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In this work, we design primal and dual bounding methods for multistage adjustable robust optimization (MSARO) problems by adapting two decision rules rooted in the stochastic programming literature. This approach approximates the primal and dual formulations of an MSARO problem with two-stage models.

From the primal perspective, this is achieved by applying two-stage decision rules that restrict the functional forms of a certain subset of decision variables. We present sufficient conditions under which the well-known constraint-and-column generation algorithm can be used to solve the primal approximation with finite convergence guarantees. From the dual side, we introduce a distributionally robust dual problem for MSARO models using their nonanticipative Lagrangian dual and then apply linear decision rules on the Lagrangian multipliers. For this dual approximation, we present a monolithic bilinear program valid for continuous recourse problems, and a cutting-plane method for mixed-integer recourse problems. Our framework is general-purpose and does not require strong assumptions such as a stage-wise independent uncertainty set, and can consider integer recourse variables. Computational experiments on newsvendor, location-transportation, and capital budgeting problems show that our bounds yield considerably smaller optimality gaps compared to the existing methods.

Introduction

Many practical planning, design and operational problems involve making decisions under uncertainty at consecutive stages, where the decisions in one stage affect the decisions of the future stages. In such sequential decision-making problems, first-stage (here-and-now ) decisions are the 1 ones that are immediately implementable. Subsequent recourse (wait-and-see) decisions depend on the state of the system, which is a result of previous decisions and observations of the uncertain parameters. A solution is then an adaptable policy or decision rule that takes the previous decisions and history of uncertainty realizations as an input, and returns a new implementable decision. The dynamics of a sequential decision-making problem is depicted in Figure 1. There are several modeling frameworks for sequential decision-making problems under uncertainty. With a known probability distribution, these problems may be addressed by the multistage stochastic programming (MSP) paradigm, with the goal of optimizing some statistical performance measure over the planning horizon. There is an extensive body of research on MSP problems of various structures, with a rich literature on problems with continuous decision variables. Without a precise distribution, [START_REF] Bertsimas | A robust optimization approach to inventory theory[END_REF] point out that an assumed probability distribution might heavily impact the results if it is different than the true one, even if both distributions share the same first and second moments. To mitigate this effect, distributionally robust optimization (DRO) models are proposed for making decisions that are based on a family of probability distributions, often defined by using historical data [START_REF] Goh | Distributionally robust optimization and its tractable approximations[END_REF]. These models aim to hedge against tuning decisions to a perceived distribution. However, while some recent studies have proposed tractable solution methods for linear DRO problems under certain conditions [START_REF] Philpott | Distributionally robust SDDP[END_REF][START_REF] Bertsimas | Adaptive distributionally robust optimization[END_REF], they remain largely challenging to solve. To the best of our knowledge, the only such methodology for a multistage mixed-integer problem is developed under the assumption of endogenous uncertainty [START_REF] Yu | Multistage distributionally robust mixed-integer programming with decision-dependent moment-based ambiguity sets[END_REF], meaning that the decisions impact the underlying stochastic structure of the problem, an assumption that might not always hold.

Multistage adaptive robust optimization (MSARO) is another framework for modeling sequential decision-making problems under uncertainty, when we do not have any knowledge about the underlying probability distribution or when the underlying uncertainty is not stochastic in nature.

In designing such robust solutions, we protect ourselves against worst-case outcomes. While static (i.e., single-stage) robust optimization is tractable for a considerable number of problem structures (e.g. a linear problem with ellipsoidal uncertainty set, yielding a conic quadratic program (Ben-Tal and Nemirovski 1999); also see [START_REF] Ben-Tal | Robust optimization. Robust optimization[END_REF], Bertsimas et al. (2011aBertsimas et al. ( , 2015))), MSARO in general remains computationally difficult to solve, even for two stages [START_REF] Guslitser | Uncertainty-immunized solutions in linear programming[END_REF][START_REF] Ben-Tal | Adjustable robust solutions of uncertain linear programs[END_REF][START_REF] Feige | Robust combinatorial optimization with exponential scenarios[END_REF]). Consequently, most solution methods rely on an approximation of MSARO. In this work we present a new solution paradigm for MSARO problems by employing primal and dual decision rules that result in two-stage approximations of MSARO and its dual problem, respectively. This leads to a solution framework that returns an adaptable policy, and an optimality gap to assess the quality of the proposed policy. In what follows, we provide an overview of the existing literature on MSARO, followed by a summary of our contributions.

Literature Review

Static robust optimization is computationally less demanding than MSARO. As such, a number of studies attempt to find problem structures where the static optimal solution is also guaranteed to be an optimal solution of the MSARO [START_REF] Ben-Tal | Adjustable robust solutions of uncertain linear programs[END_REF][START_REF] Marandi | When are static and adjustable robust optimization problems with constraint-wise uncertainty equivalent?[END_REF], Bertsimas et al. 2015). For example, this is the case for linear MSARO with constraint-wise uncertainty and a compact uncertainty set, provided that it is also linear with respect to uncertain parameters.

In general, however, the solutions to the static and adaptive variants differ and the MSARO solutions are preferable by virtue of being more flexible. Figure 2 presents a summary of existing solution methods for obtaining exact, approximate, and dual bounds on the MSARO, with methods developed specifically for two-stage adaptive robust optimization (2ARO) separately categorized.

In the following, we briefly discuss each method and the specific problem structure it can address.

Exact solution methods are scarce in the MSARO literature and the existing studies mostly focus on two-stage adaptive robust optimization (2ARO). Bertsimas et al. (2012) designed a Benders decomposition and outer approximation approach for a two-stage unit commitment problem. [START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF] developed constraint-and-column generation for 2ARO problems with fixed recourse and finite or polyhedral uncertainty set. For small linear problems, [START_REF] Zhen | Adjustable robust optimization via fourier-motzkin elimination[END_REF] used the Fourier-Motzkin elimination iteratively to remove the second-stage decisions in a 2ARO

problem with continuous fixed recourse, eventually forming a static robust optimization problem that recovers optimal first-stage solutions. They extended their method to the multistage setting by modifying the algorithm to make sure that at every stage, no decision depends on the future information (these are the so-called nonanticipativity constraints). In the case of mixed-binary recourse and only objective uncertainty, [START_REF] Arslan | Decomposition-based approaches for a class of two-stage robust binary optimization problems[END_REF] proposed an exact method based on a Dantzig-Wolfe reformulation of the recourse problem. In a rare instance of studies addressing multistage decision-making in the literature of robust optimization, Georghiou et al. Solution methods for the MSARO various problem sub-classes. RDDP is an adaptation of the stochastic dual dynamic programming algorithm from the stochastic programming literature [START_REF] Pereira | Multi-stage stochastic optimization applied to energy planning[END_REF], to the robust setting. [START_REF] Georghiou | A primal-dual lifting scheme for two-stage robust optimization[END_REF] proposed a convergent method based on enumeration of the extreme points of the uncertainty set combined with affine decision rules to provide gradually improving primal and dual bounds for 2ARO problems with continuous recourse.

A commonly used approximation approach restricts adaptable/adjustable decisions to follow a certain functional form. These are known in the literature as decision rules. [START_REF] Ben-Tal | Adjustable robust solutions of uncertain linear programs[END_REF] proposed the first decision rule for the MSARO, the affine/linear decision rule (LDR), where continuous recourse decisions are expressed as affine functions of uncertain parameters where the parameters of this function are to be optimized. This approach was further generalized by introducing polynomial decision rules to construct more flexible policies. For the MSARO with continuous fixed recourse, Bertsimas et al. (2011b) showed that polynomial policies with a predetermined degree can be computed using a semidefinite program (comparable to the work of [START_REF] Bampou | Scenario-free stochastic programming with polynomial decision rules[END_REF] for MSP). [START_REF] Xu | Improved decision rule approximations for multi-stage robust optimization via copositive programming[END_REF] proposed tighter approximations than that of [START_REF] Ben-Tal | Adjustable robust solutions of uncertain linear programs[END_REF] and [START_REF] Bampou | Scenario-free stochastic programming with polynomial decision rules[END_REF] (when using the same degree), by presenting exact copositive programming reformulations of the LDR-restricted MSARO with random recourse, and the quadratic decision rule-restricted problem with fixed recourse. Nonlinear decision rules were also proposed for the MSARO with continuous fixed recourse, such as deflected and segregated affine [START_REF] Chen | A linear decision-based approximation approach to stochastic programming[END_REF], extended affine [START_REF] Chen | Uncertain linear programs: Extended affinely adjustable robust counterparts[END_REF], piecewise affine [START_REF] Goh | Distributionally robust optimization and its tractable approximations[END_REF], truncated linear [START_REF] See | Robust approximation to multiperiod inventory management[END_REF], and piecewise affine with exponentially many pieces [START_REF] Ben-Tal | A tractable approach for designing piecewise affine policies in two-stage adjustable robust optimization[END_REF]. For a comprehensive list of nonlinear decision rules, interested reader may refer to a recent survey by [START_REF] Yanıkoglu | A survey of adjustable robust optimization[END_REF].

With mixed-integer recourse, LDRs and most of its extensions are not applicable. For the mixedbinary case, [START_REF] Bertsimas | Design of near optimal decision rules in multistage adaptive mixed-integer optimization[END_REF] endogenously designed piecewise linear/constant decision rules. Later, [START_REF] Bertsimas | Binary decision rules for multistage adaptive mixed-integer optimization[END_REF] 2010) for linear MSARO. In finite or K-adaptability, the decision-maker a priori commits to K recourse decisions (while making the first-stage decisions), and then chooses among them after observing the uncertain parameters. [START_REF] Hanasusanto | K-adaptability in two-stage robust binary programming[END_REF] tailored the method for problems with binary recourse, and [START_REF] Subramanyam | K-adaptability in two-stage mixed-integer robust optimization[END_REF] later generalized it for mixed-integer 2ARO. A related approach is based on the concept of uncertainty set partitioning which returns a sequence of improving approximations [START_REF] Bertsimas | Multistage robust mixed-integer optimization with adaptive partitions[END_REF][START_REF] Postek | Multistage adjustable robust mixed-integer optimization via iterative splitting of the uncertainty set[END_REF][START_REF] Romeijnders | Piecewise constant decision rules via branch-and-bound based scenario detection for integer adjustable robust optimization[END_REF]. Although these latter methods can be used to approximate mixed-integer MSARO problems, they do not provide a fully adaptable policy.

The computational advantage obtained from the described approximation methods often comes at the expense of optimality. In a few special cases, LDRs are shown to be optimal for the MSARO. Bertsimas et al. (2010) showed that in a one-dimensional MSARO problem with no first-stage decisions, linear second-stage costs, and a hyperrectangle uncertainty set, affine policies are optimal.

In a series of studies on 2ARO problems it was shown that the result still holds if we have only random right-hand side and/or technology matrix and a simplex uncertainty set [START_REF] Bertsimas | On the power and limitations of affine policies in two-stage adaptive optimization[END_REF][START_REF] Iancu | Supermodularity and affine policies in dynamic robust optimization[END_REF][START_REF] Zhen | Adjustable robust optimization via fourier-motzkin elimination[END_REF]. Nevertheless, for the majority of the MSARO problems, decision rules yield suboptimal policies.

In order to assess the quality of the solutions of an LDR-restricted problem, [START_REF] Kuhn | Primal and dual linear decision rules in stochastic and robust optimization[END_REF] applied LDRs on the dual variables associated with the linear programming dual of the original problem with no integer decisions, obtaining a dual bound and thus an optimality gap. From another perspective, [START_REF] Hadjiyiannis | A scenario approach for estimating the suboptimality of linear decision rules in two-stage robust optimization[END_REF] solved an MSARO problem for a finite set of scenarios sampled from the uncertainty set to reach a dual bound. Inspired by these studies, Bertsimas and de Ruiter (2016) proposed a reformulation of MSARO models with polyhedral uncertainty, by dualizing over the recourse decisions and then uncertain parameters, leading to an equivalent problem that achieves a dual bound (potentially different than the one obtained from the original nested formulation) for a finite set of scenarios, that is the binding scenarios in an LDR-restricted approximation of the problem.

Contributions

In this work, we present decision rule-based approaches to obtain primal and dual bounds for an MSARO problem. On the primal side, we apply two-stage decision rules that approximate the multistage problem with a 2ARO, and leverage existing solution methods from the 2ARO literature to solve the obtained approximate model. This results in feasible adjustable policies. On the dual side, we use Lagrangian duality and Lagrangian dual decision rules for deriving a dual problem for an MSARO problem, for which we develop reformulations and solution methods. Accordingly, we obtain primal and dual bounds and an optimality gap for measuring the quality of the proposed policies. Figure 3 provides an overview of our solution framework. 
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Proposed bounding framework for MSARO More specifically, our new policies are inspired by two numerically promising decision rules recently developed in the stochastic programming community for MSP: two-stage linear decision rules [START_REF] Bodur | Two-stage linear decision rules for multi-stage stochastic programming[END_REF] and Lagrangian dual decision rules [START_REF] Daryalal | Lagrangian dual decision rules for multistage stochastic mixed integer programming[END_REF], that approximate the MSP with a two-stage problem in the primal and dual space, respectively. On the primal side we have generalized the idea of two-stage LDRs and designed a new decision rule with a broader application, including some classes of MSARO with mixed-integer recourse.

Bringing this idea to the context of robust optimization makes it possible to benefit from the rich literature of 2ARO in (approximately) solving multistage problems. On the dual side, the literature of stochastic programming and distributionally robust optimization (DRO) prove to be useful in the development of a new dual problem for MSARO, building a bridge between these close communities. As in our work in [START_REF] Daryalal | Lagrangian dual decision rules for multistage stochastic mixed integer programming[END_REF], dual solutions can also be potentially used to derive primal policies, which we leave for future research. A summary of our contributions is given below:

• For a broad class of multistage adaptive robust optimization problems, we propose a solution framework that returns adaptable policies as well as a dual bound measuring the quality of these policies. We do this by employing two-stage and Lagrangian dual decision rules, leading to novel techniques that reveal new theoretical and practical avenues.

• We present the class of two-stage decision rules that impose a predefined structure on a subset of the adaptable/adjustable decision variables, with the goal of building an approximate model that returns feasible first-stage solutions. The result is a 2ARO approximation of the original multistage problem. We show that in some special cases, constraint-and-column generation algorithm converges to the exact solution of the 2ARO approximation, otherwise the Kadaptability approach is applicable.

• For a general MSARO, we present a dual problem and prove that, under certain conditions, strong duality holds. This is one of the few approaches for obtaining dual bounds for MSARO with integer recourse. To the best of our knowledge, the only other approach that applies to mixed-integer recourse is discretization/sampling. For this dual, we introduce Lagrangian dual decision rules, resulting in a two-stage problem. We design a cutting-plane algorithm that solves the restricted dual problem for MSARO with mixed-integer recourse. We also show that in the case of continuous recourse, the problem can be reformulated as a monolithic bilinear program. Additionally, we present an alternative dual problem that is decomposable by scenario and offers computational efficacy.

• We have evaluated the performance of our solution framework over multistage versions of three classical problems in the literature of MSARO: (i) the newsvendor problem, (ii) the locationtransportation problem, and (iii) the capital budgeting problem. Each of these problem classes are suitable for a different solution method developed in this work and our analysis over various instances attests to the quality of the returned primal and dual bounds.

The remainder of this article is organized as follows. In Section 2 we introduce the notion of a state variable and design two-stage decision rules for retrieving feasible solutions and adaptable policies.

In Section 3 we reformulate the problem by employing the nonanticipativity constraints, and then propose a dual problem through their Lagrangian relaxation. To solve this dual problem, we apply linear decision rules on the Lagrangian multipliers of the relaxed nonanticipativity constraints.

We formalize the problem of obtaining the best such dual bound, and develop solution methods depending on the nature of the recourse problem. This is followed by numerical experiments in Section 4 and concluding remarks. 

Primal Bounding

In this work, we study MSARO problems of the following form:

ν = min z (1a) s.t. t∈[T ] c t (ξ t ) x t (ξ t ) ≤ z ξ T ∈ Ξ (1b) A t (ξ t )x t (ξ t ) + B t (ξ t )x t-1 (ξ t-1 ) ≤ b t (ξ t ) t ∈ [2, T ], ξ t ∈ Ξ t (1c) D t (ξ t )x t (ξ t ) ≤ d t (ξ t ) t ∈ [T ], ξ t ∈ Ξ t (1d) x t (ξ t ) ∈ R n t -n i t × Z n i t t ∈ [T ], ξ t ∈ Ξ t , (1e) 
where T denotes the number of decision stages, c t : R t → R with support Ξ where ξ t is an uncertain vector of random variables at stage t with outcomes ξ t ∈ Ξ t = proj ξ t (Ξ) ⊆ R t (where by convention ξ 1 = 1). A realization of uncertainty is referred to as a scenario, {ξ t } T t=1 , which is a set of outcomes for all random variables at every stage such that ξ t ∈ Ξ t . History of uncertainty at stage t is characterized by ξ t = (ξ 1 , . . . , ξ t ). Decision variables are denoted by

x t (ξ t ) ∈ X t (ξ t ) = x t ∈ R n t -n i t × Z n i t : D t (ξ t )x t ≤ d t (ξ t ) , i.e.
, nonanticipative policies that only depend on the history of uncertainty. Throughout, we make the following assumptions:

Assumption 1. The problem has relatively complete recourse, meaning that for all t ∈ [1, T ], ξ t and a history of feasible decisions x t (ξ t ) made up to t, there always exists a feasible decision at stage t.

Assumption 2. For t ∈ [T ] and ξ t ∈ Ξ, the maximum diameter of X t (ξ t ) is finite, i.e., the feasibility sets are bounded.

When the set X t (ξ t ), t ∈ [T ] does not have integrality restrictions (n i t = 0), we have continuous recourse, otherwise we are dealing with an MSARO problem with mixed-integer recourse. Together with constraints (1b), the objective function (1a) minimizes the worst outcome. Constraints (1c) and (1d) are state and recourse constraints, respectively: while the former link different stages, the latter are local restrictions for a specific stage.

For an MSARO with continuous recourse, it is quite common to restrict the decisions x t (ξ t ) to an affine form, which, by breaking the temporal dependencies between stages, approximates problem (1) with a static robust optimization problem. Let ν LDR be the bound obtained by applying such linear decision rules (LDRs) to the set of all decision variables. Our goal in this section is to employ a new paradigm where a specific subset of the decision variables x t (ξ t ) are enforced to follow a structured decision rule, leading to an approximation in the form of a two-stage adaptive robust optimization problem.

Two-stage Decision Rules

In a similar manner to constraints (1c) and (1d), let us partition the decision variables x t (ξ t ), t ∈ [2, T ] into x s t (ξ t ) ∈ R q t and x r t (ξ t ) ∈ R p t , state and recourse variables, respectively, with q t + p t = n t , with integrality restrictions, if any, embedded in the set X t (ξ t ). Then the MSARO can be reformulated as follows:

ν = min z (2a) s.t. t∈[T ] c s t (ξ t ) x s t (ξ t ) + c r t (ξ t ) x r t (ξ t ) ≤ z ξ T ∈ Ξ (2b) A s t (ξ t )x s t (ξ t ) + B s t (ξ t )x s t-1 (ξ t-1 ) + A r t (ξ t )x r t (ξ t ) ≤ b t (ξ t ) t ∈ [2, T ], ξ t ∈ Ξ t (2c) (x s t (ξ t ), x r t (ξ t )) ∈ X t (ξ t ) t ∈ [2, T ], ξ t ∈ Ξ t (2d) x 1 ∈ X 1 , (2e) 
where x s 1 (ξ 1 ) = x 1 , and c s t (ξ t ), A s t (ξ t ), B s t (ξ t ) are sub-arrays/sub-matrices of c t (ξ t ), A t (ξ t ), B t (ξ t ) associated with state variables with appropriate dimensions, while c r t (ξ t ), A r t (ξ t ) have the same role for the recourse variables. Let x s t (ξ t ) be approximated by a decision rule, i.e., x s t (ξ t ) = Θ t (ξ t , β t ), where Θ t : R t × R K t → R q t is a given decision rule, and β t ∈ R K t is its vector of design parameters. By substituting the decision rule in problem (2), we obtain an approximation that can be reformulated as:

ν 2S = min c 1 x 1 + max ξ T ∈Ξ min x r ∈X (x 1 ,β,ξ T ) t∈[2,T ] c s t (ξ t ) Θ t (ξ t , β t ) + c r t (ξ t ) x r t (3a) s.t. x 1 ∈ X 1 (3b) β t ∈ R K t t ∈ [2, T ], (3c) 
where:

X (x 1 , β, ξ T ) = x r t (ξ t ) t∈[2,T ] ∈ R p 2 × R p 3 × • • • × R p T : A r t (ξ t )x r t ≤ b t (ξ t ) -A s t (ξ t )Θ t (ξ t , β t ) + B s t (ξ t )Θ t-1 (ξ t-1 , β t-1 ) t ∈ [2, T ] (Θ t (ξ t , β t ), x r t ) ∈ X t (ξ t ) t ∈ [2, T ] .
Note that the decision rules are solely applied to the state variables, whereas recourse variables remain fully adjustable to the uncertain parameters (see Figure 4). Problem ( 3) is a 2ARO and the temporal dependency between stages is removed thanks to the application of the two-stage decision rule. A practical result of such an approximation is that the resulting problem can be solved using the existing solution methods for the 2ARO. In the following sections, we study two special cases that directly benefit from this literature. The first one addresses MSARO problems with continuous state variables, and the second can be applied to those problems that have only bounded integer state variables. Together, they permit the approximation of a (bounded) mixed-integer MSARO with a 2ARO.

x 1

x s t-1 (ξ t-1 ) x r t-1 (ξ t-1 ) x s t (ξ t ) x r t (ξ t ) x s T (ξ T ) x r T (ξ T ) x 1 , {β t } t∈[2,T ] x r t (ξ t ) t∈[2,T ] Stage 1 Stage 2 Stage 1 Stage t -1 Stage t Stage T x s t (ξ t ) = Θ t (ξ t , β t ) Figure 4
Two-stage decision rules

Two-stage Linear Decision Rules

If the state variables are continuous, we can approximate them with an affine function.

Let Φ t (ξ t ) = Φ t1 (ξ t ), . . . , Φ tK t (ξ t ) : R t → R K t be a vector of basis functions. The two-stage LDR is enforced by using Θ t (ξ t , β t ) = Φ t (ξ t ) β t in (3).
The result is a two-stage mixed-integer linear program:

ν 2S-LDR = min c 1 x 1 + max ξ T ∈Ξ min x r ∈X (x 1 ,β,ξ T ) t∈[2,T ] c s t (ξ t ) Φ t (ξ t ) β t + c r t (ξ t ) x r t (4a) s.t. x 1 ∈ X 1 (4b) β t ∈ R K t t ∈ [2, T ]. ( 4c 
)
Since recourse variables x r t (ξ t ) in problem ( 4) are fully adjustable, as opposed to the bound ν LDR obtained by restricting them to LDRs, it immediately follows for MSARO problems with continuous state variables, that

ν ≤ ν 2S-LDR ≤ ν LDR .
In general, we can approximate the 2ARO problem (4) with the K-adaptability approach (see Section 1.1 for an overview of the related literature), while under certain conditions it can be solved exactly. The focus of the following is on the latter case, where we assume that the original MSARO problem has fixed recourse, i.e., c t (ξ

t ) = c t , A t (ξ t ) = A t , B t (ξ t ) = B t , D t (ξ t ) = D t , t ∈ [2, T ].
For solving a 2ARO problem with Ξ either a finite discrete set or a polyhedron, and only right-hand side uncertainty, [START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF] proposed the constraint-and-column generation (C&CG) method, by drawing on the fact that not all realizations in Ξ contribute to the optimal objective value. The C&CG strives to identify the most significant scenarios by starting from a smaller uncertainty set and gradually expanding it, which leads to the generation of new columns and constraints, respectively corresponding to recourse variables and second-stage constraints for the newly identified scenario. The C&CG algorithm of [START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF] assumes fixed technology matrix and first-stage costs, i.e., that the coefficients of the first-stage variables in the objective function and constraints are deterministic. However, in problem (4), basis functions Φ t (ξ t ) appear as coefficients of β t , both in the objective function (4a) (in the term c s t (ξ t ) Φ t (ξ t )) and the secondstage constraints (terms A s t Φ t (ξ t ), B s t Φ t-1 (ξ t-1 ) and D s t Φ t (ξ t )). Next, we present the adaptation of the C&CG algorithm for solving problem (4) when the technology matrix and first-stage costs of the MSARO are not fixed, followed by a sufficient condition under which the C&CG algorithm is finitely convergent.

Constraint-and-column Generation for Two-stage LDRs Consider a relaxation of problem (4) where instead of considering the uncertainty set Ξ, a potentially empty subset of it, Ξ ⊆ Ξ, is used. With an attempt to build a stronger relaxation, the C&CG gradually expands Ξ with what we call significant scenarios. The optimal objective value of the following problem is a lower bound on ν 2S-LDR :

MP( Ξ) : min c 1 x 1 + η (5a) s.t. η ≥ t∈[2,T ] c s t Φ t (ξ t ) β t + c r t x r t,ξ t ξ T ∈ Ξ Feas (5b) A r t x r t,ξ t + A s t Φ t (ξ t ) β t + B s t Φ t-1 (ξ t-1 ) β t-1 ≤ b t (ξ t ) t ∈ [2, T ], ξ t ∈ Ξt (5c) (Φ t (ξ t ) β t , x r t,ξ t ) ∈ X t (ξ t ) t ∈ [2, T ], ξ t ∈ Ξt (5d) x 1 ∈ X 1 , η ∈ R (5e) β t ∈ R K t t ∈ [2, T ], (5f) 
where Ξt = proj ξ t ( Ξ), and Ξ Feas ⊆ Ξ is the set of identified significant scenarios ξ T for which there exists a feasible first-stage solution β such that the feasibility space X (x 1 , β, ξ T ) is not empty. In order to have an exact solution to problem (4), we need to expand Ξ with significant scenarios (and consequently the set of recourse variable copies x r t,ξ t ), until it can be proven that adding another scenario does not improve the optimal objective value of MP( Ξ), at which point its optimal objective value would be equal to ν 2S-LDR . This implies that, at convergence, solving MP( Ξ) returns an optimal solution (x 1 , β, η) such that η accurately measures the worst-case second-stage cost over the complete uncertainty set Ξ. To check whether the convergence criterion is satisfied, we solve the adversarial problem for a given first-stage solution β, which results in the following subproblem:

SP( β) = max ξ T ∈Ξ t∈[2,T ] c s t Φ t (ξ t ) βt + min x r ∈X (x 1 , β,ξ T ) t∈[2,T ] c r t x r t . (6) 
If η = SP( β), then η exactly measures the worst-case cost of the second-stage problem and (x 1 , β, η) is an optimal solution to problem (4), i.e., ν 2S-LDR = c 1 x1 + η. Otherwise, let ξT be the optimal solution of subproblem ( 6) if it is feasible, or a scenario such that X (x 1 , β, ξT ) is an empty set. We create new variables x r t, ξt , t ∈ [2, T ] and update the set of significant scenarios with Ξ = Ξ∪ ξT , and accordingly update (5c) and (5d). If subproblem ( 6) is feasible, then we update Ξ Feas = Ξ Feas ∪ ξ and (5b) as well. In this case, constraints (5b)-(5d) make up the optimality cuts. If subproblem (6) is infeasible, then (5c)-(5d) act as feasibility cuts. We repeat solving the master problem and the subproblem in a cutting-plane fashion and add the appropriate cuts, until Ξ includes all the significant scenarios and η = SP( β). The following proposition provides a sufficient condition for finite convergence of the C&CG algorithm.

Proposition 1. Assume that the uncertainty set Ξ is either a finite discrete set or a compact polyhedron, and the basis functions Φ t (ξ t ) are affine in ξ t . Then the C&CG algorithm converges to ν 2S-LDR of an MSARO with continuous and fixed recourse in a finite number of iterations.

Proof Denote by f (x 1 , ξ T , β), the objective function of the inner maximization in the two-stage problem (4). Then, we can rewrite problem (4) as:

ν 2S-LDR = min c 1 x 1 + max ξ T ∈Ξ f (x 1 , ξ T , β) | x 1 ∈ X 1 , β t ∈ R K t , t ∈ [2, T ] . First, we show that f (x 1 , ξ T , β) is convex in ξ T for given x 1 ∈ X 1 . For ξ T 1 , ξ T 2 ∈ Ξ and λ ∈ [0, 1], the following (in)equalities hold: λf (x 1 , ξ T 1 , β) + (1 -λ)f (x 1 , ξ T 2 , β) = t∈[2,T ] c s t λΦ(ξ t 1 ) + (1 -λ)Φ(ξ t 2 ) β t + λ min x r ∈X (x 1 ,β,ξ T 1 ) t∈[2,T ] c r t x r t + (1 -λ) min x r ∈X (x 1 ,β,ξ T 2 ) t∈[2,T ] c r t x r t = (7a) t∈[2,T ] c s t Φ(λξ t 1 + (1 -λ)ξ t 2 ) β t + λ min x r ∈X (x 1 ,β,ξ T 1 ) t∈[2,T ] c r t x r t + (1 -λ) min x r ∈X (x 1 ,β,ξ T 2 ) t∈[2,T ] c r t x r t ≥ (7b) t∈[2,T ] c s t Φ(λξ t 1 + (1 -λ)ξ t 2 ) β t + min x r ∈X (x 1 ,β,λξ T 1 (1-λ)ξ T 2 ) t∈[2,T ] c r t x r t = f (x 1 , λξ T 1 + (1 -λ)ξ T 2 , β).
Equality (7a) holds because Φ(ξ t ) is affine. Inequality (7b) follows from the convexity of the linear minimization problem (by the fixed recourse assumption), since ξ appears only on the right-handsides of constraints and x r t are continuous (by the continuous recourse assumption). Now, let Ξ Ext be the set of extreme points of Ξ if it is a polyhedron, or that of its convex-hull conv(Ξ) if it is a finite discrete set. In maximization of a convex function over a compact polyhedral set, there is an optimal solution that is an extreme point [START_REF] Hendrix | Introduction to nonlinear and global optimization[END_REF]. Then, the two-stage problem becomes:

ν 2S-LDR = min c 1 x 1 + η | η ≥ f (x 1 , ξ T , β), ξ T ∈ Ξ Ext , x 1 ∈ X 1 , β t ∈ R K t , t ∈ [2, T ] .
C&CG is then the process of gradually adding constraints for each extreme point. Because |Ξ Ext | < +∞, iterating over all extreme points takes finitely many steps, which concludes the proof.

In case the conditions of Proposition 1 are not satisfied, the constraint-and-column generation algorithm can still converge asymptotically to the optimal solution of problem (4). This is because the lower bound (optimal objective value of MP( Ξ)) improves with each iteration, and under the Assumptions 1 and 2, the optimal value of problem (4) is finite. Consequently, the algorithm will asymptotically approach this optimal value. Remark 1. With continuous recourse (i.e., n i t = 0, t ∈ [2, T ]), the subproblem ( 6) can be reformulated as a bilinear monolithic problem, using LP duality or Karush-Kuhn-Tucker conditions [START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF]. Let π S and π R be the LP dual variables associated with the state and recourse constraints in X (x 1 , βt , ξ T ), in the inner minimization problem of (6), respectively. Then, subproblem (6) with continuous recourse can be modeled as follows:

max t∈[2,T ] c s t Φ t (ξ t ) βt + c r t x r t (8a) s.t. A r t x r t + A s t Φ t (ξ t ) βt + B s t Φ t-1 (ξ t-1 ) βt-1 -b t (ξ t ) ≤ 0 t ∈ [2, T ] (8b) D s t Φ t (ξ t ) βt + D r t x r t -d t (ξ t ) ≤ 0 t ∈ [2, T ] (8c) A r t π S t + D r t π R t = c r t t ∈ [2, T ] (8d) A r t x r t + A s t Φ t (ξ t ) βt + B s t Φ t-1 (ξ t-1 ) βt-1 -b t (ξ t ) π S t = 0 t ∈ [2, T ] (8e) D s t Φ t (ξ t ) βt + D r t x r t -d t (ξ t ) π R t = 0 t ∈ [2, T ] (8f) ξ T ∈ Ξ, x r t ∈ R p t , π S t ∈ R m s t -, π R t ∈ R m r t - t ∈ [2, T ]. (8g) 
Inequalities ( 8b)-(8c) are the primal feasibility constraints at βt , (8d) the dual feasibility constraints, and (8e)-(8f) are the complementary slackness constraints. The latter include bilinear terms, as basis functions Φ t (ξ t ) are functions of ξ T which are decision variables in (8). They can be linearized with the addition of binary decision variables via the so-called big-M constraints.

A detailed example of building a mixed-integer linear model for a multistage location-allocation problem is provided in Appendix A.

Two-stage Piecewise-constant Decision Rules

In this section we study the application of two-stage decision rules in another special case of MSAROs, where each state variable

x s ti (ξ t ) ∈ Z, i ∈ [q t ], t ∈ [2, T
] is a bounded integer with a given domain [κ ti , κ ti ]. We define the two-stage piecewise-constant decision rule (PCDR) as follows:

Θ ti (ξ t , β t ) =          κ ti Υ ti (ξ t , β i t ) ∈ K t1 κ ti + 1 Υ ti (ξ t , β i t ) ∈ K t2 . . . . . . κ ti Υ ti (ξ t , β i t ) ∈ K tJ ,
where K tj ⊂ R, j ∈ [J] are disjoint sets with j∈[J] K tj = R, and Υ ti (ξ t , β i t ) : R t × R K t → R are functions defining the policy. We remark that the PCDR is presented for each individual variable x s ti (ξ t ), and has its own decision variables β i t . Semantically, the PCDR partitions the set R into J subsets, and then assigns an integer value to each partition.

A special case of PCDRs can be defined by restricting the form of all mappings Υ ti (ξ t , β i t ) to be a linear function of the history. In the following we show that such a decision rule results in a model that is structurally very similar to (4), thus it can be solved via the C&CG method. Let Υ ti (ξ t , β i t ) = Υ A ti (ξ t ) β i t be an affine function of basis functions Υ A ti (ξ t ), and

K tj = (a tj , b tj ], j ∈ [J] be intervals (in practice R is replaced by [-M, M ] for M sufficiently large). Then problem (3) becomes: ν 2S-PCDR = min x 1 ,β c 1 x 1 + SP PCDR (x 1 , β) x 1 ∈ X 1 , β t ∈ R q t ×K t , t ∈ [2, T ] ,
where:

SP PCDR (x 1 , β) = max ξ T ∈Ξ t∈[T ] i∈[q t ] c s ti x s ti + min x r ∈X (x 1 ,β,ξ T ) t∈[2,T ] c r t x r i (9a) s.t. j∈[J] (κ ti + j -1)υ tij = x s ti t ∈ [2, T ], i ∈ [q t ] (9b) j∈[J] ω tij = Υ A ti (ξ t ) β i t t ∈ [2, T ], i ∈ [q t ] (9c) (a tj + )υ tij ≤ ω tij ≤ b tj υ tij t ∈ [2, T ], i ∈ [q t ], j ∈ [J] (9d) j∈[J] υ tij = 1 t ∈ [2, T ], i ∈ [q t ] (9e) υ tij ∈ {0, 1} t ∈ [2, T ], i ∈ [q t ], j ∈ [J]. (9f)
In the outer maximization problem, the PCDR is modeled using the auxiliary variables υ tij , ω tij and constraints (9b)-(9f) ( is added to lower bound on ω tij to ensure that partitions K tj are disjoint). Note that, similar to Remark 1, if recourse decision variables x r t , t ∈ [2, T ] are continuous, we can reformulate problem (9) as a monolithic mixed-integer linear program. Furthermore, applying the same arguments discussed in Section 2.2 shows that the C&CG algorithm will converge asymptotically to the optimal solution of ν 2S-PCDR .

Dual Bounding

In this section, our goal is to introduce a new dual problem that provides a lower bound for MSARO problems with mixed-integer recourse. Note that, the linear programming (LP) dual of continuous MSARO problems has been studied before [START_REF] Kuhn | Primal and dual linear decision rules in stochastic and robust optimization[END_REF], showing that even then, establishing strong duality is not straightforward. Recall that a random variable ξ ∈ R n is characterized by its probability space (R n , F, P), in which F is a collection of subsets of R n and P : F → [0, 1] is a probability measure that assigns a value between 0 and 1 to each element of F ∈ F. Then, we define the support of ξ as the smallest closed set Ξ in the Borel σ-algebra such that P(Ξ) = 1. Obtaining a strong LP dual is challenging due to a fundamental aspect of MSARO: the lack of knowledge about the true probability distribution and therefore P. To see the importance of P and its impact on the dual, we formulate the LP dual of model ( 1), with no integer variables (only to demonstrate the concept) for an assigned probability distribution. Denote by

π (1b) (ξ T ), π (1c) t (ξ t ), π (1d) t (ξ t ), the
LP dual variables associated with constraints (1b), ( 1c) and (1d), respectively. Let p : Ξ t → R + be the probability density function of ξ t with respect to P. First we multiply constraints (1b)-(1d) by their associated p(ξ t ), and then apply the standard linear programming duality theory. The LP dual of continuous MSARO for P is:

L LP (P) = max E ξ T ∼P t∈[T ] b t (ξ t ) π (1c) t (ξ t ) + d t (ξ t ) π (1d) t (ξ t ) s.t. E ξ T ∼P π (1b) (ξ T ) = 1 E ξ T ∼P -c 1 π (1b) (ξ T ) + B 2 (ξ 2 ) π (1c) 2 (ξ 2 ) + D 1 π (1d) 1 = 0 E ξ T ∼P -c t (ξ t ) π (1b) (ξ T ) | ξ t + p(ξ t )A t (ξ t ) π (1c) t (ξ t )+ p(ξ t+1 )B t+1 (ξ t+1 ) π (1c) t+1 (ξ t+1 ) + p(ξ t )D t (ξ t ) π (1d) t (ξ t ) = 0 t ∈ [2, T -1], ξ t ∈ Ξ t -p(ξ T )c T (ξ T ) π (1b) (ξ T ) + p(ξ T )A T (ξ T ) π (1c) T (ξ T )+ p(ξ T )D T (ξ T ) π (1d) T (ξ T ) = 0 ξ T ∈ Ξ π (1b) (ξ T ) ≥ 0 ξ T ∈ Ξ π (1c) t (ξ t ) ≤ 0 t ∈ [2, T ], ξ t ∈ Ξ t π (1d) t (ξ t ) ≤ 0 t ∈ [T ], ξ t ∈ Ξ t .
Although we have used an assigned probability distribution P in the derivation of the LP dual bound, as mentioned, the underlying assumption in robust optimization is that we do not know the true probability distribution. As discussed by [START_REF] Kuhn | Primal and dual linear decision rules in stochastic and robust optimization[END_REF], when this dual bound is used for robust optimization problems, the quality of the bound can be drastically different based on the choice of the assigned distribution P. To obtain the best LP dual bound, denote by P = {P | p P (ξ T ) > 0, ξ T ∈ Ξ}, an ambiguity set including all probability distributions with support Ξ, i.e., every P ∈ P has a density function that assigns a strictly positive value to all ξ T ∈ Ξ. The following distributionally robust optimization model returns the best lower bound over P:

sup P∈P L LP (P).
This shows that, even in the continuous setting, there exists a trade-off between the quality of the LP bound from an assigned probability distribution and the computational effort of searching over the entire ambiguity set. To the best of our knowledge, such a lower bounding problem has not been studied before. In the following sections, we introduce the nonanticipative (NA) dual problem of an MSARO with mixed-integer recourse, which relies on the use of linear decision rules in a

Lagrangian dual of problem (1).

Nonanticipative Dual of the MSARO

The NA dual is based on a reformulation of the MSARO problem where we create a copy of every decision variable for every realization and explicitly enforce nonanticipativity. To this end, we introduce the copy variables y(ξ T ) = (y 1 (ξ T ), . . . , y T (ξ T )) as perfect information variables depending on the entire realization ξ T = (ξ 1 , . . . , ξ T ). We can reformulate the MSARO problem (1) as:

min z (10a) s.t. t∈[T ] c t (ξ t ) y t (ξ T ) ≤ z ξ T ∈ Ξ (10b) A t (ξ t )y t (ξ T ) + B t (ξ t )y t-1 (ξ T ) ≤ b t (ξ t ) t ∈ [T ], ξ T ∈ Ξ (10c) D t (ξ t )y t (ξ T ) ≤ d t (ξ t ) t ∈ [T ], ξ T ∈ Ξ (10d) y t (ξ T ) = y t (ξ T ) t ∈ [T ], ξ T , ξ T ∈ Ξ with ξ t = ξ t (10e) y t (ξ T ) ∈ R n t -n i t × Z n i t t ∈ [T ], ξ T ∈ Ξ. ( 10f 
)
Constraints (10e) are nonanticipativity constraints which ensure that at stage t for every partial realization of ξ T , the decisions made are consistent (i.e., the decisions made in all realizations sharing the history ξ t are the same). Before introducing the NA dual derived from (10), we present the following lemma, which we use to reformulate the nonanticipativity constraints.

Lemma 1. For given P ∈ P, constraints (10e) are equivalent to the following:

y t (ξ T ) = E ξ T ∼P y t (ξ T ) ξ t = ξ t , t ∈ [T ], ξ T ∈ Ξ. ( 11 
)
Proof For a fixed t and ξ t , and every ξ T that shares the same history with ξ T up to t (including ξ T ), multiply both sides of (10e) by p(ξ T ). The corresponding constraint ( 11) is derived by integrating over all such ξ T scenarios, thus it is a valid equality for problem (10). Moreover, this constraint makes sure that the decision variables under all the scenarios sharing the same history take the same value, i.e., E ξ T ∼P y t (ξ T ) ξ t = ξ t , which enforces the semantics of the nonanticipativity constraints (10e).

Denote by Y (ξ T ) the scenario feasibility space defined by constraints (10b)-( 10d) and (10f) for all t ∈ [T ] and some ξ T . For an assigned probability distribution P and with given dual functionals λ t (•) : R t → R n t , relaxing the nonanticipativity constraints (11) results in the following nonanticipative Lagrangian relaxation problem:

L NA LR (P, λ 1 (•), . . . , λ T (•)) = min z + t∈[T ] E ξ T ∼P λ t (ξ T ) y t (ξ T ) -E ξ T ∼P î y t (ξ T ) ξ t = ξ t ó (12a) s.t. z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ Y (ξ T ) ξ T ∈ Ξ. ( 12b 
)
L NA LR is a lower bound for the original MSARO problem. The NA Lagrangian dual problem aims to find the best bound among all such Lagrangian relaxation bounds:

L NA (P) = max λ 1 (•),...,λ T (•) L NA LR (P, λ 1 (•), . . . , λ T (•)). ( 13 
)
The following proposition shows that, regardless of the choice of P, L NA (P) is an exact dual bound for continuous MSARO problems.

Proposition 2. Let P be any probability distribution in P. For continuous MSARO problems, L NA (P) is a strong dual.

Proof The strength of a Lagrangian dual problem can be studied by its primal characterization, derived by [START_REF] Geoffrion | Lagrangean relaxation for integer programming[END_REF] for a mixed-integer linear optimization problem. Then, using standard Lagrangian duality theory (see, for instance, [START_REF] Wolsey | Integer and combinatorial optimization[END_REF]), the primal characterization of ( 13) is:

min z (14a) s.t. z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ conv(Y (ξ T )) ξ T ∈ Ξ (14b) y t (ξ T ) = E ξ T ∼P y t (ξ T ) ξ t = ξ t t ∈ [T ], ξ T ∈ Ξ. ( 14c 
)
The result follows from the equivalence of ( 11) and (10e), as well as the fact that for continuous MSARO problems, we have that conv(Y (ξ T )) = Y (ξ T ) for all ξ T ∈ Ξ.

We remark that our construction of the dual postulates that we multiply the constraints with a density function whose support is Ξ. Therefore, the strictly positive density property of P ∈ P is necessary for the exactness of our formulation.

Proposition 2 suggests that the solution of problem ( 13) gives an exact dual bound for (10) (hence for (1)) if all decision variables are continuous. Although this bound is not exact in the case of mixed-integer recourse, the potential of leveraging the literature of multistage stochastic programming in achieving a dual bound for MSARO is quite appealing.

The objective function of the Lagrangian relaxation problem ( 12) contains (conditional) expectations of decision variables y t (ξ T ), which is computationally challenging. Because of our initial assumption of relatively complete recourse (Assumption 1), and the fact that X t (ξ t ) are bounded (Assumption 2), so is Y (ξ T ) and thanks to Lemma 1 of [START_REF] Daryalal | Lagrangian dual decision rules for multistage stochastic mixed integer programming[END_REF] we can replace the expectation term for t in the objective function (12a) with:

E ξ T ∼P λ t (ξ T ) -E ξ T ∼P î λ t (ξ T ) ξ t = ξ t ó y t (ξ T ) .
For given λ t (ξ T ), this exchange allows us to compute the coefficients of y t (ξ T ) in the Lagrangian relaxation problem. Still, the optimal form of the dual functionals λ t (•) need to be determined, making the problem (13) intractable. In the next section, we restrict these Lagrangian multipliers to follow LDRs and obtain a restricted dual problem with decision variables of finite dimension.

Furthermore, this new dual problem is amenable to well-known solution techniques from the literature of two-stage stochastic programming, such as sample average approximation, which are designed to approximately solve a problem with expectation in the objective function.

Lagrangian Dual Decision Rules

The Lagrangian multipliers λ t (ξ T ) are infinite-dimensional. One way to obtain finite-dimensional decision variables is to enforce LDRs on the Lagrangian multipliers of problem (13) with a fixed P.

This is referred to as Lagrangian dual decision rules (LDDRs). For a set of pre-determined basis functions Ψ t : Ξ → R n t ×K t and LDR decision variables α t ∈ R K t , we restrict the form of λ t (ξ T ) at stage t as follows:

λ t (ξ T ) = Ψ t (ξ T )α t ,
which gives us a restricted NA Lagrangian dual problem with respect to P:

L NA R (P) = max α 1 ,...,α T L NA LR (P, Ψ 1 (ξ T )α 1 , . . . , Ψ T (ξ T )α T ). ( 15 
)
Since problem ( 15) is a restriction of (13), we have L NA R (P) ≤ L NA (P). An immediate question is whether by this restriction the bound gets weaker. More importantly, whether the choice of P affects the quality of the bound L NA R (P). Using Lemma 2 in [START_REF] Daryalal | Lagrangian dual decision rules for multistage stochastic mixed integer programming[END_REF], the primal characterization of L NA R (P) is:

min z (16a) s.t. z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ conv(Y (ξ T )) ξ T ∈ Ξ (16b) E ξ T ∼P Ψ t (ξ T ) y t (ξ T ) -E ξ T ∼P y t (ξ T ) | ξ t = ξ t = 0 t ∈ [T ] (16c)
Comparing the problems ( 16) and ( 14), it is clear that for an assigned P, (16) is a relaxation of ( 14), as constraints (16c) are an aggregation of (14c). Consequently, unlike L NA (P), even for continuous MSARO, L NA R (P) is not a strong bound. Furthermore, as a result of constraints (16c), the strength of the restricted NA Lagrangian dual bound depends on the choice of probability distribution P.

Similar to the discussion on the LP dual at the beginning of the section, this observation motivates us to optimize over a set of probability distributions and find the best bound among all possible P and LDR variables α. As such, we propose to solve the following DRO problem with ambiguity set P:

ν NA R = sup P∈P L NA R (P). ( 17 
)
We remark that ( 17) is a sup-max-min problem and is not in the familiar form of min-max-min that DRO problems are often represented with. However, as the notion of optimization over a family of probability distributions fits the field of DRO, we still refer to (17) as a DRO problem, with a slight abuse of terminology.

In linear and mixed-integer programming, strict inequalities such as the ones required for P ∈ P (the strictly positive density property for all ξ T ∈ Ξ) often cause numerical and theoretical difficulties and in general are not desirable. To avoid these inequalities, in the following discussions we modify the DRO model to improve its numerical behavior. Denote by P a superset of P that also admits distributions with support Ξ ⊂ Ξ, i.e., allows p(ξ T ) = 0 for some ξ T ∈ Ξ. Consider the problem:

νNA R = max P∈ P L NA R (P). ( 18 
)
Because ( 18) is a relaxation of ( 17), it yields an upper bound for ν NA R . Thus, it does not immediately follow that such a bound is a valid lower bound for ν . In the following proposition, we prove that problem (18) indeed leads to a valid dual (lower) bound for the MSARO problem (1).

Proposition 3. νNA R is a valid lower bound for ν .

Proof We have shown that L NA R (P) ≤ ν for any P ∈ P. Now we claim that, for any P ∈ P \ P = P ∈ P | ∃ξ T ∈ Ξ : p P (ξ T ) = 0 where p P : Ξ → R + is the density function of P, the inequality L NA R ( P) ≤ ν also holds. Consider the nonanticipativity constraints (10e) in the NA reformulation of the MSARO problem (1). For a fixed P and ξ T in the uncertainty set, and all ξ T ∈ Ξ sharing the same history with ξ T up to t (ξ t = ξ t ), multiply both sides of their associated constraint (10e) by p P(ξ T ) and integrate over all such ξ T . Note that, any p P(ξ T ) = 0 removes a nonanticipativity constraint from the problem. Thus, constraints (11) obtained with respect to P are not equivalent to constraints (10e) and are simply an aggregation hence a valid equality. Therefore, replacing the nonanticipativity constraints with (11) obtained with respect to P, results in a relaxation of (1) and not an exact reformulation. Subsequently, relaxation of (11) and construction of the Lagrangian dual problem (13) with respect to P yields a relaxation of a relaxation of a minimization problem, where for each fixed λ t (•) we have L NA LR ( P, λ 1 (•). . . . , λ T (•)) ≤ ν , and consequently L NA ( P) ≤ ν . From the primal characterizations ( 14) and ( 16), the inequality L NA R ( P) ≤ L NA ( P) follows, which completes the proof.

We refer to the DRO problem (18) as the restricted NA dual. It can be written explicitly as:

νNA R = max P,α Q(P, α) (19a) s.t. α t ∈ R K t t ∈ [T ] (19b) P ∈ P, (19c) 
where

Q(P, α) = min z + t∈[T ] E ξ T ∼P Å Ψ t (ξ T ) -E ξ T ∼P î Ψ t (ξ T ) ξ t = ξ t ó α t ã y t (ξ T ) (20a) s.t. z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ conv(Y (ξ T )) ξ T ∈ Ξ. (20b)
Problem ( 19) is a two-stage stochastic program (2SP) and can benefit from its rich literature. In the next section, we build on well-known stochastic programming techniques to design a decomposition method for the restricted NA dual (19).

Solving the Restricted NA Dual Problem

For a discrete set of scenarios and given α, the expectation terms in the objective function of Q(P, α) in ( 19), i.e., the coefficients of the y variables, can be calculated. In the following sections we use this fact to solve or approximate the restricted NA dual problem. We first present a solution approach designed for finite discrete uncertainty sets. Then we show how we can use this method for a general uncertainty set.

Discrete Uncertainty Set

In a discrete uncertainty set with realizations ξ T ∈ Ξ, P can be modeled by a set of (in)equalities, that is

P = ρ ∈ R |Ξ| + | 1 ρ = 1
, where a vector ρ P ∈ P characterizes the probability measure P such that for all ξ T ∈ Ξ, ρ P ξ T is the probability of scenario ξ T with respect to P. Given that Ξ is discrete, the expectation term in the objective function (20a) can be written as:

t∈[T ] ξ T ∈Ξ ρ P ξ T Å Ψ t (ξ T ) - ξ T ∈Ξ: ξ t =ξ t ρ P ξ T Ψ t (ξ T ) α t ã y t (ξ T ).
Let Ψ tk (ξ T ) be the k th column of the matrix Ψ t (ξ T ). Then Q(P, α) can be expressed as:

min z + t∈[T ] ξ T ∈Ξ ρ P ξ T Å k∈[K t ] Ψ tk (ξ T ) - ξ T ∈Ξ: ξ t =ξ t ρ P ξ T Ψ tk (ξ T ) α tk ã y t (ξ T ) s.t. z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ Y (ξ T ) ξ T ∈ Ξ.
Let γ tkξ T = ρ P ξ T α tk and

β tξ T = k∈[K t ] γ tkξ T Ψ tk (ξ T ) - ξ T ∈Ξ: ξ t =ξ t ρ P ξ T γ tkξ T Ψ tk (ξ T ) .
Then with a change of variables in the restricted NA dual (19) we have:

νNA R = max ρ,α,γ,β Q(β) (21a) s.t. ξ T ∈Ξ ρ ξ T = 1 (21b) γ tkξ T = ρ ξ T α tk t ∈ [T ], k ∈ [K t ], ξ T ∈ Ξ (21c) β tξ T = k∈[K t ] γ tkξ T Ψ tk (ξ T ) - ξ T ∈Ξ: ξ t =ξ t ρ ξ T γ tkξ T Ψ tk (ξ T ) t ∈ [T ], ξ T ∈ Ξ (21d) ρ ∈ R |Ξ| + (21e) α t ∈ R K t , γ ∈ R T ×K t ×|Ξ| , β ∈ R n t ×T ×|Ξ| t ∈ [T ] (21f) 
where

Q(β) = min z + t∈[T ] ξ T ∈Ξ β tξ T y t (ξ T ) z, y 1 (ξ T ), . . . , y T (ξ T ) ∈ Y (ξ T ), ξ T ∈ Ξ . (22) 
Model ( 21) can be solved via a cutting-plane method in which Q(β) is approximated by a set of linear inequalities. At each iteration, we solve the following bilinear program as the master problem:

max p,α,γ,β η (21b) -(21f), (η, β) ∈ H , ( 23 
)
where η is an auxiliary variable representing Q(β), and H is a set described by optimality cuts approximating Q(β). Note that, as β only parameterizes the objective function of Q(β), i.e., it does not impact the feasibility space, there is no need for feasibility cuts. With (η, β) returned from solving the master problem ( 23), we solve the subproblem ( 22) to compute Q( β), resulting in ŷt (ξ T ) as the optimal solution. If η ≤ Q( β), we have found the optimal solution of the restricted NA dual. Otherwise we add the following optimality cut to the master problem:

η ≤ Q( β) + t∈[T ] ξ T ∈Ξ β tξ T -βtξ T ŷt (ξ T ). ( 24 
)
This procedure continues until no more optimality cuts are found. The objective function of the subproblem, Q(β), is a concave function in β (pointwise minimum of linear functions with respect to β). Each cut ( 24) is a hyperplane approximating the subproblem from above. The cuttingplane method iteratively finds improving approximations of Q(β). Enforcing large lower and upper bounds on LDR variables α can ensure that the algorithm converges to -optimality.

Discrete Uncertainty in Continuous MSARO

As a special case, we study continuous MSARO with discrete uncertainty. Our goal here is to use this particular structure and derive a monolithic formulation as an alternative to the cuttingplane algorithm, to leverage off-the-shelf solvers. Denote by u ξ T , v tξ T and w tξ T , the dual variables associated with the set of constraints described by Y (ξ T ) for given ξ T ∈ Ξ (corresponding to (10b), ( 10c) and (10d), respectively). The LP dual of the inner minimization problem (22), i.e., the subproblem of the cutting-plane algorithm, is:

Q D (β) = max t∈[T ] ξ T ∈Ξ b t (ξ T ) v tξ T + t∈[T ] ξ T ∈Ξ d t (ξ t ) w tξ T (25a) s.t. ξ T ∈Ξ u ξ T = 1 (25b) -c T (ξ T )u ξ T + A T (ξ T ) v T ξ T + D T ξ T w T ξ T = β T ξ T ξ T ∈ Ξ (25c) -c t (ξ t )u ξ T + A t (ξ t ) v tξ T + D t (ξ t ) w tξ T + B t+1 (ξ t+1 ) v t+1,ξ T = β tξ T t ∈ [T -1], ξ T ∈ Ξ (25d) u ξ T ≥ 0 ξ T ∈ Ξ (25e) v tξ T , w tξ T ≤ 0 t ∈ [T ], ξ T ∈ Ξ. (25f)
Merging the two maximization problems in ( 21), we get the following monolithic bilinear program:

νNA R = max t∈[T ] b t (ξ T ) v tξ T + t∈[T ] ξ T ∈Ξ d t (ξ t ) w tξ T (26a) s.t. (21b) -(21f) (26b) (25b) -(25f). ( 26c 
)
Recall that, in adapting the C&CG algorithm for two-stage LDRs and Remark 1, we use KKT conditions to obtain a monolithic model of the subproblem and the bilinear terms in the constraints can be linearized by adding big-M constraints. The same technique would not lead to a linear reformulation of ( 21). Indeed, the source of nonlinearity in constraint ( 8e) and ( 8f) is the multiplication of a linear function and a dual variable. Thus, we are able to deal with them separately (and make sure that at least one of the two terms is evaluated to zero) and derive a linear model.

However, in ( 21) the nonlinearity is rooted in the constraints of the outer maximization problem itself and enforcing the complementary slackness through separate constraints does not resolve it.

Nevertheless, there is a large body of research on solution methods for bilinear problems that can be used in solving model ( 26). Furthermore, many nonlinear optimization solvers such as MOSEK (ApS 2022) include algorithms specifically tailored for large-scale quadratic problems and even a commercial MIP solver, Gurobi, has recently added a bilinear feature that solves non-convex quadratic optimization models to global optimality (Gurobi Optimization, LLC 2022). From the discussions in Section 3, for any P ∈ P, we have:

Continuous Uncertainty Set

L NA R (P) ≤ † νNA R ≤ ‡ ν . ( 27 
)
First inequality † is valid because the bound νNA R is the result of maximization over all P ∈ P, and the second inequality ‡ is from Proposition 3. For a given finite sample Ω ⊆ Ξ, we define a probability measure P Ω with P Ω (Ω) = 1 such that the density function assigns zero to any scenario not in Ω:

p P Ω (ξ T ) = 0, ξ T ∈ Ξ \ Ω, and p P Ω (ξ T ) ≥ 0, ξ T ∈ Ω.

Clearly P Ω ∈ P, thus inequalities ( 27) hold for P Ω , i.e., L NA R (P Ω ) ≤ νNA R ≤ ν , and L NA R (P Ω ) is a valid dual bound on ν . As Ω is a finite set, we can represent P Ω with ρ P Ω ∈ R |Ω| + such that 1 ρ P Ω = 1. Denote by P Ω , the set of all such vectors ρ. Consequently, solving the DRO problem (21) with discrete uncertainty set Ω finds the best bound over all probability measures P ∈ P Ω , which is a valid dual bound on ν . Calling the optimal value of this new DRO problem νNA R (Ω), the following proposition establishes the validity of the bound νNA R (Ω).

Proposition 4. For any given sample Ω ⊆ Ξ, weak duality holds between νNA R (Ω) and ν , i.e.,

νNA R (Ω) ≤ νNA R ≤ ν .
So, for a continuous uncertainty set, we can get a discrete sample Ω which turns the problem into a case of discrete uncertainty. As such, we can use the arguments in Section 3.3.1 to obtain νNA R (Ω). Figure 5 provides a summary of the methods presented in this section for solving the restricted NA dual problem. For continuous MSARO with a discrete uncertainty set, the restricted NA dual bound can be computed by solving a bilinear program, while for mixed-integer MSARO, the devised cutting-plane method is applicable. For MSARO with a continuous uncertainty set, we use SAA, i.e., we first take a sample and then approximately solve the restricted NA dual problem using the methods developed in the discrete setting. In solving problem (21) using the cutting-plane method, we frequently optimize ( 22) to compute Q(β). This can become computationally demanding when there is a large number of scenarios (i.e., large size of a discrete uncertainty set or a sample). Furthermore, we cannot decompose Q(β) by the scenarios, as they are linked through the z variables. In this section, we present an alternative NA dual problem that can yield a potentially weaker bound than the one provided by ( 19), but is decomposable by scenarios, thus offering a computational advantage. With decision variables y t (ξ T ) defined as before, we introduce copy variables z(ξ T ) and explicitly enforce them all to be equal. For an assigned probability distribution P which has a strictly positive density function for every realization of the uncertainty set, the alternative NA reformulation for the MSARO problem

(1) is:

min E ξ T ∼P î z(ξ T ) ó (28a) s.t. t∈[T ] c t (ξ t ) y t (ξ T ) ≤ z(ξ T ) ξ T ∈ Ξ (28b) z(ξ T ) = E ξ T ∼P î z(ξ T ) ó ξ T ∈ Ξ (28c) (10c), (10d), (10f), (11). (28d) 
Together, constraints (28b) and (28c) capture the semantics of the worst-case outcome, which is minimized in the objective function (28a). Relaxation of the nonanticipativity constraints ( 11) and (28c) with the Lagrangian multipliers λ y t (•) and λ z (•), leads to the decomposable NA Lagrangian dual problem L DNA (P) = max P,λ y ,λ z L DNA LR (P, λ y 1 , . . . , λ y T , λ z ), where

L DNA LR (P, λ y 1 , . . . , λ y T , λ z ) = min E ξ T ∼P 1 + λ z (ξ T ) -E ξ T ∼P î λ z (ξ T ) ó z(ξ T ) + t∈[T ] E ξ T ∼P λ y t (ξ T ) -E ξ T ∼P î λ y t (ξ T ) ξ t = ξ t ó y t (ξ T ) s.t. z(ξ T ), y 1 (ξ T ), . . . , y T (ξ T ) ∈ Y (ξ T ) ξ T ∈ Ξ,
with Y (ξ T ) the scenario feasibility space described by constraints (28b), (10c), (10d), and (10f).

We remark that, in the first expectation term in the objective function the inner expectation is not conditional, since constraints (28c) (and accordingly their associated dual functions) are not defined at every stage t ∈ [T ] as decision variable z(ξ T ) ∈ R captures the cost of an entire scenario at T . After substituting the decision rules λ y t (ξ T ) = Ψ t (ξ T )α y t , t ∈ [T ] and λ z (ξ T ) = Ψ T (ξ T )α z in L DNA (P), where α z ∈ R K T , the restricted decomposable NA dual problem is:

ν DNA R = max P,α y ,α z L DNA LR (P, Ψ 1 (•)α y 1 , . . . , Ψ T (•)α y T , Ψ T (•)α z ).
The restricted decomposable NA dual problem can be solved using the same methods developed in the previous sections for the non-decomposable problem. Due to the relaxation of the nonanticipativity constraints on z variables, for given P and λ y (•), subproblem

L DNA LR (•) is a relaxation of L NA LR (•). Therefore ν DNA R ≤ ν NA R , i.e., ν NA R
is a potentially stronger bound. However, the fact that L DNA LR (•) is decomposable is highly desirable. Particularly for continuous uncertainty sets where we rely on sampling, and the quality of the bound varies based on the selected sample. Since the decomposable model can afford samples of larger sizes it can potentially yield better bounds compared to the bound obtained from non-decomposable model over a smaller sample. We explore this possibility in our numerical section.

Numerical Experiments

In this section we evaluate the performance of the proposed bounding framework over multistage versions of three classical decision-making problems under uncertainty: (i) the newsvendor problem, (ii) the location-transportation problem, and (iii) the capital budgeting problem. Depending on their structure, each problem is solved by using the appropriate models and methods described in Sections 2 and 3, illustrating the applicability of the developed concepts to a large array of problem classes.

Benchmarks and Implementation Details

To assess the quality of the primal and dual bounds, we measure the relative distance of the bounds from the true optimal value when an exact solution of MSARO is available (in small-size instances).

Otherwise, we report the optimality gap between the bounds obtained from the proposed methods, and compare it against a gap obtained via traditional bounding methods if one exists. In continuous problems, we consider LDRs (i.e., their application to all decision variables) as the benchmark for the primal decision rules. On the dual side, we use the perfect information (PI) bound (denoted by ν PI ) for comparison, which often can be conveniently evaluated for a general MSARO problem.

The PI bound corresponds to the optimal objective value of the MSARO problem reformulated as in (10) without the nonanticipativity constraints (10e), i.e., it finds the cost of every scenario in the uncertainty set individually, and then selects the one with the worst-case cost.

The algorithms are implemented in Python and use the Gurobi Optimizer 9.5.1 (Gurobi Optimization, LLC 2022) as the MIP/bilinear program solver. The computational experiments are carried out on the Niagara supercomputer servers [START_REF] Loken | SciNet: lessons learned from building a power-efficient top-20 system and data centre[END_REF][START_REF] Ponce | Deploying a top-100 supercomputer for large parallel workloads: The Niagara supercomputer[END_REF]. The programs stop if the running time reaches 10 hours, at which point we report the best valid observed lower/upper bound on the instance. As a common design choice for the basis functions of the LDRs, we use the uncertain parameters themselves, i.e., the standard basis functions. Any implementation nuances and enhancements used for improving the performance of the algorithms are discussed for each problem class in a dedicated section, along with the characteristics of the studied instances.

Robust Budgeted Newsvendor Problem

In this section, we extend the two-stage newsvendor problem studied in [START_REF] Xu | Improved decision rule approximations for multi-stage robust optimization via copositive programming[END_REF] to the multistage setting. In this problem, a decision-maker (the newsvendor) needs to order from a set of items to be sold (only) at the next decision stage, with the objective of maximizing the worst-case profit over the planning horizon. Let d it (ξ t ) be the uncertain demand of item i ∈ [I] at stage t ∈ [2, T ], c i and s i the purchase and shortage costs of item i, respectively, and r i its sale price. To meet the customers' demands of stage t, at stage t -1 the decision-maker decides on the amounts to be ordered from each item, such that the total spending over the T stages does not exceed a predetermined budget of B. Denote by x it (ξ t ) the decision variable for the amount of

item i ordered at stage t ∈ [T -1]. The multistage multi-item budgeted newsvendor problem is: max z (30a) s.t. z ≤ i∈[I] t∈[2,T ] y it (ξ t ) ξ T ∈ Ξ (30b) y it (ξ t ) ≤ r i -c i x i,t-1 (ξ t-1 ) -r i x i,t-1 (ξ t-1 ) -d i (ξ t ) i ∈ [I], t ∈ [2, T ], ξ t ∈ Ξ t (30c) y it (ξ t ) ≤ r i -c i x i,t-1 (ξ t-1 ) -s i d i (ξ t ) -x i,t-1 (ξ t-1 ) i ∈ [I], t ∈ [2, T ], ξ t ∈ Ξ t (30d) i∈[I] t∈[T -1] x it (ξ t ) ≤ B ξ T -1 ∈ Ξ T -1 (30e) x t (ξ t ) ∈ R I + t ∈ [T -1], ξ t ∈ Ξ t . (30f) 
where y it (ξ t ) is an auxiliary decision variable capturing the profit from item i at stage t, by means of the constraints (30c) and (30d). Constraints (30e) impose a budget of B over the order amounts throughout the planning horizon. The objective function is the worst-case profit of the newsvendor, modeled via (30a) and (30b). restricted to the cases with |Ξ| ≤ 3000.

Problem Instances

Quality of the Bounds

The small-size instances can be conveniently optimized by solving model ( 10) over all the scenarios in the uncertainty set. Using this, we can examine the quality of a primal/dual bound by measuring its relative distance to the optimal objective value ν .

For this problem, all primal and dual problems are solved by the extensive form (i.e., monolithic)

of their respective models. Figures 6 and7 present the gap between the bound and the optimal value of the exact solution, defined as 100 ν -ν (•) Quality of the bounds from the PI and LDDRs for small-size newsvendor instances over ν LDR , with reductions in relative distance ranging from 64% to 98%. Interestingly, the quality of the bound ν 2S-LDR remains rather stable with changes in the number of items I and budget B, compared to the drastic changes of ν LDR with variations in the inputs. The notable performance of the two-stage LDRs for the newsvendor problem contrasted with the LDRs can be explained by the nature of the recourse variables y. In model ( 30), y it (ξ t ) variables determine the profit of a given realization at stage t for item i, which for the newsvendor problem is by definition nonlinear.

In fact, y it (ξ t ) is an auxiliary variable, defined to linearize the following net profit at stage t from item i:

r i min x i,t-1 (ξ t-1 ), d it (ξ t ) -c i x i,t-1 (ξ t-1 ) -s i max d it (ξ t ) -x i,t-1 (ξ t-1 ), 0 .
Therefore, for the newsvendor problem LDRs always return suboptimal decisions as they restrict the form of the nonlinear profit function to be affine, while two-stage LDRs allow them to take any form, giving them an immediate advantage over LDRs.

From the dual perspective, νNA R achieves an average improvement of 55% compared to ν PI , and in 9 instances fully closes the gap. From the results of Figure 7, a common observation is that LDDRs return a bound of higher quality for smaller values of the ratio B (T -1)×I , which is an estimate of the average budget available per product at every stage. This trend suggests that the restricted NA dual bound performs better with tighter budget, when there is a higher dependency between stages, in which case the importance of intermediate decisions becomes more pronounced.

Optimality Gap

For instances with larger number of scenarios, we compare the optimality gap from the benchmark methods (opt T ) with the gap obtained by applying the newly proposed methods, namely two-stage LDRs and LDDRs (opt N ):

opt T = 100 ν PI -ν LDR ν LDR , opt N = 100 νNA R -ν 2S-LDR ν 2S-LDR .
Table 1 presents the optimality gaps from the benchmark and proposed models (whose running times are provided in the e-companion). Achieving an average gap reduction of 82%, there is a considerable value in using the two-stage LDRs and LDDRs in devising policies for the multistage newsvendor problem. The optimality gaps opt N range from 4% to 46%, with some interesting cases such as instances 3, 5 and 14 where using LDR policies can even lead to a loss of profit in the worst-case. In the majority of the instances, both two-stage LDRs and LDDRs contribute to the improvement of the gap, although the primal side clearly has the larger impact, to the point that in five instances, the dual bound νNA R and the benchmark ν PI are the same. In some instances, the PI bound might already be strong enough so that using LDDRs does not make a tangible difference in strengthening the bound. This is, for instance, the case for instances 8, 12 and 18 that attain a small optimality gap without significantly improving ν PI . As discussed for the small-size instances, depending on the number of stages, items, and available budget, in some instances the PI bound can indeed be weak. In such cases νNA R can be potentially improved by a better design of the basis functions for LDDRs that better captures the correlation among all items imposed by the budget restriction.

Robust Location-Transportation Problem

The two-stage robust location-transportation problem studied by [START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF] is as follows. Given a set of I potential facilities with fixed building cost f i and unit capacity cost a i , i ∈

[I], we have to meet the uncertain demand of a set of customers J with unit transportation cost

c ij , i ∈ [I], j ∈ [J]
. The goal is to decide which facilities to open, as well as their initial capacities, such that the worst-case total cost of facility deployment and future transportation is minimized.

We expand the problem to a multistage setting by defining d jt (ξ t ) as the demand of customer j at stage t. The MSARO model is then:

min z (31a) s.t. z ≥ i∈[I] f i y i + t∈[T ] i∈[I] a i s it (ξ t ) + t∈[2,T ] i∈[I] j∈[J] c ij x ijt (ξ t ) ξ T ∈ Ξ (31b) s i1 ≤ K i y i i ∈ [I] (31c) s it (ξ t ) = s i,t-1 (ξ t-1 ) - j∈[J] x ijt (ξ t ) i ∈ [I], t ∈ [2, T ], ξ t ∈ Ξ t (31d) i∈[I] x ijt (ξ t ) ≥ d jt (ξ t ) j ∈ [J], t ∈ [2, T ], ξ t ∈ Ξ t (31e) y ∈ {0, 1} I , s 1 ∈ R I + (31f) s t (ξ t ) ∈ R I + , x t (ξ t ) ∈ R I×J + t ∈ [2, T ], ξ t ∈ Ξ t , (31g) 
where y i is a binary variable equal to 1 if facility i is built, s i1 determines the initial capacity of facility i, s it (ξ t ) is the state variable calculating the remaining capacity of facility i at stage t, and x ijt (ξ t ) is the amount of goods transported from facility i to customer j at stage t. Objective function (31a) together with constraint (31b) measures the worst-case cost. Constraints (31c) bound the initial capacity of the facilities, whereas constraints (31d) are the state equations calculating the remaining capacities. Constraints (31e) ensure that the customer demands are met. For this problem, we have generated 32 instances with α d = 0.5 over small scenario trees to compare the bounds with the optimal objective value. To demonstrate the versatility of our solution methods, in addition to the described scenario-tree instances, we have generated 85 instances where the demands belong to the following budgeted uncertainty set:

Ξ = ß d ∈ R J×T -1 + d jt = µ jt + δ jt σ jt , δ jt ∈ [0, 1], j ∈ [J], t ∈ [2, T ], t∈[2,T ] j∈[J] δ jt ≤ Γ ™ .
We remark that, Γ correlates the demands of all customers and stages together, which results in stagewise (temporal) dependence between the decision stages. In our instances we use Γ = α u I, with α u ∈ {0.1, 0.4, 0.7, 1}.

Scenario-Tree Instances

In solving the primal (2S-LDR) and exact models of the scenario-tree instances, we have used their respective extensive forms, while for computing the restricted NA dual bound we implemented the cutting-plane method described in Section 3.3. Table 2 presents the gap between the bound and the optimal value of the exact solution, 100 ν (•) -ν ν and 100 ν -ν (•) ν for the primal and dual problems, respectively. Results show that, among the group of instances with similar characteristics, as the branching factor or the number of stages increases, the Optimality gaps for the location-transportation budgeted-uncertainty instances, between ν 2S-LDR and νNA R .

cutting-plane method for obtaining the dual bound νNA R , using a sample of size 50(T -2). For both algorithms, we stop when the optimality gap of the method falls below 5% or we reach the 10-hour time limit. Figure 8 shows the value of opt N , the optimality gap between ν 2S-LDR and νNA R , for our 85 instances (detailed results are provided in Appendix B.2). In this figure, every bar represents an instance. All instances of a block (characterized by T , (I, J) and α d ) share the same parameters except α u , and the instances within a block appear in an increasing order of the value of their α u . Our methods return an average optimality gap of 17.4% among all the instances, with a minimum gap of 5.2% and a maximum gap of 29.2%. Given the strength of the primal bound in the scenario-tree instances, and the fact that the bound remains strong despite increasing the size of the tree, we believe that the larger gaps in most instances are caused by weak νNA R bounds. Since the value of νNA R depends on the sample on which it is solved, not having a large enough sample can lead to a poor bound. However, because of the bilinear form of the cutting-plane master problem, we were not able to solve the model with large samples using off-the-shelf commercial solvers. By employing specialized algorithms developed for bilinear problems, it could be possible to increase the size of the sample and improve the νNA R bound, which we leave for future research. Next we analyze the performance of the algorithms in solving our instances. Solution times and number of iterations for both algorithms are given in Appendix B.2. Here, we study the final optimality gap of the algorithms (C&CG and the cutting-plane), that could have a negative impact on the quality of the bounds. Figure 9 shows that in all instances, the C&CG stops at a solution of the 2ARO model with less than 5% gap. In fact, the method proves to be quite powerful in detecting the significant scenarios for the 2ARO approximation, such that in 69 out of 85 instances it achieves this gap after only two iterations. On the other hand, in 39 instances the cutting-plane method is not able to reach the optimality gap of 5% within the time limit of 10 hours, meaning where B t (ξ t ) is the amount of available funds at stage t ∈ [T ], and is determined by constraints (32c), while C t (ξ t ) is the expenditure calculated through constraints (32d), with initial values of B 0 (ξ 0 ) = B and C 0 (ξ 0 ) = 0. Constraints (32e) make sure that the expenditure amount is bounded by the amount of available funds. The objective is to maximize the worst-case profit over the planning horizon, measured by constraints (32b). 

= ß (c, r) ∈ R I×T + × R I×T + c it = c 0 it + δ c it σ it , r it = c 0 it 5 + δ r it σ it , , δ c it , δ r it ∈ [0, 1], i ∈ [I], t ∈ [T ] ™ ,
where the nominal costs c 0 and perturbations σ are drawn uniformly from [0, 10] 5 and [0, 5] 5 , respectively. Loan purchase cost is c L µ t-1 = 0.8(1.2) t-1 per unit of loan. For every combinations of T and I we have considered two levels of initial budget to analyze the impact of this parameter that impacts the dependence between stages. For each option, when the model is not solved to optimality within the time limit, the best valid bound is used in the calculations. Note that, if we can solve both options (i) and (ii) to optimality, we should expect a better bound from option (i).

Optimality Gap

Table 3 presents the optimality gaps of the capital budgeting instances between the bound ν K and the three choices of upper bound. Results show that, even though the bound ν Ω should theoretically be at least as good as the bound νNA R , on average the NA bound returns a better upper bound within the same time limit. This is testament to the difficulty of the multistage problem even when it is solved for a discrete set of scenarios. The decomposable NA bound νDNA R further improves the results by using a larger sample which is viable because of its superior computational performance. Note that, the best gaps in Table 3, ranging between 15% to 34%, are obtained from approximations over approximations on both primal and dual side. Accordingly, these rather large gaps can be attributed to both bounding methods. ν K can be further improved by using larger values of K, whereas the NA bounds might benefit from implicit enumeration techniques in solving the relaxation models without resorting to sampling. 

Conclusion

Robust optimization models are built on a different premise than stochastic programming in the sense that they do not assume any knowledge about the probability distribution, focusing instead on optimizing the worst-case outcomes. We adapt two decision rules from the stochastic programming literature (namely two-stage LDRs and LDDRs) to MSARO, which result in two-stage approximation models for which we design several appropriate solution methods. More specifically, for two-stage linear decision rules we present sufficient conditions that make the approximation models amenable to the constraint-and-column generation method. In order to solve LDDR-induced models, we build a cutting-plane method for mixed-integer MSAROs, as well as a monolithic bilinear program for continuous problems. Our numerical experiments on the newsvendor, locationtransportation and capital budgeting problems reveal that our methods considerably reduce the optimality gap from commonly used approaches in the literature.

Appendices

A. Detailed Models for the Location-Transportation 

c ij x ijt (ξ t ) ξ T ∈ Ξ s i1 ≤ K i y i i ∈ [I] β 0 i2 + j∈[J] d j2 (ξ 2 )β j2 i2 = s i1 - j∈[J] x ij2 (ξ 2 ) i ∈ [I], ξ 2 ∈ Ξ 2 β 0 it + t ∈[2,t] j∈[J] d jt (ξ t )β jt it = β 0 i,t-1 + t ∈[2,t-1] j∈[J] d jt (ξ t-1 )β jt i,t-1 - j∈[J]
x ijt (ξ t )

i 

x ij2 = s i1 -β 0 i2 - j∈[J] d j2 (ξ 2 )β j2 i2 i ∈ [I] j∈[J] x ijt = β 0 i,t-1 -β 0 it - j∈[J] t
x ij2 = s i1 -β 0 i2 - j∈[J] d j2 β j2 i2 i ∈ [I] j∈[J] x ijt = β 0 i,t-1 -β 0 it - j∈[J] t ∈[2,t] d jt β jt it + j∈[J] t ∈[2,t-1] d jt β jt i,t-1 i ∈ [I], t ∈ [3, T ] i∈[I]
x ijt ≥ d jt j ∈ [J], t ∈ [2, T ]

π 1 i + π 3 j2 ≤ c ij i ∈ [I], j ∈ [J] π 2 it + π 3 jt ≤ c ij i ∈ [I], j ∈ [J], t ∈ [3, T ] d jt - i∈[I]
x ijt π 3 jt = 0 linearization -------→

π 3 jt ≤ M (1 -R jt ), i∈[I] x ijt -d jt ≤ M R jt j ∈ [J], t ∈ [2, T ] π 1 i + π 3 j2 -c ij x ij2 = 0 linearization -------→ x ij2 ≤ M (1 -D ij2 ), c ij -π 1 i -π 3 j2 ≤ M D ij2 i ∈ [I], j ∈ [J]
π 2 it + π 3 jt -c ij x ijt = 0 linearization -------→

x ijt ≤ M (1 -D ijt ), c ij -π 2 it -π 3 jt ≤ M D ijt i ∈ [I], j ∈ [J], t ∈ [3, T ] β 0 it + t ∈[2,t] j∈[J] d jt β jt it ≥ 0 j ∈ [J], t ∈ [2, T ] d jt = µ jt + δ jt σ jt j ∈ [J], t ∈ [2, T ] t∈[2,T ] j∈[J] δ jt ≤ Γ x ijt ≥ 0, D ijt ∈ {0, 1} i ∈ [I], j ∈ [J], t ∈ [2, T ] 0 ≤ δ jt ≤ 1, 0 ≤ π 3 jt , R jt ∈ {0, 1} j ∈ [J], t ∈ [2, T ].
Then, the column-and-constraint generation master problem at κ th iteration is:

min i∈[I] f i y i + i∈[I] a i s i1 + t∈[2,T ] β 0 it + η s.t. s i1 ≤ K i y i i ∈ [I] η ≥ t∈[2,T ] i∈[I] j∈[J] c ij x k ijt + t ∈[2,t] a i d k jt β jt it k ∈ [κ] j∈[J] x k ij2 = s i1 -β 0 i2 - j∈[J] d k j2 β j2 i2 i ∈ [I], k ∈ [κ] j∈[J] x k ijt = β 0 i,t-1 -β 0 it - j∈[J] t ∈[2,t] d k jt β jt it + j∈[J] t ∈[2,t-1] d k jt β jt i,t-1 i ∈ [I], t ∈ [3, T ], k ∈ [κ] i∈[I] x k ijt ≥ d k jt j ∈ [J], t ∈ [2, T ], k ∈ [κ] β 0 it + j∈[J] t ∈[2,t] d k jt β jt it ≥ 0 i ∈ [I], t ∈ [2, T ], k ∈ [κ] x k ≥ 0 k ∈ [κ]
y ∈ {0, 1} I , z ≥ 0, where x k ijt and d k jt are the column and significant scenario generated at iteration k.

A.2. Restricted NA Dual

The Q(β s , β x ) function for the location-transportation problem: .

Q(β
For this mixed-integer subproblem, the cutting-plane method presented in Section 3.3 is applicable.
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Notation.

  Throughout, we use [a] := {1, 2, . . . , a} and [a, b] := {a, a + 1, . . . , b} for positive integers a and b (with a ≤ b), and (•) for the transpose operator.
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  Our instance generation loosely follows the procedure described in Ardestani-Jaafari and Delage (2021) for the two-stage robust newsvendor problem. The deterministic parameters r i , s i and c i are drawn uniformly from the intervals[140, 160],[80, 90] and[50, 70], respectively. We consider a discrete uncertainty set modeled as a stagewise-dependent scenario tree with branching factor br (i.e., every node of the tree prior to the leaves has br many child nodes). The demand realizationsd it (ξ t ), i ∈ [I], t ∈ [2, T ] at a child node are drawn uniformly from [µ it -σ it , µ it + σ it ],where µ it and σ it are deterministic parameters uniformly drawn from the intervals [20, 40] and [10, 20]. We have generated 26 small-size instances with T ∈ [3, 5], I ∈ [2, 5], B ∈ {100, 150, 200, 250, 300}, and br ∈ {2, 3, 4, 5, 10}, such that the number of scenarios |Ξ| = br T -1 is less than 150. Additionally, we have generated 18 large-size instances with T ∈ [4, 8]. For T = 4, the number of items I lies in the set [3, 5], with a budget B ∈ {200, 300} and br ∈ {10, 15, 20}. For T ∈ [5, 8], our instances have I ∈ {3, 4} items, budget of B ∈ {300, 400, 500, 600}, and br ∈ [3, 6],

Figure 6

 6 figure, the solid bars depict the performance of the newly proposed bounds, while the hatched bars represent the benchmarks. The results show that ν 2S-LDR and νNA R outperform the benchmark bounds by orders of magnitude. More precisely, ν 2S-LDR on average achieves 84% improvement

  4.3.1. Problem Instances Our instances are generated using the instance parameters described in[START_REF] Zeng | Solving two-stage robust optimization problems using a column-and-constraint generation method[END_REF] for the two-stage problem. For number of stages T ∈ [3, 5], we have five combinations for the number of facilities and customers, (I, J) ∈ {(5, 5), (5, 7), (5, 10), (10, 10), (20, 20)}. Fixed installation, unit capacity, and unit transportation costs are drawn from f i ∈ [100, 1000], a i ∈ [10, 100], c ij ∈ [1, 1000], respectively. Maximal capacity is set to K i = 2 × 10 4 based on preliminary experiments to make sure the instances are feasible. Customer demands are random parameters with support µ jt , (1 + α d )µ jt , where µ jt ∈ [10, 500] and α d ∈ {0.1, 0.3, 0.5} are given, with α d a parameter controlling the variation among demand realizations of customer j.

  Figure 8Optimality gaps for the location-transportation budgeted-uncertainty instances, between ν 2S-LDR and

  4.4.1. Problem Instances Our instance generation loosely follows the procedure of Subramanyam et al. (2020) for the two-stage problem. For T ∈ [3, 5] and I ∈ {5, 8, 10}, uncertain costs and profits c it (ξ t ), r it (ξ t ) belong to the following uncertainty set Ξ

  Due to to presence of binary variables x t (ξ t ), with the existing methods in the literature of 2ARO we cannot calculate ν 2S-LDR exactly. Therefore, we solve an approximation of it using the K-adaptability method of[START_REF] Subramanyam | K-adaptability in two-stage mixed-integer robust optimization[END_REF] with K = 2 and use the obtained bound ν K in measuring the optimality gap. On the dual side, we study three options: (i) ν Ω , the upper bound from solving the model (32) with a sample |Ω| = 100, (ii) the NA bound νNA R with the same sample Ω, (iii) the decomposable NA bound νDNA R with a sample of size 300.

  s , β x ) = min z + t∈[2,T ] i∈[I] β s it (ξ T )s it (ξ T ) + t∈[2,T ] i∈[I] j∈[J] β x ijt (ξ T )x ijt (ξ T ) s.t. z ≥ i∈[I] y i + t∈[T ] i∈[I] a i s it (ξ T ) + t∈[2,T ] i∈[I] j∈[J] c ij x ijt (ξ T ) ξ T ∈ Ξ s i1 ≤ K i y i , i ∈ [I] s it (ξ T ) = s i,t-1 (ξ T -1 ) -j∈[J] x ijt (ξ T ) i ∈ [I], t ∈ [2, T ], ξ T ∈ Ξ i∈[I] x ijt (ξ T ) ≥ d jt (ξ t ) i ∈ [I], t ∈ [2, T ], ξ T ∈ Ξ y ∈ {0, 1} I , z ∈ R I×T + , x ∈ R I×J×(T -1) +

  If the uncertainty set of MSARO, Ξ, is not discrete,

	objective function (20a) includes the expectation of a nonsmooth concave function, making (19)
	unsuitable for many existing solution methods for 2SPs. The literature of two-stage stochastic
	programming addresses this difficulty by means of sampling-based approaches that approximate the
	underlying problem. Sample average approximation (SAA) is a well-known method that replaces
	the expectations in the objective function of a 2SP with the average of a given sample and has
	favorable theoretical convergence results (see e.g., Shapiro et al. (2009)). In this section we show
	that (approximately) solving the 2SP (19) over a sample returns a valid dual bound for the original
	MSARO problem (1).

Table 1

 1 Optimality gaps for larger instances of the newsvendor problem

	Instance T br	|Ξ| I	B	Primal Bounds	Dual Bounds	Optimality Gap Gap reduction
							ν LDR	ν 2S	νNA R	ν PI	opt N	opt T
	1				3 200 5648.8 8142.9 8876.4 9353.0 9.0%	65.6%	86.3%
	2				3 300 9143.5 13687.6 17853.0 17853.0 30.4%	95.3%	68.1%
	3	4 10 1000	4 200 -104.4	440.0	642.4	919.0 46.0% 980.4%	95.3%
	4				4 300 11029.5 15854.7 18400.7 18432.0 16.1%	67.1%	76.1%
	5				5 300	724.9 6125.5 6748.6 7368.0 10.2% 916.5%	98.9%
	6	4 15 3375 3 200 5111.3 7072.0 7646.6 8222.0 8.1%	60.9%	86.7%
	7	4 20 8000 3 300 9030.9 13040.7 17615.0 17615.0 35.1%	95.1%	63.1%
	8 9	5	5 625	3 300 11134.5 15053.4 16191.6 16680.0 7.6% 4 300 3651.5 9494.8 10553.8 10628.0 11.2% 191.1% 49.8%	84.8% 94.2%
	10	5	6 1296 3 400 15013.4 20271.7 25157.0 25157.0 24.1%	67.6%	64.3%
	11				3 400 15492.3 21457.9 28163.0 28163.0 31.2%	81.8%	61.8%
	12	6	4 1024	4 400 7124.3 14805.2 15426.2 15473.0 4.2% 117.2%	96.4%
	13				4 500 14445.4 24887.7 32946.9 32973.0 32.4% 128.3%	74.8%
	14				3 300	24.3 1495.9 2137.3 2383.0 42.9% 9692.2%	99.6%
	15	7	3 729	3 400 12994.7 17774.1 19554.5 19983.0 10.0%	53.8%	81.4%
	16				4 400 3267.5 4303.1 5354.3 5427.0 24.4%	66.1%	63.0%
	17 18	8	3 2187	3 500 16149.1 25321.4 30259.0 30259.0 19.5% 4 600 16892.3 27608.1 28717.7 28747.0 4.0%	87.4% 70.2%	77.7% 94.3%

Table 3

 3 Optimality gaps for the capital budgeting instances

	T	I	B	ν Ω -ν K ν K	%	νNA R -ν K ν K	%	νDNA R ν K -ν K	%
		5	50 100	17% 27%		20% 25%		16% 18%	
	3	8	100 150	24% 34%		25% 21%		24% 21%	
		10	100 150	33% 38%		28% 29%		16% 19%	
		5	100 150	35% 46%		26% 33%		20% 15%	
	4	8	150 200	43% 57%		30% 37%		34% 30%	
		10	150 200	48% 44%		36% 33%		31% 20%	
		5	200 250	65% 42%		42% 39%		20% 37%	
	5	8	250 300	40% 43%		39% 40%		31% 21%	
		10	250 300	55% 65%		31% 31%		31% 25%	

  A.1. Column-and-constraint Generation with Two-stage Linear Decision Rules Applying LDRs on the state variables of model (31), s it (ξ t ) = β 0 it +

						d jt (ξ t )β jt it , i ∈ [I], t ∈
						t ∈[2,t] j∈[J]
	[2, T ], results in the following 2ARO problem in monolithic form:	
	min z					
	s.t. z ≥	f i y i +	a i s i1 +	a i β 0 it +	d jt (ξ	t )β jt it +
	i∈[I]	i∈[I]	t∈[2,T ] i∈[I]	t ∈[2,t] j∈[J]		

t∈[2,T ] i∈[I] j∈[J]

  For better clarity, let us re-write the above formulation in the more common min-max-min form .t.s i1 ≤ K i y i i ∈ [I] y ∈ {0, 1} I , z ≥ 0.

	of 2ARO:									
	min	i∈[I]	f i y i +	i∈[I]	a i s i1 +	t∈[2,T ]	β 0 it + max ξ T ∈Ξ	min	t∈[2,T ] i∈[I] j∈[J]	c ij x ijt +	t ∈[2,t]	a i d jt (ξ t )β jt it
								s.t.				

∈ [I], t ∈ [3, T ], ξ t ∈ Ξ t i∈[I] x ijt (ξ t ) ≥ d jt (ξ t ) j ∈ [J], t ∈ [2, T ], ξ t ∈ Ξ t β 0 it + t ∈[2,t] j∈[J] d jt (ξ t )β jt it ≥ 0 i ∈ [I], t ∈ [2, T ], ξ t ∈ Ξ t y ∈ {0, 1} I , z, x ≥ 0. sj∈[J]

  Denote by π 1 , π 2 , π 3 the dual variables associated with three constraint sets of the inner minimization problem. After taking its LP dual and the adding the KKT conditions, we get the following as the subproblem of the column-and-constraint generation:

	max	a i d jt β jt it +	c ij x ijt
	t∈[2,T ] i∈[I] j∈[J] t ∈[2,t]	t∈[2,T ] i∈[I] j∈[J]	
	s.t.		
				d jt (ξ t )β jt it
				∈[2,t]
			+	d jt (ξ t-1 )β jt i,t-1
			j∈[J] t ∈[2,t-1]
				i ∈ [I], t ∈ [3, T ]

i∈

[I] 

x

ijt ≥ d jt (ξ t ) j ∈ [J], t ∈ [2, T ] β 0 it + t ∈[2,t] j∈[J] d jt (ξ t )β jt it ≥ 0 j ∈ [J], t ∈ [2, T ] x ≥ 0 j∈[J]
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ν LDR bound gets noticeably worse. In contrast, ν 2S-LDR stays very close to the optimal value, with an average relative distance of 0.2% among all the instances (compared to 8.7% for ν LDR ). We do not observe the same trend among the dual bounds, and their relative distance to the optimal value fluctuates even between two instances that only differ in the number of scenarios. Nevertheless, νNA R considerably outperforms the gap from PI, with an average improvement of 39.4%.

Budgeted-Uncertainty Instances

The ν 2S-LDR bound for the locationtransportation instances of this section is obtained using the C&CG method of Section 2.2 and detailed models are given in Appendix A.1. Similar to the scenario-tree instances, we use the 

Optimality gap of algorithm

Figure 9

Optimality gaps of the solution algorithms for ν 2S-LDR and νNA R at convergence/interruption.

that we use the best lower bound on νNA R obtained at the end of 10 hours in calculating opt N . This can further contribute to a weak dual bound. This suggests that, in addition to having a difficult nonlinear master problem, the cutting-plane method itself requires algorithmic enhancements, such as the design of stronger cuts.

Robust Capital Budgeting Problem

In the capital budgeting problem, a company wants to invest in a subset of I projects with uncertain cost and profit, subject to an initial budget of B that can be increased by getting a loan. A variant of the two-stage problem is studied by [START_REF] Subramanyam | K-adaptability in two-stage mixed-integer robust optimization[END_REF]. In the following, we formulate the multistage capital budgeting problem as an MSARO. Over a planning horizon of T stages, let

x it (ξ t ) be a binary decision variable taking the value of 1 if the company decides to invest in the project i ∈ [I] at stage t ∈ [T ], with a cost of c it (ξ t ) and profit of r it (ξ t ). Further, let L t (ξ t ) be a continuous decision variable determining the amount of loan the company decides to get at stage
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B. Detailed Results

B.1. Newsvendor Problem