each iteration of the algorithm the value Q(β̂) provides a valid dual bound for ν?.

Remark 6. In our implementation for the numerical results presented in Section 5, rather than

creating the copies of first-stage variables y1(·) and relaxing their nonanticipativity constraints, we

keep them as static variables in (25), same as variable z.

4.3.3. MSARO with continuous recourse As a special case, we study MSARO with con-

tinuous recourse. Our goal here is to use this particular structure and derive a monolithic formu-

lation as an alternative to the cutting-plane algorithm, to leverage off-the-shelf solvers. Denote by

uξT , vtξT and wtξT , the dual variables associated with the set of constraints described by Y (ξT )

for given ξT ∈ΞT (corresponding to (12b), (12c) and (12d), respectively). The linear programming

dual of the inner minimization problem (25), i.e., the subproblem of the cutting-plane algorithm,

is:

QD(β) = max
∑
t∈[T ]

∑
ξT∈ΞT

bt(ξ
T )>vtξT +

∑
t∈[T ]

∑
ξT∈ΞT

dt(ξ
t)>wtξT (28a)

s.t.
∑
ξT∈ΞT

uξT = 1 (28b)

− cT (ξT )uξT +AT (ξT )>vTξT +D>TξTwTξT −βTξT = 0 ξT ∈ΞT (28c)

− ct(ξt)uξT +At(ξ
t)>vtξT +Dt(ξ

t)>wtξT+

Bt+1(ξt+1)>vt+1,ξT −βtξT = 0 t∈ [T − 1], ξT ∈ΞT (28d)

uξT ≥ 0 ξT ∈ΞT (28e)

vtξT ,wtξT ≤ 0 t∈ [T ], ξT ∈ΞT . (28f)

Merging the two maximization problems in (24), we get the monolithic bilinear program:

ν̄NA-DO
R = max

∑
t∈[T ]

bt(ξ
T )>vtξT +

∑
t∈[T ]

∑
ξT∈ΞT

dt(ξ
t)>wtξT (29a)

s.t. (24b)− (24g) (29b)

(28b)− (28f). (29c)

There is a large body of research on solution methods for bilinear problems that can be used

in solving model (29). Furthermore, many optimization solvers, such as MOSEK (ApS 2022) and
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Gurobi (Gurobi Optimization, LLC 2022), offer off-the-shelf alternatives to solve problems of type

(29). Further, (29) can be solved heuristically to obtain a valid dual bound. For instance, one could

alternate between optimizing over variables ρ and (α,β, γ) (given that all bilinear terms involve

variables ρ) to converge towards a local optimal solution.

4.4. Restricted Decomposable NA Dual

In solving problem (24) using the cutting-plane method, we frequently optimize (25) to compute

Q(β). This can become computationally demanding when there is a large number of realizations.

Further, we cannot decompose Q(β) by realizations, as they are linked through the z variables. In

this section, we present an alternative NA reformulation of the MSARO problem that can yield,

through its associated DO problem, a potentially weaker bound than the one provided by (24).

However, this alternative reformulation offers a computational advantage since in the framework

of the cutting-plane method it leads to decomposable subproblems when calculating Q(β). To

this end, in addition to the decision variable copies yt(ξ
T ), we introduce copy variables z(ξT ) and

explicitly enforce them to be equal via nonanticipativity constraints. For an assigned probability

measure P∈P>, the alternative NA reformulation of the MSARO problem (2) is:

min EξT∼P
[
z(ξT )

]
(30a)

s.t.
∑
t∈[T ]

ct(ξ
t)>yt(ξ

T )≤ z(ξT ) ξT ∈ΞT (30b)

z(ξT ) =Eξ′T∼P
î
z(ξ′

T
)
ó

ξT ∈ΞT (30c)

(12c), (12d), (12f), (13). (30d)

Together, (30b) and (30c) capture the semantics of the worst-case outcome, which is minimized

in the objective function (30a). We remark that constraints (30c) are obtained from individual

nonanticipativity constraints similarly to the derivation of constraints (13) provided in Lemma 1.

Relaxation of the nonanticipativity constraints (13) and (30c) with the Lagrangian multipliers

λyt (·) and λz(·) such that EξT∼P[λyt (ξ
T )]<+∞ and EξT∼P[λzt (ξ

T )]<+∞, leads to the decomposable

NA Lagrangian dual problem LDNA(P) = max
λy(·),λz(·)

LDNA
LR (P, λy1(·), . . . , λyT (·), λz(·)), where

LDNA
LR (P, λy1(·), . . . , λyT (·), λz(·)) = min EξT∼P

[(
1 +λz(ξT )−Eξ′T∼P

î
λz(ξ′

T
)
ó)
z(ξT )

]
+∑

t∈[T ]

EξT∼P
[(
λyt (ξ

T )−Eξ′T∼P
î
λyt (ξ

′T )
∣∣ξ′t = ξt

ó)>
yt(ξ

T )
]

s.t.
(
z(ξT ), y1(ξT ), . . . , yT (ξT )

)
∈ Y (ξT ) ξT ∈ΞT ,

with Y (ξT ) the scenario feasibility space described by constraints (30b), (12c), (12d), and (12f).

We note that, in the first expectation term in the objective function the inner expectation is not
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conditional, since constraints (30c) (and accordingly their associated dual functions) are not defined

at every stage t ∈ [T ] as decision variable z(ξT ) ∈ R captures the cost of an entire realization ξT .

Since in LDNA
LR (·), the objective function, constraints and variables are decomposable in ξT they can

be optimized individually.

In deriving the decomposable NA Lagrangian relaxation problem LDNA
LR (·) we apply Lemma 1 of

(Daryalal et al. 2024) to obtain both expectation terms. We remark that the lemma requires the

condition EξT∼P[diam(projz(·)Y (ξT ))]<+∞ which is not naturally satisfied. However, as a result of

Assumptions 1-3 and the compactness of the uncertainty set ΞT the optimal value of the MSARO

problem is bounded. As such the functionals z(·) can be artificially bounded without changing the

optimal value of LDNA
LR (·).

After substituting the decision rules λyt (ξ
T ) = Ψt(ξ

T )αyt , t ∈ [T ] and λz(ξT ) = ΨT (ξT )αz in

LDNA(P), where αz ∈ RKT , and merging with the optimization over the probability distributions

P∈P≥ the decomposable DO problem is:

ν̄DNA-DO
R := max

P∈P≥,αy1 ,...,α
y
T
,αz
LDNA

LR (P,Ψ1(ξT )αy1, . . . ,ΨT (ξT )αyT ,ΨT (ξT )αz).

This DO problem can be solved using the same methods developed in the previous sections for

the non-decomposable DO problem. Due to the relaxation of the nonanticipativity constraints

on z(·) variables, for given P and λy(·), subproblem LDNA
LR (·) is a relaxation of LNA

LR (·). Therefore

ν̄DNA-DO
R ≤ ν̄NA-DO

R , i.e., ν̄NA-DO
R is a potentially stronger bound. However, the fact that LDNA

LR (·)

is decomposable is highly desirable. Particularly for continuous or large discrete uncertainty sets

where we rely on sampling, and the quality of the bound varies based on the selected sample. Since

the decomposable model can afford samples of larger sizes it can potentially yield better bounds

compared to the bound obtained from non-decomposable model over a smaller sample. We explore

this trade-off in our numerical section.

5. Numerical Experiments

We evaluate the performance of the proposed bounding framework over multistage versions of

three classical decision-making problems under uncertainty: (i) the newsvendor problem, (ii) the

location-transportation problem, and (iii) the capital budgeting problem. Depending on their struc-

ture, each problem is solved by using the appropriate models and methods described in Sections 3

and 4, illustrating the applicability of the developed concepts to a large array of problem classes.

5.1. Benchmarks and Implementation Details

To assess the quality of the primal and dual bounds, we measure the relative distance of the bounds

from the true optimal value when an exact solution of MSARO is available (in small-size instances).
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Otherwise, we report the optimality gap between the bounds obtained from the proposed meth-

ods, and compare it against a gap from traditional bounding methods if one exists. In problems

with continuous recourse, we consider LDRs (i.e., their application to all decision variables) as the

benchmark for the primal decision rules. On the dual side, we use the perfect information (PI)

bound (denoted by νPI) for comparison, which often can be conveniently evaluated for a general

MSARO problem, as well as the bound obtained by solving model (2) using only the binding real-

izations identified from the primal decision rule solution. The PI bound corresponds to the optimal

objective value of the MSARO problem reformulated as in (12) without the nonanticipativity con-

straints (12e), i.e., it finds the cost of every realization in the uncertainty set individually, and then

selects the one with the worst-case cost.

The algorithms are implemented in Python and use the Gurobi Optimizer 9.5.1 (Gurobi Opti-

mization, LLC 2022) as the mixed-integer/bilinear programming solver. The computational exper-

iments are carried out on the Niagara supercomputer servers (Loken et al. 2010, Ponce et al. 2019).

For instances with discrete uncertainty sets, the programs have a time limit of 1 hour. We report

the valid lower/upper bound at the point of termination. For instances with continuous uncertainty

sets, this time limit is extended to 10 hours. As a common design choice for the basis functions

of the LDRs, we use the uncertain parameters themselves, i.e., the standard basis functions. Any

implementation nuances and enhancements used for improving the performance of the algorithms

are discussed for each problem class in a dedicated section, along with the characteristics of the

studied instances.

5.2. Robust Newsvendor Problem

In this section, we extend the two-stage newsvendor problem studied in (Xu and Hanasusanto

2021) to the multistage setting. In this problem, a decision-maker (the newsvendor) needs to order

from a set of items to be sold (only) at the next decision stage, with the objective of maximizing

the worst-case profit over the planning horizon. Let dit(ξ
t) be the uncertain demand of item i∈ [I]

at stage t ∈ [2, T ], ci and si the purchase and shortage costs of item i, respectively, and ri its sale

price. To meet the customers’ demands of stage t, at stage t− 1 the decision-maker decides on the

amounts to be ordered from each item, such that the total spending over the T stages does not

exceed a predetermined budget of B. Denote by xit(ξ
t) the decision variable for the amount of item

i ordered at stage t∈ [T − 1]. The multistage multi-item budgeted newsvendor problem is:

max z (32a)

s.t. z ≤
∑
i∈[I]

∑
t∈[2,T ]

yit(ξ
t) ξT ∈ΞT (32b)
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yit(ξ
t)≤

(
ri− ci

)
xi,t−1(ξt−1)− ri

(
xi,t−1(ξt−1)− di(ξt)

)
i∈ [I], t∈ [2, T ], ξt ∈Ξt (32c)

yit(ξ
t)≤

(
ri− ci

)
xi,t−1(ξt−1)− si

(
di(ξ

t)−xi,t−1(ξt−1)
)

i∈ [I], t∈ [2, T ], ξt ∈Ξt (32d)∑
i∈[I]

∑
t∈[T−1]

xit(ξ
t)≤B ξT−1 ∈ΞT−1 (32e)

xt(ξ
t)∈RI+ t∈ [T − 1], ξt ∈Ξt. (32f)

where auxiliary variable yit(ξ
t) captures the profit from item i at stage t, by means of (32c)- (32d).

Constraints (32e) impose a budget of B over the order amounts throughout the planning horizon.

The objective function is the worst-case profit of the newsvendor, modeled via (32a) and (32b).

5.2.1. Problem Instances Our instance generation loosely follows the procedure described

in (Ardestani-Jaafari and Delage 2021) for the two-stage robust newsvendor problem. Parameters

ri, si and ci are drawn uniformly from the intervals [140,160], [80,90] and [50,70], respectively. We

consider a discrete uncertainty set modeled as a stagewise-dependent scenario tree with branching

factor br (i.e., every node of the tree prior to the leaves has br many child nodes). Demand

realizations dit(ξ
t), i ∈ [I], t ∈ [2, T ] at a child node are drawn uniformly from [µit − σit, µit + σit],

where µit and σit are uniformly drawn from the intervals [20,40] and [10,20]. We have generated 26

small-size instances with T ∈ [3,5], I ∈ [2,5], B ∈ {100,150,200,250,300}, and br ∈ {2,3,4,5,10},

such that the number of realizations |ΞT |= brT−1 is less than 150. Additionally, we have generated

18 large-size instances with T ∈ [4,8]. For T = 4, the number of items I lies in the set [3,5], with

a budget B ∈ {200,300} and br ∈ {10,15,20}. For T ∈ [5,8], our instances have I ∈ {3,4} items,

budget of B ∈ {300,400,500,600}, and br∈ [3,6], restricted to the cases with |ΞT | ≤ 3000.

5.2.2. Quality of the Bounds The small-size instances are easily optimized by solving model

(12) over all realizations in the uncertainty set. In our case, this computation takes less than

3 seconds. Using these optimal values, we can examine the quality of a primal/dual bound by

measuring its relative distance to the optimal objective value ν?. For this problem, all primal

and dual problems are solved by the extensive form (i.e., monolithic) of their respective models.

Figures 5 and 6 present the gap between the bound and the optimal value of the exact solution,

defined as 100
(
ν?−ν(·)

ν?

)
and 100

(
ν(·)−ν?
ν?

)
for primal and dual bounds, respectively, and presented

as a percentage (detailed results along with solution times are given in Appendix D.1). In each

figure, the solid bars depict the performance of the newly proposed bounds, while the hatched bars

represent the benchmarks. The results show that ν2S-LDR and ν̄NA-DO
R outperform the benchmark

bounds by orders of magnitude. More precisely, ν2S-LDR on average achieves 84% improvement

over νLDR, with reductions in relative distance ranging from 64% to 98%. Interestingly, the quality

of the bound ν2S-LDR remains rather stable with changes in the number of items I and budget B,

compared to the drastic changes of νLDR with variations in the inputs. The notable performance of
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Figure 5 Quality of the primal bounds from LDRs and two-stage LDRs for small-size newsvendor instances

the two-stage LDRs for the newsvendor problem contrasted with the LDRs can be explained by the

nature of the recourse variables. In model (32), yit(ξ
t) determines the profit of a given realization

at stage t for item i, which for the newsvendor problem is by definition nonlinear. In fact, yit(ξ
t)

is an auxiliary variable, defined to linearize the following net profit at stage t from item i:

rimin
{
xi,t−1(ξt−1), dit(ξ

t)
}
− cixi,t−1(ξt−1)− simax

{
dit(ξ

t)−xi,t−1(ξt−1),0
}
.

Therefore, for the newsvendor problem LDRs always return suboptimal decisions as they restrict

the form of the nonlinear profit function to be affine, while two-stage LDRs allow them to take any

form, giving them an immediate advantage over LDRs.

From the dual perspective, ν̄NA-DO
R achieves an average improvement of 55% compared to νPI,

and in 9 instances fully closes the gap. From the results of Figure 6, a common observation is

that LDDRs return a bound of higher quality for smaller values of the ratio B
(T−1)×I , which is an
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Figure 6 Quality of the dual bounds from the PI and LDDRs for small-size newsvendor instances



31

estimate of the average budget available per product at every stage. This trend suggests that the

restricted NA dual bound performs better with tighter budget, when there is a higher dependency

between stages, in which case the importance of intermediate decisions becomes more pronounced.

5.2.3. Optimality Gap For instances with larger number of realizations, we compare the

optimality gap from the benchmark methods (optT) with the gap obtained by applying the newly

proposed methods, namely two-stage LDRs and LDDRs (optN):

optT = 100
(νPI− νLDR

νLDR

)
, optN = 100

( ν̄NA-DO
R − ν2S-LDR

ν2S-LDR

)
.

Table 1 presents the optimality gaps from the benchmark and proposed models (whose running

times are provided in Appendix D.1). Achieving an average gap reduction of 81.6%, there is a

Table 1 Optimality gaps for larger instances of the newsvendor problem

Instance T br |ΞT | I B
Primal Bounds Dual Bounds Optimality Gap

Gap reduction
νLDR ν2S-LDR ν̄NA-DO

R νPI optN optT

1

4 10 1000

3 200 5648.8 8142.9 9002.8 9353.0 10.6% 65.6% 83.9%
2 3 300 9143.5 13687.6 17853.0 17853.0 30.4% 95.3% 68.1%
3 4 200 -104.4 440.0 642.4 919.0 46.0% 980.4% 95.3%
4 4 300 11029.5 15854.7 18432.0 18432.0 16.3% 67.1% 75.8%
5 5 300 724.9 6125.5 6614.0 7368.0 8.0% 916.5% 99.1%

6 4 15 3375 3 200 5111.3 7072.0 8222.0 8222.0 16.3% 60.9% 73.3%

7 4 20 8000 3 300 9030.9 13040.7 17615.0 17615.0 35.1% 95.1% 63.1%

8
5 5 625

3 300 11134.5 15053.4 16216.4 16680.0 7.7% 49.8% 84.5%
9 4 300 3651.5 9494.8 10403.1 10628.0 9.6% 191.1% 95.0%

10 5 6 1296 3 400 15013.4 20271.7 25157.0 25157.0 24.1% 67.6% 64.3%

11
6 4 1024

3 400 15492.3 21457.9 28163.0 28163.0 31.2% 81.8% 61.8%
12 4 400 7124.3 14805.2 15473.0 15473.0 4.5% 117.2% 96.2%
13 4 500 14445.4 24887.7 32973.0 32973.0 32.5% 128.3% 74.7%

14
7 3 729

3 300 24.3 1495.9 2150.0 2383.0 43.7% 9692.2% 99.5%
15 3 400 12994.7 17774.1 19554.5 19983.0 10.0% 53.8% 81.4%
16 4 400 3267.5 4303.1 5118.1 5427.0 18.9% 66.1% 71.3%

17
8 3 2187

3 500 16149.1 25321.4 30259.0 30259.0 19.5% 87.4% 77.7%
18 4 600 16892.3 27608.1 28747.0 28747.0 4.1% 70.2% 94.1%

considerable value in using the two-stage LDRs and LDDRs in devising policies for the multistage

newsvendor problem. The optimality gaps optN range from 4% to 46%. There are some interesting

cases such as instance 3 where LDR policies can even lead to a profit loss in the worst case. In

the majority of the instances, both two-stage LDRs and LDDRs contribute to the improvement of

the gap, although the primal side clearly has the larger impact. For instance, in five instances, the

dual bound ν̄NA-DO
R and the benchmark νPI are the same. In some instances, such as instances 8,

12 and 18, the PI bound might already be strong enough so that using LDDRs does not make a

tangible difference in strengthening it.
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Lastly, for the primal bounds, we observe that the solution times for obtaining the traditional

and two-stage LDR bounds are comparable. For the dual bounds, the times for obtaining the PI

bound are quite small whereas for our dual problem the solution time significantly increases with

problem size with several instances not being solved to optimality within the 1-hour time limit.

5.3. Robust Location-Transportation Problem

The two-stage robust location-transportation problem studied by Zeng and Zhao (2013) is as

follows. Given a set of I potential facilities with building cost fi and unit capacity cost ai, i ∈ [I],

we have to meet the uncertain demand of a set of customers J with unit transportation cost

cij, i ∈ [I], j ∈ [J ] . The goal is to decide which facilities to open and their initial capacities, such

that the worst-case total cost of facility deployment and future transportation is minimized. Letting

djt(ξ
t) be the demand of customer j at stage t, we define the MSARO extension of the problem:

min z (33a)

s.t. z ≥
∑
i∈[I]

(fiyi + aisi1)+
∑
t∈[2,T ]

∑
i∈[I]

(
aisit(ξ

t) +
∑
j∈[J]

cijxijt(ξ
t)
)

ξT ∈ΞT (33b)

si1 ≤Kiyi i∈ [I] (33c)

sit(ξ
t) = si1−

∑
j∈[J]

xijt(ξ
t) i∈ [I], t= 2, ξt ∈Ξt (33d)

sit(ξ
t) = si,t−1(ξt−1)−

∑
j∈[J]

xijt(ξ
t) i∈ [I], t∈ [3, T ], ξt ∈Ξt (33e)∑

i∈[I]

xijt(ξ
t)≥ djt(ξt) j ∈ [J ], t∈ [2, T ], ξt ∈Ξt (33f)

y ∈ {0,1}I , s1 ∈RI+ (33g)

st(ξ
t)∈RI+, xt(ξt)∈RI×J+ t∈ [2, T ], ξt ∈Ξt, (33h)

where yi is a binary variable equal to 1 if facility i is built, si1 determines the initial capacity of

facility i, sit(ξ
t) is the state variable calculating the remaining capacity of facility i at stage t,

and xijt(ξ
t) is the amount of goods transported from facility i to customer j at stage t. Objective

function (33a) together with constraint (33b) measures the worst-case cost. Constraints (33c)

bound the initial capacity of the facilities, whereas constraints (33d)-(33e) are the state equations

calculating the remaining capacities. Constraints (33f) ensure that the customer demands are met.

5.3.1. Problem Instances Our instances are generated using the instance parame-

ters described in (Zeng and Zhao 2013) for the two-stage problem. For number of stages

T ∈ [3,5], we have five combinations for the number of facilities and customers, (I, J) ∈

{(5,5), (5,7), (5,10), (10,10), (20,20)}. Fixed installation, unit capacity, and unit transportation
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costs are drawn from fi ∈ [100,1000], ai ∈ [10,100], cij ∈ [1,1000], respectively. Maximal capacity

is set to Ki = 2× 104 based on preliminary experiments to make sure the instances are feasible.

Customer demands are random parameters with support
[
µjt, (1 + αd)µjt

]
, where µjt ∈ [10,500]

and αd ∈ {0.1,0.3,0.5} are given, with αd a parameter controlling the variation among demand

realizations of customer j. For this problem, we have generated 32 instances with αd = 0.5 over

small scenario trees to compare the bounds with the optimal objective value. In addition, we have

generated 83 instances with demands djt = µjt + ξjtσjt, j ∈ [J ], t ∈ [2, T ], where ξ belongs to the

following budgeted uncertainty set:

ΞT =

ß
ξ ∈RJ×T−1

+

∣∣∣ ξjt ∈ [0,1], j ∈ [J ], t∈ [2, T ],
∑
t∈[2,T ]

∑
j∈[J]

ξjt ≤ Γ

™
.

Parameter Γ correlates the demands of all customers and stages together, which results in stagewise

(temporal) dependence between the decision stages. We use Γ = αuI, with αu ∈ {0.1,0.4,0.7,1}.

5.3.2. Scenario-Tree Instances In solving the primal (2S-LDR) and exact models of the

scenario-tree instances, we have used their respective extensive forms, while for computing our dual

bound we implemented the cutting-plane method described in Section 4.3.

Table 2 presents the gap between the bound and the optimal value of the exact solution,

100
(
ν(·)−ν?
ν?

)
and 100

(
ν?−ν(·)

ν?

)
for the primal and dual problems, respectively. Results show that,

among the group of instances with similar characteristics, as the branching factor or the number of

stages increases, the νLDR bound gets noticeably worse. In contrast, ν2S-LDR stays very close to the

Table 2 Quality of the bounds for the scenario-tree instances of the location-transportation problem

T I J br |ΞT | νLDR ν2S-LDR ν̄NA-DO
R νPI

3 5 10

3 9 2.9% 0.0% 1.4% 4.7%
4 16 0.8% 0.0% 3.3% 3.4%
5 25 4.6% 0.0% 2.5% 13.2%
6 36 5.6% 0.0% 17.1% 27.5%
7 49 8.2% 0.0% 9.4% 9.4%
8 64 8.8% 0.0% 4.8% 14.6%
9 81 6.5% 0.0% 6.1% 6.1%

10 100 6.6% 0.0% 8.0% 10.2%

3 10 10

3 9 2.3% 0.0% 2.5% 13.2%
4 16 2.7% 0.1% 1.2% 8.4%
5 25 6.1% 0.0% 12.0% 19.3%
6 36 9.8% 0.0% 10.4% 22.6%
7 49 13.7% 0.1% 6.7% 14.1%
8 64 13.9% 0.3% 5.5% 5.5%
9 81 12.2% 0.2% 15.5% 15.5%

10 100 12.3% 0.2% 10.4% 19.0%

3 20 20

3 9 2.5% 0.7% 9.5% 11.3%
4 16 3.9% 0.5% 7.0% 7.0%
5 25 5.8% 0.5% 28.4% 28.4%
6 36 6.6% 0.5% 13.0% 19.2%
7 49 9.1% 0.5% 13.3% 31.3%

T I J br |ΞT | νLDR ν2S-LDR ν̄NA-DO
R νPI

4 5 10
3 27 8.0% 0.0% 2.6% 8.0%
4 64 6.8% 0.0% 2.0% 2.0%
5 125 13.5% 0.1% 5.0% 5.0%

4 10 10
3 27 11.9% 0.1% 17.3% 17.3%
4 64 13.3% 0.0% 10.2% 21.0%
5 125 13.1% 0.4% 10.0% 10.0%

4 20 20
3 27 9.0% 0.9% 11.7% 18.1%
4 64 11.9% 0.5% 9.8% 21.7%

5 5 10
3 81 14.7% 1.0% 4.4% 6.3%
4 256 13.9% 0.5% 11.7% 19.1%

5 10 10 3 81 16.8% 0.7% 8.2% 8.2%
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optimal value, with an average relative distance of 0.2% among all the instances (compared to 8.7%

for νLDR). We do not observe the same trend for the dual bounds, and their relative distance to the

optimal value fluctuates even between two instances that only differ in the number of realizations.

Nevertheless, ν̄NA-DO
R considerably outperforms PI, with an average improvement of 36.2%.

5.3.3. Budgeted-Uncertainty Instances For the instances with the budgeted uncertainty

set, we use, as benchmarks, νLDR as an upper bound and νΩ(LDR) as a lower bound, obtained by

solving problem (33) using only the binding realizations identified from the benchmark primal

solution. We calculate ν2S-LDR using the C&CG method described in Section 3.2 (detailed models

are given in Appendix C.3.1). Similar to the scenario-tree instances, we use the cutting-plane

method to obtain the dual bound ν̄NA-DO
R . To do so, we use a sample of size at least 50(T −2), which

includes both the binding realizations from the two-stage LDR solution and additional randomly

generated realizations from the uncertainty set. For both algorithms, we stop when the optimality

gap of the method falls below 5% or we reach the 10-hour time limit. Table 3 presents the optimality

gaps between the benchmark bounds and the proposed bounds, respectively, for the 83 instances

considered. Detailed results for each instance are provided in Appendix D.2. Our methods return

an average optimality gap of 17.3% across all instances, compared to an average gap of 27% from

the benchmarks. Given the strength of the two-stage LDR bound observed in the scenario-tree

instances, and its resilience to increases in the size of the tree, it is likely that the dual bounds are

further from the optimal value.

Figure 7 illustrates the improvement achieved from ν̄NA-DO
R over the benchmark dual bound,

νΩ(LDR). Each bar in the figure represents an individual instance. Instances are grouped into blocks

based on their shared parameters T , (I, J), and αd, and within each block, instances are arranged in

ascending order of their αu values. Across all instances, ν̄NA-DO
R demonstrates an average improve-

ment of 7%. This figure also highlights that improved identification of critical realizations, guided

by the two-stage LDR solution, and the subsequent solution of the discretized relaxation of the

problem using these realizations, independently contribute to an average 3.6% enhancement of the

dual bound. A key consideration here is that the value of ν̄NA-DO
R depends on the sample used for

its computation. An insufficiently large sample can lead to a poor bound. However, because of the

bilinear form of the cutting-plane master problem, we were not able to solve the model with large

samples using off-the-shelf commercial solvers. By employing specialized algorithms developed for

bilinear problems, it could be possible to increase the size of the sample and improve the ν̄NA-DO
R

bound, which we leave for future research.

Analyzing the performance of the C&CG and cutting-plane algorithms in solving our instances

provides further insight into the quality of the bounds. Solution times, number of iterations, and



35

Table 3 Optimality gaps for the budgeted-uncertainty instances, calculated using both benchmark and proposed

bounding methods. For this sampling instance, optT is defined as the gap between νLDR and νΩ(LDR). As before,

optN represents the gap between ν2S-LDR and ν̄NA-DO
R .

(T, I, J) αd αu optT optN (T, I, J) αd αu optT optN

(3,10,10)

0.1

0.1 9.0% 7.4%

(4,5,10)

0.1

0.1 22.4% 16.8%
0.4 20.8% 12.4% 0.4 32.1% 28.1%
0.7 32.0% 22.5% 0.7 15.2% 10.2%
1 30.6% 22.2% 1 31.2% 19.0%

0.3

0.1 15.3% 12.0%

0.3

0.1 28.5% 20.8%
0.4 27.0% 16.7% 0.4 37.7% 30.6%
0.7 30.3% 21.5% 0.7 42.9% 27.6%
1 29.1% 21.3% 1 24.3% 14.2%

0.5

0.1 17.8% 12.9%

0.5

0.1 33.0% 27.7%
0.4 28.3% 15.1% 0.4 22.2% 11.4%
0.7 32.7% 28.4% 0.7 27.7% 17.9%
1 26.8% 7.4% 1 33.1% 23.5%

(3,10,15)

0.1

0.1 32.8% 24.4%

(4,10,10)

0.1

0.1 19.4% 17.5%
0.4 31.5% 27.1% 0.4 32.1% 26.6%
0.7 12.1% 7.2% 0.7 38.7% 32.7%
1 31.5% 17.3% 1 21.7% 10.8%

0.3

0.1 12.8% 8.3%

0.3

0.1 11.1% 6.6%
0.4 35.3% 25.6% 0.4 19.8% 16.5%
0.7 17.2% 5.7% 0.7 22.6% 17.4%
1 26.2% 13.6% 1 38.1% 28.0%

0.5

0.1 32.4% 28.2%

0.5

0.1 24.9% 12.4%
0.4 25.8% 15.3% 0.4 23.3% 11.0%
0.7 29.4% 18.2% 0.7 31.4% 18.2%
1 29.7% 20.7% 1 31.2% 25.7%

(4,5,5)

0.1

0.1 14.3% 6.0%

(5,5,10)

0.1

0.1 17.2% 13.7%
0.4 33.2% 25.7% 0.4 24.5% 20.6%
0.7 27.7% 10.8% 0.7 34.2% 21.8%
1 12.7% 5.6% 1 20.3% 8.6%

0.3

0.1 13.5% 7.8%

0.3

0.1 28.9% 25.6%
0.4 25.3% 18.1% 0.4 32.5% 19.3%
0.7 23.6% 13.8% 0.7 39.1% 31.9%
1 26.2% 9.6% 1 37.5% 29.4%

0.5

0.1 31.8% 27.1%

0.5

0.1 36.6% 31.8%
0.4 22.6% 14.1% 0.4 39.8% 26.6%
0.7 29.8% 19.6% 0.7 39.2% 17.6%
1 29.8% 5.4% 1 41.6% 27.1%

(4,5,7)

0.1

0.1 15.7% 13.6%
0.4 24.0% 19.4%
1 38.3% 24.5%

0.3

0.1 23.2% 19.3%
0.4 30.8% 21.6%
0.7 10.2% 6.4%
1 30.7% 18.7%

0.5

0.1 24.2% 21.5%
0.4 39.5% 27.1%
0.7 32.7% 17.9%
1 41.0% 23.3%
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Figure 7 Improvement over the benchmark bound νΩ(LDR) in the the budgeted-uncertainty instances. Here,

νΩ(LDR) and νΩ(2S-LDR) are defined as the bounds obtained by solving problem (33) using only the

binding realizations of νLDR and ν2S-LDR, respectively.

final optimality gaps at the time limit (namely the termination gap) are provided in Appendix

D.2. Our findings show that while our methods do require extra computational effort, they yield

stronger bounds as a result. Another key aspect is that a large termination gap can negatively

impact the quality of the bounds. Our results show that in all instances, the C&CG stops at a

solution of the 2ARO model with less than 5% termination gap. In fact, the method proves to

be quite powerful in detecting the significant realizations for the 2ARO approximation, such that

in 69 out of 83 instances it achieves this gap after only two iterations. On the other hand, in 39

instances the cutting-plane method is not able to reach the optimality gap of 5% within the time

limit of 10 hours albeit having less than 10% optimality gap in all instances with one exception of

13.4%. Consequently, for calculating optN, we use the best lower bound on ν̄NA-DO
R obtained at the

end of 10 hours. This can further contribute to an increased optimality gap. This suggests that, in

addition to having a difficult nonlinear master problem, the cutting-plane method itself requires

algorithmic enhancements, such as the design of stronger cuts.

5.4. Robust Capital Budgeting Problem

In the capital budgeting problem, a company wants to invest in a subset of I projects with uncertain

cost and profit, subject to an initial budget of B that can be increased by getting a loan. A variant

of the two-stage problem is studied by Subramanyam et al. (2020). In the following, we formulate

the multistage capital budgeting problem as an MSARO. Over a planning horizon of T stages, let

xit(ξ
t) be a binary decision variable taking the value of 1 if the company decides to invest in the



37

project i ∈ [I] at stage t ∈ [T ], with a cost of cit(ξ
t) and profit of rit(ξ

t). Further, let Lt(ξ
t) be a

continuous decision variable determining the amount of loan the company decides to get at stage

t∈ [T ] with a unit cost of cLµ
t−1, µ > 1. The MSARO model is as follows:

max z (34a)

s.t. z ≤
∑
t∈[T ]

∑
i∈[I]

rit(ξ
t)xit(ξ

t)−
∑
t∈[T ]

clµ
t−1Lt(ξ

t) ξT ∈ΞT (34b)

Bt(ξ
t)−Bt−1(ξt−1) +Ct−1(ξt−1)−Lt(ξt) = 0 t∈ [T ], ξt ∈Ξt (34c)∑

i∈[I]

cit(ξ
t)xit(ξ

t) =Ct(ξ
t) t∈ [T ], ξt ∈Ξt (34d)

Bt(ξ
t)−Ct(ξt)≥ 0 t∈ [T ], ξt ∈Ξt (34e)

xt(ξ
t)∈ {0,1}I ,Lt(ξt)∈R+ t∈ [T ], ξt ∈Ξt, (34f)

where Bt(ξ
t) is the amount of available funds at stage t∈ [T ], determined by constraints (34c), while

Ct(ξ
t) is the expenditure calculated through constraints (34d), with initial values of B0(ξ0) = B

and C0(ξ0) = 0. Constraints (34e) bound the expenditure amount by available funds. The objective

is to maximize the worst-case profit over the planning horizon, measured by constraints (34b).

5.4.1. Problem Instances Our instance generation follows the procedure of Subramanyam

et al. (2020) for the two-stage problem. To incorporate the dynamic nature of multistage capital

budgeting, project costs and profits are modeled as affine functions of evolving risk factors ξt, t ∈

[2, T ]:

cit (ξt) = c0
it

Ä
1 + Φ>itξt/2

ä
, rit (ξt) = r0

it

Ä
1 + Ψ>itξt/2

ä
,

where c0
it and r0

it represent the baseline cost and profit, respectively, assuming all risk factors are

held at their neutral value of zero; Φit and Ψit are factor loading vectors governing the sensitivity

of cost and profit to deviations from the neutral state; and ci1 and ri1 are set to the nominal values.

We consider four risk factors at each stage t ∈ [2, T ] such that ξt ∈ [−1,1]4. Thus, Φit ∈ R4 and

Ψit ∈R4, quantify the influence of each of the four risk factors on the project’s financial outcome.

When sampling from R4, we ensure that Φ>ite = Ψ>ite = 1 for all i ∈ I and t ∈ [2, T ], where e is a

vector of ones.

For T ∈ {3,4,5} and I ∈ {5,8,10}, the nominal cost vector c0
it, t∈ [2, T ], i∈ [I] is drawn uniformly

from [0,10]I , and nominal profits are set as r0
it =

c0it
5

. Loan purchase cost is cLµ
t−1 = 0.12(1.2)t−1

per unit of loan. For each combination of T and I we consider different levels of initial budget

which impacts the dependence between stages.
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5.4.2. Optimality Gap Due to presence of binary variables xt(ξ
t), with the existing methods

in the literature of 2ARO we cannot calculate ν2S-LDR exactly. Therefore, we solve an approximation

of it using the K-adaptability method of Subramanyam et al. (2020) with K = 2 and use the

obtained bound νK in measuring the optimality gap. On the dual side, we study three options:

(i) νΩ, the upper bound from solving the model (34) with a sample |Ω|= 250, (ii) the NA bound

ν̄NA-DO
R with the same sample Ω, (iii) the decomposable NA bound ν̄DNA-DO

R with a sample of size

500, which includes the sample Ω. For each option, when the model is not solved to optimality

within the time limit, the best valid bound is used in the calculations. Note that, if we can solve

both options (i) and (ii) to optimality, we should expect a better bound from option (i). Figure

8 presents the optimality gaps of the capital budgeting instances between the bound νK and the

three choices of upper bound (detailed results are given in Appendix D.3). Results show that, even

though the bound νΩ should theoretically be at least as good as the bound ν̄NA-DO
R , on average

the NA bound returns a better upper bound within the same time limit. This is a testament to

the difficulty of the multistage problem even when it is solved for a discrete set of realizations.

The decomposable NA bound ν̄DNA-DO
R further improves the results by using a larger sample which

is viable because of its superior computational performance. Note that, the best gaps in Figure

8, ranging between 7% to 33%, are obtained from approximations over approximations on both

primal and dual side. Accordingly, these rather large gaps can be attributed to both bounding

methods.

General Integer Recourse Variables. To assess our algorithms’ performance with general inte-

ger recourse, we conducted a set of experiments where loan amounts, Lt(ξ
t), were restricted to

integer values. Figure 9 in Appendix D.4 presents the same analysis as in Figure 8 for the capital

budgeting problem, but with the added constraint of Lt(ξ
t) ∈ Z+. Interestingly, requiring integer

loan amounts did not significantly alter the optimal investment decisions compared to the contin-

uous case. This explains the visual similarity between the two figures, with both exhibiting similar

patterns in optimal decisions. While there are slight differences in objective function values, the

overall investment strategies remain largely unaffected by the integrality constraints.

It is important to note that although the advantage of our dual methods appears to diminish with

an increasing number of stages, even the initial gap relies on the strength of our primal solution,

νK. Therefore, these figures demonstrate our ability to achieve further improvements beyond the

initial strong primal bound.

Appendix D.3 provides a detailed analysis of the computational requirements for bounding the

capital budgeting problem, considering both fractional and integral loans. For the primal side, we

present the solution times of our approach, as no alternative primal method is available for compar-

ison. On the dual side, we compare the solution times of the three previously discussed bounding
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Figure 8 Optimality gap improvements for capital budgeting problems when using LDDR-based methods. In the

legend, νΩ denotes the bound obtained by solving model (34) over a sample set.

approaches. The solution times demonstrate that the extra computational effort associated with

the decomposable NA model yields a demonstrably improved dual bound.

6. Conclusion

Robust optimization models are built on a different premise than stochastic programming in the

sense that they do not assume any knowledge about the probability distribution, focusing instead

on optimizing the worst-case outcomes. In this paper, we study general MSAROs for which we
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develop primal and dual bounding methods by adapting two decision rule approximations from the

stochastic programming literature (namely two-stage LDRs and LDDRs). These approximations

allow us to reduce MSARO to a 2ARO from the primal side and a two-stage stochastic program-

ming problem from the dual side. As such, the resulting approximations drastically reduce the

theoretical complexity of the studied problems. Since our dual bounds are dependent on the choice

of a probability distribution while deriving the dual model, we propose to solve a distribution

optimization problem to obtain a stronger bound. We develop various solution methods for our

proposed bounding problems where we also leverage existing methods from both the robust opti-

mization and the stochastic programming literature. Our extensive numerical study demonstrates

that our methods considerably improve both primal and dual bounds compared to the commonly

used approaches in the literature. Our work opens the door to the direct application of existing

two-stage robust optimization and stochastic programming algorithms and other future algorith-

mic developments in these areas to MSAROs. For instance, as the algorithms such as C&CG and

K-adaptability for 2ARO improve, our models can be solved more efficiently.

We believe that our work can initiate additional methodological and numerical developments.

Both from the primal and the dual side the question of solving the problems we pose in a more

numerically efficient manner definitely merits more attention. Further methodological work may

also explore the synergies between primal and dual decision rules. Finally, the following direc-

tions can be the subject of future research: exploiting problem structure in order to approximate

MSAROs with numerically more favorable, e.g, decomposable models, identifying special cases of

MSAROs in which the proposed approximations can be proven to be exact, and application of

similar approaches in related fields such as distributionally robust optimization.
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Appendices
A. Obtaining 2ARO Model via Two-stage Decision Rules

In this section, we detail the transition from the MSARO model (3) to the 2ARO model (4) as a

result of applying two-stage decision rules proposed in Section 3.1. Substituting the state variables

in the MSARO problem with the decision rules xst(ξ
t) = Θt(ξ

t, βt), t∈ [2, T ], we obtain the following

model:

min c>1 x1 + zrest (35a)

s.t. x1 ∈X1 (35b)

βt ∈RKt t∈ [2, T ] (35c)

zrest ≥
∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) +

∑
t∈[2,T ]

crt(ξ
t)
>
xrt(ξ

t) ξT ∈ΞT (35d)

Ar
t(ξ

t)xrt(ξ
t)≤ bt(ξt)−

(
As
t(ξ

t)Θt(ξ
t, βt) +Bs

t (ξ
t)xs1

)
t= 2, ξt ∈Ξt (35e)

Ar
t(ξ

t)xrt(ξ
t)≤ bt(ξt)−

(
As
t(ξ

t)Θt(ξ
t, βt) +Bs

t (ξ
t)Θt−1(ξt−1, βt−1)

)
t∈ [3, T ], ξt ∈Ξt (35f)

(Θt(ξ
t, βt), x

r
t(ξ

t))∈Xt(ξ
t) t∈ [2, T ], ξt ∈Ξt (35g)

Given the first-stage decisions x1 and β, observe that the feasible set of the recourse variables,

defined by (35e)-(35g) decomposes by stage t and history ξt (as both the decision variables, xrt(ξ
t),

and the constraints, (35e)-(35g), are separately defined for each stage and history, i.e., there is no

link between them). For convenience, let us represent this feasible space in a decomposed form via

xrt(ξ
t)∈X r

t (xs1, β, ξ
t), t∈ [2, T ], ξt ∈Ξt, and write (35) more compactly as follows:

min
x1∈X1,β

c>1 x1 + zrest (36a)

s.t. zrest ≥
∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) +

∑
t∈[2,T ]

crt(ξ
t)
>
xrt(ξ

t) ξT ∈ΞT (36b)

xrt(ξ
t)∈X r

t (xs1, β, ξ
t) t∈ [2, T ], ξt ∈Ξt (36c)

In order to minimize zrest, the second summation term in (36b) should be minimized over the

recourse decisions xrt(ξ
t). Since this term is additively separable over stages t ∈ [2, T ] and their

associated history ξt ∈Ξt, the recourse decisions of each stage can be optimized separately, yielding

the following equivalent model:

min
x1∈X1,β

c>1 x1 + zrest (37a)

s.t. zrest ≥
∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) +

∑
t∈[2,T ]

min
xrt(ξ

t)∈X r
t (xs1,β,ξ

t)
crt(ξ

t)
>
xrt(ξ

t) ξT ∈ΞT (37b)
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Inspecting the minimization problems in (37b), we observe that the objective function coefficients

and the feasible set are parametrized by the history, as such changing the parametrization of the

recourse decisions from the history ξt, to a full uncertainty realization ξT should not change the

optimal objective value. Thus, instead, we can consider the following equivalent model:

min
x1∈X1,β

c>1 x1 + zrest (38a)

s.t. zrest ≥
∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) +

∑
t∈[2,T ]

min
xrt(ξ

T )∈X r
t (xs1,β,ξ

t)
crt(ξ

t)
>
xrt(ξ

T ) ξT ∈ΞT (38b)

More formally, we can show that given an optimal solution to the inner minimization problem in

(38b), x̂rt : ξT → Rpt , we can construct a feasible solution x̃rt : ξt→ Rpt to the inner minimization

problem in (37b) which attains the same objective value. Since the minimization problem in (38b)

is a relaxation of that in (37b), having more flexible decision variables, the aforementioned con-

struction is sufficient to conclude the proof of our equivalence claim. Given stage t ∈ [2, T ] and

history ξ̆t ∈ Ξt, we let x̃rt(ξ̆
t) := x̂rt(ξ̊

T ) where ξ̊T is an arbitrarily selected element from the set of

realizations with the same history {ξT ∈ ΞT : ξt = ξ̆t}. The feasibility of the constructed policy is

straightforward since the two inner minimization problems have the same feasibility set, defined

by X r
t (xs1, β, ξ

t), t ∈ [2, T ]. Next, we observe that crt(ξ
t)
>
x̂rt(ξ

T ) is the same for all realizations in

{ξT ∈ΞT : ξt = ξ̆t} since the minimization problem in (38b) has the same feasible set and objective

coefficient vector for any of those realizations and x̂rt(·) is chosen to be an optimal policy. Lastly,

by construction, the policy x̃rt(·) achieves the same objective value.

As there is no link between the different stage optimization problems in (38b), we can swap the

summation and minimization operators and optimize over the recourse variables associated with

all the stages together given an uncertainty realization:

min
x1∈X1,β

c>1 x1 + zrest (39a)

s.t. zrest ≥
∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) + min

(xrt(ξ
T ))t∈[2,T ]∈X (xs1,β,ξ

T )

∑
t∈[2,T ]

crt(ξ
t)
>
xrt(ξ

T ) ξT ∈ΞT (39b)

where X (xs1, β, ξ
T ) = ×

t∈[2,T ]
X r
t (xs1, β, ξ

t). Since zrest is equal to the maximum of the right-hand side

of (38b) over the realizations ξT ∈ ΞT at an optimal solution, we can turn this problem into the

following nested formulation:

min c>1 x1 + max
ξT∈ΞT

min
xr∈X (xs1,β,ξ

T )

∑
t∈[2,T ]

cst(ξ
t)
>

Θt(ξ
t, βt) + crt(ξ

t)
>
xrt (40a)

where the parametrization of the recourse variables is omitted since ξT is given as an input to the

inner minimization problem.
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B. Proofs

In this section, we present the proofs of the three propositions and one lemma mentioned in the

body of the paper, for which we also restate the claims for convenience.

Proposition 1. Consider an MSARO with only right-hand-side uncertainty, continuous recourse,

and (bounded) polyhedral uncertainty set. If the basis functions Φt(ξ
t) are chosen to be affine in ξt

for all t∈ [2, T ], the C&CG algorithm converges to ν2S-LDR in a finite number of iterations.

Proof Denote by f(xs1, β, ξ
T ), the objective function of the inner minimization in the two-stage

problem (6). Then, we can rewrite problem (6) as:

ν2S-LDR = min
{
c>1 x1 + max

ξT∈ΞT
f(xs1, β, ξ

T ) | x1 ∈X1, βt ∈RKt , t∈ [2, T ]
}
.

First, we show that f(xs1, β, ξ
T ) is convex in ξT for given x1= (xs1, x

r
1) ∈X1 and β. For ξ̂T , ξ̃T ∈ ΞT

and λ∈ [0,1], the following (in)equalities hold:

λf(xs1, β, ξ̂
T ) + (1−λ)f(xs1, β, ξ̃

T ) =∑
t∈[2,T ]

cst
>(λΦt(ξ̂

T ) + (1−λ)Φt(ξ̃
t)
)
βt+

λ
(

min
xr∈X (xs1,β,ξ̂

T )

∑
t∈[2,T ]

crt
>xrt
)

+ (1−λ)
(

min
xr∈X (xs1,β,ξ̃

T )

∑
t∈[2,T ]

crt
>xrt
)

= (41a)∑
t∈[2,T ]

cst
>Φt(λξ̂

t + (1−λ)ξ̃t)βt+

λ
(

min
xr∈X (xs1,β,ξ̂

T )

∑
t∈[2,T ]

crt
>xrt
)

+ (1−λ)
(

min
xr∈X (xs1,β,ξ̃

T )

∑
t∈[2,T ]

crt
>xrt
)
≥ (41b)∑

t∈[2,T ]

cst
>Φt(λξ̂

t + (1−λ)ξ̃t)βt + min
xr∈X (xs1,β,λξ̂

T+(1−λ)ξ̃T )

∑
t∈[2,T ]

crt
>xrt = f(xs1, β,λξ̂

T + (1−λ)ξ̃T ).

Equality (41a) holds because Φt(ξ
t) is affine in ξt. Inequality (41b) follows from the convexity of

the optimal value of the inner minimization problem as a function of ξT , since uncertainty appears

only on the right-hand-sides of constraints and recourse variables are continuous by assumption.

Now, let ΞExt be the set of extreme points of ΞT . In maximization of a convex function over a

compact polyhedral set, there is an optimal solution that is an extreme point (Hendrix et al. 2010).

Then, the two-stage problem becomes:

ν2S-LDR = min
{
c>1 x1 + η | η≥ f(xs1, ξ

T , β), ξT ∈ΞExt, x1 ∈X1, βt ∈RKt , t∈ [2, T ]
}
.

C&CG is then the process of gradually adding constraints for each extreme point. Because |ΞExt|<

+∞, iterating over all extreme points takes finitely many steps, which concludes the proof. �
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Lemma 1. For any P∈P>, constraints (12e) are equivalent to the following:

yt(ξ
T ) =Eξ′T∼P

[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
, t∈ [T ], ξT ∈ΞT . (13)

Proof For a fixed t and ξT , we start by multiplying both sides of (12e) by the density pP(ξ′T ) for

every ξ′T (including ξT ) that shares the same history with ξT up to t:

pP(ξ′
T

)yt(ξ
T ) = pP(ξ′

T
)yt(ξ

′T ) t∈ [T ], ξT , ξ′
T ∈ΞT with ξt = ξ′

t
.

Since pP(ξ′T )> 0 for every realization ξ′T under any probability distribution P∈P>, the feasible set

of model (12) remains the same. Then, we integrate (or sum if ΞT is discrete) the scaled constraints

over all such ξ′T realizations to obtain

yt(ξ
T )

∫
ξ′T :ξ′t=ξt

pP(ξ′
T

)dξ′
T

=

∫
ξ′T :ξ′t=ξt

pP(ξ′
T

)yt(ξ
′T )dξ′

T
t∈ [T ], ξT ∈ΞT .

Let δ :=
∫

ξ′T :ξ′t=ξt
pP(ξ′T )dξ′T where δ > 0 since ξT ∈ {ξ′T : ξ′t = ξt} with pP(ξT )> 0. Then, we obtain

(13) via

yt(ξ
T ) =

∫
ξ′T :ξ′t=ξt

pP(ξ′T )

δ
yt(ξ

′T )dξ′
T

=Eξ′T∼P
[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
t∈ [T ], ξT ∈ΞT .

Since constraints (13) are obtained as an aggregation of the original constraints (12e), they are

valid for model (12). Further, they imply the nonanticipativity constraints (12e) since for any

given t along with ξT and ξ̂T such that ξt = ξ̂t, the right-hand side of (13) is the same, i.e.,

Eξ′T∼P
[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
=Eξ′T∼P

[
yt(ξ

′T )
∣∣∣ ξ′t = ξ̂t

]
, enforcing yt(ξ

T ) = yt(ξ̂
T ). �

Proposition 2. Let P be any probability measure in P>. For MSARO problems with continuous

recourse, (15) is a strong dual of (2), i.e., LNA(P) = ν?.

Proof The strength of a Lagrangian dual problem can be studied by its primal characterization,

derived by Geoffrion (1974) for a mixed-integer linear optimization problem. Then, using standard

Lagrangian duality theory (see, for instance, Wolsey and Nemhauser (1999)), the primal charac-

terization of (15) is:

min z (42a)

s.t.
(
z, y1(ξT ), . . . , yT (ξT )

)
∈ conv(Y (ξT )) ξT ∈ΞT (42b)

yt(ξ
T ) =Eξ′T∼P

[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
t∈ [T ], ξT ∈ΞT . (42c)

The result follows from the equivalence of (13) and (12e), as well as the fact that for MSARO

problems with continuous recourse, we have that conv(Y (ξT )) = Y (ξT ) for all ξT ∈ΞT . �
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Proposition 3. ν̄NA-DO
R is a lower bound for ν?.

Proof We have shown that LNA
R (P)≤ ν? for any P∈P>. Now we claim that, for any P̂∈P≥ \P> ={

P ∈ P≥ | ∃ξT ∈ ΞT : pP(ξT ) = 0
}

where pP̂ : ΞT → R+ is the density function of P̂, the inequality

LNA
R (P̂)≤ ν? also holds. Given P̂, let Ξ̂T := {ξT ∈ΞT : pP̂(ξT )> 0}. Using Ξ̂T , we create a relaxation

of (12), the NA reformulation of the MSARO problem, as

ν̂(P̂) := min z (43a)

s.t.
∑
t∈[T ]

ct(ξ
t)>yt(ξ

T )≤ z ξT ∈ΞT (43b)

At(ξ
t)yt(ξ

T ) +Bt(ξ
t)yt−1(ξT )≤ bt(ξt) t∈ [2, T ], ξT ∈ΞT (43c)

Dt(ξ
t)yt(ξ

T )≤ dt(ξt) t∈ [T ], ξT ∈ΞT (43d)

yt(ξ
T ) = yt(ξ

′T ) t∈ [T ], ξT ∈ Ξ̂T , ξ′
T ∈ Ξ̂T with ξt = ξ′

t
(43e)

yt(ξ
T )∈Rnt−n

i
t ×Zn

i
t t∈ [T ], ξT ∈ΞT (43f)

where the NA constraints are only imposed for the pairs of realizations in Ξ̂T ⊂ΞT . Therefore, we

have ν̂(P̂)≤ ν∗.

Now that P̂ assigns a positive density to all the realizations from Ξ̂T , via Lemma 1, the NA

constraints in (43e) can be equivalently reformulated as

yt(ξ
T ) =Eξ′T∼P̂

[
yt(ξ

′T )
∣∣∣ ξ′t = ξt

]
, t∈ [T ], ξT ∈ Ξ̂T .

Subsequently, relaxation of these reformulated NA constraints and construction of the Lagrangian

dual problem (15) with respect to P̂ yields a relaxation of a relaxation of a minimization problem,

where for each fixed λt(·) we have LNA
LR (P̂, λ1(·). . . . , λT (·))≤ ν̂(P̂), and consequently LNA(P̂)≤ ν̂(P̂).

Furthermore, restricting the Lagrangian duals to follow LDRs, we obtain LNA
R (P̂)≤LNA(P̂).

Since we showed LNA
R (P) ≤ ν∗ for all P ∈ P≥, we have ν̄NA-DO

R := maxP∈P≥ LNA
R (P) ≤ ν∗, which

completes the proof. �

C. Detailed Models

C.1. Monolithic Form of Model (8)

Consider the case mentioned in Remark 1, namely an MSARO where the uncertainty set is a

polytope, the basis functions Φt(ξ
t) are chosen to be affine in ξt for all t ∈ [2, T ], all the recourse

variables are continuous, we have fixed parameters associated with the state variables, and the

2ARO problem (6) has relatively complete recourse. We next detail how a monolithic mixed-integer

linear programming formulation of the inner minimization problem (8) can be derived as in (Ayoub

and Poss 2016, Zeng and Zhao 2013).
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Let πS and πR be the linear programming dual variables associated with the state and recourse

constraints in X (x̂s1, β̂, ξ
T ), in the inner minimization problem of (8), respectively. Then, using

KKT conditions, subproblem (8) can be modelled as follows:

max
∑
t∈[2,T ]

cst
>Φt(ξ

t)β̂t + crt
>xrt (44a)

s.t. Ar
tx

r
t +As

tΦt(ξ
t)β̂t +Bs

t x̂
s
1− bt(ξt)≤ 0 t= 2 (44b)

Ar
tx

r
t +As

tΦt(ξ
t)β̂t +Bs

tΦt−1(ξt−1)β̂t−1− bt(ξt)≤ 0 t∈ [3, T ] (44c)

Ds
tΦt(ξ

t)β̂t +Dr
tx

r
t − dt(ξt)≤ 0 t∈ [2, T ] (44d)

Ar
t
>πS

t +Dr
t
>πR

t = crt t∈ [2, T ] (44e)(
Ar
tx

r
t +As

tΦt(ξ
t)β̂t +Bs

t x̂
s
1− bt(ξt)

)>
πS
t = 0 t= 2 (44f)(

Ar
tx

r
t +As

tΦt(ξ
t)β̂t +Bs

tΦt−1(ξt−1)β̂t−1− bt(ξt)
)>
πS
t = 0 t∈ [3, T ] (44g)(

Ds
tΦt(ξ

t)β̂t +Dr
tx

r
t − dt(ξt)

)>
πR
t = 0 t∈ [2, T ] (44h)

xrt ∈Rpt , πS
t ∈R

ms
t
− , πR

t ∈R
mr
t
− t∈ [2, T ] (44i)

ξT ∈ΞT . (44j)

Inequalities (44b)-(44d) are the primal feasibility constraints at β̂t, (44e) the dual feasibility con-

straints, and (44f)-(44h) are the complementary slackness constraints. The latter include bilinear

terms, as basis functions Φt(ξ
t) are functions of ξT which are decision variables in (44). They can be

linearized with the addition of binary decision variables via the so-called big-M constraints. Since

the basis functions are chosen to be affine, the resulting model is a mixed-integer linear program.

A detailed example of building a mixed-integer linear model for a multistage location-allocation

problem is provided in Appendix C.3.

C.2. Two-stage Decision Rules for MSAROs with Mixed-integer State Variables

As mentioned in Remark 3, for MSAROs with mixed-integer state variables, linear and piecewise

constant decision rules can be combined to obtain a 2ARO approximation. To this end, consider

the partition of the index set of the state variables into sets Iit and Ict for integer and continuous

variables, respectively, i.e., Iit ∪ Ict = [qt],Iit ∩ Ict = ∅, |Iit | = qit . Similarly, let xst = (xs,it , xs,ct ) and

β = (βi, βc) be the vectors of state variables and decision rule design variables with sub-vectors

corresponding to the integer and continuous state variables. Then, the application of LDRs (5) to

the continuous state variables and PCDRs (9) to the integer state variables yields the following

2ARO model:

ν2S-LDR-PCDR := min c>1 x1 +SP2S-LDR-PCDR(β,xs1) (45a)
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s.t. x1 ∈X1 (45b)

βc
t ∈RK

c
t t∈ [2, T ] (45c)

βi
t ∈RK

i
t t∈ [2, T ] (45d)

−1≤ Υ̂ti(ξ
t)>βi

ti ≤ 1 t∈ [2, T ], i∈ Iit , ξT ∈ΞT (45e)

where

SP2S-LDR-PCDR(β,xs1) := max
ξT∈ΞT

∑
t∈[2,T ]

cst(ξ
t)
>
xst + min

xr∈X (xs,ξT )

∑
t∈[2,T ]

crt(ξ
t)>xr (46a)

s.t. Φt(ξ
t)βc

t = xs,ct t∈ [2, T ] (46b)∑
j∈[Ji]

(κti + j− 1)υtij = xs,iti t∈ [2, T ], i∈ Iit (46c)∑
j∈[Ji]

ωtij = Υ̂ti(ξ
t)>βit t∈ [2, T ], i∈ Iit (46d)

(aitj + εj)υtij ≤ ωtij ≤ bitjυtij t∈ [2, T ], i∈ Iit , j ∈ [Ji] (46e)∑
j∈[Ji]

υtij = 1 t∈ [2, T ], i∈ Iit (46f)

υtij ∈ {0,1} t∈ [2, T ], i∈ Iit , j ∈ [Ji]. (46g)

Given the state variables and an uncertainty realization, the recourse feasible set is defined as

X (xs, ξT ) :=
{(
xrt
)
t∈[2,T ]

∈Rp2 ×Rp3 × · · ·×RpT :

Ar
t(ξ

t)xrt ≤ bt(ξt)−
(
As
t(ξ

t)xst +Bs
t (ξ

t)xs1

)
t= 2

Ar
t(ξ

t)xrt ≤ bt(ξt)−
(
As
t(ξ

t)xst +Bs
t (ξ

t)xst−1

)
t∈ [3, T ]

(xst , x
r
t)∈Xt(ξ

t) t∈ [2, T ]
}
.

Lastly, we note that in the special case where the assumptions of Remarks 1 and 2 are satisfied,

the subproblem (46) can be similarly reformulated as a monolithic mixed-integer linear program.

C.3. Models for the Location-Transportation

C.3.1. Column-and-constraint Generation with Two-stage Linear Decision Rules

Applying LDRs on the state variables of model (33), sit(ξ
t) = β0

it +
∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
t)βjt

′

it , i∈ [I], t∈

[2, T ], results in the following 2ARO problem in monolithic form:

min z

s.t. z ≥
∑
i∈[I]

fiyi +
∑
i∈[I]

aisi1 +
∑
t∈[2,T ]

∑
i∈[I]

ai
(
β0
it +

∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
′t)βjt

′

it

)
+
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t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

cijxijt(ξ
t) ξT ∈ΞT

si1 ≤Kiyi i∈ [I]

β0
i2 +

∑
j∈[J]

dj2(ξ2)βj2i2 = si1−
∑
j∈[J]

xij2(ξ2) i∈ [I], ξ2 ∈Ξ2

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
t)βjt

′

it = β0
i,t−1 +

∑
t′∈[2,t−1]

∑
j∈[J]

djt′(ξ
t−1)βjt

′

i,t−1−
∑
j∈[J]

xijt(ξ
t)

i∈ [I], t∈ [3, T ], ξt ∈Ξt

∑
i∈[I]

xijt(ξ
t)≥ djt(ξt) j ∈ [J ], t∈ [2, T ], ξt ∈Ξt

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
t)βjt

′

it ≥ 0 i∈ [I], t∈ [2, T ], ξt ∈Ξt

y ∈ {0,1}I , z, x≥ 0.

For better clarity, let us re-write the above formulation in the more common min-max-min form

of 2ARO:

min
∑
i∈[I]

fiyi +
∑
i∈[I]

ai
(
si1 +

∑
t∈[2,T ]

β0
it

)
+ max

ξT∈ΞT

s.t. si1 ≤Kiyi i∈ [I]

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
t)βjt

′

it ≥ 0 i∈ [I], t∈ [2, T ], ξt ∈Ξt

y ∈ {0,1}I .

min
∑
t′∈[2,t]

aidjt′(ξ
t)βjt

′

it +
∑
t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

cijxijt

s.t.
∑
j∈[J]

xij2 = si1−β0
i2−

∑
j∈[J]

dj2(ξ2)βj2i2 i∈ [I]∑
j∈[J]

xijt = β0
i,t−1−β0

it−
∑
j∈[J]

∑
t′∈[2,t]

djt′(ξ
t)βjt

′

it

+
∑
j∈[J]

∑
t′∈[2,t−1]

djt′(ξ
t−1)βjt

′

i,t−1

i∈ [I], t∈ [3, T ]∑
i∈[I]

xijt ≥ djt(ξt) j ∈ [J ], t∈ [2, T ]

x≥ 0

Note that we have strengthened the outer minimization problem by adding the non-negativity

constraints from the inner minimization problem as robust constraints. This constraint can be
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rewritten as follows:

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

djt′(ξ
t)βjt

′

it ≥ 0 i∈ [I], t∈ [2, T ], ξt ∈Ξt→

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

µjt′β
jt′

it + min
{ ∑
t′∈[2,t]

∑
j∈[J]

ξjt′σjt′β
jt′

it :∑
t′∈[2,T ]

∑
j∈[J]

ξjt′ ≤ Γ,

0≤ ξjt′ ≤ 1, j ∈ [J ], t′ ∈ [2, T ]
}
≥ 0 i∈ [I], t∈ [2, T ]→

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

µjt′β
jt′

it + max
{
uΓ +

∑
j∈[J]

∑
t′∈[2,T ]

ωjt′ :

u+ωjt′ ≤ σjt′βjt
′

it , j ∈ [J ], t′ ∈ [2, t],

u≤ 0, ωjt′ ≤ 0, j ∈ [J ], t′ ∈ [2, T ]
}
≥ 0 i∈ [I], t∈ [2, T ]→

β0
it +

∑
t′∈[2,t]

∑
j∈[J]

µjt′β
jt′

it +uΓ +
∑
j∈[J]

∑
t′∈[2,T ]

ωjt′ ≥ 0 i∈ [I], t∈ [2, T ]

u+ωjt′ ≤ σjt′βjt
′

it i∈ [I], j ∈ [J ], t∈ [2, T ], t′ ∈ [2, t]
ωjt′ ≤ 0 i∈ [I], j ∈ [J ], t∈ [2, T ], t′ ∈ [2, T ]
u≤ 0

In order to establish relatively complete recourse, we add the following constraints to the outer

minimization problem:

∑
i∈[I]

ï
si1−β0

i2−
∑
j∈[J]

dj2(ξ2)βj2i2

ò
≥
∑
j∈[J]

dj2(ξ2) ξ2 ∈Ξ2

∑
i∈[I]

ï
β0
i,t−1−β0

it−
∑
j∈[J]

∑
t′∈[2,t]

djt′(ξ
t)βjt

′

it +
∑
j∈[J]

∑
t′∈[2,t−1]

djt′(ξ
t−1)βjt

′

i,t−1

ò
≥
∑
j∈[J]

djt(ξ
t) t∈ [3, T ], ξt ∈Ξt,

which can be reformulated as follows:

∑
i∈[I]

[
si1−β0

i2

]
≥ max

ξ2∈Ξ2

ß∑
j∈[J]

dj2(ξ2)
[
1 +

∑
i∈[I]

βj2i2

]™
∑
i∈[I]

[
β0
i,t−1−β0

it

]
≥max

ξt∈Ξt

ß∑
i∈[I]

ï∑
j∈[J]

∑
t′∈[2,t]

djt′(ξ
t)βjt

′

it −
∑
j∈[J]

∑
t′∈[2,t−1]

djt′(ξ
t−1)βjt

′

i,t−1

ò
+
∑
j∈[J]

djt(ξ
t)
}

t∈ [3, T ]

The linearization process is similar to the one previously discussed for non-negativity constraints.

Denote by π1, π2, π3 the dual variables associated with three constraint sets of the inner minimiza-

tion problem. After taking its linear programming dual and the adding the KKT conditions, we

get the following as the subproblem of the column-and-constraint generation:

max
∑
t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

∑
t′∈[2,t]

aidjt′β
jt′

it +
∑
t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

cijxijt



54

s.t.
∑
j∈[J]

xij2 = si1−β0
i2−

∑
j∈[J]

dj2β
j2
i2 i∈ [I]∑

j∈[J]

xijt = β0
i,t−1−β0

it−
∑
j∈[J]

∑
t′∈[2,t]

djt′β
jt′

it +
∑
j∈[J]

∑
t′∈[2,t−1]

djt′β
jt′

i,t−1 i∈ [I], t∈ [3, T ]∑
i∈[I]

xijt ≥ djt j ∈ [J ], t∈ [2, T ]

π1
i +π3

j2 ≤ cij i∈ [I], j ∈ [J ]

π2
it +π3

jt ≤ cij i∈ [I], j ∈ [J ], t∈ [3, T ](
djt−

∑
i∈[I]

xijt

)
π3
jt = 0

linearization−−−−−−−→

π3
jt ≤M(1− `Rjt),

∑
i∈[I]

xijt− djt ≤M`Rjt j ∈ [J ], t∈ [2, T ]

(
π1
i +π3

j2− cij
)
xij2 = 0

linearization−−−−−−−→

xij2 ≤M(1− `Dij2), cij −π1
i −π3

j2 ≤M`Dij2 i∈ [I], j ∈ [J ](
π2
it +π3

jt− cij
)
xijt = 0

linearization−−−−−−−→

xijt ≤M(1− `Dijt), cij −π2
it−π3

jt ≤M`Dijt i∈ [I], j ∈ [J ], t∈ [3, T ]

djt = µjt + ξjtσjt j ∈ [J ], t∈ [2, T ]∑
t∈[2,T ]

∑
j∈[J]

ξjt ≤ Γ

xijt ≥ 0, `Dijt ∈ {0,1} i∈ [I], j ∈ [J ], t∈ [2, T ]

0≤ ξjt ≤ 1, 0≤ π3
jt, `

R
jt ∈ {0,1} j ∈ [J ], t∈ [2, T ].

C.3.2. Restricted NA Dual The Q(βs, βx) function for the location-transportation prob-

lem:

Q(βs, βx) =

min z+
∑
t∈[2,T ]

∑
i∈[I]

βsit(ξ
T )sit(ξ

T ) +
∑
t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

βxijt(ξ
T )xijt(ξ

T )

s.t. z ≥
∑
i∈[I]

yi +
∑
t∈[T ]

∑
i∈[I]

aisit(ξ
T ) +

∑
t∈[2,T ]

∑
i∈[I]

∑
j∈[J]

cijxijt(ξ
T ) ξT ∈ΞT

si1 ≤Kiyi, i∈ [I]

sit(ξ
T ) = si,t−1(ξT−1)−

∑
j∈[J]

xijt(ξ
T ) i∈ [I], t∈ [2, T ], ξT ∈ΞT∑

i∈[I]

xijt(ξ
T )≥ djt(ξt) i∈ [I], t∈ [2, T ], ξT ∈ΞT

y ∈ {0,1}I , z ∈RI×T+ , x∈RI×J×(T−1)
+ .

For this mixed-integer subproblem, the cutting-plane method presented in Section 4.3 is applicable.
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D. Detailed Results

D.1. Newsvendor Problem

Table 4 Detailed results for the newsvendor problem

T br |ΞT | I B νLDR ν2S-LDR ν? ν̄NA-DO
R νPI

3 5 25

3 100 656.6 970.2 975.3 975.3 1457.0
3 150 6668.5 8410.4 8647.2 9802.6 10036.0
3 200 8662.0 11446.2 11569.7 13709.0 13709.0
4 150 5154.8 5384.4 5466.8 5466.8 5781.0
4 200 10049.4 12452.0 12759.9 14501.9 14525.0
5 200 5944.7 7120.6 7402.4 7402.4 7713.0

3 10 100

3 150 5752.1 7620.9 7984.6 8590.3 8895.0
3 200 6279.6 9199.0 9700.9 11833.0 11833.0
4 150 3502.7 4886.5 4910.2 5110.1 5323.0
4 200 7922.9 10961.1 11273.4 14036.5 14060.0
5 200 2865.5 5877.7 6063.1 6063.1 6737.0

4 4 64

2 100 669 1047 1214 1214 1337
3 200 7807 9198 9491 9492 10157
3 300 13421 16414 17317 19105 19188
4 200 2034 2297 2447 2447 2640
4 300 13645 17860 18721 20139 20139

4 5 125

3 200 6643.8 8070.1 8295.6 8785.8 9249.0
3 300 11854.3 15035.4 16606.8 18240.0 18240.0
4 200 1443.7 1700.8 1739.8 1917.7 2122.0
4 300 13186.4 17579.4 18450.8 19618.0 19635.0
5 300 5142.0 10494.4 11299.5 11804.9 12343.0

4 10 1000

3 200 5648.8 8142.9 9353.0 9353.0
3 300 9143.5 13687.6 17853.0 17853.0
4 200 -104.4 440.0 642.4 919.0
4 300 11029.5 15854.7 18508.0 18432.0
5 300 724.9 6125.5 6740.1 7368.0

4 15 3375
3 200 5111.3 7072.0 7646.6 8222.0
3 300 9030.9 13040.7 17615.0 17615.0

5 3 81

2 150 2490.9 2673.5 2763.4 2763.3 2975.4
2 200 8888.4 11192.5 11313.7 11525.6 11525.6
3 250 7809.0 8800.3 9065.4 9104.8 9382.3
3 300 14702.3 16898.8 17214.3 17308.7 18156.1

5 4 256 3 300 12367.7 15591.0 15989.0 16511.1 17192.6

5 5 625
3 300 11134.5 15053.4 16191.6 16680.0
4 300 3651.5 9494.8 10628.0 10628.0

5 6 1296 3 400 15013.4 20271.7 25157.0 25157.0

6 4 1024
3 400 15492.3 21457.9 28163.0 28163.0
4 400 7124.3 14805.2 15400.6 15473.0
4 500 14445.4 24887.7 32973.0 32973.0

7 3 729
3 300 24.3 1495.9 2137.3 2383.0
3 400 12994.7 17774.1 19554.5 19983.0
4 400 3267.5 4303.1 5388.1 5427.0

8 3 2187
3 500 16149.1 25321.4 30259.0 30259.0
4 600 16892.3 27608.1 28717.7 28747.0
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Table 5 Running times for the larger-size newsvendor problem instances

T br |ΞT | I B
Time (s)

νLDR ν2S-LDR ν̄NA-DO
R PI

4

10 1000

3 200 38 31 89 1
3 300 50 31 20 1
4 200 47 28 637 1
4 300 58 30 2712 1
5 300 59 33 3088 2

15 3375 3 200 158 140 558 3

20 8000 3 300 726 675 2313 7

5
5 625

3 300 16 15 1423 1
4 300 22 19 > 1h 1

6 1296 3 400 54 54 64 1

6 4 1024

3 400 57 53 99 1
4 400 70 67 12 2
4 500 74 69 3405 2

7 3 729

3 300 37 38 280 1
3 400 37 36 > 1h 1
4 400 50 50 > 1h 1

8 3 2187
3 500 364 335 408 4
4 600 462 464 > 1h 5
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D.2. Location-Transportation Problem

Table 6 Detailed results for the location-transportation problem over a budgeted uncertainty set

(T, I, J,αd) αu ν2S-LDR ν̄NA-DO
R (T, I, J,αd) αu ν2S-LDR ν̄NA-DO

R

(3,10,10,0.1)

0.1 738969.9 684460.5

(4,5,7,0.5)

0.1 1052392.2 826648.8
0.4 738967.8 647069.1 0.4 1052393.0 767446.4
0.7 738967.0 573052.3 0.7 1052392.4 863507.3

1 738969.3 574580.2 1 1052392.9 806706.2

(3,10,10,0.3)

0.1 1657362.2 1457789.5

(4,5,10,0.1)

0.1 2414351.2 2008281.8
0.4 1637485.0 1364705.6 0.4 2414351.2 1736011.9
0.7 1535360.3 1205974.5 0.7 2414351.2 2168851.3

1 1554797.6 1223643.1 1 2414351.2 1954758.7

(3,10,10,0.5)

0.1 1641883.1 1430838.7

(4,5,10,0.3)

0.1 2414351.2 1912871.0
0.4 1605346.2 1363127.9 0.4 2414351.2 1675507.4
0.7 1646129.3 1178537.7 0.7 2414351.2 1747647.4

1 1592763.4 1474506.6 1 2414351.5 2071113.7

(3,10,15,0.1)

0.1 1133251.5 857198.3

(4,5,10,0.5)

0.1 2414351.1 1745320.2
0.4 1133251.5 825580.3 0.4 2342846.9 2076574.6
0.7 1157049.6 1073536.8 0.7 2386394.3 1959412.9

1 1156385.8 956570.9 1 2386394.3 1824441.4

(3,10,10,0.3)

0.1 1157948.4 1062129.6

(4,10,10,0.1)

0.1 2502997.3 2064097.4
0.4 1157948.4 861882.4 0.4 2508960.6 1842514.1
0.7 1157948.4 1092108.1 0.7 2508960.5 1688369.1

1 1157948.4 1000064.7 1 2508960.8 2237510.8

(3,10,10,0.5)

0.1 1157948.4 831435.5

(4,10,10,0.3)

0.1 2344765.1 2189919.0
0.4 1157948.4 981328.1 0.4 2508960.6 2095408.1
0.7 1156079.7 946148.4 0.7 2508961.0 2071323.3

1 1116748.8 885303.1 1 2401193.3 1728094.5

(4,5,5,0.1)

0.1 770943.7 724852.8

(4,10,10,0.5)

0.1 2432431.8 2130923.4
0.4 770943.7 573157.6 0.4 2474962.8 2203068.7
0.7 770943.7 687320.0 0.7 2347843.6 1921134.8

1 770943.7 727980.6 1 2347843.6 1743911.8

(4,5,5,0.3)

0.1 770943.7 710778.0

(5,5,10,0.1)

0.1 3562840.8 3075701.1
0.4 770943.7 631020.7 0.4 3595989.4 2855492.7
0.7 770943.7 664643.9 0.7 3563956.9 2788612.9

1 770943.7 696703.2 1 3563956.4 3256824.0

(4,5,5,0.5)

0.1 770943.7 562210.5

(5,5,10,0.3)

0.1 3623768.3 2694805.6
0.4 770943.7 662298.1 0.4 3501499.4 2826482.5
0.7 770943.7 620073.7 0.7 3649157.4 2483339.2

1 770943.7 729544.4 1 3470084.5 2450441.3

(4,5,7,0.1)

0.1 1052392.2 908927.4

(5,5,10,0.5)

0.1 3630095.7 2474291.5
0.4 1052392.2 847845.0 0.4 3573873.7 2622461.9

1 1052392.2 794593.6 0.7 3610736.5 2973602.4

(4,5,7,0.3)

0.1 1052392.2 848889.1 1 3489038.0 2543037.8

0.4 1052392.2 824873.8
0.7 1052392.2 984627.8

1 1052392.7 855154.4
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Table 7 Algorithmic details for the location-transportation problem over a budgeted uncertainty set

(T, I, J,αd) αu
νLDR ν2S-LDR, C&CG νΩ(LDR) νΩ(2S-LDR) ν̄NA-DO

R

Time (s) Time (s) #iterations Gap Time (s) Time (s) Time (s) #iterations Gap

(3,10,10,0.1)

0.1 0.5 168.3 2 0.0% 2.4 1.4 1376.9 617 4.9%
0.4 6.5 59.6 2 0.0% 9.2 11.5 1113.5 809 2.6%
0.7 10.8 87.0 2 0.0% 9.3 9.8 1088.4 726 4.3%

1 1.3 141.8 2 0.0% 16.7 10.9 > 10h 1315 7.9%

(3,10,10,0.3)

0.1 14.6 867.2 12 4.8% 2.2 0.1 > 10h 1013 8.3%
0.4 4.7 51.9 2 4.9% 8.1 16.5 1082.4 242 4.1%
0.7 12.6 66.1 2 1.2% 3.1 1.6 > 10h 730 7.1%

1 8.4 71.6 2 4.9% 2.6 0.9 588.0 984 3.0%

(3,10,10,0.5)

0.1 12.9 124.6 2 4.7% 7.9 10.5 > 10h 271 7.0%
0.4 16.3 111.8 3 4.9% 1.0 0.7 > 10h 665 9.1%
0.7 1.8 83.2 3 4.3% 1.7 0.7 1132.4 1064 3.2%

1 25.2 96.5 3 3.9% 2.1 2.2 > 10h 1405 4.1%

(3,10,15,0.1)

0.1 10.2 150.1 3 1.2% 2.1 1.3 2634.8 258 2.9%
0.4 3.5 112.6 2 1.2% 2.3 1.1 > 10h 337 6.9%
0.7 29.3 96.6 2 0.0% 1.7 2.0 > 10h 432 5.5%

1 8.3 29.3 2 0.0% 2.2 2.7 > 10h 824 9.9%

(3,10,10,0.3)

0.1 2.5 169.7 2 1.1% 3.0 2.4 4193.8 771 2.1%
0.4 13.4 95.6 2 1.2% 3.8 0.4 4706.4 974 4.9%
0.7 13.0 94.6 2 1.1% 2.3 1.2 5043.6 475 2.0%

1 10.2 119.9 2 1.1% 1.6 2.0 5015.7 1187 4.4%

(3,10,10,0.5)

0.1 5.7 97.1 6 1.3% 2.0 1.9 3757.0 1253 1.1%
0.4 2.8 155.3 2 1.2% 3.0 1.5 2902.3 803 4.5%
0.7 0.7 112.0 2 0.0% 8.5 1.6 > 10h 884 9.7%

1 2.3 89.9 2 1.2% 2.3 4.5 3898.8 1120 4.6%

(4,5,5,0.1)

0.1 0.2 0.8 2 0.0% 7.3 16.5 1198.6 951 4.8%
0.4 0.3 1.2 2 0.0% 7.1 21.8 > 10h 1483 7.2%
0.7 0.6 1.1 2 0.0% 2.5 5.4 1558.8 629 2.1%

1 0.5 1.2 2 0.0% 1.4 2.6 > 10h 1267 7.3%

(4,5,5,0.3)

0.1 0.7 1.3 2 0.0% 5.6 0.9 1649.9 1399 0.6%
0.4 0.4 0.9 2 0.0% 8.2 3.0 > 10h 569 9.0%
0.7 0.3 0.4 2 0.0% 3.5 1.1 905.6 1016 3.3%

1 0.9 0.4 2 0.0% 1.5 3.3 > 10h 548 8.4%

(4,5,5,0.5)

0.1 0.4 0.9 2 0.0% 2.2 0.0 > 10h 550 7.0%
0.4 0.5 1.3 2 0.0% 9.5 14.1 > 10h 284 7.0%
0.7 0.2 1.4 2 0.0% 3.9 2.0 1064.2 920 2.6%

1 0.2 1.2 2 0.0% 3.9 2.5 > 10h 912 5.6%

(4,5,7,0.1)

0.1 4.7 77.2 2 0.0% 1.4 0.9 1207.0 332 4.8%
0.4 9.7 133.8 2 0.0% 4.8 10.1 > 10h 433 8.7%

1 1.1 159.8 2 0.0% 2.7 5.5 > 10h 1073 6.8%

(4,5,7,0.3)

0.1 2.4 123.2 2 0.0% 2.9 4.6 886.7 864 4.9%
0.4 6.6 197.4 2 0.0% 4.9 2.1 1364.0 1361 4.4%
0.7 5.3 179.7 2 0.0% 2.2 2.1 > 10h 787 6.9%

1 3.2 156.8 2 0.0% 3.7 0.8 > 10h 966 9.3%

(4,5,7,0.5)

0.1 6.2 121.9 2 0.0% 1.5 1.2 1047.0 1296 4.5%
0.4 3.9 101.3 2 0.0% 10.3 14.3 988.4 392 4.7%
0.7 25.5 135.8 2 0.0% 2.2 6.6 970.9 562 4.8%

1 4.6 204.7 2 0.0% 4.1 3.1 > 10h 591 8.9%

(4,5,10,0.1)

0.1 4.8 83.7 2 1.7% 3.0 7.2 > 10h 1508 9.4%
0.4 13.6 88.8 2 1.6% 1.1 1.0 > 10h 723 6.4%
0.7 6.8 102.2 2 1.6% 2.1 5.0 4502.0 479 4.9%

1 6.4 118.4 2 1.8% 12.6 4.2 > 10h 566 7.4%

(4,5,10,0.3)

0.1 17.9 199.3 2 1.8% 3.8 8.2 7782.2 1059 4.2%
0.4 25.3 103.5 2 1.8% 6.7 6.3 12134.1 667 2.6%
0.7 13.8 50.2 2 1.7% 9.0 10.3 11770.6 586 4.5%

1 8.6 107.1 2 1.7% 2.0 3.8 9143.7 421 2.2%

(4,5,10,0.5)

0.1 10.4 189.7 2 1.7% 1.2 0.6 > 10h 366 9.0%
0.4 6.2 38.2 2 1.8% 5.7 5.5 > 10h 1429 9.3%
0.7 4.0 72.6 2 1.8% 3.1 3.1 12449.6 617 4.9%

1 1.0 41.1 2 1.8% 17.4 40.7 11130.6 739 4.3%
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Table 7 Algorithmic details for the location-transportation problem over a budgeted uncertainty set (continued)

(T, I, J,αd) αu
νLDR ν2S-LDR, C&CG νΩ(LDR) νΩ(2S-LDR) ν̄NA-DO

R

Time (s) Time (s) #iterations Gap Time (s) Time (s) Time (s) #iterations Gap

(4,10,10,0.1)

0.1 10.7 13318.8 1 4.1% 21.0 43.0 > 10h 1880 5.2%
0.4 18.9 13171.6 1 4.8% 14.8 9.2 > 10h 2154 8.7%
0.7 33.7 4419.5 2 4.6% 18.0 49.5 > 10h 776 8.2%

1 3.4 7159.0 2 4.8% 14.6 6.9 14098.5 1275 4.1%

(4,10,10,0.3)

0.1 35.8 10763.5 1 2.4% 4.6 9.1 9702.9 885 4.8%
0.4 12.7 7688.3 2 4.8% 9.3 8.2 > 10h 755 8.6%
0.7 24.5 12108.4 1 4.6% 8.5 5.2 > 10h 1343 13.4%

1 33.8 7580.7 2 3.2% 8.8 1.2 13045.5 862 4.9%

(4,10,10,0.5)

0.1 23.1 8361.0 2 2.4% 36.8 7.7 10972.8 765 1.5%
0.4 17.5 9441.9 2 4.4% 36.9 69.7 > 10h 791 5.7%
0.7 16.8 5638.9 2 2.3% 38.5 50.6 14347.7 1511 4.4%

1 26.7 3497.6 2 2.4% 29.5 20.6 > 10h 696 8.7%

(5,5,10,0.1)

0.1 2.3 372.6 4 1.6% 34.3 17.0 > 10h 1439 7.5%
0.4 5.8 989.5 4 2.8% 28.3 38.4 > 10h 267 8.2%
0.7 5.4 657.6 2 1.9% 21.4 31.2 15167.1 605 4.6%

1 3.6 784.6 3 1.7% 31.3 52.0 > 10h 904 7.0%

(5,5,10,0.3)

0.1 1.8 883.5 2 2.8% 39.3 84.0 > 10h 789 5.2%
0.4 5.5 607.0 2 1.9% 24.5 23.9 16175.2 1053 4.8%
0.7 4.5 414.9 10 2.8% 27.4 33.6 13106.8 762 4.8%

1 3.5 959.7 2 1.3% 19.5 32.5 14376.6 1016 2.0%

(5,5,10,0.5)

0.1 5.0 1009.4 2 1.8% 35.5 94.5 > 10h 418 5.6%
0.4 6.2 723.7 2 3.0% 38.5 52.0 13067.1 1329 4.5%
0.7 7.9 383.6 2 2.5% 39.5 53.6 15368.2 911 4.0%

1 9.9 724.3 2 1.6% 39.5 66.5 14150.1 521 4.7%

D.3. Capital Budgeting with Loan

Table 8 Results for the capital budgeting problem with unrestricted loans

Instance (T, I) B νK
UB Optimality Gap (%)

νΩ ν̄NA-DO
R ν̄DNA-DO

R

(
νΩ−νK
νK

) ( ν̄NA-DO
R −νK

νK

) ( ν̄DNA-DO
R −νK

νK

)
1

(3,5)

0 1.8 2.2 2.1 2.1 19.7% 16.1% 14.5%
2 50 6.7 7.9 7.6 7.5 18.0% 14.1% 12.6%
3 100 7.6 8.8 8.5 8.4 16.2% 12.8% 10.4%
4 150 7.8 8.8 8.5 8.3 13.1% 9.1% 7.0%

5

(3,10)

0 6.7 7.9 7.6 7.5 18.7% 13.8% 12.3%
6 50 11.7 13.9 13.4 13.1 18.9% 14.5% 11.8%
7 100 16.7 19.7 19.2 18.8 18.5% 15.2% 12.6%
8 150 16.7 19.7 19.1 18.7 18.0% 14.1% 11.8%

9

(3,15)

0 8.9 10.4 10.1 9.9 16.5% 13.3% 11.0%
10 50 13.7 16.4 15.9 15.5 19.4% 15.8% 13.0%
11 100 18.9 22.4 21.6 21.1 18.7% 14.3% 11.8%
12 150 21.6 26.0 25.1 24.6 20.4% 16.3% 13.9%

13

(3,20)

0 11.9 13.8 13.2 13.0 16.0% 11.2% 8.9%
14 50 16.4 19.8 19.2 18.9 21.1% 17.6% 15.6%
15 100 21.7 25.8 25.1 24.7 19.0% 15.8% 13.8%
16 150 27.1 31.8 31.0 30.4 17.5% 14.4% 12.4%

17

(3,25)

0 17.7 20.2 19.1 18.8 14.2% 8.3% 6.7%
18 50 22.5 26.2 25.3 24.9 16.5% 12.7% 10.9%
19 100 26.5 32.2 31.2 30.8 21.6% 17.8% 16.4%
20 150 31.7 38.2 36.8 36.2 20.5% 16.1% 14.3%

21

(3,30)

0 22.2 26.4 25.6 25.3 18.9% 15.4% 13.9%
22 50 26.5 32.4 31.2 30.8 22.3% 17.9% 16.5%
23 100 31.4 38.4 37.4 36.9 22.3% 19.1% 17.6%
24 150 37.1 44.4 42.9 42.4 19.7% 15.8% 14.3%



60

Table 8 Results for the capital budgeting problem with unrestricted loans (continued)

Instance (T, I) B νK
UB Optimality Gap (%)

νΩ ν̄NA-DO
R ν̄DNA-DO

R

(
νΩ−νK
νK

) ( ν̄NA-DO
R −νK

νK

) ( ν̄DNA-DO
R −νK

νK

)
25

(4,5)

0 3.3 3.8 3.6 3.5 17.1% 10.7% 8.0%
26 50 8.3 9.9 9.4 9.2 19.2% 13.7% 11.1%
27 100 8.7 10.2 9.7 9.5 17.2% 12.0% 9.5%
28 150 7.6 9.1 8.6 8.4 18.8% 13.1% 10.3%
29 200 8.7 10.2 9.9 9.6 17.4% 13.4% 10.7%
30 250 8.7 10.2 9.6 9.3 16.7% 9.7% 6.9%

31

(4,10)

0 8.4 9.9 9.5 9.2 18.3% 12.7% 9.9%
32 50 13.4 16.0 15.1 14.7 19.2% 12.3% 9.4%
33 100 18.0 22.0 21.2 20.8 22.1% 17.7% 15.4%
34 150 20.8 25.0 23.9 23.3 19.7% 14.7% 11.7%
35 200 20.4 25.0 24.1 23.5 22.2% 18.0% 15.2%
36 250 21.1 25.0 24.0 23.4 18.1% 13.5% 10.7%

37

(4,15)

0 12.9 15.3 14.5 14.2 18.0% 11.7% 9.3%
38 50 18.0 21.3 20.0 19.5 18.2% 11.0% 8.2%
39 100 23.1 27.3 26.3 25.8 18.2% 14.0% 11.9%
40 150 28.3 33.3 32.1 31.4 17.8% 13.7% 11.3%
41 200 31.6 38.2 36.9 36.0 20.9% 16.6% 13.8%
42 250 32.3 38.2 36.2 35.5 18.1% 12.0% 9.7%

43

(4,20)

0 16.0 19.3 18.8 18.4 20.6% 17.0% 15.1%
44 50 21.3 25.3 23.9 23.4 18.9% 12.0% 9.6%
45 100 25.8 31.3 30.4 29.7 21.6% 17.8% 15.4%
46 150 31.3 37.3 35.2 34.5 19.2% 12.4% 10.1%
47 200 36.6 43.3 41.3 40.6 18.3% 12.9% 11.0%
48 250 39.7 48.3 46.8 45.9 21.7% 17.8% 15.6%

49

(4,25)

0 22.7 27.7 26.8 26.3 22.2% 18.2% 16.0%
50 50 26.8 33.7 31.8 31.3 25.6% 18.5% 16.7%
51 100 32.4 39.7 37.7 37.1 22.5% 16.4% 14.5%
52 150 37.9 45.7 43.7 42.9 20.5% 15.3% 13.1%
53 200 42.2 51.7 50.1 49.3 22.6% 18.7% 16.9%
54 250 46.8 57.7 55.6 54.6 23.3% 18.8% 16.7%

55

(4,30)

0 23.0 27.9 26.3 25.9 21.6% 14.6% 12.6%
56 50 26.1 33.9 32.8 32.5 29.7% 25.5% 24.2%
57 100 32.6 39.9 38.0 37.5 22.3% 16.4% 14.9%
58 150 36.4 45.9 43.7 43.1 26.1% 20.1% 18.4%
59 200 41.5 51.9 49.6 48.9 25.1% 19.6% 17.8%
60 250 46.1 57.9 55.5 54.8 25.7% 20.5% 19.0%

61

(5,5)

0 4.9 6.1 5.8 5.6 23.6% 17.4% 14.5%
62 50 10.5 13.0 12.3 12.0 23.5% 16.9% 13.3%
63 100 14.4 17.6 16.7 16.2 22.4% 16.4% 13.0%
64 150 14.1 17.6 17.0 16.5 24.2% 20.0% 16.6%
65 200 14.4 17.6 16.7 16.2 21.7% 15.6% 12.1%
66 250 14.0 17.6 16.7 16.3 25.6% 19.3% 16.5%
67 300 14.3 17.6 16.9 16.4 22.6% 17.7% 14.5%
68 350 14.4 17.6 16.6 16.2 22.0% 15.6% 12.3%

69

(5,10)

0 10.0 12.0 11.3 11.0 19.5% 12.6% 9.6%
70 50 14.0 18.0 17.2 16.9 29.0% 23.3% 20.9%
71 100 19.7 24.0 23.1 22.6 21.9% 17.6% 14.6%
72 150 24.0 30.0 28.5 27.7 24.9% 18.8% 15.4%
73 200 24.6 30.0 28.8 28.0 21.9% 17.1% 13.8%
74 250 23.1 30.0 28.8 28.2 29.9% 24.8% 22.3%
75 300 23.5 30.0 28.7 28.0 27.7% 22.4% 19.3%
76 350 22.7 30.0 28.4 27.8 31.9% 25.1% 22.4%
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Table 8 Results for the capital budgeting problem with unrestricted loans (continued)

Instance (T, I) B νK
UB Optimality Gap (%)

νΩ ν̄NA-DO
R ν̄DNA-DO

R

(
νΩ−νK
νK

) ( ν̄NA-DO
R −νK

νK

) ( ν̄DNA-DO
R −νK

νK

)
77

(5,15)

0 12.7 16.2 15.3 14.9 28.1% 20.8% 17.5%
78 50 17.6 22.2 21.5 21.1 26.2% 22.3% 19.6%
79 100 21.7 28.2 26.6 25.8 29.9% 22.5% 18.9%
80 150 26.2 34.2 32.4 31.5 30.5% 23.7% 20.0%
81 200 30.8 40.2 38.9 38.1 30.7% 26.3% 23.8%
82 250 31.6 40.5 39.0 38.2 28.1% 23.3% 20.8%
83 300 30.7 40.5 39.2 38.4 32.2% 27.8% 25.4%
84 350 31.3 40.5 38.8 38.0 29.6% 24.0% 21.6%

85

(5,20)

0 19.1 23.6 22.9 22.3 23.1% 19.6% 16.4%
86 50 23.1 29.6 28.6 27.9 27.9% 23.7% 20.7%
87 100 28.1 35.6 34.4 33.7 26.6% 22.6% 20.0%
88 150 33.8 41.6 39.7 38.9 23.1% 17.7% 15.3%
89 200 38.2 47.6 46.5 45.4 24.5% 21.8% 18.9%
90 250 39.9 53.6 52.4 51.1 34.2% 31.2% 28.0%
91 300 46.8 58.9 57.0 55.7 25.9% 21.7% 19.1%
92 350 45.9 58.9 57.7 56.6 28.4% 25.7% 23.3%

93

(5,25)

0 23.5 29.6 29.0 28.4 25.9% 23.4% 20.9%
94 50 28.6 35.6 34.7 33.9 24.3% 21.3% 18.3%
95 100 33.4 41.6 39.9 39.3 24.6% 19.7% 17.6%
96 150 36.5 47.6 45.9 44.9 30.5% 25.9% 23.1%
97 200 42.6 53.6 51.7 50.6 25.9% 21.4% 19.0%
98 250 47.1 59.6 58.2 56.9 26.4% 23.4% 20.6%
99 300 51.6 65.6 63.5 62.6 27.0% 23.0% 21.2%
100 350 56.1 71.6 69.7 68.3 27.6% 24.3% 21.8%

101

(5,30)

0 25.6 32.2 31.1 30.6 26.1% 21.8% 19.8%
102 50 29.1 38.2 37.1 36.5 31.3% 27.4% 25.3%
103 100 34.4 44.2 43.3 42.6 28.7% 26.0% 24.1%
104 150 37.8 50.2 48.7 48.1 32.8% 28.7% 27.2%
105 200 42.0 56.2 54.7 53.5 33.9% 30.2% 27.4%
106 250 47.2 62.2 60.3 59.5 31.9% 27.8% 26.2%
107 300 54.4 68.2 66.4 65.3 25.5% 22.1% 20.0%
108 350 60.6 74.2 72.1 70.7 22.4% 18.9% 16.5%

109

(6,5)

0 5.6 6.8 6.6 6.4 20.2% 18.0% 14.1%
110 50 10.6 12.8 12.5 12.1 20.5% 18.0% 14.2%
111 100 13.6 16.9 16.3 15.8 24.0% 19.8% 16.4%
112 150 12.8 16.9 16.5 16.0 31.4% 28.4% 24.8%
113 200 13.2 16.9 16.5 16.0 27.7% 24.9% 21.2%
114 250 12.9 16.9 16.5 15.9 30.5% 27.7% 23.1%
115 300 13.0 16.9 16.5 15.9 30.1% 27.2% 22.8%
116 350 13.3 16.9 16.5 16.0 27.2% 24.2% 20.3%
117 400 12.9 16.9 16.4 15.9 30.7% 26.9% 23.1%

118

(6,10)

0 10.9 14.0 13.8 13.4 27.8% 26.0% 22.5%
119 50 15.9 20.0 19.6 18.9 25.8% 23.5% 19.0%
120 100 20.7 26.0 25.4 24.5 25.4% 22.4% 18.2%
121 150 24.9 32.0 31.4 30.3 28.3% 25.8% 21.5%
122 200 27.1 35.0 34.2 33.3 29.2% 26.5% 23.1%
123 250 26.6 35.0 34.2 33.2 31.5% 28.7% 24.7%
124 300 26.8 35.0 34.4 33.3 30.4% 28.1% 24.0%
125 350 27.3 35.0 34.4 33.3 28.3% 26.3% 22.2%
126 400 26.9 35.0 34.2 33.2 29.9% 27.0% 23.3%
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Table 8 Results for the capital budgeting problem with unrestricted loans (continued)

Instance (T, I) B νK
UB Optimality Gap (%)

νΩ ν̄NA-DO
R ν̄DNA-DO

R

(
νΩ−νK
νK

) ( ν̄NA-DO
R −νK

νK

) ( ν̄DNA-DO
R −νK

νK

)
127

(6,15)

0 15.9 19.9 19.5 19.0 24.7% 22.5% 19.3%
128 50 19.8 25.9 25.5 24.9 30.7% 28.7% 25.8%
129 100 25.3 31.9 31.4 30.6 25.8% 23.9% 20.9%
130 150 28.9 37.9 37.3 36.4 31.2% 29.3% 26.1%
131 200 33.5 43.9 43.1 42.1 30.8% 28.3% 25.5%
132 250 37.0 49.7 48.7 47.6 34.3% 31.7% 28.7%
133 300 36.9 49.7 49.0 47.8 34.8% 32.9% 29.7%
134 350 38.5 49.7 48.8 47.6 29.1% 26.8% 23.8%
135 400 37.9 49.7 48.9 47.7 31.2% 29.0% 25.9%

136

(6,20)

0 22.4 28.6 28.3 27.8 27.6% 26.5% 23.9%
137 50 27.6 34.6 34.3 33.5 25.4% 24.3% 21.6%
138 100 31.7 40.6 40.1 39.3 27.9% 26.3% 23.7%
139 150 36.9 46.6 46.1 45.3 26.4% 25.2% 22.8%
140 200 41.0 52.6 52.1 50.9 28.4% 27.2% 24.4%
141 250 45.1 58.6 58.2 57.1 29.8% 28.8% 26.4%
142 300 49.7 64.6 63.8 62.6 30.0% 28.3% 26.0%
143 350 53.2 70.6 70.0 68.8 32.6% 31.5% 29.3%
144 400 54.3 71.5 70.9 69.6 31.6% 30.6% 28.1%

145

(6,25)

0 29.0 37.2 36.9 36.2 28.2% 27.2% 24.9%
146 50 32.8 43.2 42.8 42.1 31.5% 30.3% 28.2%
147 100 37.5 49.2 48.7 48.0 31.3% 30.0% 28.0%
148 150 42.5 55.2 54.6 53.7 29.9% 28.5% 26.3%
149 200 46.2 61.2 60.5 59.7 32.5% 31.0% 29.2%
150 250 51.9 67.2 66.7 65.7 29.4% 28.5% 26.6%
151 300 56.1 73.2 72.3 71.2 30.4% 28.9% 26.8%
152 350 61.1 79.2 78.6 77.4 29.6% 28.6% 26.7%
153 400 64.5 85.2 84.5 83.0 32.0% 30.9% 28.7%

154

(6,30)

0 31.5 42.6 42.2 41.6 35.2% 34.1% 32.2%
155 50 37.5 48.6 48.1 47.5 29.5% 28.3% 26.6%
156 100 40.6 54.6 54.1 53.4 34.4% 33.1% 31.5%
157 150 45.2 60.6 60.0 59.2 33.9% 32.6% 30.8%
158 200 49.1 66.6 66.0 65.1 35.5% 34.4% 32.5%
159 250 56.0 72.6 71.9 71.0 29.7% 28.5% 26.9%
160 300 59.4 78.6 78.0 76.8 32.4% 31.4% 29.4%
161 350 65.0 84.6 83.8 82.6 30.2% 29.0% 27.1%
162 400 68.5 90.6 89.8 88.5 32.2% 31.1% 29.2%
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D.4. Capital Budgeting with Integer Loan
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Figure 9 Optimality gap improvements for capital budgeting instances with general integer loan decisions.
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Table 9 Solution times of different bounding methods in seconds for the capital budgeting problem

Instance (T, I) B
Fractional loan Integral loan

νK νΩ ν̄NA
R ν̄DNA

R νK νΩ ν̄NA
R ν̄DNA

R

1

(3,5)

0 27.0 63.0 56.1 62.1 67.2 72.7 112.3 80.8
2 50 16.2 85.2 83.8 74.9 52.6 99.3 678.9 142.2
3 100 25.8 60.8 55.5 52.2 43.5 95.6 260.8 287.1
4 150 25.2 56.2 55.3 35.5 64.0 59.3 259.9 156.1

5

(3,10)

0 35.4 547.4 547.4 521.2 111.3 840.0 1133.1 948.6
6 50 40.5 384.5 254.5 376.1 77.5 771.1 413.1 557.9
7 100 34.5 340.5 392.5 366.2 96.5 373.2 478.1 432.2
8 150 44.4 514.4 657.4 471.2 107.7 1215.7 1447.6 604.0

9

(3,15)

0 90.9 1502.9 1178.9 1390.9 218.5 2029.6 3812.6 3569.0
10 50 90.0 1169.0 1007.0 1061.0 201.8 1467.1 2698.8 2868.9
11 100 96.3 1438.3 1168.3 1556.3 169.1 2261.3 2553.9 5394.1
12 150 94.8 1535.8 1247.8 1355.8 200.5 1974.3 3441.4 3313.6

13

(3,20)

0 611.4 3138.4 1896.4 2568.4 689.5 4305.1 3531.1 5606.8
14 50 653.1 3809.1 2498.1 3005.1 772.2 5003.3 3962.0 7371.5
15 100 667.2 3057.2 2643.2 4295.2 743.4 3777.1 5651.2 12202.7
16 150 609.6 3539.6 2918.6 2557.6 765.9 4162.9 5034.6 5319.8

17

(3,25)

0 4292.4 8689.4 4392.9 5521.4 4561.3 9868.9 7116.6 10188.8
18 50 3762.0 6794.0 3465.3 5684.5 3953.5 7354.5 4636.6 11134.0
19 100 3759.0 6921.0 3830.0 4160.5 4054.2 8311.5 6707.6 6271.3
20 150 4012.8 7998.8 4716.5 4608.3 4336.0 8751.4 6883.0 8159.8

21

(3,30)

0 1808.1 5929.1 3754.7 8207.1 2188.2 6894.2 6115.2 20660.0
22 50 2083.8 5512.8 2817.2 8133.8 2394.6 6036.5 3818.2 15524.7
23 100 2027.1 5422.1 3152.7 9087.1 2307.5 5763.8 4756.4 23493.2
24 150 1850.7 6203.7 4069.8 7591.7 2225.7 7524.8 5719.4 15765.4

25

(4,5)

0 89.2 1012.2 626.8 1185.2 173.3 3395.6 686.6 1483.1
26 50 97.2 1141.2 592.8 1236.2 190.1 1536.5 665.1 1478.5
27 100 106.0 1189.0 624.7 1259.0 173.2 2337.4 706.7 1488.1
28 150 80.8 849.8 470.5 932.8 170.7 1740.1 516.6 1071.5
29 200 85.2 838.2 390.8 952.2 160.4 3339.3 423.1 1060.8
30 250 107.2 1039.2 596.8 1173.2 202.7 2826.5 665.2 1332.0

31

(4,10)

0 590.0 2420.0 1277.3 3150.0 713.9 3186.4 1544.7 5161.8
32 50 593.2 2247.2 1050.1 3178.2 720.7 5845.5 1295.2 4602.0
33 100 580.8 2189.8 1049.2 2941.8 779.5 12174.6 1236.0 4424.5
34 150 470.0 2230.0 1449.3 3485.0 636.5 2278.7 1820.4 5099.7
35 200 417.2 2208.2 1285.5 2833.2 602.3 5185.9 1572.6 4482.1
36 250 431.6 2198.6 1353.7 3231.6 583.6 10838.1 1576.6 4862.5

37

(4,15)

0 1372.8 5153.8 3131.9 5853.8 1679.6 7835.0 4739.6 11098.8
38 50 1370.4 4828.4 2509.6 6153.4 1724.7 8235.8 3476.6 12602.2
39 100 1268.0 5458.0 3486.7 7861.0 1525.9 15446.3 5541.5 21591.5
40 150 1507.6 5316.6 2784.4 7977.6 1750.2 17220.9 3909.3 21449.1
41 200 1426.4 5243.4 3039.6 6315.4 1613.6 12527.3 4895.8 11460.3
42 250 1589.2 5702.2 2990.8 8046.2 1911.2 19692.0 4633.7 21338.5

43

(4,20)

0 4676.4 10535.4 5935.6 17371.4 5228.1 20173.7 9827.4 > 10h
44 50 4988.0 10909.0 5992.7 16613.0 5402.2 14597.9 7704.6 > 10h
45 100 4942.8 10226.8 5601.9 17168.8 5356.3 20126.0 9011.5 > 10h
46 150 4111.2 9830.2 5337.5 13249.2 4642.0 27734.9 7855.0 > 10h
47 200 4633.6 9934.6 6239.1 16356.6 5176.0 16374.7 9543.7 > 10h
48 250 4344.4 9147.4 5522.3 14321.4 4749.8 18371.0 7313.3 > 10h

49

(4,25)

0 8113.2 16000.2 10434.8 25348.2 8769.9 > 10h 13120.7 > 10h
50 50 7384.0 14978.0 9753.3 21113.0 7679.0 > 10h 12535.0 > 10h
51 100 7619.2 14613.2 9046.1 20856.2 7865.7 > 10h 12054.9 > 10h
52 150 7864.4 15145.4 9942.3 22623.4 8270.7 > 10h 12352.3 > 10h
53 200 7440.4 14736.4 8354.9 25575.4 7731.2 > 10h 9985.8 > 10h
54 250 7986.4 15734.4 8246.9 27221.4 8265.6 > 10h 10005.2 > 10h
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Table 9 Solution times of different bounding methods in seconds for the capital budgeting problem (continued)

Instance (T, I) B
Fractional loan Integral loan

νK νΩ ν̄NA
R ν̄DNA

R νK νΩ ν̄NA
R ν̄DNA

R

55

(4,30)

0 13898.8 20608.8 12197.9 > 10h 14146.4 > 10h 15337.6 > 10h
56 50 13221.6 20082.6 10940.4 33232.6 13470.7 > 10h 14137.2 > 10h
57 100 12854.0 20045.0 13182.0 > 10h 13435.0 > 10h 19973.4 > 10h
58 150 13757.6 20898.6 13569.7 > 10h 14320.1 > 10h 19708.7 > 10h
59 200 12260.8 19245.8 10654.5 > 10h 12773.9 > 10h 14818.3 > 10h
60 250 13656.4 20471.4 12559.6 > 10h 14180.5 > 10h 18532.9 > 10h

61

(5,5)

0 1188.0 4539.0 2692.7 6018.0 1302.5 6041.9 2993.6 7706.0
62 50 1219.0 4453.0 2802.0 5922.0 1297.0 4489.5 3164.9 6700.7
63 100 1469.0 4346.0 2864.0 5529.0 1545.1 12850.6 3207.0 6774.4
64 150 1315.0 4093.0 2428.7 5442.0 1443.7 7996.8 2647.2 6284.1
65 200 1099.0 4026.0 2384.0 5303.0 1247.0 12676.3 2573.5 6182.0
66 250 1194.0 4438.0 2825.3 6075.0 1294.4 6630.7 3110.0 7217.1
67 300 812.5 3603.5 2135.7 4741.5 923.0 12057.9 2253.7 5600.9
68 350 1376.5 5019.5 3046.3 6457.5 1484.3 19850.1 3340.3 7406.8

69

(5,10)

0 4275.5 10708.5 9053.2 14882.5 4512.4 14699.0 11601.7 20366.7
70 50 3354.0 11245.0 9677.3 13469.0 3547.8 13864.4 11116.0 16596.1
71 100 3764.5 12332.5 10597.7 14540.5 3959.8 20538.2 12756.1 18039.9
72 150 3769.0 10903.0 10864.4 13991.0 3991.5 22267.6 13768.9 19160.7
73 200 3507.5 10891.5 10037.7 13358.5 3679.3 21045.9 12135.6 18143.1
74 250 4005.5 12899.5 11522.3 16746.5 4244.5 17293.1 13665.4 20972.2
75 300 3507.0 10998.0 13136.7 13005.0 3724.3 25089.7 18343.2 17303.2
76 350 3803.0 9881.0 8232.7 12413.0 4006.9 21655.3 9519.8 17092.7

77

(5,15)

0 7936.0 22038.0 14625.3 28044.0 8368.5 > 10h 16465.2 > 10h
78 50 8516.5 22334.5 14089.7 29802.5 8893.6 > 10h 15924.1 > 10h
79 100 9214.0 21936.0 14357.3 29063.0 9757.7 > 10h 15971.1 > 10h
80 150 9150.0 22127.0 13484.7 28673.0 9541.0 > 10h 14723.9 > 10h
81 200 8487.5 21143.5 13829.0 27331.5 8850.1 > 10h 15523.1 > 10h
82 250 7664.5 21657.5 13638.3 28499.5 8033.2 > 10h 14898.5 > 10h
83 300 8442.5 22287.5 14258.3 27426.5 8785.5 > 10h 15829.6 > 10h
84 350 9361.5 19241.5 12027.7 27496.5 9747.9 > 10h 13072.9 > 10h

85

(5,20)

0 12474.0 31538.0 24198.3 > 10h 13006.9 > 10h 28183.8 > 10h
86 50 13804.0 30383.0 22819.2 > 10h 14552.9 > 10h 26801.1 > 10h
87 100 13531.5 27682.5 21402.1 > 10h 14425.2 > 10h 25016.9 > 10h
88 150 12393.5 30610.5 23529.6 > 10h 13144.1 > 10h 28047.3 > 10h
89 200 13991.5 32146.5 25330.4 > 10h 14732.0 > 10h 31559.2 > 10h
90 250 12486.0 28563.0 22135.8 > 10h 13412.9 > 10h 26835.3 > 10h
91 300 14566.5 32117.5 24472.9 > 10h 15184.6 > 10h 28655.3 > 10h
92 350 14411.0 32416.0 26284.2 > 10h 15094.5 > 10h 31906.3 > 10h

93

(5,25)

0 19659.5 > 10h 22510.6 > 10h 20733.1 > 10h > 10h > 10h
94 50 19808.5 > 10h 26676.1 > 10h 20452.7 > 10h > 10h > 10h
95 100 21565.0 > 10h 27794.4 > 10h 22605.3 > 10h > 10h > 10h
96 150 20473.5 > 10h 25248.3 > 10h 21390.7 > 10h > 10h > 10h
97 200 20571.5 > 10h 25523.9 > 10h 21776.2 > 10h > 10h > 10h
98 250 21483.0 > 10h 24536.7 > 10h 22207.9 > 10h > 10h > 10h
99 300 22307.5 > 10h 27119.4 > 10h 23392.4 > 10h > 10h > 10h

100 350 18784.5 > 10h 25705.0 > 10h 19746.9 > 10h > 10h > 10h

101

(5,30)

0 16882.5 > 10h 21286.1 > 10h 17358.9 > 10h > 10h > 10h
102 50 15126.5 > 10h 17585.0 > 10h 15856.9 > 10h > 10h > 10h
103 100 17118.0 > 10h 25825.6 > 10h 17614.8 > 10h > 10h > 10h
104 150 16249.5 > 10h 20582.8 > 10h 16861.9 > 10h > 10h > 10h
105 200 17442.5 > 10h 22880.6 > 10h 18291.0 > 10h > 10h > 10h
106 250 16167.0 > 10h 21657.8 > 10h 16757.5 > 10h > 10h > 10h
107 300 16427.5 > 10h 19808.3 > 10h 17289.3 > 10h > 10h > 10h
108 350 16505.0 > 10h 21061.1 > 10h 17336.6 > 10h > 10h > 10h
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Table 9 Solution times of different bounding methods in seconds for the capital budgeting problem (continued)

Instance (T, I) B
Fractional loan Integral loan

νK νΩ ν̄NA
R ν̄DNA

R νK νΩ ν̄NA
R ν̄DNA

R

109

(6,5)

0 3016.8 7432.8 5463.7 9377.8 3240.6 13927.0 6806.2 13651.4
110 50 5783.4 10153.4 7404.2 13493.4 5940.9 11026.0 9714.2 18790.5
111 100 5794.8 10968.8 8336.0 15323.8 6040.9 18911.0 11222.6 25385.0
112 150 4342.2 9224.2 6689.4 11467.2 4508.2 13912.7 8315.9 16565.2
113 200 4884.6 10710.6 7782.0 14405.6 5035.6 18792.8 10012.1 23365.9
114 250 4446.6 8944.6 6575.8 11688.6 4707.9 16686.1 7770.8 17262.4
115 300 5827.2 11153.2 8325.5 14773.2 6062.7 17358.7 11622.5 25515.4
116 350 4345.8 8927.8 6816.8 12029.8 4605.7 16729.0 9140.3 17563.5
117 400 4180.2 9836.2 7160.2 12836.2 4367.5 14595.2 8522.6 19430.3

118

(6,10)

0 10104.6 > 10h 10200.6 24872.6 10546.4 27686.4 13701.4 > 10h
119 50 8583.0 > 10h 9351.0 21351.0 9209.9 22440.2 12711.7 35626.3
120 100 11280.6 > 10h 11376.6 22130.6 11747.3 29362.6 16320.9 35307.2
121 150 9476.4 > 10h 9860.4 23221.4 9962.1 31165.4 12165.8 > 10h
122 200 9439.2 > 10h 9919.2 20601.2 9959.5 23400.1 13121.1 > 10h
123 250 8892.6 > 10h 9084.6 17979.6 9535.3 24697.2 10903.3 26120.8
124 300 9023.4 > 10h 9983.4 18604.4 9466.8 30363.2 11968.1 26395.9
125 350 11331.6 > 10h 11427.6 27149.6 11807.6 28773.7 13932.5 > 10h
126 400 11216.4 > 10h 12080.4 28663.4 11832.9 26791.1 14588.3 > 10h

127

(6,15)

0 18997.2 > 10h > 10h > 10h 19922.6 > 10h > 10h > 10h
128 50 18051.6 > 10h > 10h > 10h 19040.8 > 10h > 10h > 10h
129 100 16756.2 > 10h > 10h > 10h 17648.3 > 10h > 10h > 10h
130 150 20196.0 > 10h > 10h > 10h 21130.6 > 10h > 10h > 10h
131 200 19142.4 > 10h > 10h > 10h 20092.3 > 10h > 10h > 10h
132 250 19387.2 > 10h > 10h > 10h 20388.0 > 10h > 10h > 10h
133 300 16451.4 > 10h > 10h > 10h 17483.9 > 10h > 10h > 10h
134 350 16513.2 > 10h > 10h > 10h 17490.8 > 10h > 10h > 10h
135 400 15548.4 > 10h > 10h > 10h 16621.3 > 10h > 10h > 10h

136

(6,20)

0 26038.2 > 10h > 10h > 10h 28075.0 > 10h > 10h > 10h
137 50 25179.0 > 10h > 10h > 10h 26638.6 > 10h > 10h > 10h
138 100 27861.0 > 10h > 10h > 10h 29812.5 > 10h > 10h > 10h
139 150 27286.2 > 10h > 10h > 10h 29240.4 > 10h > 10h > 10h
140 200 26205.0 > 10h > 10h > 10h 27575.8 > 10h > 10h > 10h
141 250 26002.2 > 10h > 10h > 10h 27503.4 > 10h > 10h > 10h
142 300 28728.0 > 10h > 10h > 10h 30580.6 > 10h > 10h > 10h
143 350 24949.8 > 10h > 10h > 10h 26952.8 > 10h > 10h > 10h
144 400 29950.2 > 10h > 10h > 10h 31406.3 > 10h > 10h > 10h

145

(6,25)

0 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
146 50 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
147 100 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
148 150 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
149 200 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
150 250 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
151 300 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
152 350 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
153 400 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h

154

(6,30)

0 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
155 50 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
156 100 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
157 150 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
158 200 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
159 250 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
160 300 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
161 350 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
162 400 > 10h > 10h > 10h > 10h > 10h > 10h > 10h > 10h
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